WO2017104276A1 - 撮像装置 - Google Patents
撮像装置 Download PDFInfo
- Publication number
- WO2017104276A1 WO2017104276A1 PCT/JP2016/082118 JP2016082118W WO2017104276A1 WO 2017104276 A1 WO2017104276 A1 WO 2017104276A1 JP 2016082118 W JP2016082118 W JP 2016082118W WO 2017104276 A1 WO2017104276 A1 WO 2017104276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- lens
- frame
- optical
- lenses
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/06—Focusing binocular pairs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/021—Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/10—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B3/00—Focusing arrangements of general interest for cameras, projectors or printers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/08—Stereoscopic photography by simultaneous recording
- G03B35/10—Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/218—Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/296—Synchronisation thereof; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/67—Focus control based on electronic image sensor signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2213/00—Details of stereoscopic systems
- H04N2213/001—Constructional or mechanical details
Definitions
- the present invention relates to an imaging apparatus.
- a stereoscopic observation system uses a method of imaging two images with different parallaxes for stereoscopic viewing by forming images on substantially the same plane, for example, on the imaging surface of one imaging element (for example, Patent Documents 1, 2, and 3). reference). And in the structure of a prior art, in order to obtain two images with different parallax, it has two different optical systems.
- Differences in focus position may occur between two different optical systems due to manufacturing errors.
- the difference in focus position is not preferable because it degrades the optical performance.
- the difference in focus position between the two optical systems cannot be adjusted.
- the present invention has been made in view of the above, and an object of the present invention is to provide an imaging apparatus capable of adjusting a difference in focus position between two optical systems and obtaining a good parallax image.
- At least some embodiments of the present invention include a first optical system and a second optical system that generate two optical images having parallax with each other;
- An image pickup apparatus having one image pickup device for picking up two optical images, wherein the first optical system and the second optical system each have different focus adjustment means.
- the present invention has an effect that it is possible to provide an imaging apparatus capable of adjusting a difference in focus position between two optical systems and obtaining a good parallax image.
- FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment. It is a figure which shows the front structure of the one part lens of the imaging device which concerns on embodiment.
- 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to Embodiment 1.
- FIG. 1 is a diagram illustrating a lens cross-sectional configuration of an imaging apparatus according to Example 1.
- FIG. 3 is a diagram illustrating a front configuration of a part of lenses of the imaging apparatus according to the first embodiment.
- FIG. 3 is a diagram illustrating a schematic configuration of an imaging apparatus according to a second embodiment.
- 6 is a diagram illustrating a lens cross-sectional configuration of an imaging apparatus according to Example 2.
- FIG. 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to an embodiment. It is a figure which shows the front structure of the one part lens of the imaging device which concerns on embodiment.
- 1 is a diagram illustrating a schematic configuration of an imaging apparatus according to Embodiment 1.
- FIG. 6 is a diagram illustrating a front configuration of a part of lenses of an imaging apparatus according to Example 2.
- FIG. FIG. 6 is a diagram illustrating a schematic configuration of an imaging apparatus according to a third embodiment.
- 6 is a diagram illustrating a lens cross-sectional configuration of an imaging apparatus according to Embodiment 3.
- FIG. It is a figure which shows the lens cross-section structure of the imaging device which concerns on a modification. It is a figure which shows the modification of an image pick-up element. It is another figure which shows the modification of an image pick-up element.
- FIG. 1A is a diagram illustrating a schematic configuration of an imaging apparatus according to the embodiment.
- an imaging apparatus having a first optical system LNS1 and a second optical system LNS2 that generate two optical images having parallax with each other, and one imaging element IMG that images two optical images.
- the first optical system LNS1 and the second optical system LNS2 each have a first frame LB1, a second frame LB2, and a third frame LB3, which are different focus adjustment means.
- the first optical system LNS1 forms an image for the right eye
- the second optical system LNS2 forms an image for the left eye
- the difference in focus position between the two optical systems LNS1 and LNS2 can be adjusted, and a good parallax image can be obtained.
- the first frame LB1 that holds a part of the lenses L4 and L5 of the first optical system LNS1, the second frame LB2 that holds the image sensor IMG Among the lenses of one optical system LNS1, lenses L1, L2, F1 (parallel plates), L3 other than some of the lenses L4, L5, and lenses L1, L2, F1 (parallel plates) of the second optical system LNS2
- a third frame LB3 that holds L3, L4, and L5 and the first frame LB1 is movable in the optical axis AX1 and AX2 directions with respect to the third frame LB3, and the second frame LB2 Is preferably movable in the optical axis AX1 and AX2 directions with respect to the third frame LB3 via the first frame LB1.
- the lenses L4 and L5 of the first optical system LNS1 can be moved by moving the first frame LB1 in the direction of the optical axes AX1 and AX2 with respect to the third frame LB3. Thereby, the focus position of the first optical system LNS1 can be adjusted.
- the parallel flat plate F2, the parallel flat plate (cover glass) CG, and the image sensor IMG are joined to each other.
- the second frame LB2 holds the joined parallel flat plate F2, the parallel flat plate CG, and the image sensor IMG.
- the entire focus of the first optical system LNS1 and the second optical system LNS2 can be adjusted by moving the second frame LB2 in the optical axis AX1 and AX2 directions with respect to the third frame LB3.
- the focus difference between the first optical system LNS1 and the second optical system LNS2 can be adjusted. For this reason, the focus difference can be easily adjusted even when a focus difference occurs between the first optical system LNS1 and the second optical system LNS2 due to a manufacturing error. As a result, a stereoscopic image based on a good left-right parallax image can be obtained.
- f1 is the focal length of the entire first optical system LNS1
- f2 is the focal length of some lenses L4 and L5, It is.
- conditional expression (1) If the lower limit of conditional expression (1) is not reached, the power of the focus adjustment lenses L4 and L5 becomes too large. For this reason, high-precision focus adjustment is necessary, and deterioration of peripheral resolution due to lens eccentricity during adjustment increases. As a result, a problem occurs in the manufacturability of the imaging device.
- the accuracy of focus adjustment will be relaxed, but it will be necessary to increase the focus adjustment range. For this reason, it is necessary to increase the air space on the object side and the air surface on the image plane side of the moving lenses L4 and L5. As a result, the total length of the optical system is increased, and the light beam height at the lens surface is increased.
