WO2017104354A1 - Glass plate manufacturing method - Google Patents

Glass plate manufacturing method Download PDF

Info

Publication number
WO2017104354A1
WO2017104354A1 PCT/JP2016/084444 JP2016084444W WO2017104354A1 WO 2017104354 A1 WO2017104354 A1 WO 2017104354A1 JP 2016084444 W JP2016084444 W JP 2016084444W WO 2017104354 A1 WO2017104354 A1 WO 2017104354A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
glass plate
content
specifying step
lines
Prior art date
Application number
PCT/JP2016/084444
Other languages
French (fr)
Japanese (ja)
Inventor
弘和 奥村
高橋 忠
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201680057172.XA priority Critical patent/CN108139336B/en
Priority to KR1020187002366A priority patent/KR102623714B1/en
Publication of WO2017104354A1 publication Critical patent/WO2017104354A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for manufacturing a glass plate provided with an inspection process for detecting defects in the glass plate.
  • the glass plate defects detected in the inspection process include, for example, glass particles, cracks, foreign matters, dirt, processing defects, and the like.
  • the present invention has a technical problem of specifying the content of a defect while suppressing the inspection time in an inspection process for detecting a defect in a glass plate.
  • the present inventor obtained the following knowledge as a result of intensive studies. That is, when specifying the content of the defect in the inspection process, the inspection process includes a defect coordinate specifying step for specifying the coordinates of the defect, and a defect content specifying step for specifying the content of the defect at the coordinates specified in the defect coordinate specifying step. And can be divided into In that case, generally, the defect content specifying step takes more time than the defect coordinate specifying step. Therefore, when the number of lines in the defect coordinate specifying step is the same as the number of lines in the defect content specifying step, a situation occurs in which the glass plate that has completed the defect coordinate specifying step must wait for the defect content specifying step.
  • the manufacturing method of the glass plate of the present invention created based on this knowledge is a processing step for processing a glass plate, a cleaning step for cleaning the glass plate processed in the processing step, and a cleaning step in the cleaning step.
  • a glass plate manufacturing method comprising: an inspection step for inspecting a defect of the glass plate, wherein the inspection step is specified by a defect coordinate specifying step for specifying a defect coordinate and the defect coordinate specifying step.
  • a defect content specifying step for specifying the content of the defect in coordinates, and the number of lines in the defect content specifying step is greater than the number of lines in the defect coordinate specifying step, and passes through the lines in the defect coordinate specifying step.
  • the glass plate is distributed to the defect content identification process line.
  • the number of lines in the defect content specifying process is larger than the number of lines in the defect coordinate specifying process, and the glass plate that has passed through the line in the defect coordinate specifying process is distributed to the line of the defect content specifying process. Therefore, it is possible to avoid a situation in which the glass plate that has completed the defect coordinate specifying step must wait for the defect content specifying step. Thereby, the time which the whole inspection process requires can be shortened compared with the case where the number of lines of a defect coordinate specific process and the number of lines of a defect content specific process are the same. That is, according to the manufacturing method of the glass plate of this invention, it is possible to specify the content of a defect, suppressing inspection time in the inspection process which detects the defect of a glass plate.
  • the glass plate is lifted at a middle portion in the perpendicular direction of the conveyance direction and supported in a non-contact manner and is conveyed in a state of being supported in contact at both end portions in the perpendicular direction. It is preferable to specify the coordinates.
  • the time required for the defect coordinate specifying process can be further shortened. Moreover, since it conveys in the state which floated the glass plate in the intermediate part and was non-contact supported, it can suppress that a defect newly arises in a glass plate. Moreover, since it conveys in the state which floated the glass plate, it is hard to produce deformation
  • the defect content specifying step it is preferable to specify the content of the defect in a state where the glass plate is supported by surface contact and fixed.
  • the position of the glass plate is stabilized, so that the coordinates specified in the defect coordinate specifying process can be more accurately focused and focused.
  • the number of lines in the defect content specifying step is 1 to 3 more than the number of lines in the defect coordinate specifying step.
  • the content of the defect can be specified while suppressing the inspection time in the inspection process for detecting the defect of the glass plate.
  • FIG. 1 is a schematic view showing a method for producing a glass plate according to an embodiment of the present invention.
  • processing such as end face processing is performed on the glass plate.
  • the glass plate produced by the production method 1 has a size of, for example, 300 ⁇ 300 mm to 3500 ⁇ 3500 mm, and a thickness of, for example, 0.1 to 1.1 mm.
  • This manufacturing method 1 includes a charging step S1 for charging a glass plate, a processing step S2 for processing the glass plate input in the charging step S1, and a cleaning step S3 for cleaning the glass plate processed in the processing step S2. And inspection process S4 which test
  • the inspection step S4 includes a defect coordinate specifying step S4a for specifying the coordinates of the defect, and a defect content specifying step S4b for specifying the content of the defect at the coordinates specified in the defect coordinate specifying step S4a.
  • the number of lines in the defect content specifying step S4b is larger than the number of lines in the defect coordinate specifying step S4a, and the glass plate that has passed through the line in the defect coordinate specifying step S4a is distributed to the line in the defect content specifying step S4b. It is configured to be.
  • one line including the defect coordinate specifying step S4a branches to form three lines including the defect content specifying step S4b. That is, the number of lines in the defect coordinate specifying step S4a is one, the number of lines in the defect content specifying step S4b is three, and the number of lines in the defect content specifying step S4b is more than the number of lines in the defect coordinate specifying step S4a. 2 more.
  • the glass plate is charged in the charging step S1.
  • processing such as end face processing (chamfering processing or the like) is performed on the glass plate input in the input step S1.
  • the cleaning step S3 the glass plate processed in the processing step S2 is cleaned, for example, with high pressure water or a roll brush.
  • the glass plate 3 is automatically transported by the transport mechanism 2 shown in FIGS. 2A and 2B.
  • the transport mechanism 2 includes, for example, a floating portion 2a such as an air float that brings the glass plate 3 into a floating state by jetting air, and a feeding portion 2b such as a roller that contacts and feeds the glass plate 3.
  • the transport mechanism 2 transports the glass plate 3 in a state in which the glass plate 3 is lifted at an intermediate portion in a direction perpendicular to the transport direction and supported in a non-contact manner and is supported in contact at both ends in a direction perpendicular to the transport direction.
