WO2017104116A1 - 電子写真感光体、電子写真装置およびプロセスカートリッジ - Google Patents

電子写真感光体、電子写真装置およびプロセスカートリッジ Download PDF

Info

Publication number
WO2017104116A1
WO2017104116A1 PCT/JP2016/005044 JP2016005044W WO2017104116A1 WO 2017104116 A1 WO2017104116 A1 WO 2017104116A1 JP 2016005044 W JP2016005044 W JP 2016005044W WO 2017104116 A1 WO2017104116 A1 WO 2017104116A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
parts
photosensitive member
represented
Prior art date
Application number
PCT/JP2016/005044
Other languages
English (en)
French (fr)
Inventor
中田 浩一
春樹 森
高木 進司
正樹 野中
亮一 時光
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016208737A external-priority patent/JP6702844B2/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2017104116A1 publication Critical patent/WO2017104116A1/ja
Priority to US16/002,421 priority Critical patent/US10310395B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers

Definitions

  • the present invention relates to an electrophotographic photosensitive member, and an electrophotographic apparatus and a process cartridge having the electrophotographic photosensitive member.
  • the surface layer of the electrophotographic photoreceptor is repeatedly subjected to stress by a series of electrophotographic processes such as charging, exposure, development, transfer, and cleaning, wear resistance and chemical stability are required.
  • a method of containing a curable resin in the surface layer of the electrophotographic photoreceptor can be mentioned.
  • the surface layer is less likely to be worn, so that the surface layer is less likely to be refreshed, and chemical deterioration is likely to accumulate on the surface layer.
  • Chemical degradation is a phenomenon in which a hole transport material (hole transport compound) present in the surface layer undergoes a chemical change due to stress caused by the above-described series of electrophotographic processes.
  • the chemical change of the hole transport material may cause a phenomenon that an electrophotographic image output in a high temperature and high humidity environment becomes unclear (hereinafter also referred to as image flow). Therefore, in order to suppress the image flow, it is required to suppress the chemical change of the hole transport material.
  • Patent Document 1 discloses a technique for improving image flow by adding a specific fluorine atom-containing monomer having a polymerizable functional group to a surface layer.
  • Patent Document 2 discloses a technique of having a hole transporting monomer containing a specific fluorine atom in a surface layer.
  • Patent Documents 3 to 5 disclose techniques for improving image flow by adding a specific amine compound to a surface layer.
  • Patent Document 6 discloses a technique for improving image flow by adding a specific siloxane compound having a specific polymerizable functional group to a surface layer.
  • Patent Documents 7 and 8 disclose stilbene derivatives having a specific substituent.
  • the technique using the compounds of Patent Document 1 and Patent Documents 3 to 6 is a technique for alleviating the aforementioned stress exposure to the hole transport material, and is a technique for improving the chemical stability of the hole transport material itself. Absent. Further, although the technique of Patent Document 2 describes that the surface layer has a low surface energy, there is no disclosure regarding deterioration, and there is no disclosure of electrical characteristics during long-term durability in a specific environment. Moreover, the compounds of Patent Documents 7 and 8 do not have a polymerizable functional group, and do not form a crosslinked structure as in the present invention. Therefore, it is not suitable for application to a highly durable electrophotographic photoreceptor.
  • an object of the present invention is to provide an electrophotographic photosensitive member having high durability characteristics, satisfying electric characteristics, and having good image flow improvement, and an electrophotographic apparatus and a process cartridge having the electrophotographic photosensitive member. It is to be.
  • the present invention provides an electrophotographic photosensitive member having a support and a photosensitive layer on the support, wherein the surface layer of the electrophotographic photosensitive member contains a polymer of a hole transporting compound represented by the following formula (1):
  • An electrophotographic photosensitive member characterized in that: (In formula (1), Ar 1 represents a substituted or unsubstituted aryl group. Ar 2 and Ar 3 each independently represents a substituted or unsubstituted arylene group. Ar 1 to Ar 3 represent fluorine.
  • the aryl group or arylene group of Ar 1 to Ar 3 may have an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and polymerization.
  • Z 1 represents a monovalent group represented by the following formula (2) or a monovalent group represented by the following formula (3)
  • Z 2 represents a hydrogen atom, represented by the following formula (2).
  • Z 1 and Z 2 represents a group is a monovalent group represented by the following formula (2), or Z 1 and Z 2 is a monovalent group represented by the following formula (3)
  • * represents a bonding position bonded to Ar 2 or Ar 3 in the formula (1).
  • R 21 and R 22 each independently represent a hydrogen atom or a carbon number of 1 or more and 4
  • the alkyl group is as follows: p is 0 or 1. q is an integer of 1 to 4. r is 0 or 1. p, q, and r satisfy 2 ⁇ p + q + r ⁇ 4.
  • R 21 When q is 2 or more, R 21 may be the same group or a different group, and R 22 may be the same group or a different group.
  • Ar 21 represents an s + 1 valent group derived by removing s + 1 hydrogen atoms from a substituted or unsubstituted arene
  • R 23 represents a fluorine atom, a carbon number of 1 having a fluorine atom as a substituent, or 2 Meto having an alkyl group or a fluorine atom as a substituent .
  • S showing a sheet group is the number of R 23 directly bonded to Ar 21, when it .s is 2 or more and 1 to 5 integer, R 23 may be the same group Or a different group.)
  • ** represents a bonding position bonded to Ar 2 or Ar 3 in the formula (1).
  • R 31 and R 32 are each independently a hydrogen atom or a carbon number of 1 or more. Represents an alkyl group of 4 or less, t is an integer of 1 to 3. When t is 2 or more, R 31 may be the same group or different groups, and R 32 may be the same group or different groups, and Ar 31 represents a u + 1 valent group derived by removing u + 1 hydrogen atoms from a substituted or unsubstituted arene.
  • R 33 represents a fluorine atom, an alkyl group having 1 to 4 carbon atoms having a fluorine atom as a substituent, or an alkoxy group having 1 to 3 carbon atoms having a fluorine atom as a substituent, u is Ar 31.
  • the present invention also provides an electrophotographic apparatus having the electrophotographic photosensitive member, a charging unit, an exposure unit, a developing unit, and a transfer unit. Further, the present invention integrally supports the electrophotographic photosensitive member and at least one means selected from the group consisting of a charging means, a developing means, a transfer means, and a cleaning means, and is detachable from the main body of the electrophotographic apparatus. It is a process cartridge characterized by being.
  • an electrophotographic photosensitive member that has good electrical characteristics and durability characteristics and can further suppress image flow
  • an electrophotographic apparatus having the electrophotographic photosensitive member and the electronic A process cartridge having a photographic photoreceptor can be provided.
  • FIG. 1 It is a schematic diagram showing an example of a process cartridge having an electrophotographic photosensitive member.
  • 1 is a schematic diagram illustrating an example of an electrophotographic apparatus having an electrophotographic photosensitive member.
  • Exemplified Compound No. It is IR spectrum by ATR method of the cured film of the photoreceptor surface of Example photoreceptor 8 using 38 hole transport materials.
  • Exemplified Compound No. It is IR spectrum by ATR method of the cured film of the photoreceptor surface of Example photoreceptor 13 using 44 hole transport materials.
  • the surface layer of the electrophotographic photoreceptor contains a polymer of a hole transporting compound having a polymerizable functional group, and the hole transporting compound has a specific triarylamine structure and a fluorine atom or a substituent.
  • the present invention relates to an electrophotographic photoreceptor having an aromatic group substituted with an alkyl group containing a fluorine atom or an alkoxy group containing a fluorine atom as a substituent (hereinafter also referred to as “fluorine atom-containing substituent”).
  • the hole transporting compound having the above characteristics is also referred to as “a hole transporting material of the present invention”.
  • arylamine compounds having excellent hole transportability are widely used as hole transport materials used in electrophotographic photoreceptors.
  • the hole transport property of the arylamine compound is considered to be manifested by enhancing the electron donating property of the amine structure by the interaction of an aryl group around the nitrogen atom.
  • the amine structure of the arylamine compound is considered to be in a state where it is susceptible to chemical reaction and the like since charge transfer is actively performed. In particular, it is considered that there is a tendency to be easily changed by oxidation or the like due to the action of ozone generated by discharge energy or discharge phenomenon in the charging process or an oxidizing substance.
  • the inventors of the present invention searched for a hole transport material capable of functioning in a highly stable and highly durable manner even if it has an amine structure, and reached the present invention.
  • the hole transport material of the present invention is identified from the specific triarylamine amine structure in view of the aromatic group substituted with a fluorine atom or a fluorine atom-containing substituent in order to suppress deterioration due to repeated electrophotographic processes. It has the characteristic of having in the positional relationship.
  • the aromatic group substituted with the fluorine atom or fluorine atom-containing substituent By having the aromatic group substituted with the fluorine atom or fluorine atom-containing substituent, the surface energy of the surface layer of the electrophotographic photosensitive member can be optimally adjusted, and the affinity for discharge products and the like can be reduced. Degradation of the hole transport material of the invention can be suppressed.
  • the hole transport material of the present invention has more fluorine atoms or fluorine atom-containing substituents than necessary, various adverse effects may occur.
  • the electrophotographic photosensitive member is used for a long period of time in a low humidity environment, there is a high risk that the potential fluctuation will deteriorate. Therefore, it is necessary to have an optimal structure that minimizes the above-described adverse effects caused by having a fluorine atom or a fluorine atom-containing substituent.
  • the present inventors have used the above-described polymer of the hole transport material of the present invention for the surface layer of the electrophotographic photoreceptor, thereby satisfying the durability characteristics and electrical characteristics of the electrophotographic photoreceptor, Furthermore, it discovered that it had the effect which suppresses an image flow.
  • the hole transport material of the present invention has a fluorine atom or a fluorine atom-containing substituent at a site that does not adversely affect the hole transport function. It is thought that it is possible to achieve both electrical characteristics.
  • the hole transport material of the present invention is a hole transport compound represented by the formula (1) having a group represented by the formula (2), it is derived from an arene represented by Ar 21 separately from the triarylamine structure. Group. Ar 21 is substituted with a fluorine atom represented by R 23 or a fluorine atom-containing substituent.
  • Ar 21 is a specific compound with respect to Ar 2 or Ar 3 having a triarylamine structure. It is essential that they are bonded with a gap and exist in the same molecule.
  • the atomic group that contributes to the bond between the triarylamine structure and Ar 21 needs to be an atomic group selected from a carbon atom and an oxygen atom, and these atomic groups pass through a saturated bond of 2 or more and 4 or less. , Ar 21 and Ar 2 and / or Ar 3 must be bonded. Therefore, in the group represented by the formula (2), p, q, and r need to satisfy the relationship of 2 ⁇ p + q + r ⁇ 4.
  • a fluorine atom and a fluorine atom-containing substituent have a high electronegativity, and if they are too close to a triarylamine structure having a hole transport property, it is considered that the effect of inhibiting the hole transport property is exhibited. Furthermore, the fluorine atom-containing substituent is bulky and has a repulsive action. When the sum of p, q, and r is 5 or more, the fluorine atom-containing substituent approaches the direction of the triarylamine structure and becomes three-dimensional for charge transport. It is considered to be an obstacle and a factor to hinder electrophotographic characteristics.
  • the anchor effect prevents thermal movement of the hole transport material of the present invention even after film formation of the surface layer of the electrophotographic photosensitive member, resulting in deterioration of the characteristics of the electrophotographic photosensitive member over time. I think it will be difficult.
  • Ar 21 is not present and a fluorine atom or a fluorine atom-containing substituent is directly substituted with a triarylamine structure, it is considered that the electrical characteristics of the electrophotographic photoreceptor deteriorate due to their high electronegativity. .
  • the hole transport of the present invention is performed.
  • the substance has no anchor effect derived from Ar 21 . Therefore, it is considered that the electrical characteristics of the electrophotographic photosensitive member are deteriorated because the fluorine atom-containing substituent is too close to the triarylamine structure having the hole transport property.
  • the substituent represented by R 23 is a fluorine atom-containing substituent
  • the fluorine atom-containing substituent is converted to triphenylamine depending on the degree of freedom of bonding. May adversely affect structure.
  • the group represented by R 23 is an alkyl group having a fluorine atom as a substituent, the carbon number is 1 or 2.
  • R 23 is limited to a methoxy group having a fluorine atom as a substituent.
  • s is the number of R 23 directly bonded to Ar 21 , and s is preferably 1 or more and 5 or less. When s is 2 or more, the s R 23 s may be the same group or different groups.
  • the hole transporting material of the present invention is a hole transporting compound represented by the formula (1) having a group represented by the above formula (3)
  • Ar 31 is substituted with a fluorine atom represented by R 33 or a specific fluorine atom-containing substituent.
  • Ar 31 is a specific compound with respect to Ar 2 or Ar 3 having a triarylamine structure. It is essential that they are bonded via a linking group and exist in the same molecule.
  • sp 2 carbon atom carbon atom having 2 or 4 or 6 sp 2 hybrid orbitals
  • t CR 32
  • t is preferably 2 or less, more preferably 1.