- the right and left parallax that is, the distance between the optical axis AX1 and the optical axis AX2 is preferably about 1.1 mm.
- FIG. 1B is a diagram illustrating a configuration in which the lenses L4 and L5 are viewed from the directions of the optical axes AX1 and AX2.
- the aperture stop S is disposed between the parallel plate F1 and the lens L3. Further, the flare stop FS is disposed close to the object side surface of the cemented lens of the lens L4 and the lens L5.
- the opening shape of the flare stop FS is a D-cut shape. Thereby, flare can be prevented by preventing unnecessary light from entering the D-cut surface of the cemented lens.
- conditional expression (1 ′) 5 ⁇ f2 / f1 ⁇ 11 (1 ′)
- the lens L1 is formed from one optical member having two concave shapes.
- the lens L1 closest to the object side of the first optical system LNS1 and the second optical system LNS2 can be fixed with a simple configuration.
- FIG. 2A is a diagram illustrating a schematic configuration of the imaging apparatus according to the present embodiment.
- FIG. 2B is a diagram illustrating a lens cross-sectional configuration of the imaging apparatus according to the present embodiment.
- the present embodiment has a first optical system LNS1 and a second optical system LNS2 that generate two optical images having parallax with each other.
- Each optical system includes, in order from the object side, a plano-concave negative lens L1 having a concave surface facing the image side, a positive meniscus lens L2 having a convex surface facing the image side, a parallel plate F1, an aperture stop S, Consists of a convex positive lens L3, a flare stop FS, a biconvex positive lens L4, a negative meniscus lens L5 having a convex surface facing the image side, a parallel plate F2, a parallel plate CG, and an image sensor IMG. .
- the first lens L1 is composed of an integral member with respect to the first optical system LNS1 (for example, secondary optical system) and the second optical system LNS2 (for example, main optical system).
- the positive lens L4 and the negative meniscus lens L5 are cemented.
- the parallel plate F2, the parallel plate CG, and the image sensor IMG are joined.
- the lens configuration of the first optical system LNS1 and the lens configuration of the second optical system LNS2 are the same. However, in the first optical system LNS1, the positive lens L4 and the negative meniscus lens L5 are configured to be movable.
- the first frame LB1 holds some lenses L4 and L5 of the first optical system LNS1.
- the second frame LB2 holds the parallel flat plate F2, the parallel flat plate CG, and the image sensor IMG.
- the third frame LB3 includes lenses L1, L2, and F1 (parallel plates) other than some of the lenses L4 and L5 among the lenses of the first optical system LNS1, L3, and the lens L1 of the second optical system LNS2.
- L2, F1 (parallel flat plate), L3, L4, and L5 are held.
- the first frame LB1 is configured to be movable in the optical axis AX1 and AX2 directions with respect to the third frame LB3.
- the second frame LB2 is configured to be movable in the directions of the optical axes AX1 and AX2 with respect to the third frame LB3 via the first frame LB1.
- the lenses L4 and L5 and the flare stop FS have a D-cut shape.
- FIG. 3A is a diagram illustrating a schematic configuration of the imaging apparatus according to the present embodiment.
- FIG. 3B is a diagram illustrating a lens cross-sectional configuration of the imaging apparatus according to the present embodiment.
- the present embodiment has a first optical system LNS1 and a second optical system LNS2 that generate two optical images having parallax with each other.
- Each optical system includes, in order from the object side, a plano-concave negative lens L1 having a concave surface on the image side, a negative meniscus lens L2 having a convex surface on the image side, a parallel plate F1, an aperture stop S, A convex positive lens L3, a biconvex positive lens L4, a negative meniscus lens L5 having a convex surface on the image side, a plano-convex positive lens L6 having a convex surface on the object side, a parallel plate CG, an image sensor IMG, Consists of
- the planoconvex positive lens L6 is a field lens. Thereby, focus adjustment accuracy can be relaxed.
- the first lens L1 is composed of an integral member with respect to the first optical system LNS1 and the second optical system LNS2.
- the positive lens L4 and the negative meniscus lens L5 are cemented.
- the planoconvex positive lens L6, the parallel plate CG, and the image sensor IMG are cemented.
- the lens configuration of the first optical system LNS1 and the lens configuration of the second optical system LNS2 are the same. However, in the first optical system LNS1, the positive lens L4 and the negative meniscus lens L5 are configured to be movable.
- the first frame LB1 holds some lenses L4 and L5 of the first optical system LNS1.
- the second frame LB2 holds the lens L6, the parallel plate CG, and the image sensor IMG.
- the third frame LB3 includes lenses L1, L2, and F1 (parallel plates) other than some of the lenses L4 and L5 among the lenses of the first optical system LNS1, L3, and the lens L1 of the second optical system LNS2.
- L2, F1 (parallel flat plate), L3, L4, and L5 are held.
- the first frame LB1 is configured to be movable in the optical axis AX1 and AX2 directions with respect to the third frame LB3.
- the second frame LB2 is configured to be movable in the directions of the optical axes AX1 and AX2 with respect to the third frame LB3 via the first frame LB1.
- the lenses L4 and L5 have a D-cut shape.
- FIG. 4A is a diagram illustrating a schematic configuration of the imaging apparatus according to the present embodiment.
- FIG. 4B is a diagram illustrating a lens cross-sectional configuration of the imaging apparatus according to the present embodiment.
- the present embodiment has a first optical system LNS1 and a second optical system LNS2 that generate two optical images having parallax with each other.
- Each optical system includes, in order from the object side, a plano-concave negative lens L1 having a concave surface facing the image side, a negative meniscus lens L2 having a convex surface facing the image side, and a positive meniscus lens L3 having a convex surface facing the object side.
- the first lens L1 is composed of an integral member with respect to the first optical system LNS1 and the second optical system LNS2.
- the positive lens L5 and the negative meniscus lens L6 are cemented.
- the parallel plate F2, the parallel plate CG, and the image sensor IMG are joined.
- the lens configuration of the first optical system LNS1 and the lens configuration of the second optical system LNS2 are the same. However, in the first optical system LNS1, the positive meniscus lens L3 is configured to be movable.
- the first frame LB1 holds a part of the lens L3 of the first optical system LNS1.
- the second frame LB2 holds the parallel flat plate F2, the parallel flat plate CG, and the image sensor IMG.