  • the glass plate 3 is conveyed with a traction force applied by the feeding portion 2b in a state of being floated with respect to the floating portion 2a by the floating portion 2a. During this conveyance, the glass plate 3 maintains a more natural shape (flat plate shape) by causing the pressure of the air directed vertically upward from the lower part to act in a horizontal state so as to cancel the weight of the glass plate 3. .
  • the defect coordinate specifying step S4a the number of defects on the glass plate 3 is counted and the coordinates of the defects are specified.
  • the defect coordinate specifying step S4a the number of defects in the glass plate 3 is counted and the coordinates of the defect are continuously conveyed from the first conveyance path R1 by the conveyance mechanism 2. To identify. At this time, the glass plate 3 is sent to the feeding portion 2b and conveyed in a state of being floated with respect to the floating portion 2a.
  • the coordinate specifying inspection device 4 detects defects in the glass plate 3, automatically counts the number of defects, and automatically specifies the coordinates of the defects.
  • the coordinate specifying inspection apparatus 4 includes a light source 4 a and an imaging unit 4 b such as a camera disposed so as to face the light source 4 a through the conveyance path of the glass plate 3.
  • the light source 4 a illuminates a wide area along a direction perpendicular to the conveyance direction of the glass plate 3.
  • the imaging unit 4b images a wide area along a direction perpendicular to the conveyance direction of the glass plate 3.
  • the coordinate specifying inspection apparatus 4 captures an image of the entire area of the glass plate 3 as the glass plate 3 passes through the conveyance path in a state where the imaging unit 4b is fixed.
  • the coordinate specifying inspection apparatus 4 is of a type that images with light transmitted through the glass plate 3.
  • the glass plate 3 In the second conveyance path R2 from the defect coordinate identification step S4a to the defect content identification step S4b, the glass plate 3 is automatically conveyed (contact conveyance) while being contacted by, for example, a roller conveyor. In the second transport path R2, the glass plate 3 that has completed the defect coordinate specifying step S4a is automatically distributed to the defect content specifying step S4b.
  • the defect content specifying step S4b the content of the defect at the coordinates is specified based on the coordinates specified in the defect coordinate specifying step S4a.
  • the defect content specifying step S4b the content of the defect is specified in a state where the glass plate 3 is supported by the support member 5 by surface contact and fixed.
  • the defect specifying device 6 images the defect of the glass plate 3 and specifies the content of the defect.
  • the content specifying inspection apparatus 6 includes an imaging unit 6a such as a microscope and a moving mechanism 6b such as a gantry for supporting and moving the imaging unit 6a.
  • the content specifying inspection device 6 images the defect of the glass plate 3 by moving the imaging unit 6 a in a state where the glass plate 3 is fixed on the support member 5.
  • the support member 5 does not transmit light, and the content specifying inspection device 6 is a type that captures an image with light reflected on the glass plate 3.
  • the support member 5 is configured to eject air and float the glass plate 3 before positioning, but is configured to adsorb the glass plate 3 after positioning.
  • the identification of the content of the defect may be determined by a human by looking at the captured image, or may be determined automatically by processing the captured image data.
  • the glass plate is automatically contacted and conveyed by, for example, a roller conveyor.
  • the defect content specifying step S4b determines whether or not the glass plate 3 that has been inspected is a non-defective product based on the inspection result (number of defects) in the defect coordinate specifying step S4a and the inspection result (defect content) in the defect content specifying step S4b This determination is performed by a determination unit (not shown).
  • the glass plate 3 determined as a non-defective product based on the determination result by the determination unit is packaged as a non-defective product in the packing step S5 and shipped.
  • the glass plate 3 determined to be a defective product is packed as a defective product.
  • the number of lines in the defect content specifying step S4b is larger than the number of lines in the defect coordinate specifying step S4a, and passes through the lines in the defect coordinate specifying step S4a.
  • the processed glass plate is distributed to the line of the defect content specifying step S4b. Therefore, it is possible to avoid a situation where the glass plate 3 that has completed the defect coordinate specifying step S4a must wait for the defect content specifying step S4b.
  • the time required for the entire inspection process S4 can be made shorter than when the number of lines in the defect coordinate identification process S4a is the same as the number of lines in the defect content identification process S4b. That is, according to the manufacturing method 1 of the glass plate of this embodiment, it is possible to specify the content of the defect while suppressing the inspection time in the inspection process for detecting the defect of the glass plate.
  • the inspection process S4 includes the defect coordinate specifying process S4a (short time) for specifying only the positional information and the presence / absence of a defect (short time), and the defect content for specifying the defect content (long time).
  • the process is divided into specific processes S4b.
  • the layout configuration is such that the lines of the defect content specifying step S4b that require a long time in the inspection step S4 are doubled. Thereby, the processing capability of inspection process S4 can be improved.
  • the back surface of the glass plate 3 is conveyed in a non-contact manner from the cleaning step S3 to the defect coordinate specifying step S4a, it is possible to suppress new defects from being generated on the surface of the glass plate 3. Further, during the period from the cleaning step S3 to the defect content specifying step S4b, the handling of the glass plate 3, the movement of the upper, lower, left and right glass plates 3 for changing the transport direction and the change of the posture of the glass plate 3 are performed as much as possible. Do not. Therefore, it can suppress that a new defect arises in the glass plate 3. FIG. By these synergistic effects, unnecessary defects are less likely to occur in the manufacturing method 1, and the yield rate is improved.
  • the present invention is not limited to the above embodiment, and various modifications are possible within the scope of the technical idea.
  • the distribution of the glass plate 3 that has completed the defect coordinate specifying step S4a to the defect content specifying step S4b is automatically performed in the second transport path R2, but is performed by a human hand or a cart. May be.
  • the glass plate 3 was automatically conveyed in 1st conveyance path R1 and 3rd conveyance path R3 in a line, the glass plate 3 may be conveyed by a human hand or a trolley
  • the coordinate specifying inspection device 4 is a type that captures an image with light transmitted through the glass plate 3, but may be a type that captures an image with light reflected on the glass plate 3. Moreover, in the said embodiment, although the content-inspecting inspection apparatus 6 was a type imaged with the light reflected on the glass plate 3, the type which image