  • t is an integer of 4 or more, the molecular weight increases, and film forming properties, film strength, and the like may be problematic.
  • the alkyl group having a fluorine atom as a substituent has 1 to 4 carbon atoms, and the fluorine atom as a substituent
  • the number of carbon atoms of the alkoxy group having can be 1 or more and 3 or less.
  • Ar 31 can be stably present in the surface layer of the electrophotographic photosensitive member while maintaining an appropriate distance from the triarylamine structure.
  • the Ar 31 anchoring effect prevents thermal movement of the hole transport material of the present invention even after film formation, and makes it difficult for the electrophotographic photoreceptor to deteriorate characteristics over time.
  • a triarylamine structure and a fluorine atom or a fluorine atom-containing substituent substituted Ar The present inventors have found that the hole transporting compound represented by the formula (1) having 31 and a specific linking group between the triarylamine structure and Ar 31 is particularly excellent. .
  • u is the number of R 33 directly bonded to Ar 31 , and u is preferably an integer of 1 or more and 5 or less, preferably u is 2 or less.
  • R 33 represents may be the same group or may be different groups.
  • Ar 1 represents a substituted or unsubstituted aryl group, and includes a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, Examples include pyrenyl group, fluorenyl group, fluoranthenyl group, triphenylenyl group and the like.
  • Ar 1 is preferably a phenyl group.
  • Ar 2 and Ar 3 each independently represent a substituted or unsubstituted arylene group.
  • the arylene group include a phenylene group and a naphthylene group, and a divalent group obtained from anthracene, pyrene, fluorene, fluoranthene, triphenylene, and the like.
  • Ar 2 and Ar 3 are phenylene groups.
  • Ar 21 represents an s + 1 valent group derived by removing s + 1 hydrogen atoms from a substituted or unsubstituted arene, and represented by the formula (3).
  • Ar 31 represents a u + 1 valent group derived by dividing u + 1 hydrogen atoms from a substituted or unsubstituted arene. Examples of arenes include benzene, naphthalene, anthracene, phenanthrene, pyrene, fluorene, fluoranthene, and triphenylene.
  • Ar 21 and Ar 31 are preferably groups derived from benzene.
  • R 21 and R 22 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group.
  • R 21 and R 22 may be the same or different.
  • R 23 represents a fluorine atom, a C 1 or C 2 alkyl group having a fluorine atom as a substituent, or a methoxy group having a fluorine atom as a substituent.
  • alkyl group having 1 or 2 carbon atoms having a fluorine atom as a substituent include a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 1,1-difluoroethyl group, and a 2,2,2-trifluoroethyl group.
  • 1,2,2-trifluoroethyl group 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,2-pentafluoroethyl group and the like.
  • a trifluoromethyl group and a 1,1,2,2,2-pentafluoroethyl group are preferable.
  • the methoxy group having a fluorine atom as a substituent include a monofluoromethoxy group, a difluoromethoxy group, and a trifluoromethoxy group. Of these, a trifluoromethoxy group is preferred.
  • R 31 and R 32 in the formula (3) each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group.
  • R 31 and R 32 may be the same or different.
  • R 33 represents a fluorine atom, an alkyl group having 1 to 4 carbon atoms having a fluorine atom as a substituent, or an alkoxy group having 1 to 3 carbon atoms having a fluorine atom as a substituent.
  • the alkyl group having 1 to 4 carbon atoms having a fluorine atom as a substituent include a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 1,1-difluoroethyl group, and 2,2,2-trifluoroethyl.
  • trifluoromethyl group 1,1,2,2,2, -pentafluoroethyl group, 1,1,2,2,3,3,3-heptafluoropropyl group, and 1,1,2, 2,3,3,4,4,4-nonafluorobutyl groups are preferred.
  • alkoxy group having 1 to 3 carbon atoms having a fluorine atom as a substituent include a monofluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, a 1,1-difluoroethoxy group, and a 2,2,2-trifluoroethoxy group.
  • trifluoromethoxy group, 1,1,2,2,2-pentafluoroethoxy group, and 1,1,2,2,3,3,3-heptafluoropropoxy group are preferable.
  • Z 1 in the compound represented by the formula (1) represents a monovalent group represented by the formula (2) or a monovalent group represented by the formula (3).
  • Z 2 in the hole transporting compound represented by the formula (1) is a hydrogen atom, a monovalent group represented by the formula (2), or a monovalent group represented by the formula (3). Indicates. If the symmetry of the hole transporting compound represented by the formula (1) becomes too good and the molecular weight becomes too large, there is a high possibility that the film forming property, curability, electrical properties and the like will not be good. Therefore, as the hole transporting compound represented by the formula (1), Z 1 is a monovalent group represented by the formula (2) or a monovalent group represented by the formula (3), and Z 2 is A hydrogen atom is preferred.
  • the double bond site as a coupler may be either a cis isomer or a trans isomer, or a cis isomer and a trans isomer double bond may exist.
  • substituents that Ar 1 to Ar 3 may have include the following alkyl groups and alkoxy groups.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert- Pentyl group, cyclopentyl group, n-hexyl group, 1-methylpentyl group, 4-methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, cyclohexyl group, 1-methylhexyl group, cyclohexylmethyl Group, 4-tert-butylcyclohexyl group, n-heptyl group, cycloheptyl group and the like.
  • alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentyloxy, n-hexyloxy, etc. Is mentioned.
  • the hole transporting compound represented by the formula (1) has a polymerizable functional group.
  • the polymerizable functional group means a functional group capable of covalently bonding between molecules when the polymerizable functional groups cause a polymerization reaction.
  • the polymerizable functional group possessed by the hole transporting compound represented by the formula (1) the following polymerizable functional groups can be mentioned.
  • the polymerizable functional group does not have a fluorine atom.
  • the polymerizable functional group is preferably a functional group having chain polymerizability.
  • an acryloyloxy group and a methacryloyloxy group are preferable.
  • At least one of Ar 1 to Ar 3 has the polymerizable functional group.
  • the polymerizable functional group and Ar 1 to Ar 3 may be directly bonded, but the polymerization characteristics of the hole transporting compound represented by the formula (1), improvement of the melting point, film formation, fluidity during curing,
  • the divalent group include a linear or branched alkylene group or an oxyalkylene group.
  • the substituent containing a polymerizable functional group to be introduced is preferably a monovalent group represented by the following formula (4).
  • *** represents a bonding position bonded to Ar 1 to Ar 3.
  • R 41 represents a single bond or an alkylene group having 1 to 6 carbon atoms.
  • R 42 represents a hydrogen atom or a methyl group.
  • V is 0 or 1. However, when v is 1, R 41 is not a single bond.
  • Examples of the alkylene group represented by R 41 include methylene group, ethylene group, n-propylene group, iso-propylene group, n-butylene group, iso-butylene group, sec-butylene group, tert-butylene group, and n-pentylene. Group, 1-methyl-n-butylene group, 2-methyl-n-butylene group, 3-methyl-n-butylene group, 1,1-dimethyl-n-propylene group, 1,2-dimethyl-n-propylene group 2,2-dimethyl-n-propylene group and the like.
  • the monovalent group represented by the above formula (4) does not have a fluorine element.
  • one kind or plural kinds of hole transporting compounds represented by the formula (1) can be used.
  • a means for polymerizing the hole transporting compound represented by the formula (1) a means for imparting energy such as ultraviolet rays, electron beams, heat or the like, an auxiliary agent such as a polymerization initiator, an acid, an alkali, a complex, etc. Means for allowing the compound to coexist can be used.
  • Examples of compounds of the hole transport material of the present invention are shown below. However, the present invention is not limited to these.
  • the polymerizable functional group corresponding to the monovalent group represented by the formula (4) may be replaced with any of the above-described polymerizable functional groups.
  • the substituents may be similarly replaced with the above substituents.
  • the change in internal temperature was 5 ° C to 7 ° C. Stir and mix for 30 minutes after addition. Next, a mixed solution of 57.5 parts of 3,5-bis (trifluoromethyl) benzaldehyde and 71 parts of tetrahydrofuran was added dropwise over about 1 hour while paying attention to the change in internal temperature. The change in internal temperature was up to 10 ° C. The reaction was then completed with stirring at room temperature for 2 hours.
  • the intermediate 2 (amine body) was synthesize
  • 65 parts of the intermediate (1) and 514 parts of ethanol are added to the reaction tank, and 11.5 parts of 10% palladium / carbon (55% water wet product) is added as a catalyst. The gas was replaced.
  • the reaction was carried out by stirring for about 20 hours at an internal temperature of 30 ° C. After the reaction, filtration, ethanol washing, and concentration were performed to obtain a crude product of Intermediate 2. Subsequently, it was purified by silica gel column chromatography and recrystallized with a toluene / hexane mixed solvent to obtain Intermediate 2. Yield: 41.9 parts, Yield: 70%
  • intermediate 3 was synthesized according to the following reaction formula (3).
  • the obtained intermediate 2 was used to synthesize a triphenylamine structure and hydrolyze the ester moiety.
  • a reaction vessel 41.9 parts of Intermediate 2, 91.7 parts of iodine shown in the reaction formula (3), and 260 parts of o-dichlorobenzene were mixed, 52 parts of potassium carbonate, 24 parts of copper powder.
  • the reaction was carried out at an internal temperature of about 190 ° C.
  • the reaction was carried out with stirring for 20 hours. After the reaction, filtration, washing with toluene, and concentration were performed to obtain a crude product. Further hydrolysis was carried out to convert the acetate portion into a hydroxyl group.
  • Exemplified Compound No. 38 was synthesized. 41.6 parts of Intermediate 3 obtained by the above reaction, 356 parts of dry tetrahydrofuran, and 17.5 parts of triethylamine were mixed, and the reaction vessel was cooled to keep the internal temperature at 5 ° C. or lower. While stirring, 13.8 parts of acryloyl chloride was slowly dropped over about 30 minutes, and dropping and stirring were continued while maintaining the internal temperature at 10 ° C. or lower. Thereafter, the temperature was returned to room temperature, and the reaction was continued for 2 hours to complete the reaction.
  • reaction solution was poured into 1200 parts of a cooled 5% aqueous sodium hydroxide solution and extracted with ethyl acetate. Washing with water, dehydration and concentration yielded a crude product. Subsequently, the crude product was purified by silica gel column chromatography. A hole transporting material having an amorphous polymerizable functional group represented by 38 was obtained. Yield: 24.3 parts, yield 49.5%
  • Intermediate 5 was synthesized according to the following reaction formula (6).
  • the intermediate 4 obtained above was used to synthesize a triphenylamine structure and hydrolyze the ester moiety.
  • 40 parts of Intermediate 4 and 88.1 parts of iodine shown in Reaction Formula (6) and 260 parts of o-dichlorobenzene were mixed, and 50 parts of potassium carbonate and 23 parts of copper powder were mixed.
  • the reaction was carried out at an internal temperature of about 190 ° C.
  • the reaction was carried out with stirring for 20 hours. After the reaction, filtration, washing with toluene, and concentration were performed to obtain a crude product. Further hydrolysis was carried out to convert the acetate portion into a hydroxyl group.
  • Exemplified Compound No. 127 was synthesized. 42 parts of Intermediate 6 obtained by the above reaction, 350 parts of dry tetrahydrofuran, and 17.7 parts of triethylamine were mixed, and the reaction vessel was cooled to keep the internal temperature at 5 ° C. or lower. While stirring the reaction vessel, 13.9 parts of acryloyl chloride was slowly added dropwise over about 30 minutes. At that time, dropping and stirring were continued while cooling was continued so that the internal temperature became 10 ° C. or lower. Thereafter, the temperature was returned to room temperature, and the reaction was continued for 2 hours to complete the reaction.
  • the hole transporting material of the present invention obtained by the above synthesis method can be made into a solution by appropriately adjusting the solvent type and the amount of the solvent, and can be used as the coating solution for the surface layer of the electrophotographic photosensitive member of the present invention.
  • the coating solution for the surface layer may contain the hole transport material of the present invention and a hole transport material having a known polymerizable functional group, as long as the effects of the present invention are not hindered.
  • the hole transport material having a known polymerizable functional group an aromatic amine compound having a polymerizable functional group may be used.
  • the surface layer of the electrophotographic photosensitive member of the present invention contains a polymer of a mixed composition containing a compound having a polymerizable functional group and not having a hole transporting property in addition to the hole transporting material of the present invention. be able to.
  • the hole transport material of the present invention in combination with a compound having a polymerizable functional group and not having a hole transport property, the mechanical strength of the resulting polymer can be further improved.
  • the surface layer of the electrophotographic photosensitive member of the present invention has a hole transporting property of the present invention having one or more polymerizable functional groups and a hole transporting property having two or more polymerizable functional groups.
  • the polymerizable functional group possessed by the compound having a polymerizable functional group and not having a hole transporting property may be a polymerizable functional group possessed by the hole transporting compound represented by the above formula (1).