- the third frames LB3a, LB3b are lenses L1, L2, L4, F1 (parallel plates), L5, L6 other than some of the lenses L3 of the lenses of the first optical system LNS1, and the second optical system LNS2.
- the first frame LB1 is configured to be movable in the optical axis AX1 and AX2 directions with respect to the third frame LB3.
- the second frame LB2 is configured to be movable in the optical axis AX1 and AX2 directions with respect to the third frames LB3a and LB3b.
- r are the radii of curvature of the lens surfaces
- d is the spacing between the lens surfaces
- nd is the refractive index of the d-line of each lens
- ⁇ d is the Abbe number of each lens.
- S is an aperture stop
- FS is a flare stop.
- Example 1 Example 2
- Example 3 (1) f2 / f1 5.44128 9.70265 10.0939
- FIG. 5A is a diagram illustrating a configuration of a lens cross section of an imaging apparatus according to a modification.
- the common optical system LNSa, the first optical system LNS1, the second optical system LNS2, the parallel flat plate F1, and the parallel flat plate CG are included.
- the lens L9 and the lens L10 of the first optical system LNS1 are configured to be movable by a frame (not shown). Thereby, the focus difference between the first optical system LNS1 and the second optical system LNS2 can be adjusted.
- a prism is disposed on the image side of the lens system and the image pickup device is placed horizontally.
- the image sensor can also be modified.
- Any imaging unit in which the relative positions of the imaging surface for imaging the first optical system and the imaging surface for imaging the second optical system are fixed is within the scope of the present invention.
- the imaging surfaces I1 and I2 do not have to be on the same plane, and can be modified such that they are inclined with respect to each other and displaced in the optical axis direction.
- the optical system is not limited to a fixed focus optical system as in the above embodiments.
- the present invention can also be applied to a variable magnification optical system and a focus switching optical system.
- a lens (focal length f2) used for focus adjustment in each of the above embodiments may be selected from lenses other than those that are moved by zooming or the like.
- the number of optical systems is three or more, and an imaging configuration in which any two optical systems can be selected falls within the scope of the present invention.
- the frame may be divided within a range that is not related to focus adjustment.
- LB3 is divided into two frames. One frame holds only L1, and the other frame holds the remaining optical members.
- the two divided frames are configured to abut in the optical axis direction and can be adjusted in a direction perpendicular to the optical axis. Thereby, the eccentric error of the lens L1 can be canceled by adjusting the two frames. For this reason, there exists an effect of leading to cost reduction.
- the present invention is useful for an imaging apparatus that can adjust the difference in focus position between two optical systems and obtain a good parallax image.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Stereoscopic And Panoramic Photography (AREA)
- Studio Devices (AREA)
- Lens Barrels (AREA)
Abstract
2つの光学系のピント位置の差を調整することができ、これにより良好な視差画像を得ることができる撮像装置を提供することを課題としている。 本発明に係る撮像装置は、互いに視差を有する2つの光学像を生成する、第1の光学系LNS1と第2の光学系LNS2と、2つの光学像を撮像する1つの撮像素子IMGと、を有する撮像装置であって、第1の光学系LNS1、第2の光学系LNS2は、それぞれ異なるピント調整手段を有することを特徴としている。
Description
本発明は、撮像装置に関するものである。
従来、立体観察システムが知られている。立体観察システムは、立体視用に視差の異なる2つの画像を略同一の平面上、例えば1つの撮像素子の撮像面に結像させて撮像する方法を用いる(例えば、特許文献1、2、3参照)。そして、従来技術の構成では、視差の異なる2つの画像を得るために、2つの異なる光学系を有している。