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A glass plate manufacturing method 1 is provided with: a machining step S2 of machining a glass plate; a cleaning step S3 of cleaning the glass plate machined in the machining step S2; and an inspection step S4 of detecting defects in the glass plate cleaned in the cleaning step S3. The inspection step S4 includes: a defect coordinate identifying step S4a of identifying defect coordinates; and a defect detail identifying step S4b of identifying the details of the defect at the coordinates identified in the defect coordinate identifying step S4a. The number of lines for implementing the defect detail identifying step S4b is greater than the number of lines for implementing the defect coordinate identifying step S4a, and the glass plates that have passed through the line for implementing the defect coordinate identifying step S4a are allocated to the lines for implementing the defect detail identifying step S4b.

Description

ガラス板の製造方法Manufacturing method of glass plate
 本発明は、ガラス板の欠陥を検出する検査工程を備えたガラス板の製造方法に関するものである。 The present invention relates to a method for manufacturing a glass plate provided with an inspection process for detecting defects in the glass plate.
 例えば液晶ディスプレイ用のガラス基板等のガラス板の製造方法には、ガラス板を加工する加工工程と、前記加工工程で加工された前記ガラス板を洗浄する洗浄工程と、前記洗浄工程で洗浄された前記ガラス板の欠陥を検査する検査工程とを備えるものがある(例えば特許文献1参照)。検査工程で検出されるガラス板の欠陥には、例えば、ガラスパーティクル、クラック、異物、汚れ、加工不良等が含まれる。 For example, in a method for manufacturing a glass plate such as a glass substrate for a liquid crystal display, the glass plate processed by the processing step, the cleaning step for cleaning the glass plate processed in the processing step, and the cleaning step Some have an inspection step for inspecting the glass plate for defects (for example, see Patent Document 1). The glass plate defects detected in the inspection process include, for example, glass particles, cracks, foreign matters, dirt, processing defects, and the like.
特開2015-141096号公報JP 2015-141096 A
 ところで、検査工程では、欠陥の有無だけでなく、欠陥の内容まで特定することが求められる場合がある。しかし、単純に、欠陥の内容まで特定しようとすると、検査工程に要する時間が長くなるという問題があった。 Incidentally, in the inspection process, it may be required to specify not only the presence / absence of a defect but also the content of the defect. However, simply specifying the contents of the defect has a problem that the time required for the inspection process becomes long.
 本発明は、上記事情に鑑み、ガラス板の欠陥を検出する検査工程において、検査時間を抑制しつつ、欠陥の内容を特定することを技術的課題とする。 In view of the above circumstances, the present invention has a technical problem of specifying the content of a defect while suppressing the inspection time in an inspection process for detecting a defect in a glass plate.
 前記課題を解決するために、本願発明者は、鋭意検討を重ねた結果、次のような知見を得た。すなわち、検査工程で欠陥の内容まで特定する場合、検査工程を、欠陥の座標を特定する欠陥座標特定工程と、この欠陥座標特定工程で特定された座標の欠陥の内容を特定する欠陥内容特定工程とに分割することができる。その場合、一般的に、欠陥座標特定工程よりも欠陥内容特定工程の方が時間を要する。従って、欠陥座標特定工程のライン数と欠陥内容特定工程のライン数とが同じ場合、欠陥座標特定工程を完了したガラス板が、欠陥内容特定工程を待たなければならない事態が発生する。 In order to solve the above-mentioned problems, the present inventor obtained the following knowledge as a result of intensive studies. That is, when specifying the content of the defect in the inspection process, the inspection process includes a defect coordinate specifying step for specifying the coordinates of the defect, and a defect content specifying step for specifying the content of the defect at the coordinates specified in the defect coordinate specifying step. And can be divided into In that case, generally, the defect content specifying step takes more time than the defect coordinate specifying step. Therefore, when the number of lines in the defect coordinate specifying step is the same as the number of lines in the defect content specifying step, a situation occurs in which the glass plate that has completed the defect coordinate specifying step must wait for the defect content specifying step.
 この知見に基づいて創案された本発明のガラス板の製造方法は、ガラス板を加工する加工工程と、前記加工工程で加工された前記ガラス板を洗浄する洗浄工程と、前記洗浄工程で洗浄された前記ガラス板の欠陥を検査する検査工程とを備えたガラス板の製造方法であって、前記検査工程は、欠陥の座標を特定する欠陥座標特定工程と、前記欠陥座標特定工程で特定された座標の欠陥の内容を特定する欠陥内容特定工程とを有し、前記欠陥座標特定工程のライン数より、前記欠陥内容特定工程のライン数の方が多く、前記欠陥座標特定工程のラインを通過した前記ガラス板が、前記欠陥内容特定工程のラインに振り分けられることを特徴とする。 The manufacturing method of the glass plate of the present invention created based on this knowledge is a processing step for processing a glass plate, a cleaning step for cleaning the glass plate processed in the processing step, and a cleaning step in the cleaning step. And a glass plate manufacturing method comprising: an inspection step for inspecting a defect of the glass plate, wherein the inspection step is specified by a defect coordinate specifying step for specifying a defect coordinate and the defect coordinate specifying step. A defect content specifying step for specifying the content of the defect in coordinates, and the number of lines in the defect content specifying step is greater than the number of lines in the defect coordinate specifying step, and passes through the lines in the defect coordinate specifying step. The glass plate is distributed to the defect content identification process line.
 この構成によれば、欠陥座標特定工程のライン数よりも欠陥内容特定工程のライン数の方が多く、欠陥座標特定工程のラインを通過したガラス板が、欠陥内容特定工程のラインに振り分けられる。そのため、欠陥座標特定工程を完了したガラス板が、欠陥内容特定工程を待たなければならない事態を回避することができる。これにより、検査工程全体に要する時間を、欠陥座標特定工程のライン数と欠陥内容特定工程のライン数とが同じ場合より短くすることができる。すなわち、本発明のガラス板の製造方法によれば、ガラス板の欠陥を検出する検査工程において、検査時間を抑制しつつ、欠陥の内容を特定することが可能である。 According to this configuration, the number of lines in the defect content specifying process is larger than the number of lines in the defect coordinate specifying process, and the glass plate that has passed through the line in the defect coordinate specifying process is distributed to the line of the defect content specifying process. Therefore, it is possible to avoid a situation in which the glass plate that has completed the defect coordinate specifying step must wait for the defect content specifying step. Thereby, the time which the whole inspection process requires can be shortened compared with the case where the number of lines of a defect coordinate specific process and the number of lines of a defect content specific process are the same. That is, according to the manufacturing method of the glass plate of this invention, it is possible to specify the content of a defect, suppressing inspection time in the inspection process which detects the defect of a glass plate.