  • radically polymerizable functional groups such as a styryl group, a vinyl group, an acryloyloxy group, and a methacryloyloxy group are preferable. More preferably, it is a radical polymerizable reactive group of an acryloyloxy group or a methacryloyloxy group.
  • Examples of the compound having a polymerizable functional group and not having a hole transporting structure include the following compounds.
  • the monofunctional described below means having one polymerizable functional group.
  • the following are examples of compounds having an acryloyloxy group as a polymerizable functional group and not having a hole transporting property (hereinafter also referred to as “polymerizable monomer”).
  • Monofunctional polymerizable monomers such as ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, cyclohexyl acrylate, ethoxy-diethylene glycol
  • Monofunctional polymerizable monomers such as ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, cyclohexyl acrylate, ethoxy-diethylene glycol Examples thereof include acrylate, isoamyl acrylate, lauryl acrylate,
  • trifunctional polymerizable monomer examples include trimethylolpropane triacrylate, pentaerythritol triacrylate, ethoxylated isocyanuric acid triacrylate, and the like.
  • tetrafunctional polymerizable monomer examples include pentaerythritol tetraacrylate, dimethylolpropane tetraacrylate, and the like.
  • hexafunctional polymerizable monomer examples include dipentaerythritol hexaacrylate.
  • the acrylate monomer is mentioned, but if necessary, a compound having a polymerizable functional group synthesized by replacing the acryloyloxy group with a methacryloyloxy group or other polymerizable functional group may be used. .
  • the surface layer may contain various fine particles from the viewpoint of wear resistance.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • the inorganic fine particles particles containing alumina, silica, zinc oxide, tin oxide, titanium oxide or the like are used.
  • organic resin fine particles can be used as the organic fine particles.
  • examples thereof include fine particles made of resins such as polyolefin, polytetrafluoroethylene, polystyrene, polyacrylic acid ester, polymethacrylic acid ester, polyamide, polyester, and polyurethane.
  • the surface layer forms a coating film of the coating solution for the surface layer containing the hole transporting compound represented by the formula (1), and the hole transporting compound represented by the formula (1) in the coating film is polymerized. By doing, it can form by hardening a coating film.
  • Solvents used in the surface layer coating solution include alcohol solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, aliphatic halogenated hydrocarbon solvents, aliphatic hydrocarbon solvents, aromatics. A hydrocarbon solvent or the like can be used.
  • the film thickness of the surface layer is preferably 0.1 ⁇ m or more and 15 ⁇ m or less when the surface layer is a protective layer. Moreover, when a surface layer is a charge transport layer, it is preferable that they are 5 micrometers or more and 40 micrometers or less.
  • the coating film of the surface layer coating liquid (polymerizing the hole transporting compound represented by the formula (1)), heat, light (ultraviolet ray, etc.), or radiation (electron beam, etc.) is used. And a polymerization method. Among these, radiation is preferable, and among these radiation, an electron beam is more preferable.
  • examples of the accelerator include a scanning type, an electro curtain type, a broad beam type, a pulse type, and a laminar type.
  • the acceleration voltage of the electron beam is preferably 150 kV or less from the viewpoint of suppressing deterioration of material properties due to the electron beam without impairing the polymerization efficiency.
  • the electron beam absorbed dose on the surface of the coating film of the surface layer coating solution is preferably 5 kGy or more and 50 kGy or less, and more preferably 1 kGy or more and 10 kGy or less.
  • the hole transport material of the present invention when the hole transport material of the present invention is polymerized using an electron beam, it is irradiated with an electron beam in an inert gas atmosphere and then heated in an inert gas atmosphere for the purpose of suppressing the polymerization inhibition effect by oxygen.
  • the inert gas include nitrogen, argon, helium and the like.
  • a preferred configuration of the electrophotographic photosensitive member in the present invention is a configuration in which a charge generation layer and a hole transport layer are laminated in this order on a support. If necessary, a conductive layer or an undercoat layer (intermediate layer) may be provided between the charge generation layer and the support, and a protective layer may be provided on the hole transport layer.
  • the charge generation layer and the hole transport layer are collectively referred to as a photosensitive layer.
  • the hole transport material of the present invention is contained in the surface layer.
  • the surface layer in the present invention refers to a protective layer when the electrophotographic photoreceptor is provided with a protective layer, and refers to a hole transport layer when no protective layer is provided.
  • the photosensitive layer may be composed of a single-layer type photosensitive layer containing a charge generating material and a hole transport material.
  • the support used in the electrophotographic photosensitive member of the present invention is preferably a conductive support made of a conductive material.
  • the material of the support include metals or alloys such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, aluminum alloy, and stainless steel.
  • a metal support or a resin support having a film formed by vacuum deposition of aluminum, an aluminum alloy, an indium oxide-tin oxide alloy, or the like can be used.
  • a support obtained by impregnating plastic or paper with conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles, or a support containing a conductive resin can also be used.
  • Examples of the shape of the support include a cylindrical shape, a belt shape, a sheet shape, and a plate shape, and the cylindrical shape is the most common.
  • the surface of the support is subjected to processing such as cutting, roughening, and alumite treatment from the viewpoint of suppressing interference fringes due to laser light scattering, improving the surface defect of the support, and improving the conductivity of the support. May be.
  • a conductive layer may be provided between the support and the undercoat layer or charge generation layer, which will be described later, for the purpose of suppressing interference fringes due to scattering of a laser or the like, controlling resistance, or covering the scratches on the support.
  • the conductive layer can be formed by applying a coating solution for a conductive layer obtained by dispersing carbon black, a conductive pigment, a resistance adjusting pigment or the like together with a binder resin, and drying the obtained coating film. it can.
  • a compound that is cured and polymerized by heating, ultraviolet irradiation, radiation irradiation, or the like may be added to the conductive layer coating solution.
  • a conductive layer in which a conductive pigment or a resistance adjusting pigment is dispersed tends to have a roughened surface.
  • the film thickness of the conductive layer is preferably from 0.1 ⁇ m to 50 ⁇ m, more preferably from 0.5 ⁇ m to 40 ⁇ m, and even more preferably from 1 ⁇ m to 30 ⁇ m.
  • binder resin used for the conductive layer examples include polymers and copolymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, and trifluoroethylene, polyvinyl alcohol, and polyvinyl alcohol.
  • vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, and trifluoroethylene, polyvinyl alcohol, and polyvinyl alcohol.
  • examples include acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, epoxy resin, and isocyanate resin.
  • Examples of the conductive pigment and the resistance adjusting pigment include particles of metals (alloys) such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, and those obtained by vapor deposition on the surface of plastic particles. Further, particles of metal oxide such as zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony or tantalum-doped tin oxide may be used. These may be used alone or in combination of two or more.
  • an undercoat layer is provided for the purpose of improving adhesion of the charge generation layer, improving hole injection from the support, and protecting the charge generation layer from electrical breakdown. May be provided.
  • the undercoat layer can be formed by applying an undercoat layer coating solution obtained by dissolving a binder resin in a solvent and drying the resulting coating film.
  • binder resin used for the undercoat layer examples include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose resin, ethylene-acrylic acid copolymer, casein resin, polyamide, N-methoxymethylated 6 nylon, co-polymer Examples thereof include polymerized nylon, phenol resin, polyurethane, epoxy resin, acrylic resin, melamine resin, and polyester.
  • the undercoat layer may further contain metal oxide particles.
  • the metal oxide particles include particles containing titanium oxide, zinc oxide, tin oxide, zirconium oxide, and aluminum oxide.
  • the metal oxide particles may be metal oxide particles in which the surface of the metal oxide particles is treated with a surface treatment agent such as a silane coupling agent.
  • the thickness of the undercoat layer is preferably 0.05 ⁇ m or more and 30 ⁇ m or less, and more preferably 1 ⁇ m or more and 25 ⁇ m or less.
  • the undercoat layer may further contain organic resin fine particles and a leveling agent.
  • the charge generation layer is formed by applying a charge generation layer coating solution obtained by dispersing the charge generation material together with a binder resin and a solvent to form a coating film, and then drying the resulting coating film. can do.
  • the charge generation layer may be a vapor generation film of a charge generation material.
  • charge generation materials used in the charge generation layer include azo pigments, phthalocyanine pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, squarylium dyes, pyrylium salts, thiapyrylium salts, triphenylmethane dyes, quinacridone pigments, azulenium salt pigments, Examples include cyanine dyes, anthanthrone pigments, pyranthrone pigments, xanthene dyes, quinoneimine dyes, and styryl dyes. These charge generation materials may be used alone or in combination of two or more. Among these charge generation materials, phthalocyanine pigments and azo pigments are preferable from the viewpoint of sensitivity, and phthalocyanine pigments are more preferable.
  • phthalocyanine pigments oxytitanium phthalocyanine, chlorogallium phthalocyanine, and hydroxygallium phthalocyanine exhibit excellent charge generation efficiency. Further, among hydroxygallium phthalocyanines, from the viewpoint of sensitivity, a crystalline hydroxy compound having peaks at Bragg angles 2 ⁇ of 7.4 ° ⁇ 0.3 ° and 28.2 ° ⁇ 0.3 ° in CuK ⁇ characteristic X-ray diffraction. Gallium phthalocyanine crystals are more preferred.
  • binder resin used in the charge generation layer examples include polymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, and trifluoroethylene, polyvinyl alcohol, and polyvinyl alcohol.
  • examples include acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.
  • the mass ratio of the charge generating material to the binder resin is preferably in the range of 1: 0.3 to 1: 4.
  • the thickness of the charge generation layer is preferably from 0.05 ⁇ m to 1 ⁇ m, and more preferably from 0.1 ⁇ m to 0.5 ⁇ m.
  • the hole transport layer When the hole transport layer is a surface layer, the polymer of the hole transport material of the present invention is contained as described above.
  • the hole transport layer forms a coating film of a coating solution for a hole transport layer in which a hole transport material and a binder resin are mixed in a solvent. It can be formed by drying the membrane.
  • the hole transport material and binder resin used for the hole transport layer which has a protective layer on a hole transport layer are demonstrated.
  • Examples of the hole transporting substance include carbazole compounds, hydrazone compounds, N, N-dialkylaniline compounds, diphenylamine compounds, triphenylamine compounds, triphenylmethane compounds, pyrazoline compounds, styryl compounds, and stilbene compounds.
  • binder resin examples include acrylic acid ester, methacrylic acid ester, polyvinyl alcohol, polyvinyl acetal, polycarbonate, polyester, and the like.
  • a curable resin such as a curable phenol resin, a curable urethane resin, a curable melamine resin, a curable epoxy resin, a curable acrylic resin, or a curable methacrylic resin can be used.
  • Solvents used in the hole transport layer coating solution include alcohol solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, aliphatic halogenated hydrocarbon solvents, aromatic hydrocarbon solvents, etc. Is mentioned.
  • the film thickness of the hole transport layer is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 3 ⁇ m or more and 50 ⁇ m or less, and further preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • additives can be added to each layer of the electrophotographic photoreceptor of the present invention. Specifically, organic pigments, organic dyes, coating film surface conditioners, electron transport agents, oils, waxes, antioxidants, light absorbers, polymerization initiators, radical quenchers, organic resin fine particles, inorganic particles, etc. Can be mentioned.
  • each layer of the electrophotographic photoreceptor may be subjected to surface processing using a polishing sheet, a shape transfer mold member, glass beads, zirconia beads, or the like. Moreover, you may form an unevenness
  • a dip coating method for example, a dip coating method, a spray coating method, a circular amount regulation type (ring) coating method, a spin coating method, a roller coating method, a Meyer bar coating method, a blade coating method, etc. Any known coating method can be used.
  • FIG. 1 An example of the configuration of the process cartridge of the present invention is shown in FIG.
  • a cylindrical electrophotographic photosensitive member 1 is rotationally driven at a predetermined peripheral speed in the direction of an arrow.
  • the peripheral surface of the electrophotographic photosensitive member 1 that is rotationally driven is uniformly charged to a predetermined positive or negative potential by a charging means (charging roller or the like) 2.
  • the charged peripheral surface of the electrophotographic photosensitive member 1 receives exposure light (image exposure light) 3 output from exposure means (not shown) such as slit exposure or laser beam scanning exposure.
  • the voltage applied to the charging means 2 may be either a voltage obtained by superimposing an AC component on a DC component or a voltage containing only a DC component.
  • the electrostatic latent image formed on the peripheral surface of the electrophotographic photoreceptor 1 is developed with toner contained in the developer of the developing means 4 to become a toner image.
  • the toner image formed and supported on the peripheral surface of the electrophotographic photosensitive member 1 is sequentially transferred to a transfer material (paper, intermediate transfer member, etc.) 6 by a transfer bias from a transfer means (transfer roller, etc.) 5.
  • the transfer material 6 is fed in synchronization with the rotation of the electrophotographic photosensitive member 1.
  • the surface of the electrophotographic photosensitive member 1 is cleaned by pre-exposure light 7 from a pre-exposure unit (not shown), and then cleaned by the cleaning unit 8 to remove the transfer residual toner.