2つの異なる光学系において、製造誤差のため、ピント位置の差を生じる場合がある。ピント位置の差は、光学性能を劣化させるため好ましくない。特許文献1、2、3の構成では、このような2つの光学系のピント位置の差を調整することはできない。
本発明は、上記に鑑みてなされたものであって、2つの光学系のピント位置の差を調整でき、良好な視差画像を得ることができる撮像装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態は、互いに視差を有する2つの光学像を生成する、第1の光学系と第2の光学系と、2つの光学像を撮像する1つの撮像素子と、を有する撮像装置であって、第1の光学系、第2の光学系は、それぞれ異なるピント調整手段を有することを特徴とする。
本発明は、2つの光学系のピント位置の差を調整でき、良好な視差画像を得ることができる撮像装置を提供することができるという効果を奏する。
以下に、実施形態に係る撮像装置を図面に基づいて詳細に説明する。なお、この実施形態により、この発明が限定されるものではない。
図1Aは、実施形態に係る撮像装置の概略構成を示す図である。
本実施形態は、互いに視差を有する2つの光学像を生成する、第1の光学系LNS1と第2の光学系LNS2と、2つの光学像を撮像する1つの撮像素子IMGと、を有する撮像装置であって、第1の光学系LNS1、第2の光学系LNS2は、それぞれ異なるピント調整手段である第1の枠LB1、第2の枠LB2、第3の枠LB3を有する。
本実施形態は、互いに視差を有する2つの光学像を生成する、第1の光学系LNS1と第2の光学系LNS2と、2つの光学像を撮像する1つの撮像素子IMGと、を有する撮像装置であって、第1の光学系LNS1、第2の光学系LNS2は、それぞれ異なるピント調整手段である第1の枠LB1、第2の枠LB2、第3の枠LB3を有する。
例えば、第1の光学系LNS1は右眼用の画像を結像し、第2の光学系LNS2は左眼用の画像を結像する。
これにより、2つの光学系LNS1、LNS2のピント位置の差をそれぞれ調整でき、良好な視差画像を得ることができる。
また、本実施形態の好ましい態様によれば、第1の光学系LNS1の一部のレンズL4、L5を保持する第1の枠LB1と、撮像素子IMGを保持する第2の枠LB2と、第1の光学系LNS1のレンズのうち一部のレンズL4、L5以外のレンズL1、L2、F1(平行平板)、L3と、第2の光学系LNS2のレンズL1、L2、F1(平行平板)、L3、L4、L5を保持する第3の枠LB3と、を有し、第1の枠LB1は、第3の枠LB3に対して光軸AX1、AX2方向に移動可能で、第2の枠LB2は、第1の枠LB1を介して、第3の枠LB3に対して光軸AX1、AX2方向に移動可能であることが望ましい。
以上の構成において、第1の枠LB1を、第3の枠LB3に対して光軸AX1、AX2方向に移動することで、第1の光学系LNS1のレンズL4、L5のみを移動できる。これにより、第1の光学系LNS1のピント位置を調整できる。
また、平行平板F2と、平行平板(カバーガラス)CGと、撮像素子IMGと、はそれぞれ接合されている。第2の枠LB2は、接合された平行平板F2と、平行平板CGと、撮像素子IMGと、を保持する。そして、第2の枠LB2を、第3の枠LB3に対して光軸AX1、AX2方向に移動することで、第1の光学系LNS1、第2の光学系LNS2の全体のピントを調整できる。
このように本実施形態によれば、第1の光学系LNS1、第2の光学系LNS2のピント差を調整できる。このため、第1の光学系LNS1と、第2の光学系LNS2とにおいて、製造時の誤差によりピント差が生じた場合でも、容易にピント差を調整できる。この結果、良好な左右視差画像に基づいた立体視画像を得ることができる。
また、本実施形態の好ましい態様によれば、下記の条件式(1)を満たすことが望ましい。
3<f2/f1<12 (1)
ただし、
f1は、第1の光学系LNS1全体の焦点距離、
f2は、一部のレンズL4、L5の焦点距離、
である。
3<f2/f1<12 (1)
ただし、
f1は、第1の光学系LNS1全体の焦点距離、
f2は、一部のレンズL4、L5の焦点距離、
である。
条件式(1)の下限値を下回ると、ピント調整用のレンズL4、L5のパワーが大きくなりすぎる。このため、高精度なピント調整が必要であること、調整時のレンズ偏芯による周辺解像の劣化が大きくなることを生じてしまう。この結果、撮像装置の製造性に問題を生ずる。
条件式(1)の上限値を上回ると、ピント調整の精度は緩和されるが、ピント調整幅を大きくとる必要が出てくる。このため、移動するレンズL4、L5の物体側の空気間隔と像面側の空気間隔を大きくする必要がある。これにより、光学系の全長が長くなるため、レンズ面における光線高が高くなってしまう。良好な立体視画像を得るためには、左右の視差、即ち光軸AX1と光軸AX2との間隔は、1.1mm程度が好ましい。レンズ面における光線高が高くなると、光軸AX1と光軸AX2との間隔を大きくしなければならないため、視差1.1mmを確保することが困難になる。
また、本実施形態では、少なくとも一部のレンズの形状が、円周の一部を直線で切り取った形状、いわゆるDカット形状であることが好ましい。図1Bは、レンズL4、L5を光軸AX1、AX2方向から見た構成を示す図である。
2つのレンズの直線状のカット部分を対向して配置する。これにより、2つの光軸AX1、AX2の間隔を小さくすることができる。この結果、適切な視差量を確保できる。
また、明るさ絞りSは、平行平板F1と、レンズL3と、の間に配置されている。さらに、フレア絞りFSは、レンズL4とレンズL5との接合レンズの物体側面に近接して配置されている。フレア絞りFSの開口形状は、Dカット形状である。これにより、接合レンズのDカット面に不要な光線が入射しないようにして、フレアを防止できる。
条件式(1)に代えて、以下の条件式(1’)を満足することが好ましい。
5<f2/f1<11 (1’)
5<f2/f1<11 (1’)
また、本発明の好ましい態様によれば、レンズL1は、2つの凹形状を有する1つの光学部材から形成されていることが望ましい。
これにより、第1の光学系LNS1と第2の光学系LNS2の最も物体側のレンズL1を、簡易な構成で固定することができる。
(実施例1)
実施例1に係る撮像装置について説明する。
図2Aは、本実施例に係る撮像装置の概略構成を示す図である。図2Bは、本実施例に係る撮像装置のレンズ断面構成を示す図である。
実施例1に係る撮像装置について説明する。
図2Aは、本実施例に係る撮像装置の概略構成を示す図である。図2Bは、本実施例に係る撮像装置のレンズ断面構成を示す図である。
本実施例は、互いに視差を有する2つの光学像を生成する、第1の光学系LNS1と、第2の光学系LNS2と、を有する。それぞれの光学系は、物体側から順に、像側に凹面を向けた平凹負レンズL1と、像側に凸面を向けた正メニスカスレンズL2と、平行平板F1と、明るさ絞りSと、両凸正レンズL3と、フレア絞りFSと、両凸正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、平行平板F2と、平行平板CGと、撮像素子IMGと、から構成される。
第1のレンズL1は、第1の光学系LNS1(例えば、従光学系)と第2の光学系LNS2(例えば、主光学系)とに対して一体の部材で構成されている。正レンズL4と、負メニスカスレンズL5と、は接合されている。平行平板F2と、平行平板CGと、撮像素子IMGと、は接合されている。
第1の光学系LNS1のレンズ構成と、第2の光学系LNS2のレンズ構成と、は同一である。ただし、第1の光学系LNS1において、正レンズL4と、負メニスカスレンズL5と、が移動可能に構成されている。
第1の枠LB1は、第1の光学系LNS1の一部のレンズL4、L5を保持する。第2の枠LB2は、平行平板F2、平行平板CGと、撮像素子IMGと、を保持する。第3の枠LB3は、第1の光学系LNS1のレンズのうち一部のレンズL4、L5以外のレンズL1、L2、F1(平行平板)、L3と、第2の光学系LNS2のレンズL1、L2、F1(平行平板)、L3、L4、L5を保持する。そして、第1の枠LB1は、第3の枠LB3に対して光軸AX1、AX2方向に移動可能に構成されている。第2の枠LB2は、第1の枠LB1を介して、第3の枠LB3に対して光軸AX1、AX2方向に移動可能に構成されている。