 上記の構成において、前記欠陥座標特定工程では、前記ガラス板を搬送方向の直角方向の中間部で浮上させて非接触支持すると共に前記直角方向の両端部で接触支持した状態で搬送しながら、欠陥の座標を特定することが好ましい。 In the above configuration, in the defect coordinate specifying step, the glass plate is lifted at a middle portion in the perpendicular direction of the conveyance direction and supported in a non-contact manner and is conveyed in a state of being supported in contact at both end portions in the perpendicular direction. It is preferable to specify the coordinates.
 この構成であれば、ガラス板を搬送しながら欠陥の座標を特定するので、欠陥座標特定工程に要する時間をより短くすることができる。また、ガラス板を中間部で浮上させて非接触支持した状態で搬送するので、ガラス板に欠陥が新たに生じることを抑制できる。また、ガラス板を浮上させた状態で搬送するので、ガラス板に自重による撓み等の変形が生じ難く、精度良く欠陥の座標を特定することができる。 With this configuration, since the coordinates of the defect are specified while conveying the glass plate, the time required for the defect coordinate specifying process can be further shortened. Moreover, since it conveys in the state which floated the glass plate in the intermediate part and was non-contact supported, it can suppress that a defect newly arises in a glass plate. Moreover, since it conveys in the state which floated the glass plate, it is hard to produce deformation | transformation of the glass plate by the dead weight, etc., and the coordinate of a defect can be pinpointed accurately.
 上記の構成において、前記欠陥内容特定工程では、前記ガラス板を面接触で支持し、固定した状態で、欠陥の内容を特定することが好ましい。 In the above configuration, in the defect content specifying step, it is preferable to specify the content of the defect in a state where the glass plate is supported by surface contact and fixed.
 ガラス板を面接触で支持し、固定した状態なので、ガラス板の位置が安定するため、欠陥座標特定工程で特定された座標に、より正確に照準や焦点を合わして撮像することができる。 Since the glass plate is supported and fixed in surface contact, the position of the glass plate is stabilized, so that the coordinates specified in the defect coordinate specifying process can be more accurately focused and focused.
 上記の構成において、前記欠陥座標特定工程のライン数より、前記欠陥内容特定工程のライン数の方が1~3個多いことが好ましい。 In the above configuration, it is preferable that the number of lines in the defect content specifying step is 1 to 3 more than the number of lines in the defect coordinate specifying step.
 以上のように、本発明によれば、ガラス板の欠陥を検出する検査工程において、検査時間を抑制しつつ、欠陥の内容を特定することができる。 As described above, according to the present invention, the content of the defect can be specified while suppressing the inspection time in the inspection process for detecting the defect of the glass plate.
本発明の実施形態に係るガラス板の製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the glass plate which concerns on embodiment of this invention. 欠陥座標特定工程を示す概略平面図である。It is a schematic plan view which shows a defect coordinate specific process. 欠陥座標特定工程を示す概略側面図である。It is a schematic side view which shows a defect coordinate specific process. 欠陥内容特定工程を示す概略平面図である。It is a schematic plan view which shows a defect content specific process. 欠陥内容特定工程を示す概略正面図である。It is a schematic front view which shows a defect content specific process.
 以下、本発明を実施するための形態について図面に基づき説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態に係るガラス板の製造方法を示す概略図である。このガラス板の製造方法(以下、単に製造方法1と記す)は、ガラス板に対し、例えば端面加工等の加工を行なうものである。製造方法1で製造されるガラス板は、その大きさが、例えば、300×300mm~3500×3500mmであり、その板厚が、例えば、0.1~1.1mmである。 FIG. 1 is a schematic view showing a method for producing a glass plate according to an embodiment of the present invention. In this glass plate manufacturing method (hereinafter simply referred to as manufacturing method 1), processing such as end face processing is performed on the glass plate. The glass plate produced by the production method 1 has a size of, for example, 300 × 300 mm to 3500 × 3500 mm, and a thickness of, for example, 0.1 to 1.1 mm.
 この製造方法1は、ガラス板を投入する投入工程S1と、投入工程S1で投入された前記ガラス板を加工する加工工程S2と、加工工程S2で加工された前記ガラス板を洗浄する洗浄工程S3と、洗浄工程S3で洗浄された前記ガラス板の欠陥を検査する検査工程S4と、検査工程S4で欠陥を検査された前記ガラス板を梱包する梱包工程S5とを備える。 This manufacturing method 1 includes a charging step S1 for charging a glass plate, a processing step S2 for processing the glass plate input in the charging step S1, and a cleaning step S3 for cleaning the glass plate processed in the processing step S2. And inspection process S4 which test | inspects the defect of the said glass plate wash | cleaned by washing | cleaning process S3, and packing process S5 which packages the said glass plate by which the defect was test | inspected by inspection process S4.
 検査工程S4は、欠陥の座標を特定する欠陥座標特定工程S4aと、欠陥座標特定工程S4aで特定された座標の欠陥の内容を特定する欠陥内容特定工程S4bとを有する。そして、欠陥座標特定工程S4aのラインの数より、欠陥内容特定工程S4bのラインの数の方が多く、欠陥座標特定工程S4aのラインを通過したガラス板が、欠陥内容特定工程S4bのラインに振り分けられるように構成されている。 The inspection step S4 includes a defect coordinate specifying step S4a for specifying the coordinates of the defect, and a defect content specifying step S4b for specifying the content of the defect at the coordinates specified in the defect coordinate specifying step S4a. The number of lines in the defect content specifying step S4b is larger than the number of lines in the defect coordinate specifying step S4a, and the glass plate that has passed through the line in the defect coordinate specifying step S4a is distributed to the line in the defect content specifying step S4b. It is configured to be.
 図示例では、欠陥座標特定工程S4aを含む1個のラインが分岐して、欠陥内容特定工程S4bを含む3個のラインとなっている。つまり、欠陥座標特定工程S4aのライン数は1個で、欠陥内容特定工程S4bのライン数は3個であり、欠陥座標特定工程S4aのライン数より、欠陥内容特定工程S4bのライン数の方が2個多い。 In the illustrated example, one line including the defect coordinate specifying step S4a branches to form three lines including the defect content specifying step S4b. That is, the number of lines in the defect coordinate specifying step S4a is one, the number of lines in the defect content specifying step S4b is three, and the number of lines in the defect content specifying step S4b is more than the number of lines in the defect coordinate specifying step S4a. 2 more.
 次に、製造方法1の工程について、順を追って説明する。 Next, the steps of manufacturing method 1 will be described in order.
 最初に、投入工程S1で、ガラス板を投入する。次に、加工工程S2で、投入工程S1で投入されたガラス板に対し、例えば端面加工(面取り加工等)等の加工を行なう。そして、洗浄工程S3で、加工工程S2で加工されたガラス板を、例えば高圧水やロールブラシによって洗浄する。 First, the glass plate is charged in the charging step S1. Next, in the processing step S2, processing such as end face processing (chamfering processing or the like) is performed on the glass plate input in the input step S1. In the cleaning step S3, the glass plate processed in the processing step S2 is cleaned, for example, with high pressure water or a roll brush.
 洗浄工程S3から欠陥座標特定工程S4aまでの第1搬送路R1では、図2A及び図2Bに示す搬送機構2により、自動で、ガラス板3は搬送される。 In the first transport path R1 from the cleaning process S3 to the defect coordinate specifying process S4a, the glass plate 3 is automatically transported by the transport mechanism 2 shown in FIGS. 2A and 2B.