  • the electrophotographic photoreceptor 1 is repeatedly used for image formation.
  • the pre-exposure means may be before or after the cleaning process, and the pre-exposure means is not always necessary.
  • the electrophotographic photosensitive member 1 may be mounted on an electrophotographic apparatus such as a copying machine or a laser beam printer. Further, a process cartridge 9 constituted by housing a plurality of constituent elements such as the electrophotographic photosensitive member 1, the charging unit 2, the developing unit 4, and the cleaning unit 8 in a container and integrally supporting the electrophotographic photosensitive member 1, the main body of the electrophotographic apparatus It may be configured so as to be detachable with respect to.
  • an electrophotographic photosensitive member 1, a charging unit 2, a developing unit 4, and a cleaning unit 8 are integrally supported, and a process cartridge 9 that is detachable from the main body of the electrophotographic apparatus is formed.
  • FIG. 1 An example of the configuration of the electrophotographic apparatus of the present invention is shown in FIG. A yellow process cartridge 17, a magenta process cartridge 18, a cyan process cartridge 19, and a black process cartridge 20 corresponding to each of yellow, magenta, cyan, and black colors. These are juxtaposed along the intermediate transfer body 10.
  • the diameter and constituent materials of the electrophotographic photosensitive member, the developer, the charging method, and other means are not necessarily unified for each color.
  • the diameter of the electrophotographic photosensitive member is larger in black than in color (yellow, magenta, cyan).
  • the black color employs a method that uses corona discharge.
  • the toner images of the respective colors are sequentially superimposed on the intermediate transfer body 10 according to the above-described image forming process.
  • the transfer paper 11 is sent out from the paper feed tray 13 by the paper feed path 12 and fed to the secondary transfer means 14 in synchronization with the rotation operation of the intermediate transfer member.
  • the toner image on the intermediate transfer member 10 is transferred to the transfer paper 11 by the transfer bias from the secondary transfer unit 14.
  • the toner image transferred onto the transfer paper 11 is conveyed along the paper feed path 12, fixed on the transfer paper by the fixing unit 15, and discharged from the paper discharge unit 16.
  • part means “part by mass”.
  • electrophotographic photosensitive member is hereinafter simply referred to as “photosensitive member”.
  • Example 1 A cylindrical aluminum cylinder having an outer diameter of 30.0 mm, a length of 357.5 mm, and a wall thickness of 0.7 mm was used as a support (conductive support). Next, 10 parts of zinc oxide particles (specific surface area: 19 m 2 / g, powder resistivity: 4.7 ⁇ 10 6 ⁇ ⁇ cm) were stirred and mixed with 50 parts of toluene, and this was mixed with a silane coupling agent. 0.08 part was added and stirred for 6 hours. Thereafter, toluene was distilled off under reduced pressure, followed by heating and drying at 130 ° C. for 6 hours to obtain surface-treated zinc oxide particles.
  • zinc oxide particles specific surface area: 19 m 2 / g, powder resistivity: 4.7 ⁇ 10 6 ⁇ ⁇ cm
  • KBM602 compound name: N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • 15 parts of polyvinyl butyral resin weight average molecular weight: 40000, trade name: BM-1, manufactured by Sekisui Chemical Co., Ltd.
  • blocked isocyanate trade name: Duranate TPA-B80E, manufactured by Asahi Kasei Chemicals Corporation 15
  • a crystalline hydroxygallium phthalocyanine crystal (charge generation material) having peaks at 7.4 ° and 28.2 ° with a Bragg angle 2 ⁇ ⁇ 0.2 in CuK ⁇ characteristic X-ray diffraction was prepared. 2 parts of this hydroxygallium phthalocyanine crystal, 0.02 part of the calixarene compound represented by the following formula (A), 1 part of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.), and 60 parts of cyclohexanone was placed in a sand mill using glass beads having a diameter of 1 mm and dispersed for 4 hours.
  • a coating solution for a charge generation layer was prepared by adding 70 parts of ethyl acetate.
  • the charge generation layer coating solution was dip-coated on the undercoat layer, and the resulting coating film was dried at 90 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.15 ⁇ m.
  • a coating solution for a hole transport layer was prepared by dissolving 10 parts of trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd. in a mixed solvent of 60 parts monochlorobenzene / 20 parts dimethoxymethane. .
  • This hole transport layer coating solution was dip-coated on the charge generation layer, and the resulting coating film was dried at 100 ° C. for 50 minutes to form a first hole transport layer having a thickness of 18 ⁇ m.
  • Example 2 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 10 parts of a hole transport material represented by formula (10), 3 parts of a hole transport material represented by the following formula (F), 7 parts of 1-propanol and 7 parts of ZEOLORA H was prepared. This protective layer coating solution was dip-coated on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 2 of Example was produced as described above.
  • Example 3 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 6 parts of the hole transport material represented by 22 were dissolved in 7 parts of 1-propanol and 7 parts of Zeolora H to prepare a coating solution for a protective layer. This protective layer coating solution was dip-coated on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 3 of Example was produced as described above.
  • Example 4 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 25 parts of the hole transporting material represented by 25, 2 parts of the hole transporting material represented by the formula (F), 7 parts of 1-propanol and 7 parts of ZEOLORA H are dissolved in the coating solution for the protective layer. Prepared. This protective layer coating solution was dip-coated on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 4 of Example was produced as described above.
  • Example 5 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material represented by 34, 7 parts of 1-propanol and 7 parts of ZEOLORA H (manufactured by Nippon Zeon Co., Ltd.). This protective layer coating solution was dip-coated on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 5 of Example was produced as described above.
  • Example 6 An aluminum cylinder similar to that used in Example 1 was used as a support. Next, 60 parts of TiO 2 particles (powder resistivity 100 ⁇ ⁇ cm, SnO 2 coverage (mass ratio) 35%) coated with oxygen-deficient SnO 2 as conductive particles, 36.5 parts of phenolic resin (trade name: Priorofen J-325, manufactured by DIC Corporation (former Dainippon Ink and Chemicals, Inc.), 60% resin solid content), 20 parts of methoxypropanol as a solvent. The mixture was dispersed by a horizontal sand mill disperser using glass beads having a diameter of 1 mm.
  • phenolic resin trade name: Priorofen J-325, manufactured by DIC Corporation (former Dainippon Ink and Chemicals, Inc.
  • the surface of the dispersion is roughened with silicone resin particles (trade name: Tospearl 120, Momentive Performance Materials Japan GK (formerly GE Toshiba Silicone Ltd. )) 1.6 parts of average particle size: 2 ⁇ m) and 0.008 parts of silicone oil as a leveling agent (trade name: SH28PA, manufactured by Toray Dow Corning Silicone Co., Ltd.) are added and stirred.
  • silicone resin particles trade name: Tospearl 120, Momentive Performance Materials Japan GK (formerly GE Toshiba Silicone Ltd. )
  • silicone oil as a leveling agent trade name: SH28PA, manufactured by Toray Dow Corning Silicone Co., Ltd.
  • a protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material represented by 36, 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1.
  • the photoconductor 6 of Example was produced as described above.
  • Example 7 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 36 parts of the hole transporting material represented by 36, 2 parts of the hole transporting material represented by the above formula (E), 7 parts of 1-propanol and 7 parts of ZEOLORA H are dissolved in a coating solution for the protective layer. Prepared. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 7 of Example was produced as described above.
  • Example 8 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material indicated by No. 38, 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 8 of Example was produced as described above. The IR spectrum of the cured film on the surface of the photoreceptor of Example 8 by the ATR method was measured as follows.
  • Example Photoreceptor 8 A small piece was cut off from the cured film of Example Photoreceptor 8 using a cutter blade and peeled off.
  • the IR spectrum on the surface layer side of the peeled test piece was measured with an IR measuring device.
  • As the IR measuring apparatus a frontier FT-IR apparatus manufactured by PerkinElmer Inc. and equipped with an ATR method measuring apparatus using a germanium prism was used. The spectrum was measured by pressing the surface of the test piece against the ATR prism surface. The results are shown in FIG.
  • Example 9 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 3 parts of the hole transporting material represented by 38 and 3 parts of the hole transporting material represented by the above formula (E) were dissolved in 7 parts of 1-propanol and 7 parts of ZEOLORA H and applied for protective layer A liquid was prepared. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 9 of Example was produced as described above.
  • Example 10 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. 1.5 parts of a fluorine atom-containing resin (trade name: GF-400, manufactured by Toagosei Co., Ltd.) was dissolved in a mixed solvent of 45 parts of 1-propanol and 45 parts of Zeolora H. Thereafter, 30 parts of a fluoroethylene resin powder (trade name: Lubron L-2, manufactured by Daikin Industries, Ltd.) was added, and a high-pressure disperser (trade name: Microfluidizer M-110EH, US Microfluidics Co., Ltd.). To obtain a fluorinated ethylene resin dispersion.
  • a fluorine atom-containing resin trade name: GF-400, manufactured by Toagosei Co., Ltd.
  • a fluoroethylene resin powder trade name: Lubron L-2, manufactured by Daikin Industries, Ltd.
  • a high-pressure disperser
  • Example 11 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transporting material represented by 41, 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 11 of Example was produced as described above.
  • Example 12 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 4 parts of the hole transporting material represented by 41 and 2 parts of the hole transporting material represented by the above formula (E) are dissolved in 7 parts of 1-propanol and 7 parts of ZEOLORA H and applied for a protective layer. A liquid was prepared. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 12 of the example was produced as described above.
  • Example 13 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material shown by 44, 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 13 of Example was produced as described above. The IR spectrum of the cured film on the photoreceptor surface of Example Photoreceptor 13 was measured by the same method as in Example 8. The results are shown in FIG.
  • Example 14 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 4 parts of the hole transporting material represented by 44 and 2 parts of the hole transporting material represented by the above formula (E) were dissolved in 7 parts of 1-propanol and 7 parts of Zeolora H, and applied for a protective layer. A liquid was prepared. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 14 of Example was produced as described above.
  • Example 15 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material represented by 47, 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 15 of Example was produced as described above.
  • Example 16 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 47 parts of the hole transporting material represented by 47 and 2 parts of the hole transporting material represented by the above formula (E) were dissolved in 7 parts of 1-propanol and 7 parts of ZEOLORA H and applied for a protective layer. A liquid was prepared. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 16 of Example was produced as described above.
  • Example 17 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material 59, 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 17 of Example was produced as described above.
  • Example 18 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material indicated by 63, 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 18 of Example was produced as described above.
  • Example 19 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material shown by 84, 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 19 of Example was produced as described above.
  • Example 20 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 4.8 parts of the hole transporting material represented by 28, 1.2 parts of an acrylic compound having no hole transporting structure represented by the following formula (G), In addition, 0.06 part of a siloxane-modified acrylic compound represented by the following formula (H), 7 parts of 1-propanol, and 7 parts of Zeolora H were mixed and dissolved by stirring. Thereafter, this solution was filtered with a membrane filter to prepare a surface layer coating solution. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 20 of the example was produced as described above.
  • Example 21 An undercoat layer similar to that in Example 1 was formed on the same aluminum cylinder as in Example 1. Next, a crystalline oxytitanium phthalocyanine crystal (charge generating material) having a peak at 27.2 ° with a Bragg angle 2 ⁇ ⁇ 0.2 ° in CuK ⁇ characteristic X-ray diffraction was prepared. 2 parts of this oxytitanium phthalocyanine crystal, 1 part of polyvinyl butyral (trade name: ESREC BM-S, manufactured by Sekisui Chemical Co., Ltd.) and 50 parts of cyclohexanone are placed in a sand mill using glass beads having a diameter of 1 mm. Dispersed for 4 hours.
  • ESREC BM-S polyvinyl butyral
  • an aluminum cylinder having a coating film of the protective layer coating solution is rotated at a speed of 100 rpm, and an irradiation distance of 100 mm and an irradiation intensity of 600 mW are used using a metal halide lamp with an output of 160 W / cm 2.
  • the light was irradiated under the conditions of / cm 2 and irradiation time of 2 minutes. After light irradiation, a protective layer having a thickness of 3.5 ⁇ m was formed by heat treatment at 135 ° C. for 30 minutes.
  • the photoconductor 21 of Example was produced as described above.
  • Example 22 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 21 except that the protective layer was formed as follows. 2.7 parts of the hole transport material represented by Example Compound No. 38, 2.7 parts of the hole transport material represented by the formula (E), and 0 part of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator. .3 parts, 2.4 parts of the fluorinated ethylene resin dispersion prepared in Example 10 above, 6 parts of 1-propanol and 6 parts of Zeolola H were mixed and applied under the same conditions as in Example 21. Dry and photocured. A protective layer having a thickness of 3.5 ⁇ m was formed by heat treatment in the same manner as in Example 21. The photoconductor 22 of Example was produced as described above.