また、図2Cに示すように、レンズL4、L5、フレア絞りFSは、Dカット形状を有する。
(実施例2)
実施例2に係る撮像装置について説明する。
図3Aは、本実施例に係る撮像装置の概略構成を示す図である。図3Bは、本実施例に係る撮像装置のレンズ断面構成を示す図である。
実施例2に係る撮像装置について説明する。
図3Aは、本実施例に係る撮像装置の概略構成を示す図である。図3Bは、本実施例に係る撮像装置のレンズ断面構成を示す図である。
本実施例は、互いに視差を有する2つの光学像を生成する、第1の光学系LNS1と、第2の光学系LNS2と、を有する。それぞれの光学系は、物体側から順に、像側に凹面を向けた平凹負レンズL1と、像側に凸面を向けた負メニスカスレンズL2と、平行平板F1と、明るさ絞りSと、両凸正レンズL3と、両凸正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、物体側に凸面を向けた平凸正レンズL6と、平行平板CGと、撮像素子IMGと、から構成される。
平凸正レンズL6は、フィールドレンズである。これにより、ピント調整精度を緩和できる。
第1のレンズL1は、第1の光学系LNS1と第2の光学系LNS2とに対して一体の部材で構成されている。正レンズL4と、負メニスカスレンズL5と、は接合されている。平凸正レンズL6と、平行平板CGと、撮像素子IMGと、は接合されている。
第1の光学系LNS1のレンズ構成と、第2の光学系LNS2のレンズ構成と、は同一である。ただし、第1の光学系LNS1において、正レンズL4と、負メニスカスレンズL5とが移動可能に構成されている。
第1の枠LB1は、第1の光学系LNS1の一部のレンズL4、L5を保持する。第2の枠LB2は、レンズL6、平行平板CGと、撮像素子IMGと、を保持する。第3の枠LB3は、第1の光学系LNS1のレンズのうち一部のレンズL4、L5以外のレンズL1、L2、F1(平行平板)、L3と、第2の光学系LNS2のレンズL1、L2、F1(平行平板)、L3、L4、L5を保持する。そして、第1の枠LB1は、第3の枠LB3に対して光軸AX1、AX2方向に移動可能に構成されている。第2の枠LB2は、第1の枠LB1を介して、第3の枠LB3に対して光軸AX1、AX2方向に移動可能に構成されている。
また、図3Cに示すように、レンズL4、L5は、Dカット形状を有する。
(実施例3)
実施例3に係る撮像装置について説明する。
図4Aは、本実施例に係る撮像装置の概略構成を示す図である。図4Bは、本実施例に係る撮像装置のレンズ断面構成を示す図である。
実施例3に係る撮像装置について説明する。
図4Aは、本実施例に係る撮像装置の概略構成を示す図である。図4Bは、本実施例に係る撮像装置のレンズ断面構成を示す図である。
本実施例は、互いに視差を有する2つの光学像を生成する、第1の光学系LNS1と、第2の光学系LNS2と、を有する。それぞれの光学系は、物体側から順に、像側に凹面を向けた平凹負レンズL1と、像側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、明るさ絞りSと、両凸正レンズL4と、平行平板F1と、両凸正レンズL5と、像側に凸面を向けた負メニスカスレンズL6と、平行平板F2と、平行平板CGと、撮像素子IMGと、から構成される。
第1のレンズL1は、第1の光学系LNS1と第2の光学系LNS2とに対して一体の部材で構成されている。正レンズL5と、負メニスカスレンズL6と、は接合されている。平行平板F2と、平行平板CGと、撮像素子IMGと、は接合されている。
第1の光学系LNS1のレンズ構成と、第2の光学系LNS2のレンズ構成と、は同一である。ただし、第1の光学系LNS1において、正メニスカスレンズL3は、移動可能に構成されている。
第1の枠LB1は、第1の光学系LNS1の一部のレンズL3を保持する。第2の枠LB2は、平行平板F2、平行平板CGと、撮像素子IMGと、を保持する。第3の枠LB3a、LB3bは、第1の光学系LNS1のレンズのうち一部のレンズL3以外のレンズL1、L2、L4、F1(平行平板)、L5、L6と、第2の光学系LNS2のレンズL1、L2、L3、L4、F1(平行平板)、L5、L6を保持する。そして、第1の枠LB1は、第3の枠LB3に対して光軸AX1、AX2方向に移動可能に構成されている。第2の枠LB2は、第3の枠LB3a、LB3bに対して光軸AX1、AX2方向に移動可能に構成されている。
以下に、上記各実施例の数値データを示す。記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数である。また、Sは明るさ絞り、FSはフレア絞りである。
数値実施例1
単位 mm
面データ
面番号 r d nd νd
1 ∞ 0.2500 1.88815 40.76
2 0.5920 0.5700
3 -4.5711 0.8554 1.85504 23.78
4 -3.3786 0.1100
5 ∞ 0.4000 1.49557 75.00
6 ∞ 0.1000
7(S) ∞ 0.1016
8 7.9475 0.7436 1.83932 37.16
9 -1.8802 0.3135
10(FS) ∞ 0.0000
11 1.3149 0.7438 1.69979 55.53
12 -0.8298 0.3347 1.93429 18.90
13 -5.6819 0.2635
14 ∞ 0.5000 1.51825 64.14
15 ∞ 0.3500 1.50700 63.26
撮像面 ∞
全系焦点距離f1 0.4249
レンズL4、L5の焦点距離f2 2.312
レンズL2、L3のレンズ直径 1mm
レンズL4、L5のレンズ直径 1.2mm
レンズL4、L5はDカット形状であり、Dカットまでの距離ER 1mm
フレア絞りFSはDカット形状であり、開口直径が1mm、Dカットまでの距離ER 0.8mm
視差 1mm
単位 mm
面データ
面番号 r d nd νd
1 ∞ 0.2500 1.88815 40.76
2 0.5920 0.5700
3 -4.5711 0.8554 1.85504 23.78
4 -3.3786 0.1100
5 ∞ 0.4000 1.49557 75.00
6 ∞ 0.1000
7(S) ∞ 0.1016
8 7.9475 0.7436 1.83932 37.16
9 -1.8802 0.3135
10(FS) ∞ 0.0000
11 1.3149 0.7438 1.69979 55.53
12 -0.8298 0.3347 1.93429 18.90
13 -5.6819 0.2635
14 ∞ 0.5000 1.51825 64.14
15 ∞ 0.3500 1.50700 63.26
撮像面 ∞
全系焦点距離f1 0.4249
レンズL4、L5の焦点距離f2 2.312
レンズL2、L3のレンズ直径 1mm
レンズL4、L5のレンズ直径 1.2mm
レンズL4、L5はDカット形状であり、Dカットまでの距離ER 1mm
フレア絞りFSはDカット形状であり、開口直径が1mm、Dカットまでの距離ER 0.8mm
視差 1mm
数値実施例2
単位 mm
面データ
面番号 r d nd νd
1 ∞ 0.2500 1.88815 40.76
2 0.5920 0.5400
3 -2.6449 0.8360 1.85504 23.78
4 -2.8388 0.1900
5 ∞ 0.4000 1.49557 75.00
6 ∞ 0.0807
7(S) ∞ 0.1338
8 3.6829 0.6446 1.83932 37.16
9 -2.2104 0.3395
10 1.5521 0.7800 1.69979 55.53
11 -0.8302 0.3523 1.93429 18.90
12 -35.2793 0.3040
13 1.5026 0.5000 1.51825 64.14
14 ∞ 0.3500 1.50700 63.26
撮像面 ∞
全系焦点距離f1 0.41769
レンズL4、L5の焦点距離f2 4.0527
レンズL2、L3のレンズ直径 1.1mm
レンズL4、L5はDカット形状であり、Dカットまでの距離ER 1mm
視差 1.1mm
単位 mm
面データ
面番号 r d nd νd
1 ∞ 0.2500 1.88815 40.76
2 0.5920 0.5400