 搬送機構2は、例えばエアの噴出によってガラス板3を浮上させた状態にするエアフロート等の浮上部2aと、接触してガラス板3を送る例えばローラ等の送り部2bとを有する。搬送機構2は、ガラス板3を搬送方向に直角な方向の中間部で浮上させて非接触支持すると共に搬送方向に直角な方向の両端部で接触支持した状態で搬送する。ガラス板3は、浮上部2aにより浮上部2aに対して浮上した状態で、送り部2bにより牽引力を付与されて搬送される。この搬送中には、ガラス板3は、水平状態で下部から鉛直上方に向かうエアの圧力をガラス板3の自重を相殺するように作用させることで、より自然な形状(平板状)を保持する。 The transport mechanism 2 includes, for example, a floating portion 2a such as an air float that brings the glass plate 3 into a floating state by jetting air, and a feeding portion 2b such as a roller that contacts and feeds the glass plate 3. The transport mechanism 2 transports the glass plate 3 in a state in which the glass plate 3 is lifted at an intermediate portion in a direction perpendicular to the transport direction and supported in a non-contact manner and is supported in contact at both ends in a direction perpendicular to the transport direction. The glass plate 3 is conveyed with a traction force applied by the feeding portion 2b in a state of being floated with respect to the floating portion 2a by the floating portion 2a. During this conveyance, the glass plate 3 maintains a more natural shape (flat plate shape) by causing the pressure of the air directed vertically upward from the lower part to act in a horizontal state so as to cancel the weight of the glass plate 3. .
 次に、欠陥座標特定工程S4aで、ガラス板3の欠陥の数をカウントすると共に、欠陥の座標を特定する。 Next, in the defect coordinate specifying step S4a, the number of defects on the glass plate 3 is counted and the coordinates of the defects are specified.
 図2A及び図2Bに示すように、欠陥座標特定工程S4aでは、第1搬送路R1から引き続き、搬送機構2によりガラス板3を搬送しながら、ガラス板3の欠陥の数のカウントと欠陥の座標の特定を行なう。この際、ガラス板3は、浮上部2aに対して浮上した状態で送り部2bに送られて搬送されている。 As shown in FIG. 2A and FIG. 2B, in the defect coordinate specifying step S4a, the number of defects in the glass plate 3 is counted and the coordinates of the defect are continuously conveyed from the first conveyance path R1 by the conveyance mechanism 2. To identify. At this time, the glass plate 3 is sent to the feeding portion 2b and conveyed in a state of being floated with respect to the floating portion 2a.
 欠陥座標特定工程S4aでは、座標特定用検査装置4により、ガラス板3の欠陥を検出し、欠陥の数を自動でカウントすると共に欠陥の座標を自動で特定する。座標特定用検査装置4は、図2Bに示すように、光源4aと、光源4aに対してガラス板3の搬送路を介して対向配置された例えばカメラ等の撮像部4bを有する。光源4aは、ガラス板3の搬送方向に直角な方向に沿った幅広な領域を照らす。撮像部4bは、ガラス板3の搬送方向に直角な方向に沿った幅広な領域を撮像する。座標特定用検査装置4は、撮像部4bが固定された状態で、ガラス板3が搬送路を通過することで、ガラス板3の全域を撮像する。座標特定用検査装置4は、ガラス板3を透過した光で撮像するタイプである。 In the defect coordinate specifying step S4a, the coordinate specifying inspection device 4 detects defects in the glass plate 3, automatically counts the number of defects, and automatically specifies the coordinates of the defects. As shown in FIG. 2B, the coordinate specifying inspection apparatus 4 includes a light source 4 a and an imaging unit 4 b such as a camera disposed so as to face the light source 4 a through the conveyance path of the glass plate 3. The light source 4 a illuminates a wide area along a direction perpendicular to the conveyance direction of the glass plate 3. The imaging unit 4b images a wide area along a direction perpendicular to the conveyance direction of the glass plate 3. The coordinate specifying inspection apparatus 4 captures an image of the entire area of the glass plate 3 as the glass plate 3 passes through the conveyance path in a state where the imaging unit 4b is fixed. The coordinate specifying inspection apparatus 4 is of a type that images with light transmitted through the glass plate 3.
 欠陥座標特定工程S4aから欠陥内容特定工程S4bまでの第2搬送路R2では、ガラス板3は、自動で、例えばローラコンベアにより接触されながら搬送(接触搬送)される。第2搬送路R2で、欠陥座標特定工程S4aを完了したガラス板3が、欠陥内容特定工程S4bに自動で振り分けられる。 In the second conveyance path R2 from the defect coordinate identification step S4a to the defect content identification step S4b, the glass plate 3 is automatically conveyed (contact conveyance) while being contacted by, for example, a roller conveyor. In the second transport path R2, the glass plate 3 that has completed the defect coordinate specifying step S4a is automatically distributed to the defect content specifying step S4b.
 次に、欠陥内容特定工程S4bで、欠陥座標特定工程S4aで特定された座標に基づいて、その座標の欠陥の内容を特定する。 Next, in the defect content specifying step S4b, the content of the defect at the coordinates is specified based on the coordinates specified in the defect coordinate specifying step S4a.
 図3A及び図3Bに示すように、欠陥内容特定工程S4bでは、支持部材5によりガラス板3を面接触で支持し、固定した状態で、欠陥の内容を特定する。欠陥内容特定工程S4bでは、座標特定用検査装置4から伝達された欠陥の座標データに基づいて、内容特定用検査装置6によりガラス板3の欠陥を撮像し、欠陥の内容を特定する。 As shown in FIG. 3A and FIG. 3B, in the defect content specifying step S4b, the content of the defect is specified in a state where the glass plate 3 is supported by the support member 5 by surface contact and fixed. In the defect content specifying step S4b, based on the defect coordinate data transmitted from the coordinate specifying inspection device 4, the defect specifying device 6 images the defect of the glass plate 3 and specifies the content of the defect.
 内容特定用検査装置6は、例えば顕微鏡等の撮像部6aと、撮像部6aを支持して移動させるための例えばガントリ等の移動機構6bを有する。内容特定用検査装置6は、ガラス板3が支持部材5上に固定された状態で、撮像部6aが移動することで、ガラス板3の欠陥を撮像する。支持部材5は光を透過せず、内容特定用検査装置6は、ガラス板3に反射した光で撮像するタイプである。なお、支持部材5は、位置決め前には、エアを噴出してガラス板3を浮上させているが、位置決め後には、ガラス板3を吸着するように構成されている。 The content specifying inspection apparatus 6 includes an imaging unit 6a such as a microscope and a moving mechanism 6b such as a gantry for supporting and moving the imaging unit 6a. The content specifying inspection device 6 images the defect of the glass plate 3 by moving the imaging unit 6 a in a state where the glass plate 3 is fixed on the support member 5. The support member 5 does not transmit light, and the content specifying inspection device 6 is a type that captures an image with light reflected on the glass plate 3. The support member 5 is configured to eject air and float the glass plate 3 before positioning, but is configured to adsorb the glass plate 3 after positioning.
 欠陥の内容の特定は、撮像された画像を見て人間が判断してもよいし、撮像された画像データを自動で処理して自動で判断するようにしてもよい。 The identification of the content of the defect may be determined by a human by looking at the captured image, or may be determined automatically by processing the captured image data.
 欠陥内容特定工程S4bを出てから梱包工程S5に入るまでの第3搬送路R3では、ガラス板は、自動で、例えばローラコンベアにより接触搬送される。 In the third conveyance path R3 from the defect content identification process S4b to the packing process S5, the glass plate is automatically contacted and conveyed by, for example, a roller conveyor.