  • Example 23 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 2 parts of the hole transport material represented by 108, 2 parts of trimethylolpropane triacrylate (TMPTA, manufactured by Tokyo Chemical Industry Co., Ltd.), and 8 parts of the fluoroethylene resin dispersion prepared in Example 10 above. Then, 4 parts of 1-propanol and 4 parts of Zeolora H were stirred and dispersed uniformly to prepare a coating solution for a protective layer. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 23 of Example was produced as described above.
  • TMPTA trimethylolpropane triacrylate
  • Example 24 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 2 parts of the hole transport material represented by 121, 2 parts of the hole transport material represented by the formula (F), 8 parts of the fluorinated ethylene resin dispersion prepared in Example 10, and 1 part -4 parts of propanol and 4 parts of Zeolora H were stirred and dispersed uniformly to prepare a coating solution for the protective layer. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 24 of Example was produced as described above.
  • Example 25 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 125 parts of the hole transporting material represented by 125 and 4 parts of the hole transporting material represented by the above formula (E) are dissolved in 7 parts of 1-propanol and 7 parts of ZEOLORA H and applied for a protective layer. A liquid was prepared. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 25 of Example was produced as described above.
  • Example 26 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 2 parts of the hole transport material represented by 127, 2 parts of the hole transport material represented by the formula (E), 8 parts of the fluorinated ethylene resin dispersion prepared in Example 10, and 1 part -4 parts of propanol and 4 parts of Zeolora H were stirred and dispersed uniformly to prepare a coating solution for the protective layer. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 26 of Example was produced as described above.
  • Example 27 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 1.5 parts of the hole transport material represented by 133, 2.5 parts of the hole transport material represented by the formula (E), and 8 parts of the fluorinated ethylene resin dispersion prepared in Example 10 above. 4 parts of 1-propanol and 4 parts of Zeolola H were stirred and dispersed uniformly to prepare a coating solution for a protective layer. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 27 of Example was produced as described above.
  • Example 28 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 2.5 parts of the hole transport material represented by 138, 1.5 parts of the hole transport material represented by the formula (E), and 8 parts of the fluorinated ethylene resin dispersion prepared in Example 10 4 parts of 1-propanol and 4 parts of Zeolola H were stirred and dispersed uniformly to prepare a coating solution for a protective layer. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 28 of Example was produced as described above.
  • Example 29 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 2 parts of the hole transport material represented by 141, 2 parts of the hole transport material represented by the formula (E), 8 parts of the fluorinated ethylene resin dispersion prepared in Example 10, and 1 -4 parts of propanol and 4 parts of Zeolora H were stirred and dispersed uniformly to prepare a coating solution for the protective layer. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 29 of Example was produced as described above.
  • Example 30 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. Exemplified Compound No. 2 parts of the hole transport material represented by 146, 2 parts of the hole transport material represented by the formula (E), 8 parts of the fluorinated ethylene resin dispersion prepared in Example 10, and 1 -4 parts of propanol and 4 parts of Zeolora H were stirred and dispersed uniformly to prepare a coating solution for the protective layer. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. The photoconductor 30 of Example was produced as described above.
  • Example 1 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. The following comparative compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material shown in 1 and 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. A comparative photoreceptor 1 was produced as described above.
  • Example 2 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. The following comparative compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material shown in 2 and 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. A comparative photoreceptor 2 was produced as described above.
  • Example 3 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. The following comparative compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material shown in 3 and 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. A comparative photoreceptor 3 was produced as described above.
  • Example 4 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. The following comparative compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material shown in 4 and 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. A comparative photoconductor 4 was produced as described above.
  • Example 5 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows.
  • the following comparative compound No. A protective layer coating solution was prepared by dissolving in 6 parts of the hole transport material shown in 5 and 7 parts of 1-propanol and 7 parts of Zeolora H. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1.
  • the comparative photoconductor 5 was produced as described above.
  • Example 6 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. The following comparative compound No. 4 parts of the hole transporting material represented by 6 and 2 parts of the acrylic compound having no hole transporting structure represented by the formula (G) were dissolved in 7 parts of 1-propanol and 7 parts of Zeolora H. Thus, a coating solution for the protective layer was prepared. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. A comparative photoreceptor 6 was produced as described above.
  • Example 7 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 21 except that the protective layer was formed as follows. Instead of the hole transport material used in the protective layer in Example 21, the above Comparative Compound No. A protective layer was formed using 5.4 parts of the hole transport material shown in FIG. A protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 21. A comparative photoreceptor 7 was produced as described above.
  • Example 8 An electrophotographic photoreceptor was produced in the same manner as in Example photoreceptor 1, except that the protective layer was formed as follows. The following comparative compound No. 2 parts of the hole transport material shown in FIG. 7, 2 parts of trimethylolpropane triacrylate (TMPTA, manufactured by Tokyo Chemical Industry Co., Ltd.), and 8 parts of the fluorinated ethylene resin dispersion prepared in Example 10 above. Then, 4 parts of 1-propanol and 4 parts of Zeolora H were stirred and dispersed uniformly to prepare a coating solution for a protective layer. A dip coating was applied on the hole transport layer, and a protective layer having a thickness of 3.5 ⁇ m was formed in the same manner as in Example 1. In this manner, a comparative photoconductor 8 was produced.
  • TMPTA trimethylolpropane triacrylate
  • Image flow evaluation> Using the produced photoconductors 1 to 30 and comparative photoconductors 1 to 8, image flow was evaluated under the following conditions.
  • As the electrophotographic apparatus a copying machine manufactured by Canon Inc. and a modified machine having a trade name of iR-C3380F were used.
  • the remodeling points were modified so that the image exposure laser power, the amount of current flowing from the charging roller to the support of the electrophotographic photosensitive member (hereinafter also referred to as the total current), and the voltage applied to the charging roller can be adjusted and measured. .
  • the cassette heater was removed.