3 -2.6449 0.8360 1.85504 23.78
4 -2.8388 0.1900
5 ∞ 0.4000 1.49557 75.00
6 ∞ 0.0807
7(S) ∞ 0.1338
8 3.6829 0.6446 1.83932 37.16
9 -2.2104 0.3395
10 1.5521 0.7800 1.69979 55.53
11 -0.8302 0.3523 1.93429 18.90
12 -35.2793 0.3040
13 1.5026 0.5000 1.51825 64.14
14 ∞ 0.3500 1.50700 63.26
撮像面 ∞
全系焦点距離f1 0.41769
レンズL4、L5の焦点距離f2 4.0527
レンズL2、L3のレンズ直径 1.1mm
レンズL4、L5はDカット形状であり、Dカットまでの距離ER 1mm
視差 1.1mm
数値実施例3
単位 mm
面データ
面番号 r d nd νd
1 ∞ 0.2500 1.88815 40.76
2 0.592 0.6331
3 -0.9641 0.4900 1.85504 23.78
4 -1.1345 0.3899
5 2.11 0.3917 1.58482 40.75
6 12.2107 0.3598
7(S) ∞ 0.0610
8 22.4495 0.5905 1.57124 56.36
9 -1.9442 0.0500
10 ∞ 0.4000 1.49557 75.00
11 ∞ 0.0656
12 1.3335 0.7598 1.69979 55.53
13 -0.8346 0.2798 1.93429 18.90
14 -3.6567 0.2520
15 ∞ 0.5000 1.51825 64.14
16 ∞ 0.3500 1.50700 63.26
撮像面 ∞
全系焦点距離f1 0.426
レンズL3の焦点距離f2 4.3
レンズL2~L6のレンズ直径 1mm
視差 1.2mm
単位 mm
面データ
面番号 r d nd νd
1 ∞ 0.2500 1.88815 40.76
2 0.592 0.6331
3 -0.9641 0.4900 1.85504 23.78
4 -1.1345 0.3899
5 2.11 0.3917 1.58482 40.75
6 12.2107 0.3598
7(S) ∞ 0.0610
8 22.4495 0.5905 1.57124 56.36
9 -1.9442 0.0500
10 ∞ 0.4000 1.49557 75.00
11 ∞ 0.0656
12 1.3335 0.7598 1.69979 55.53
13 -0.8346 0.2798 1.93429 18.90
14 -3.6567 0.2520
15 ∞ 0.5000 1.51825 64.14
16 ∞ 0.3500 1.50700 63.26
撮像面 ∞
全系焦点距離f1 0.426
レンズL3の焦点距離f2 4.3
レンズL2~L6のレンズ直径 1mm
視差 1.2mm
以下に各実施例の条件式対応値を示す。
実施例1 実施例2 実施例3
(1) f2/f1 5.44128 9.70265 10.0939
実施例1 実施例2 実施例3
(1) f2/f1 5.44128 9.70265 10.0939
(変形例)
図5Aは、変形例に係る撮像装置のレンズ断面の構成を示す図である。共通光学系LNSaと、第1の光学系LNS1と、第2の光学系LNS2と、平行平板F1と、平行平板CGと、から構成される。
図5Aは、変形例に係る撮像装置のレンズ断面の構成を示す図である。共通光学系LNSaと、第1の光学系LNS1と、第2の光学系LNS2と、平行平板F1と、平行平板CGと、から構成される。
そして、不図示の枠により、第1の光学系LNS1のレンズL9、レンズL10が移動可能に構成されている。これにより、第1の光学系LNS1と、第2の光学系LNS2とのピント差を調整できる。
また、上記実施例において、レンズ系の像側にプリズムを配置し、撮像素子を横置きにするといった変形も可能である。
また、上記各実施例において、撮像素子も変形が可能である。第1の光学系を撮像する撮像面と、第2の光学系を撮像する撮像面の相対位置が固定されている撮像ユニットであれば、本発明の適用範囲内となる。例えば、図5B、5Cにそれぞれ示すように、撮像面I1、I2は同一平面上にある必要はなく、互いに傾いている構成、光軸方向にずれている構成という変形が可能である。
また、光学系は、上記各実施例のように固定焦点光学系だけに限定されない。変倍光学系や、焦点切り替え光学系にも適用が可能である。その際、変倍等で移動させるレンズ以外から、上記各実施例のピント調整に用いるレンズ(焦点距離f2)を選定すればよい。
また、光学系の数は3つ以上あり、任意の2つの光学系を選択できる撮像構成においても、本発明の範疇となる。また、ピント調整に関係ない範囲であれば、枠を分割しても良い。例えば、図1Aにおいて、LB3を2つの枠に分割する。一方の枠はL1のみを保持し、他方の枠は残りの光学部材を保持する。分割した2つの枠は光軸方向に突き当てている構成であり、かつ、光軸に垂直な方向に調整可能なようにする。これにより、レンズL1の偏心誤差を、2つの枠の調整でキャンセルできる。このため、コスト低減につながるという効果を奏する。
以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
以上のように、本発明は、2つの光学系のピント位置の差を調整でき、良好な視差画像を得ることができる撮像装置に有用である。
LNS1 第1の光学系
LNS2 第2の光学系
LNSa 共通光学系
LB1 第1の枠
LB2 第2の枠
LB3 第3の枠
AX1、AX2 光軸
IMG 撮像素子
I、I1、I2 像面(撮像面)
L1~L6 レンズ
F1、F2、CG 平行平板
S 明るさ絞り
FS フレア絞り
LNS2 第2の光学系
LNSa 共通光学系
LB1 第1の枠
LB2 第2の枠
LB3 第3の枠
AX1、AX2 光軸
IMG 撮像素子
I、I1、I2 像面(撮像面)
L1~L6 レンズ
F1、F2、CG 平行平板
S 明るさ絞り
FS フレア絞り
Claims (3)
- 互いに視差を有する2つの光学像を生成する、第1の光学系と第2の光学系と、前記2つの光学像を撮像する1つの撮像素子と、を有する撮像装置において、
前記第1の光学系、前記第2の光学系は、それぞれ異なるピント調整手段を有することを特徴とする撮像装置。 - 前記第1の光学系の一部のレンズを保持する第1の枠と、
前記撮像素子を保持する第2の枠と、
前記第1の光学系のレンズのうち前記一部のレンズ以外のレンズと、前記第2の光学系のレンズを保持する第3の枠と、を有し、
前記第1の枠は、前記第3の枠に対して光軸方向に移動可能で、
前記第2の枠は、前記第3の枠に対して光軸方向に移動可能であることを特徴とする請求項1に記載の撮像装置。 - 下記の条件式(1)を満たすことを特徴とする請求項2に記載の撮像装置。
3<f2/f1<12 (1)
ただし、
f1は、前記第1の光学系全体の焦点距離、
f2は、前記一部のレンズの焦点距離、
である。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680073232.7A CN108369369B (zh) | 2015-12-14 | 2016-10-28 | 摄像装置 |
EP16875261.6A EP3392707A4 (en) | 2015-12-14 | 2016-10-28 | IMAGE FORMING DEVICE |
JP2017539036A JP6307666B2 (ja) | 2015-12-14 | 2016-10-28 | 撮像装置 |
US16/004,116 US10686973B2 (en) | 2015-12-14 | 2018-06-08 | Image pickup apparatus with two optical systems |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-243234 | 2015-12-14 | ||