 欠陥内容特定工程S4bの後、欠陥座標特定工程S4aの検査結果(欠陥の数)と欠陥内容特定工程S4bの検査結果(欠陥の内容)に基づき、検査を実施したガラス板3が良品か否かの判定を不図示の判定部で行なう。 After the defect content specifying step S4b, whether or not the glass plate 3 that has been inspected is a non-defective product based on the inspection result (number of defects) in the defect coordinate specifying step S4a and the inspection result (defect content) in the defect content specifying step S4b This determination is performed by a determination unit (not shown).
 判定部による判定結果で、良品と判定されたガラス板3が梱包工程S5で良品として梱包されて出荷される。一方、不良品と判定されたガラス板3は、不良品として梱包される。 The glass plate 3 determined as a non-defective product based on the determination result by the determination unit is packaged as a non-defective product in the packing step S5 and shipped. On the other hand, the glass plate 3 determined to be a defective product is packed as a defective product.
 以上のように構成された本実施形態の製造方法1によれば、欠陥座標特定工程S4aのライン数よりも欠陥内容特定工程S4bのライン数の方が多く、欠陥座標特定工程S4aのラインを通過したガラス板が、欠陥内容特定工程S4bのラインに振り分けられる。そのため、欠陥座標特定工程S4aを完了したガラス板3が、欠陥内容特定工程S4bを待たなければならない事態を回避することができる。これにより、検査工程S4全体に要する時間を、欠陥座標特定工程S4aのライン数と欠陥内容特定工程S4bのライン数とが同じ場合より短くすることができる。すなわち、本実施形態のガラス板の製造方法1によれば、ガラス板の欠陥を検出する検査工程において、検査時間を抑制しつつ、欠陥の内容を特定することが可能である。 According to the manufacturing method 1 of the present embodiment configured as described above, the number of lines in the defect content specifying step S4b is larger than the number of lines in the defect coordinate specifying step S4a, and passes through the lines in the defect coordinate specifying step S4a. The processed glass plate is distributed to the line of the defect content specifying step S4b. Therefore, it is possible to avoid a situation where the glass plate 3 that has completed the defect coordinate specifying step S4a must wait for the defect content specifying step S4b. As a result, the time required for the entire inspection process S4 can be made shorter than when the number of lines in the defect coordinate identification process S4a is the same as the number of lines in the defect content identification process S4b. That is, according to the manufacturing method 1 of the glass plate of this embodiment, it is possible to specify the content of the defect while suppressing the inspection time in the inspection process for detecting the defect of the glass plate.
 換言すれば、製造方法1では、検査工程S4を、位置情報と欠陥の有無のみを特定(短時間)する欠陥座標特定工程S4a(短時間)と、欠陥内容を特定(長時間)する欠陥内容特定工程S4bに分割している。そして、検査工程S4における長時間を要する欠陥内容特定工程S4bのラインを複線化したレイアウト構成としている。これにより、検査工程S4の処理能力を向上することができる。 In other words, in the manufacturing method 1, the inspection process S4 includes the defect coordinate specifying process S4a (short time) for specifying only the positional information and the presence / absence of a defect (short time), and the defect content for specifying the defect content (long time). The process is divided into specific processes S4b. The layout configuration is such that the lines of the defect content specifying step S4b that require a long time in the inspection step S4 are doubled. Thereby, the processing capability of inspection process S4 can be improved.
 また、洗浄工程S3から出て欠陥座標特定工程S4aまでの間は、ガラス板3の裏面を非接触で搬送するので、ガラス板3の表面に欠陥が新たに生じることを抑制できる。また、洗浄工程S3から出て欠陥内容特定工程S4bまでの間は、ガラス板3のハンドリングや、搬送方向転換のための上下左右のガラス板3の移動やガラス板3の姿勢変更は、極力行なわないようにする。そのため、ガラス板3に新たな欠陥を生じることを抑制できる。これらの相乗効果により、製造方法1において、不要な欠陥が生じ難いため、良品率が向上する。 In addition, since the back surface of the glass plate 3 is conveyed in a non-contact manner from the cleaning step S3 to the defect coordinate specifying step S4a, it is possible to suppress new defects from being generated on the surface of the glass plate 3. Further, during the period from the cleaning step S3 to the defect content specifying step S4b, the handling of the glass plate 3, the movement of the upper, lower, left and right glass plates 3 for changing the transport direction and the change of the posture of the glass plate 3 are performed as much as possible. Do not. Therefore, it can suppress that a new defect arises in the glass plate 3. FIG. By these synergistic effects, unnecessary defects are less likely to occur in the manufacturing method 1, and the yield rate is improved.
 また、搬送機構2による搬送で、ガラス板3の自重に相当するエア圧を加えることでガラス板3の自重による撓みや変形を抑制できる。その結果、搬送機構2による搬送中に実施する欠陥座標特定工程S4aの検査の信頼性が向上する。 In addition, bending and deformation due to the weight of the glass plate 3 can be suppressed by applying an air pressure corresponding to the weight of the glass plate 3 during the conveyance by the conveyance mechanism 2. As a result, the reliability of the inspection in the defect coordinate specifying step S4a performed during conveyance by the conveyance mechanism 2 is improved.
 本発明は、上記実施形態に限定されるものでは無く、その技術的思想の範囲内で、様々な変形が可能である。例えば、上記実施形態では、欠陥座標特定工程S4aを完了したガラス板3の欠陥内容特定工程S4bへの振り分けは、第2搬送路R2において自動で行なわれていたが、人の手や台車によって行なわれてもよい。また、上記実施形態では、ライン内の第1搬送路R1や第3搬送路R3では、自動でガラス板3が搬送されていたが、人の手や台車によってガラス板3が搬送されてもよい。 The present invention is not limited to the above embodiment, and various modifications are possible within the scope of the technical idea. For example, in the above embodiment, the distribution of the glass plate 3 that has completed the defect coordinate specifying step S4a to the defect content specifying step S4b is automatically performed in the second transport path R2, but is performed by a human hand or a cart. May be. Moreover, in the said embodiment, although the glass plate 3 was automatically conveyed in 1st conveyance path R1 and 3rd conveyance path R3 in a line, the glass plate 3 may be conveyed by a human hand or a trolley | bogie. .
 また、上記実施形態では、座標特定用検査装置4は、ガラス板3を透過した光で撮像するタイプであったが、ガラス板3に反射した光で撮像するタイプでもよい。また、上記実施形態では、内容特定用検査装置6は、ガラス板3に反射した光で撮像するタイプであったが、ガラス板3を透過した光で撮像するタイプであってもよい。 In the above embodiment, the coordinate specifying inspection device 4 is a type that captures an image with light transmitted through the glass plate 3, but may be a type that captures an image with light reflected on the glass plate 3. Moreover, in the said embodiment, although the content-inspecting inspection apparatus 6 was a type imaged with the light reflected on the glass plate 3, the type which image | photographs with the light which permeate | transmitted the glass plate 3 may be sufficient.
1   製造方法
2   搬送機構
3   ガラス板
4   座標特定用検査装置
5   支持部材
6   内容特定用検査装置
S1  投入工程
S2  加工工程
S3  洗浄工程
S4  検査工程
S4a 欠陥座標特定工程
S4b 欠陥内容特定工程
S5  梱包工程
DESCRIPTION OF SYMBOLS 1 Manufacturing method 2 Conveyance mechanism 3 Glass plate 4 Coordinate identification inspection apparatus 5 Support member 6 Content identification inspection apparatus S1 Input process S2 Processing process S3 Cleaning process S4 Inspection process S4a Defect coordinate identification process S4b Defect content identification process S5 Packing process