  • the electrophotographic photosensitive members of Examples and Comparative Examples are used as cyan cartridges of the electrophotographic apparatus. Installed. Next, a solid image is output in cyan single color on A4 size plain paper, and the density on the paper is 1.45 with a spectral densitometer (trade name: X-rite 504, manufactured by X-rite Co., Ltd.). The amount of image exposure was set. Next, the applied voltage was applied from ⁇ 400 V to ⁇ 2000 V at 100 V intervals, and the total current at each applied voltage was measured.
  • a graph with the applied voltage on the horizontal axis and the total current on the vertical axis is created, and the current component (hereinafter also referred to as discharge current) deviating from the primary approximation curve at the applied voltage of ⁇ 400 V to ⁇ 800 V is 100 ⁇ A.
  • the applied voltage was determined.
  • the total current was set to the total current value at the applied voltage at which the discharge current was 100 ⁇ A.
  • a square lattice image having an A4 size, a line width of 0.1 mm, and a line interval of 10 mm was read from the scanner, and 5000 sheets were continuously output in cyan single color. After image output, the main power of the electrophotographic apparatus was turned off and left for 3 days.
  • the evaluation rank was as follows. Rank 5: No abnormality is recognized in the lattice image. Rank 4: The horizontal line of the lattice image is broken, but no abnormality is recognized in the vertical line. Rank 3: The horizontal line of the lattice image disappears, but no abnormality is recognized in the vertical line. Rank 2: The horizontal line of the lattice image disappears and the vertical line is broken. Rank 1: The horizontal line of the lattice image has disappeared, and the vertical line has also disappeared. At this time, the horizontal line in the lattice image indicates a line parallel to the cylindrical axis direction of the photosensitive member, and the vertical line indicates a line perpendicular to the cylindrical direction of the photosensitive member.
  • the electrophotographic photosensitive member and the electrophotographic photosensitive member were left in an environment of a temperature of 23 ° C. and a humidity of 5% RH for 24 hours or more, and then the electrophotographic photosensitive member was mounted on a cyan cartridge of the electrophotographic device.
  • the charging device conditions were set so that the surface of the electrophotographic photosensitive member was ⁇ 700V.
  • a light amount setting for adjusting the image exposure laser power to lower the potential of ⁇ 700 V to ⁇ 200 V was recorded.
  • a halftone image is output in cyan single color on A4 size plain paper, and the density of the output image is 0.85 with a spectral densitometer (trade name: X-rite 504, manufactured by X-rite Co., Ltd.).
  • the image exposure laser power was set so that 50000 sheets were output continuously. Thereafter, the conditions of the charging device were set so that the surface of the electrophotographic photosensitive member was ⁇ 700 V, readjusted to the image exposure laser power recorded in the initial stage, and the surface potential at that time was read. The increase / decrease in the absolute value of the potential was measured as the endurance potential fluctuation amount. Next, the electrophotographic photosensitive member was taken out from the electrophotographic apparatus, and the protective layer film thickness after outputting 50,000 sheets was measured, and the difference in the protective layer film thickness before and after outputting 50,000 sheets, that is, the wear amount was calculated. The above evaluation results are shown in Table 1.
  • Forma (E) represents a hole transport material represented by Formula (E)
  • Forma (F) represents a hole transport material represented by Formula (F)
  • “Formula (G, H)” represents an acrylic compound having no hole transporting structure represented by Formula (G) and a siloxane-modified acrylic compound represented by Formula (H)
  • “Formula (G)” represents Formula The acrylic compound which does not have the hole transportable structure shown by (G) is represented. From the results shown in Table 1, the electrophotographic photosensitive member of the present invention has good electrical characteristics and durability characteristics, and the example photosensitive member has much better performance than the comparative photosensitive member in terms of suppression of image flow. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

耐摩耗性と電気特性を満足し、さらに画像流れを抑制することができる電子写真感光体、ならびに電子写真感光体を有する電子写真装置およびプロセスカートリッジを提供する。電子写真感光体の表面層が、重合性官能基を有する正孔輸送物質の重合物を含有し、前記正孔輸送物質が特定の構造を有する。

Description

電子写真感光体、電子写真装置およびプロセスカートリッジ
 本発明は電子写真感光体、ならびに電子写真感光体を有する電子写真装置およびプロセスカートリッジに関する。
 電子写真感光体の表面層には、帯電、露光、現像、転写、クリーニングといった一連の電子写真プロセスによるストレスが繰り返し付与されるため、耐摩耗性と化学的安定性が要求される。
 耐摩耗性を向上させる手段としては、電子写真感光体の表面層に硬化性樹脂を含有させる方法が挙げられる。しかしながら、耐摩耗性の高い表面層を設けると、表面層が摩耗しにくくなることにより、表面層の表面がリフレッシュされにくくなり、表面層の表面に化学的な劣化が蓄積しやすくなる。化学的な劣化とは、上述の一連の電子写真プロセスによるストレスにより、表面層に存在する正孔輸送物質(正孔輸送性化合物)が化学的変化を起こす現象である。正孔輸送物質の化学的変化は、高温高湿環境下において出力した電子写真画像が不鮮明になる現象(以降、画像流れとも呼ぶ)を引き起こす原因となる場合がある。したがって、画像流れを抑制するためには正孔輸送物質の化学的変化を抑制することが求められる。
 正孔輸送物質の化学的安定性を向上させる手段としては、表面層に正孔輸送物質とともに添加剤を含有させる技術がある。特許文献1には、重合性官能基を有する特定のフッ素原子含有モノマーを表面層に添加することによって、画像流れを改善する技術が開示されている。特許文献2には、特定のフッ素原子を含有する正孔輸送性モノマーを表面層に有する技術が示されている。特許文献3~5には、特定のアミン化合物を表面層に添加することにより、画像流れを改善する技術が開示されている。特許文献6には、特定の重合性官能基を有する特定のシロキサン化合物を表面層に添加することによって、画像流れを改善する技術が開示されている。特許文献7および8には、特定の置換基を有するスチルベン誘導体が開示されている。
特開2007-11005号公報 特開2007-11006号公報 特開2007-272191号公報 特開2007-272192号公報 特開2007-279678号公報 特開2008-70761号公報 特開平4-315159号公報 特開平6-48999号公報
 特許文献1および特許文献3~6の化合物を用いた技術は、正孔輸送物質に対する前述のストレス暴露を緩和させるための技術であり、正孔輸送物質そのものの化学的安定性を向上させる技術ではない。また、特許文献2の技術は、表面層を低表面エネルギー化する旨記載されているが、劣化に関する開示はなく、また特定の環境下における長期耐久時の電気特性の開示はない。また、特許文献7および8の化合物は重合性官能基を有するものでなく、本発明のような架橋構造を形成するものではない。よって、高耐久電子写真感光体への応用には適切でない。
 近年、電子写真感光体の高耐久化が著しく進んでおり、画像流れを改善する要求が増している。画像流れの改善をするためには、前述のストレス暴露を緩和させるだけでなく、正孔輸送物質自身の化学的安定性を向上させることが求められている。また、高耐久な電子写真感光体を特定の低湿環境下で長期間使用する場合の電位特性を改善する事も要求されている。
 したがって本発明の目的は、高耐久特性を有し、電気特性を満足し、さらに、画像流れの改善が良好な電子写真感光体、ならびに該電子写真感光体を有する電子写真装置およびプロセスカートリッジを提供することである。
 本発明は、支持体および該支持体上の感光層を有する電子写真感光体において、該電子写真感光体の表面層が、下記式(1)で示される正孔輸送性化合物の重合物を含有することを特徴とする電子写真感光体である。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Arは、置換もしくは無置換のアリール基を示す。ArおよびArは、それぞれ独立に、置換もしくは無置換のアリーレン基を示す。Ar~Arは、フッ素原子を有さない。Ar~Arのアリール基またはアリーレン基が有してもよい置換基は、炭素数1以上6以下のアルキル基、炭素数1以上6以下のアルコキシ基、および、重合性官能基を有する1価の基からなる群より選択される基であり、Ar~Arのアリール基またはアリーレン基の少なくとも1つは、該重合性官能基を有する1価の基で置換される。Zは、下記式(2)で示される1価の基、または、下記式(3)で示される1価の基を示す。Zは、水素原子、下記式(2)で示される1価の基、または、下記式(3)で示される1価の基を示す。ZおよびZが下記式(2)で示される1価の基であるとき、またはZおよびZが下記式(3)で示される1価の基であるとき、ZおよびZの構造は、同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000002
(式(2)中、*は、式(1)中のArまたはArに結合する結合位置を示す。R21およびR22は、それぞれ独立に、水素原子、または、炭素数1以上4以下のアルキル基を示す。pは、0または1である。qは、1以上4以下の整数である。rは、0または1である。p、qおよびrは、2≦p+q+r≦4を満たす。qが2以上のとき、R21は、同一の基であってもよいし、異なる基であってもよく、R22は、同一の基であってもよいし、異なる基であってもよい。Ar21は、置換もしくは無置換のアレーンからs+1個の水素原子を除して導き出されるs+1価の基を示す。R23は、フッ素原子、置換基としてフッ素原子を有する炭素数1または2のアルキル基、または、置換基としてフッ素原子を有するメトキシ基を示す。sは、Ar21に直接結合するR23の数であり、1以上5以下の整数である。sが2以上のとき、R23は、同一の基であってもよいし、異なる基であってもよい。)
Figure JPOXMLDOC01-appb-C000003
(式(3)中、**は、式(1)中のArまたはArに結合する結合位置を示す。R31およびR32は、それぞれ独立に、水素原子、または、炭素数1以上4以下のアルキル基を示す。tは、1以上3以下の整数である。tが2以上のとき、R31は、同一の基であってもよいし、異なる基であってもよく、R32は、同一の基であってもよいし、異なる基であってもよい。Ar31は、置換もしくは無置換のアレーンからu+1個の水素原子を除して導き出されるu+1価の基を示す。R33は、フッ素原子、置換基としてフッ素原子を有する炭素数1以上4以下のアルキル基、または、置換基としてフッ素原子を有する炭素数1以上3以下のアルコキシ基を示す。uは、Ar31に直接結合するR33の数であり、1以上5以下の整数である。uが2以上のとき、R33は、同一の基であってもよいし、異なる基であってもよい。)
 また、本発明は、上記電子写真感光体、帯電手段、露光手段、現像手段および転写手段を有する電子写真装置である。
 また、本発明は、上記電子写真感光体と、帯電手段、現像手段、転写手段およびクリーニング手段からなる群より選択される少なくとも1つの手段とを一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジである。
 以上説明したように、本発明によれば、電気特性および耐久特性が良好で、さらに画像流れを抑制することができる電子写真感光体、ならびに該電子写真感光体を有する電子写真装置、および該電子写真感光体を有するプロセスカートリッジを提供することができる。
電子写真感光体を有するプロセスカートリッジの一例を示す概略図である。 電子写真感光体を有する電子写真装置の一例を示す概略図である。 例示化合物No.38の正孔輸送物質を用いた実施例感光体8の感光体表面の硬化膜のATR法によるIRスペクトルである。 例示化合物No.44の正孔輸送物質を用いた実施例感光体13の感光体表面の硬化膜のATR法によるIRスペクトルである。
 本発明は、電子写真感光体の表面層が重合性官能基を有する正孔輸送性化合物の重合物を含有し、該正孔輸送性化合物が特定のトリアリールアミン構造およびフッ素原子または置換基としてフッ素原子を含有するアルキル基若しくは置換基としてフッ素原子を含有するアルコキシ基(以下、「フッ素原子含有置換基」とも称する。)で置換された芳香族基を有する電子写真感光体に関する。以下、上記特徴を有する正孔輸送性化合物を「本発明の正孔輸送物質」とも称する。
 一般に、電子写真感光体に用いられる正孔輸送物質としては、優れた正孔輸送性を有するアリールアミン化合物が広く用いられている。