JP2015243234 | 2015-12-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/004,116 Continuation US10686973B2 (en) | 2015-12-14 | 2018-06-08 | Image pickup apparatus with two optical systems |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017104276A1 true WO2017104276A1 (ja) | 2017-06-22 |
Family
ID=59055997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/082118 WO2017104276A1 (ja) | 2015-12-14 | 2016-10-28 | 撮像装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10686973B2 (ja) |
EP (1) | EP3392707A4 (ja) |
JP (1) | JP6307666B2 (ja) |
CN (1) | CN108369369B (ja) |
WO (1) | WO2017104276A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111200961A (zh) * | 2017-10-13 | 2020-05-26 | 奥林匹斯冬季和Ibe有限公司 | 用于立体视频内窥镜的光学系统 |
US11717138B2 (en) | 2018-07-20 | 2023-08-08 | Olympus Corporation | Imaging unit, endoscope and endoscope system having optical systems with overlapping depth of fields |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019106898A1 (ja) | 2017-11-30 | 2019-06-06 | オリンパス株式会社 | 立体視光学系及びそれを備えた内視鏡 |
DE102018116139B4 (de) * | 2018-07-04 | 2023-11-30 | Olympus Winter & Ibe Gmbh | Optisches System und Stereo-Videoendoskop |
WO2021253152A1 (zh) * | 2020-06-15 | 2021-12-23 | 广东朗呈医疗器械科技有限公司 | 镜头、三维成像模组及三维成像设备 |
CN111787301A (zh) * | 2020-06-15 | 2020-10-16 | 广东朗呈医疗器械科技有限公司 | 镜头、三维成像方法、装置、设备及存储介质 |
CN111556308A (zh) * | 2020-06-15 | 2020-08-18 | 广东朗呈医疗器械科技有限公司 | 镜头、三维成像模组及三维成像设备 |
US20230308627A1 (en) * | 2021-09-03 | 2023-09-28 | Canon Kabushiki Kaisha | Lens apparatus and image pickup apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07294827A (ja) * | 1994-04-20 | 1995-11-10 | Olympus Optical Co Ltd | 内視鏡 |
JPH08307906A (ja) * | 1995-04-28 | 1996-11-22 | Fuji Photo Optical Co Ltd | 立体カメラ用レンズ制御装置 |
JPH09325273A (ja) * | 1996-06-06 | 1997-12-16 | Olympus Optical Co Ltd | 内視鏡用ズーム撮像光学系 |
JP2007004122A (ja) * | 2005-02-21 | 2007-01-11 | Olympus Corp | 変倍光学系及びそれを備えた電子機器 |
WO2012056653A1 (ja) * | 2010-10-26 | 2012-05-03 | パナソニック株式会社 | レンズユニット |
JP2012194352A (ja) * | 2011-03-16 | 2012-10-11 | Fujifilm Corp | 立体撮影用レンズシステム、立体撮影用レンズ制御装置および立体撮影用レンズ制御方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4944188B1 (ja) * | 1969-11-18 | 1974-11-27 | ||
US4754327A (en) * | 1987-03-20 | 1988-06-28 | Honeywell, Inc. | Single sensor three dimensional imaging |
US5548362A (en) * | 1994-05-09 | 1996-08-20 | Image Technology International, Inc. | Parallax controllable multiple-lens camera |
JP2000249930A (ja) * | 1999-02-26 | 2000-09-14 | Olympus Optical Co Ltd | 視度調整機能付き双眼鏡 |
EP1085769B1 (en) * | 1999-09-15 | 2012-02-01 | Sharp Kabushiki Kaisha | Stereoscopic image pickup apparatus |
US7768716B2 (en) | 2005-02-21 | 2010-08-03 | Olympus Corporation | Zoom optical system and electronic equipment using the same |
GB201001451D0 (en) * | 2010-01-29 | 2010-03-17 | Lo Anthony | Improved focusing mount |
US8326142B2 (en) * | 2010-02-12 | 2012-12-04 | Sri International | Optical image systems |
JP5683025B2 (ja) * | 2010-04-19 | 2015-03-11 | パナソニックIpマネジメント株式会社 | 立体画像撮影装置および立体画像撮影方法 |
US10261408B2 (en) * | 2010-07-18 | 2019-04-16 | Spatial Cam Llc | Mobile and portable camera platform for tracking an object |
US20130170029A1 (en) * | 2010-08-06 | 2013-07-04 | Panasonic Corporation | Lens unit |
US9883164B2 (en) * | 2011-08-03 | 2018-01-30 | Sony Mobile Communications Inc. | Optimizing usage of image sensors in a stereoscopic environment |
WO2013031227A1 (ja) * | 2011-09-01 | 2013-03-07 | パナソニック株式会社 | 撮像装置およびプログラム |
JP5550791B2 (ja) * | 2011-09-29 | 2014-07-16 | 富士フイルム株式会社 | 画像処理装置、撮像装置及び視差量調整方法 |
TWI528833B (zh) * | 2011-11-09 | 2016-04-01 | 鴻海精密工業股份有限公司 | 立體攝像裝置 |
WO2013108500A1 (ja) | 2012-01-18 | 2013-07-25 | オリンパスメディカルシステムズ株式会社 | 立体視内視鏡用光学系 |
JP6234024B2 (ja) * | 2012-11-21 | 2017-11-22 | オリンパス株式会社 | 撮像素子、及び撮像装置 |