Claims (4)

  1.  ガラス板を加工する加工工程と、前記加工工程で加工された前記ガラス板を洗浄する洗浄工程と、前記洗浄工程で洗浄された前記ガラス板の欠陥を検査する検査工程とを備えたガラス板の製造方法であって、
     前記検査工程は、欠陥の座標を特定する欠陥座標特定工程と、前記欠陥座標特定工程で特定された座標の欠陥の内容を特定する欠陥内容特定工程とを有し、
     前記欠陥座標特定工程のライン数より、前記欠陥内容特定工程のライン数の方が多く、
     前記欠陥座標特定工程のラインを通過した前記ガラス板が、前記欠陥内容特定工程のラインに振り分けられることを特徴とするガラス板の製造方法。
    A glass plate comprising: a processing step for processing a glass plate; a cleaning step for cleaning the glass plate processed in the processing step; and an inspection step for inspecting a defect of the glass plate cleaned in the cleaning step. A manufacturing method comprising:
    The inspection step includes a defect coordinate specifying step that specifies the coordinates of the defect, and a defect content specifying step that specifies the content of the defect at the coordinates specified in the defect coordinate specifying step,
    More than the number of lines in the defect coordinate identification process, more lines in the defect content identification process,
    The method of manufacturing a glass plate, wherein the glass plate that has passed through the defect coordinate specifying step line is distributed to the defect content specifying step line.
  2.  前記欠陥座標特定工程では、前記ガラス板を搬送方向の直角方向の中間部で浮上させて非接触支持すると共に前記直角方向の両端部で接触支持した状態で搬送しながら、欠陥の座標を特定することを特徴とする請求項1に記載のガラス板の製造方法。 In the defect coordinate specifying step, the glass plate is levitated at an intermediate portion in the perpendicular direction of the conveyance direction and supported in a non-contact manner, and the coordinates of the defect are identified while being conveyed while being supported in contact at both ends in the perpendicular direction. The manufacturing method of the glass plate of Claim 1 characterized by the above-mentioned.
  3.  前記欠陥内容特定工程では、前記ガラス板を面接触で支持し、固定した状態で、欠陥の内容を特定することを特徴とする請求項1又は2に記載のガラス板の製造方法。 The method for producing a glass plate according to claim 1 or 2, wherein, in the defect content specifying step, the content of the defect is specified in a state in which the glass plate is supported by surface contact and fixed.
  4.  前記欠陥座標特定工程のライン数より、前記欠陥内容特定工程のライン数の方が1~3個多いことを特徴とする請求項1~3の何れか1項に記載のガラス板の製造方法。 The method for producing a glass plate according to any one of claims 1 to 3, wherein the number of lines in the defect content specifying step is 1 to 3 more than the number of lines in the defect coordinate specifying step.
PCT/JP2016/084444 2015-12-17 2016-11-21 Glass plate manufacturing method WO2017104354A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680057172.XA CN108139336B (en) 2015-12-17 2016-11-21 Method for manufacturing glass plate
KR1020187002366A KR102623714B1 (en) 2015-12-17 2016-11-21 Manufacturing method of glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-246324 2015-12-17
JP2015246324A JP6587211B2 (en) 2015-12-17 2015-12-17 Manufacturing method of glass plate