 アリールアミン化合物の正孔輸送性は、アミン構造が有する電子供与性が、窒素原子の周囲にあるアリール基等の相互作用により高められることによって発現すると考えられる。一方で、繰り返し電子写真プロセスを通じて、アリールアミン化合物のアミン構造は、電荷の授受が盛んに行われているため、化学的反応等を受けやすい状態にあると考えられる。特に帯電工程における放電のエネルギーや放電現象によって生成するオゾンや酸化性物質の作用によって、酸化等の変化を受けやすい傾向にあると考えられる。その結果、アリールアミン化合物のアミン構造の化学的変化が引き起こされていると推測している。さらに、正孔輸送物質の化学的変化と高温高湿環境とが組み合わされて、電子写真感光体の表面の抵抗低下が起こり、画像流れが発生すると考えている。
 本発明者らは、アミン構造を有していても劣化が抑制され、高安定、高耐久に機能できる正孔輸送物質の探索を行い本発明に至った。
 すなわち、本発明の正孔輸送物質は、繰り返し電子写真プロセスによる劣化を抑制するために、フッ素原子またはフッ素原子含有置換基で置換された芳香族基を特定のトリアリールアミンアミン構造から見て特定の位置関係で有するという特徴を持つ。そのフッ素原子またはフッ素原子含有置換基で置換された芳香族基を有することで、電子写真感光体の表面層の表面エネルギーを最適に調整し、放電生成物等に対する親和性を軽減できるため、本発明の正孔輸送物質の劣化を抑制することができる。
 一方で、本発明の正孔輸送物質が必要以上にフッ素原子またはフッ素原子含有置換基を有すると、様々な弊害が発生する場合がある。特に、低湿環境下において電子写真感光体を長期間使用した場合に、電位変動が悪化する恐れが高くなる。そのため、フッ素原子やフッ素原子含有置換基を有する事による前記弊害を最小限にする最適な構造とする必要がある。
 本発明者らは、鋭意検討の結果、上述の本発明の正孔輸送物質の重合物を電子写真感光体の表面層に用いることで、電子写真感光体の耐久特性、電気特性を満足し、さらに画像流れを抑制する効果を有することを見出した。
 この理由としては、本発明の正孔輸送物質は、正孔輸送機能に悪影響を与えない部位に、フッ素原子またはフッ素原子含有置換基を有することで、以下に説明するように化学的安定性と電気特性を両立することができるためと考えている。
 本発明の正孔輸送物質が前記式(2)で示される基を有する式(1)で示される正孔輸送性化合物の場合、トリアリールアミン構造とは別にAr21で表されるアレーンから導き出される基を有する。Ar21は、R23で示されるフッ素原子またはフッ素原子含有置換基で置換されている。ここで、式(1)で示される正孔輸送性化合物が化学的安定性と電気特性を両立するためには、Ar21は、トリアリールアミン構造のArまたはArに対して、特定の間隔を有しながら結合し、同一分子内に存在することが必須要件となる。上記トリアリールアミン構造とAr21の間の結合に寄与する原子団は、炭素原子および酸素原子から選択される原子団である必要があり、これら原子団が2以上4以下の飽和結合を介して、Ar21とArおよび/またはArを結合している必要がある。したがって、式(2)で示される基において、p、qおよびrは、2≦p+q+r≦4の関係を満たす必要がある。
 ArまたはArと、Ar21の間隔が特定の間隔が好適である理由は、以下のように考えられる。フッ素原子およびフッ素原子含有置換基は、電気陰性度が高く、正孔輸送特性を有するトリアリールアミン構造に近づきすぎると、正孔輸送特性を阻害する作用を示すと考えられる。またさらに、フッ素原子含有置換基は嵩高く、お互いに反発する作用が有り、p、qおよびrの和が5以上となるとトリアリールアミン構造の方向に回り込むように近づき、電荷輸送に対する立体的な障害となり、電子写真特性を阻害する要因となると考えられる。
 本発明の正孔輸送物質は、Ar21のアンカー効果により、トリアリールアミン構造とAr21のそれぞれの位置が固定化される。そのため、Ar21がトリアリールアミン構造から適度な距離を保持した状態で、電子写真感光体の表面層中に安定的に存在する事が可能となる。
 また、上記アンカー効果により、電子写真感光体の表面層の製膜後においても、本発明の正孔輸送物質の熱的な運動が防止され、電子写真感光体の長期経時による特性悪化は発生し難くなると考えている。
 もしAr21が存在せず、フッ素原子またはフッ素原子含有置換基が直接トリアリールアミン構造に置換している場合、これらの高い電気陰性度のために電子写真感光体の電気特性が悪化すると考えられる。
 また、もしAr21が存在せず、ArまたはArとフッ素原子含有置換基が、炭素原子および酸素原子から選択される原子団長鎖の構造を介して結合する場合、本発明の正孔輸送物質は、Ar21由来のアンカー効果を有さない。そのため、フッ素原子含有置換基が正孔輸送特性を有するトリアリールアミン構造に回り込むような形で近づき過ぎるために、電子写真感光体の電気特性が悪化すると考えられる。
 一方、式(2)で示される基においてp、qおよびrの和が0または1の場合、フッ素原子およびフッ化アルキル基等のトリアリールアミン構造への影響が強くなり、電子写真感光体の電気特性が悪化する恐れがある。
 上記理由により、フッ素原子およびフッ素原子含有置換基の弊害を最小限にとどめ、これらの効果を最大限に発現させるためには、トリアリールアミン構造とフッ素原子またはフッ素原子含有置換基が置換したAr21とを特定の間隔で有する式(1)で示される正孔輸送性化合物こそが特に優れていることを、本発明者らは見出した。
 しかし、R23で示される置換基がフッ素原子含有置換基の場合、フッ素原子含有置換基を構成する炭素原子の数が多すぎると、結合の自由度により、フッ素原子含有置換基がトリフェニルアミン構造に悪影響を与える恐れがある。特にフッ素原子含有置換基を構成する炭素原子の数が多くなり過ぎると、電子写真特性を阻害する傾向が大きくなる。
 そのため、R23で示される基が置換基としてフッ素原子を有するアルキル基の場合、その炭素数は1または2である。R23で示される基が置換基としてフッ素原子を有するアルコキシ基の場合、R23は置換基としてフッ素原子を有するメトキシ基に限定される。さらに、sは、Ar21に直接結合するR23の数であり、sは、1以上5以下であることが好ましい。sが2以上のとき、s個のR23は、それぞれ同一の基であってもよいし、異なる基であってもよい。
 本発明の正孔輸送物質が前記式(3)で示される基を有する式(1)で示される正孔輸送性化合物の場合も、トリアリールアミン構造とは別にAr31で表されるアレーンから導き出される基を有する。Ar31は、R33で示されるフッ素原子または特定のフッ素原子含有置換基で置換されている。ここで、式(1)で示される正孔輸送性化合物が化学的安定性と電気特性を両立するためには、Ar31は、トリアリールアミン構造のArまたはArに対して、特定の連結基を介して結合し、同一分子内に存在することが必須要件となる。上記トリアリールアミン構造のArまたはArとAr31を介する連結器は、炭素数2個、4個、または6個のsp混成軌道を有する炭素原子(以下、「sp炭素原子」ともいう。)から構成され二重結合部位(-(CR31=CR32-)で構成される。sp炭素原子の数が4個または6個の場合、すなわちtが2または3の場合、二重結合部位は共役二重結合である。
式(3)中tは、好ましくは2以下であり、さらに好ましくは1である。tが4以上の整数であると分子量が大きくなり、製膜性や膜強度等が問題になる場合がある。
 ArまたはArと、Ar31の間の連結基がsp炭素原子のみで構成されることにより、トリアリールアミン構造からAr31までの共役系が形成される。この共役系の平面性により、トリフェニルアミン構造からAr31までの構造が固定される。この効果により、トリアリールアミン構造とフッ素原子含有置換基が近づき過ぎることがなくなり、トリアリールアミン構造の電荷輸送特性が阻害されないと考えられる。
 ArまたはArと、Ar31の間の連結基が剛直に固定されるため、R33において、置換基としてフッ素原子を有するアルキル基の炭素数は1以上4個以下、置換基としてフッ素原子を有するアルコキシ基の炭素数は1以上3個以下とすることが可能となる。置換基としてフッ素原子を有するアルキル基およびフッ素原子を有するアルコキシ基の炭素数が上記炭素数より多い場合、これらの基がトリフェニルアミン構造に回り込んで近づくために、電子写真感光体の電気特性を悪化させる恐れがある。
 上記のように、式(3)で示される1価の基の構造が固定される効果により、トリアリールアミン構造とフッ素原子含有芳香族構造のそれぞれの位置が固定化される。そのため、Ar31がトリアリールアミン構造から適度な距離を保持した状態で、電子写真感光体の表面層中に安定的に存在する事が可能となる。
 また、Ar31のアンカー効果により、製膜後においても、本発明の正孔輸送物質の熱的な運動が妨げられ、電子写真感光体の長期経時による特性悪化も発生し難くなると考えている。
 上記理由により、フッ素原子およびフッ素原子含有置換基の弊害を最小限にとどめ、これらの効果を最大限に発現させるためには、トリアリールアミン構造とフッ素原子またはフッ素原子含有置換基が置換したAr31を有し、且つトリアリールアミン構造とAr31の間に特定の連結基を有する式(1)で示される正孔輸送性化合物こそが特に優れていることを、本発明者らは見出した。
 また、式(3)で示される1価の基の構造は固定されているものの、R33で示されるフッ素原子およびフッ素原子含有置換基において、R33の炭素数が多すぎると、炭素原子の飽和結合の角度と方向の自由度により、フッ素原子含有置換基がトリフェニルアミン構造の電子写真特性に悪影響を与える恐れがある。そのため、uは、Ar31に直接結合するR33の数であり、uは、1以上5以下の整数であることが好ましく、好ましくはuが2以下である。uが2以上のとき、R33は、同一の基であってもよいし、異なる基であってもよい。
 本発明の正孔輸送物質である前記式(1)で示される正孔輸送性化合物において、Arは、置換もしくは無置換のアリール基を表し、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、フルオレニル基、フルオランテニル基、トリフェニレニル基等が挙げられる。前記式(1)で示される正孔輸送性化合物が嵩高過ぎる構造を有さず、分子量を大きくし過ぎないためにも、Arがフェニル基であることが好ましい。
 前記式(1)で示される正孔輸送性化合物において、ArおよびArは、それぞれ独立に、置換もしくは無置換のアリーレン基を表す。アリーレン基としては、例えば、フェニレン基およびナフチレン基、並びにアントラセン、ピレン、フルオレン、フルオランテン、トリフェニレン等から得られる2価の基が挙げられる。前記式(1)で示される正孔輸送性化合物が嵩高過ぎる構造有さず、分子量を大きくし過ぎないためにも、ArおよびArがフェニレン基であることが好ましい。
 前記式(2)で示される1価の基において、Ar21は置換もしくは無置換のアレーンからs+1個の水素原子を除して導き出されるs+1価の基を表し、前記式(3)で示される1価の基において、Ar31は置換もしくは無置換のアレーンからu+1個の水素原子を除して導き出されるu+1価の基を表す。アレーンとしては、ベンゼン、ナフタレン、アントラセン、フェナントレン、ピレン、フルオレン、フルオランテン、トリフェニレン等が挙げられる。式(1)で示される正孔輸送性化合物が嵩高過ぎる構造を有さず、分子量を大きくし過ぎないためにも、Ar21およびAr31がベンゼンから導き出される基であることが好ましい。
 Ar~Ar、Ar21およびAr31が有する置換基としては、アルキル基、およびアルコキシ基から選択される基が挙げられる。
 前記式(2)で示される1価の基において、R21およびR22は、それぞれ独立に、水素原子、または炭素数1から4のアルキル基を表す。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。R21およびR22は同一でも異なってもよい。
 R23は、フッ素原子、置換基としてフッ素原子を有する炭素数1または2のアルキル基、または置換基としてフッ素原子を有するメトキシ基を表す。置換基としてフッ素原子を有する炭素数1または2のアルキル基としては、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1,1-ジフルオロエチル基、2,2,2-トリフルオロエチル基、1,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基等が挙げられる。これらの中でも、トリフルオロメチル基および1,1,2,2,2-ペンタフルオロエチル基が好ましい。置換基としてフッ素原子を有するメトキシ基としては、モノフルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基が挙げられる。中でもトリフルオロメトキシ基が好ましい。
 前記式(3)中のR31およびR32は、それぞれ独立に、水素原子、または炭素数1以上4以下のアルキル基を表す。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。R31およびR32は同一でも異なってもよい。
 R33は、フッ素原子、置換基としてフッ素原子を有する炭素数1以上4以下のアルキル基、または置換基としてフッ素原子を有する炭素数1以上3以下のアルコキシ基を表す。置換基としてフッ素原子を有する炭素数1以上4以下のアルキル基としては、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1,1-ジフルオロエチル基、2,2,2-トリフルオロエチル基、1,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、1,1,2,2,2,-ペンタフルオロエチル基、1,1-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。これらの中でも、トリフルオロメチル基、1,1,2,2,2,-ペンタフルオロエチル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、および1,1,2,2,3,3,4,4,4-ノナフルオロブチル基が好ましい。置換基としてフッ素原子を有する炭素数1以上3以下のアルコキシ基としては、モノフルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、1,1-ジフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、1,2,2-トリフルオロエトキシ基、1,1,2,2-テトラフルオロエトキシ基、1,1,2,2,2-ペンタフルオロエトキシ基、1,1-ジフルオロプロポキシ基、3,3,3-トリフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、1,1,2,2,3,3,3-ヘプタフルオロプロポキシ基等が挙げられる。これらの中でも、トリフルオロメトキシ基、1,1,2,2,2-ペンタフルオロエトキシ基、および1,1,2,2,3,3,3-ヘプタフルオロプロポキシ基が好ましい。
 前記式(1)で示される化合物中のZは、前記式(2)で示される1価の基または前記式(3)で示される1価の基を示す。また、前記式(1)で示される正孔輸送性化合物中のZは、水素原子、前記式(2)で示される1価の基、または前記式(3)で示される1価の基を示す。式(1)で示される正孔輸送性化合物の対称性が良くなり過ぎ、分子量が大きくなり過ぎると、製膜性、硬化性、電気特性等が良好でなくなる恐れが高くなる。そのため、式(1)で示される正孔輸送性化合物としては、Zが式(2)で示される1価の基または式(3)で示される1価の基であり、かつZが水素原子であることが好ましい。
 前記式(3)で示される1価において、連結器である二重結合部位は、シス体およびトランス体のどちらでも、またはシス体とトランス体の二重結合が存在していてもよい。
 前記Ar~Arが有することができる置換基としては、具体的に以下のアルキル基およびアルコキシ基が挙げられる。
 アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、1-メチルペンチル基、4-メチル-2-ペンチル基、3,3-ジメチルブチル基、2-エチルブチル基、シクロヘキシル基、1-メチルヘキシル基、シクロヘキシルメチル基、4-tert-ブチルシクロヘキシル基、n-ヘプチル基、シクロヘプチル基等が挙げられる。
 アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基等が挙げられる。
 式(1)で示される正孔輸送性化合物は重合性官能基を有する。重合性官能基とは、重合性官能基どうしが重合反応を起こした場合に、分子間を共有結合で結合することができる官能基を意味する。例えば、式(1)で示される正孔輸送性化合物が有する重合性官能基としては、以下に示す重合性官能基が挙げられる。上記重合性官能基はフッ素原子を有さない。
Figure JPOXMLDOC01-appb-C000004
 表面層の耐摩耗性の観点、製膜後の重合時の重合反応速度の観点から、重合性官能基は連鎖重合性を有する官能基が好ましい。特にアクリロイルオキシ基、メタクリロイルオキシ基が好ましい。
 式(1)で示される正孔輸送性化合物は、Ar~Arの少なくとも1つが、前記重合性官能基を有する。重合性官能基とAr~Arは直接結合しても良いが、式(1)で示される正孔輸送性化合物の重合特性、融点の改良、また、製膜、硬化時の流動性、重合物の物性等を改良する目的で、重合性官能基とAr~Arとの間に2価の基を有することが好ましい。2価の基としては、直鎖または分岐のアルキレン基、または、オキシアルキレン基が挙げられる。
 以上のことから、導入される重合性官能基を含む置換基としては下記式(4)で表される1価の基であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中***は、Ar~Arに結合する結合位置を表す。R41は、単結合または炭素数1以上6以下のアルキレン基を表す。R42は水素原子またはメチル基を表す。vは0または1である。ただし、vが1のとき、R41は単結合ではない。)
 R41で表されるアルキレン基としては、メチレン基、エチレン基、n-プロピレン基、iso-プロピレン基、n-ブチレン基、iso-ブチレン基、sec-ブチレン基、tert-ブチレン基、n-ペンチレン基、1-メチル-n-ブチレン基、2-メチル-n-ブチレン基、3-メチル-n-ブチレン基、1,1-ジメチル-n-プロピレン基、1,2-ジメチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基等が挙げられる。上記式(4)で表される1価の基はフッ素元素を有さない。