US10061349B2 (en) * | 2012-12-06 | 2018-08-28 | Sandisk Technologies Llc | Head mountable camera system |
JP6280749B2 (ja) | 2013-01-23 | 2018-02-14 | オリンパス株式会社 | 光学系、立体撮像装置、及び内視鏡 |
JP2014215336A (ja) | 2013-04-23 | 2014-11-17 | キヤノン株式会社 | 撮影システム |
EP2919067B1 (en) * | 2014-03-12 | 2017-10-18 | Ram Srikanth Mirlay | Multi-planar camera apparatus |
US9197885B2 (en) * | 2014-03-20 | 2015-11-24 | Gopro, Inc. | Target-less auto-alignment of image sensors in a multi-camera system |
-
2016
- 2016-10-28 JP JP2017539036A patent/JP6307666B2/ja active Active
- 2016-10-28 CN CN201680073232.7A patent/CN108369369B/zh active Active
- 2016-10-28 EP EP16875261.6A patent/EP3392707A4/en not_active Withdrawn
- 2016-10-28 WO PCT/JP2016/082118 patent/WO2017104276A1/ja active Application Filing
-
2018
- 2018-06-08 US US16/004,116 patent/US10686973B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07294827A (ja) * | 1994-04-20 | 1995-11-10 | Olympus Optical Co Ltd | 内視鏡 |
JPH08307906A (ja) * | 1995-04-28 | 1996-11-22 | Fuji Photo Optical Co Ltd | 立体カメラ用レンズ制御装置 |
JPH09325273A (ja) * | 1996-06-06 | 1997-12-16 | Olympus Optical Co Ltd | 内視鏡用ズーム撮像光学系 |
JP2007004122A (ja) * | 2005-02-21 | 2007-01-11 | Olympus Corp | 変倍光学系及びそれを備えた電子機器 |
WO2012056653A1 (ja) * | 2010-10-26 | 2012-05-03 | パナソニック株式会社 | レンズユニット |
JP2012194352A (ja) * | 2011-03-16 | 2012-10-11 | Fujifilm Corp | 立体撮影用レンズシステム、立体撮影用レンズ制御装置および立体撮影用レンズ制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3392707A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111200961A (zh) * | 2017-10-13 | 2020-05-26 | 奥林匹斯冬季和Ibe有限公司 | 用于立体视频内窥镜的光学系统 |
JP2020537178A (ja) * | 2017-10-13 | 2020-12-17 | オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung | ステレオビデオ内視鏡の光学系 |
US11357390B2 (en) | 2017-10-13 | 2022-06-14 | Olympus Winter & Ibe Gmbh | Optical system for a stereo video endoscope |
JP7210567B2 (ja) | 2017-10-13 | 2023-01-23 | オリンパス ビンテル ウント イーベーエー ゲーエムベーハー | ステレオビデオ内視鏡の光学系 |
US11717138B2 (en) | 2018-07-20 | 2023-08-08 | Olympus Corporation | Imaging unit, endoscope and endoscope system having optical systems with overlapping depth of fields |
Also Published As
Publication number | Publication date |
---|---|
JP6307666B2 (ja) | 2018-04-04 |
CN108369369A (zh) | 2018-08-03 |
JPWO2017104276A1 (ja) | 2017-12-28 |
US20180295265A1 (en) | 2018-10-11 |
EP3392707A1 (en) | 2018-10-24 |
CN108369369B (zh) | 2020-11-17 |
US10686973B2 (en) | 2020-06-16 |
EP3392707A4 (en) | 2019-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6307666B2 (ja) | 撮像装置 | |
JP6615974B2 (ja) | ズームレンズシステムおよび撮像装置 | |
CN111474686B (zh) | 光学成像系统 | |
KR101652849B1 (ko) | 렌즈 모듈 | |
JP6168761B2 (ja) | テレコンバージョンレンズ及びこれを用いた撮像装置 | |
CN105917263B (zh) | 光学系统、立体摄像装置和内窥镜 | |
KR20170016714A (ko) | 촬상렌즈 | |
TW201326886A (zh) | 廣視角攝像鏡片組 | |
JP6161520B2 (ja) | 内視鏡対物光学系 | |
US10520719B2 (en) | Image acquisition device | |
JP7194979B2 (ja) | 撮像光学系及び撮像装置 | |
KR20170066005A (ko) | 촬상 렌즈, 이를 포함하는 카메라 모듈 및 디지털 기기 | |
EP3633434B1 (en) | Optical system for image pickup, and image pickup device | |
JP2019117422A (ja) | 撮像用の光学系および撮像装置 | |
TW201743102A (zh) | 光學系統及其光學鏡頭 | |
CN108139568B (zh) | 内窥镜用物镜光学系统 | |
JP2006030496A (ja) | テレセントリックレンズ | |
JP2006065141A (ja) | テレセントリックレンズ | |
JP2016057563A (ja) | 広角レンズ | |
KR20130062129A (ko) | 광각 광학계 | |
JP2012203119A (ja) | 撮像光学系および撮像装置 | |
JP6764813B2 (ja) | 対物光学系及び内視鏡 | |
JP2021076817A (ja) | 投影レンズ | |
JP2014178436A (ja) | 光学系及び撮像装置 | |
WO2017187814A1 (ja) | 内視鏡対物光学系 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017539036 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16875261 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016875261 Country of ref document: EP |