Publications (1)

Publication Number Publication Date
WO2017104354A1 true WO2017104354A1 (en) 2017-06-22

Family

ID=59056400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084444 WO2017104354A1 (en) 2015-12-17 2016-11-21 Glass plate manufacturing method

Country Status (5)

Country Link
JP (1) JP6587211B2 (en)
KR (1) KR102623714B1 (en)
CN (1) CN108139336B (en)
TW (1) TWI702389B (en)
WO (1) WO2017104354A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102247090B1 (en) 2018-08-10 2021-04-29 주식회사 엘지화학 Current detecting circuit, battery management system and battery pack
JP6726327B2 (en) * 2019-02-27 2020-07-22 シャープ株式会社 Receipt output device and receipt output method
JP2022061531A (en) * 2020-10-07 2022-04-19 日本電気硝子株式会社 Method for producing glass plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347406A (en) * 1993-06-10 1994-12-22 Nuclear Fuel Ind Ltd Circumferential face inspection device for nuclear fuel pellet
JPH1019772A (en) * 1996-07-01 1998-01-23 Ishikawajima Shibaura Mach Co Ltd Saccharinity measuring instrument for fruit
JP2000035319A (en) * 1999-05-31 2000-02-02 Olympus Optical Co Ltd Outward appearance inspecting device
JP2011099875A (en) * 2011-02-18 2011-05-19 Olympus Corp Visual inspection apparatus
JP2012163358A (en) * 2011-02-03 2012-08-30 Nippon Electric Glass Co Ltd Glass plate end face imaging apparatus and imaging method therefor
WO2012153662A1 (en) * 2011-05-10 2012-11-15 旭硝子株式会社 Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
JP2015049347A (en) * 2013-08-30 2015-03-16 住友化学株式会社 Method for manufacturing optical member laminate
JP2015105930A (en) * 2013-12-02 2015-06-08 旭硝子株式会社 Minute defect inspection method for translucent substrate and minute defect inspection device for translucent substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582344B1 (en) * 2003-12-09 2006-05-22 삼성코닝정밀유리 주식회사 Apparatus for inspecting a glass substrate
KR100703694B1 (en) * 2004-12-01 2007-04-05 삼성전자주식회사 Apparatus for inspecting display panel
KR100675302B1 (en) * 2006-01-19 2007-01-29 삼성전자주식회사 Semiconductor fabricating equipment and semiconductor fabricating method using the same
CN101558292B (en) * 2006-12-14 2013-08-28 日本电气硝子株式会社 Glass sheet defect detection device, glass sheet manufacturing method, glass sheet, glass sheet quality judging device, and glass sheet inspection method
JP2009014617A (en) * 2007-07-06 2009-01-22 Olympus Corp Substrate visual inspection apparatus
CN101686635B (en) * 2008-09-27 2014-03-19 松下电器产业株式会社 Electronic component mounting system and method
KR20150141096A (en) 2014-06-09 2015-12-17 한국기계연구원 thermal performance testing method of radiating film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347406A (en) * 1993-06-10 1994-12-22 Nuclear Fuel Ind Ltd Circumferential face inspection device for nuclear fuel pellet
JPH1019772A (en) * 1996-07-01 1998-01-23 Ishikawajima Shibaura Mach Co Ltd Saccharinity measuring instrument for fruit
JP2000035319A (en) * 1999-05-31 2000-02-02 Olympus Optical Co Ltd Outward appearance inspecting device
JP2012163358A (en) * 2011-02-03 2012-08-30 Nippon Electric Glass Co Ltd Glass plate end face imaging apparatus and imaging method therefor
JP2011099875A (en) * 2011-02-18 2011-05-19 Olympus Corp Visual inspection apparatus
WO2012153662A1 (en) * 2011-05-10 2012-11-15 旭硝子株式会社 Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
JP2015049347A (en) * 2013-08-30 2015-03-16 住友化学株式会社 Method for manufacturing optical member laminate
JP2015105930A (en) * 2013-12-02 2015-06-08 旭硝子株式会社 Minute defect inspection method for translucent substrate and minute defect inspection device for translucent substrate

Also Published As

Publication number Publication date
TW201732273A (en) 2017-09-16
JP2017111033A (en) 2017-06-22
CN108139336B (en) 2021-08-24
CN108139336A (en) 2018-06-08
KR102623714B1 (en) 2024-01-11
KR20180093867A (en) 2018-08-22
JP6587211B2 (en) 2019-10-09
TWI702389B (en) 2020-08-21

Similar Documents

Publication Publication Date Title
KR101442483B1 (en) Vision Inspection and Sorting System for LED Package
JP5923172B2 (en) Sheet glass inspection unit and manufacturing equipment
WO2017104354A1 (en) Glass plate manufacturing method
JP2002107307A (en) Soft bag general inspecting system
JP2018126860A (en) Device for chamfering glass substrate
KR101621861B1 (en) Polaroid film examination machine
JP5607734B2 (en) Apparatus and method for inspecting defects in discrete low-rigidity transparent or translucent bodies
JP4713278B2 (en) Polycrystalline semiconductor wafer visual inspection method and visual inspection apparatus
JP2012073036A (en) Glass substrate defect checkup device and glass substrate defect checkup method
JP6200190B2 (en) Radioactive waste inspection apparatus and radioactive waste inspection method
KR100838265B1 (en) Handling apparatus for semiconductor packages
JP2006234725A (en) Method and device for inspecting side surface part of cylindrical article
WO2020105368A1 (en) Method for manufacturing glass plate and apparatus for manufacturing glass plate
JP5600984B2 (en) Appearance inspection apparatus and appearance inspection method for transparent article
JP5618209B2 (en) Glass plate end face imaging device and imaging method thereof
JP5532025B2 (en) Glass substrate inspection system and glass substrate manufacturing method
JP2006349599A (en) Device and method for inspecting transparent substrate
JP6148674B2 (en) Board work system
WO2018131489A1 (en) Panel inspection system
JP2005134163A (en) Vessel bottom inspecting apparatus
JP2005134358A (en) System for imaging plane and four-directional side faces by one camera, using four inclined mirrors
JP5683333B2 (en) Substrate inspection apparatus and method
CN211042088U (en) Dimension measuring device for glass substrate
JP2010066241A (en) Substrate inspection apparatus and substrate inspection method
CN210557222U (en) Carrying roller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187002366

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875338

Country of ref document: EP

Kind code of ref document: A1