 式(1)で示される正孔輸送性化合物を重合することにより、電子写真感光体の表面層を形成する場合、1つの種類または複数の種類の式(1)で示される正孔輸送性化合物を用いることができる。式(1)で示される正孔輸送性化合物を重合させる手段としては、紫外線、電子線、熱等のエネルギーを付与する手段、あるいは、重合開始剤等の補助剤、酸、アルカリ、錯体等の化合物を共存させる手段を用いることができる。
 本発明の正孔輸送物質の化合物例を以下に示す。ただし、本発明はこれらに限定されるものではない。下記の例示化合物において、式(4)で表される1価の基に相当する重合性官能基は、上記の重合性官能基のいずれかに置き換えられてもよい。置換基についても同様に上記の置換基に置き換えてもよい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 本発明に用いられる正孔輸送物質の代表的な合成例を以下に示す。
<合成例1>
 前記例示化合物No.38で示される2官能の重合性アクリル基を有する電荷輸送性物質の合成例を示す。
 下記反応式(1)で示される反応により、中間体1(ニトロ体)を合成した。
Figure JPOXMLDOC01-appb-C000028
 反応槽内に、カリウムt-ブトキシドの29.3部、乾燥テトラヒドロフランの535部を投入し、撹拌と窒素置換を行った。その反応混合物を内温約5℃になるように冷却した。次に、前記反応槽内に(4-ニトロベンジル)トリフェニルホスホニウムブロマイドの125部を分割しながら添加した。内温の変化は5℃~7℃であった。添加後30分間、撹拌して混合した。
 次に、3,5-ビス(トリフルオロメチル)ベンズアルデヒドの57.5部とテトラヒドロフラン71部の混合溶液を内温変化に注意しながら、約1時間かけて滴下した。内温の変化は10℃までであった。引き続き2時間、室温下で撹拌しながら反応を完結させた。
 反応後、反応混合物を氷水2500部に投入し、さらに酢酸エチルを投入して生成物を抽出した。有機層を分液し、水洗、食塩水洗浄し、その後脱水、濃縮した。
 得られた生成物に、酢酸エチル200部を加えて加熱溶解し、n-ヘキサンの800部を加えて室温に冷却し、析出した副生成物を濾取した。さらにn-ヘキサン/酢酸エチル=4/1の混合溶液をもちいて濾過器上の濾過物を洗浄し、その濾液を合せて回収した。
 回収した濾液から粗生成物を取り出し、シリカゲルカラムクロマトグラフィーで精製して中間体1を得た。収量:65部、収率:75.8%
 次に、下記反応式(2)で示される反応により、中間体2(アミン体)を合成した。
Figure JPOXMLDOC01-appb-C000029
 反応槽内に上記中間体(1)の65部と、エタノールの514部を投入し、触媒として10%パラジウム/炭素(55%水湿潤品)の11.5部を加え、反応槽内を水素ガス置換した。内温を30℃にして約20時間撹拌して反応を行った。
 反応後、濾過、エタノール洗浄、濃縮を行い中間体2の粗生成物を得た。引き続き、シリカゲルカラムクロマトグラフィーで精製して、トルエン/ヘキサン混合溶剤で再結晶して中間体2を得た。収量:41.9部、収率:70%
 次に、下記反応式(3)により、中間体3を合成した。
Figure JPOXMLDOC01-appb-C000030
 得られた中間体2を用いてトリフェニルアミン構造の合成とエステル部分の加水分解を行った。反応槽に、中間体2の41.9部と、反応式(3)に示すヨウ素体の91.7部、o-ジクロロベンゼンの260部を混合し、炭酸カリウムの52部、銅粉の24部を加えて、内温約190℃にして反応を行った。20時間撹拌を行い反応した。反応後、濾過、トルエン洗浄、濃縮を行い粗生成物を得た。
 さらに引き続き加水分解を行い、酢酸エステル部分を水酸基にした。テトラヒドロフランの267部、メタノールの100部、24%水酸化ナトリウム水溶液の300部を混合し、内温70℃に加熱、撹拌して、2時間反応して加水分解を行った。反応後、反応混合物を酢酸エチルで抽出後、有機層を水洗、食塩水洗浄、脱水、濃縮を行った。シリカゲルクロマトグラフィーで精製して中間体3を得た。収量:41.6部、収率(2段階):55%
 下記反応式(4)により、例示化合物No.38を合成した。
Figure JPOXMLDOC01-appb-C000031
 上記反応により得られた中間体3の41.6部、乾燥テトラヒドロフランの356部、トリエチルアミンの17.5部、を混合し、反応槽を冷却して内温を5℃以下に保った。
 撹拌しながら、塩化アクリロイルの13.8部を約30分かけてゆっくり滴下し、内温を10℃以下に保ちながら滴下と撹拌を続けた。その後、室温まで戻し、2時間反応を続けて反応を完結させた。
 反応後、反応液を冷却した5%水酸化ナトリウム水溶液の1200部に投入して、酢酸エチルで抽出を行った。水洗、脱水、濃縮を行い粗生成物を得た。
 続いて、粗生成物をシリカゲルカラムクロマトグラフィーで精製して、例示化合物No.38で示される非結晶性の重合性官能基を有する正孔輸送性物質を得た。収量:24.3部、収率49.5%
<合成例2>
 前記例示化合物No.127で示される2官能の重合性アクリル基を有する正孔輸送性物質の合成例を示す。
 前記反応式(1)と同じ工程により、中間体1(ニトロ体)を合成した。
 続いて、下記反応式(5)で示される反応により、中間体4(アミノ体)を合成した。
Figure JPOXMLDOC01-appb-C000032
 反応槽内に、中間体(1)の65部およびエタノールの650部を投入した。次いで反応槽内に濃塩酸水溶液の130部を内温が35℃以下になるように維持しながらゆっくり加えた。触媒として塩化スズ(II)の136.5部を加えた。内温を80℃になるように加熱して、5時間撹拌した。1晩放置後、反応混合物に冷却した24%水酸化ナトリウム水溶液の2000部とトルエンの700部を投入して分液操作を行った。得られた有機層を水洗、脱水、濃縮して粗生成物を得た。
 得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製を行った。その後、トルエンとn-ヘキサンの混合溶剤で再結晶を行い、濾過、乾燥等を行うことにより、中間体4の精製物を得た。収量:40.5部、収率:68%
 下記反応式(6)により、中間体5を合成した。
Figure JPOXMLDOC01-appb-C000033
 上記で得られた中間体4を用いて、トリフェニルアミン構造の合成とエステル部分の加水分解を行った。反応槽に、中間体4の40部と、反応式(6)に示すヨウ素体の88.1部、o-ジクロロベンゼンの260部を混合し、炭酸カリウムの50部、銅粉の23部を加えて、内温約190℃にして反応を行った。20時間撹拌を行い反応した。反応後、濾過、トルエン洗浄、濃縮を行い粗生成物を得た。
 さらに引き続き加水分解を行い、酢酸エステル部分を水酸基にした。テトラヒドロフランの260部、メタノールの100部、24%水酸化ナトリウム水溶液の300部を混合し、内温70℃に加熱、撹拌して、2時間反応して加水分解を行った。反応後、反応混合物を酢酸エチルで抽出後、有機層を水洗、食塩水洗浄、脱水、濃縮を行った。シリカゲルクロマトグラフィーで精製して中間体6を得た。収量:42.7部、収率(2段階):59%
 下記反応式(7)により、例示化合物No.127を合成した。
Figure JPOXMLDOC01-appb-C000034
 上記反応により得られた中間体6の42部、乾燥テトラヒドロフランの350部、トリエチルアミンの17.7部、を混合し、反応槽を冷却して内温を5℃以下に保った。反応槽内を撹拌しながら、塩化アクリロイルの13.9部を約30分かけてゆっくり滴下した。その際内温が10℃以下になるように冷却を続けながら滴下と撹拌を続けた。その後、室温まで戻し、2時間反応を続けて反応を完結させた。
 反応後、冷却した5%水酸化ナトリウム水溶液の1200部に投入して、酢酸エチルで抽出を行った。水洗浄、脱水、濃縮を行い粗生成物を得た。続いて、粗生成物をシリカゲルカラムクロマトグラフィーで精製して、例示化合物No.127で示される非結晶性の重合性官能基を有する正孔輸送性物質を得た。収量:26.8部、収率54%
 上記の合成方法で得られる本発明の正孔輸送性物質は、適宜溶剤種、溶剤量を調整することで溶液とし、本発明の電子写真感光体の表面層用塗布液とすることができる。
 さらに、前記表面層用塗布液は、本発明目的の効果を妨げない範囲で、本発明の正孔輸送物質と、公知の重合性官能基を有する正孔輸送物質を含有してもよい。公知の重合性官能基を有する正孔輸送物質としては、重合性官能基を有する芳香族アミン化合物を用いてもよい。
 本発明の電子写真感光体の表面層は、本発明の正孔輸送物質の他に、重合性官能基を有し正孔輸送性を有さない化合物を含む混合組成物の重合物を含有することができる。本発明の正孔輸送物質と重合性官能基を有し正孔輸送性を有さない化合物とを合せて使用することにより、得られる重合物の機械的強度をさらに向上することができる。より好ましくは、本発明の電子写真感光体の表面層は、1個以上の重合性官能基を有する本発明の正孔輸送物質と2個以上重合性官能基を有する正孔輸送性を有さない化合物を含む混合組成物の重合物を含有する。
 重合性官能基を有し正孔輸送性を有さない化合物が有する重合性官能基は、上述の式(1)で示される正孔輸送性化合物が有する重合性官能基でも良い。好ましくは、スチリル基、ビニル基、アクリロイルオキシ基、メタクリロイルオキシ基等のラジカル重合性の官能基が好ましい。さらに好ましくは、アクリロイルオキシ基またはメタクリロイルオキシ基のラジカル重合性反応基であることが好ましい。
 重合性官能基を有し正孔輸送性構造を有さない化合物としては以下のような化合物があげられる。以下で述べる、1官能とは、重合性官能基を1つ有することを意味する。以下は重合性官能基としてアクリロイルオキシ基を有し正孔輸送性を有さない化合物(以下、「重合性モノマー」ともいう。)の例を示す。
 1官能の重合性モノマーとして、例えばエチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、エトキシ-ジエチレングリコールアクリレート、イソアミルアクリレート、ラウリルアクリレート、ステアリルアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、エトキシ化o-フェニルフェノールアクリレート、等があげられる。
 2官能の重合性モノマーとして、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、3-メチル-1,5-ペンタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,10-デカンジオールジアクリレート、トリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、等があげられる。
 3官能の重合性モノマーとしては、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、エトキシ化イソシアヌル酸トリアクリレート、等があげられる。
 4官能の重合性モノマーとしては、例えばペンタエリスリトールテトラアクリレート、ジメチロールプロパンテトラアクリレート、等があげられる。
 6官能の重合性モノマーとしては、例えばジペンタエリスリトールヘキサアクリレート、等があげられる。
 上述の通り、アクリレートモノマーをあげたが、必要に応じてアクリロイルオキシ基をメタクリロイルオキシ基、またはそれ以外の重合性官能基に置き換えて合成された重合性官能基を有する化合物を使用してもよい。
 表面層には、耐摩耗性の観点から、各種微粒子を含有させてもよい。微粒子は無機微粒子でも良く、有機微粒子でも良い。無機微粒子としては、アルミナ、シリカ、酸化亜鉛、酸化スズ、酸化チタン等を含む粒子が用いられる。
 有機微粒子としては各種の有機樹脂微粒子を使用することができる。例えば、ポリオレフィン、ポリテトラフルオロエチレン、ポリスチレン、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリアミド、ポリエステル、ポリウレタン等の樹脂からなる微粒子が挙げられる。
 表面層は、式(1)で示される正孔輸送性化合物を含有する表面層用塗布液の塗膜を形成し、この塗膜中の式(1)で示される正孔輸送性化合物を重合することにより、塗膜を硬化させることにより、形成することができる。
 表面層用塗布液に用いられる溶剤としては、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、脂肪族ハロゲン化炭化水素系溶剤、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤等を用いることができる。
 表面層の膜厚は、表面層が保護層である場合は、0.1μm以上15μm以下であることが好ましい。また、表面層が電荷輸送層である場合は、5μm以上40μm以下であることが好ましい。
 表面層用塗布液の塗膜を硬化させる(式(1)で示される正孔輸送性化合物を重合させる)方法としては、熱、光(紫外線等)、または、放射線(電子線等)を用いて重合させる方法が挙げられる。これらの中でも、放射線が好ましく、放射線の中でも電子線がより好ましい。
 電子線を用いて重合させると、非常に緻密(高密度)な3次元網目構造が得られ、耐摩耗性が向上するため好ましい。また、短時間でかつ効率的な重合反応となるため、生産性も高くなる。電子線を照射する場合、加速器としては、例えば、スキャニング型、エレクトロカーテン型、ブロードビーム型、パルス型、ラミナー型等が挙げられる。
 電子線を用いる場合、電子線の加速電圧は、重合効率を損なわずに電子線による材料特性劣化を抑制できる観点から、150kV以下であることが好ましい。また、表面層用塗布液の塗膜の表面での電子線吸収線量は、5kGy以上50kGy以下であることが好ましく、1kGy以上10kGy以下であることがより好ましい。
 また、電子線を用いて本発明の正孔輸送物質を重合させる場合、酸素による重合阻害作用を抑制する目的で、不活性ガス雰囲気で電子線を照射した後、不活性ガス雰囲気で加熱することが好ましい。不活性ガスとしては、窒素、アルゴン、ヘリウム等が挙げられる。
 次に、本発明の電子写真感光体の全体的な構成について説明する。
<電子写真感光体>
 本発明における電子写真感光体の好ましい構成は、支持体上に、電荷発生層、正孔輸送層をこの順で積層した構成である。必要に応じて、電荷発生層と支持体の間に導電層や下引き層(中間層)を、正孔輸送層上に保護層を設けても良い。なお、本発明においては電荷発生層と正孔輸送層とを併せて感光層と呼ぶ。
 本発明の正孔輸送物質は表面層に含有させる。本発明における表面層とは、電子写真感光体が保護層を設ける場合には保護層を指し、保護層を設けない場合には正孔輸送層を指す。また、感光層は、電荷発生物質と正孔輸送物質を含有する単層型感光層で構成されてもよい。
<支持体>
 本発明の電子写真感光体に用いられる支持体としては、導電性を有する材料からなる、導電性支持体であることが好ましい。支持体の材質としては、例えば、鉄、銅、金、銀、アルミニウム、亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、インジウム、クロム、アルミニウム合金、ステンレス等の金属または合金が挙げられる。また、アルミニウム、アルミニウム合金、酸化インジウム-酸化スズ合金等を真空蒸着によって形成した被膜を有する金属製支持体や樹脂製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子等の導電性粒子をプラスチックや紙に含浸してなる支持体や、導電性樹脂を含有する支持体を用いることもできる。支持体の形状としては、円筒状、ベルト状、シート状または板状等が挙げられるが、円筒状が最も一般的である。
 支持体の表面は、レーザー光の散乱による干渉縞の抑制、支持体表面欠陥の改良、支持体の導電性の改良等の観点から、切削処理、粗面化処理、アルマイト処理等の処理を施してもよい。
 支持体と、後述の下引き層または電荷発生層との間には、レーザー等の散乱による干渉縞の抑制、抵抗制御あるいは支持体の傷の被覆を目的として、導電層を設けてもよい。
 導電層は、カーボンブラック、導電性顔料、抵抗調節顔料等を結着樹脂とともに分散処理することによって得られる導電層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。導電層用塗布液には、加熱、紫外線照射、放射線照射等により硬化重合する化合物を添加してもよい。導電性顔料や抵抗調節顔料を分散させてなる導電層は、その表面が粗面化される傾向にある。
 導電層の膜厚は、0.1μm以上50μm以下であることが好ましく、さらには0.5μm以上40μm以下であることがより好ましく、さらには1μm以上30μm以下であることがより好ましい。
 導電層に用いられる結着樹脂としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン等のビニル化合物の重合体および共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂およびイソシアネート樹脂が挙げられる。
 導電性顔料および抵抗調節顔料としては、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレス等の金属(合金)の粒子や、これらをプラスチックの粒子の表面に蒸着したものが挙げられる。また、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ等の金属酸化物の粒子でもよい。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 支持体または導電層と電荷発生層との間には、電荷発生層の接着性改良、支持体からの正孔注入性改良、電荷発生層の電気的破壊に対する保護等を目的として、下引き層を設けてもよい。
 下引き層は、結着樹脂を溶剤に溶解させることによって得られる下引き層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。
 下引き層に用いられる結着樹脂としては、ポリビニルアルコール、ポリ-N-ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース樹脂、エチレン-アクリル酸共重合体、カゼイン樹脂、ポリアミド、N-メトキシメチル化6ナイロン、共重合ナイロン、フェノール樹脂、ポリウレタン、エポキシ樹脂、アクリル樹脂、メラミン樹脂あるいはポリエステル等が挙げられる。
 下引き層には、さらに、金属酸化物粒子を含有させてもよい。金属酸化物粒子としては、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化アルミニウムを含有する粒子が挙げられる。また、金属酸化物粒子は、金属酸化物粒子の表面がシランカップリング剤等の表面処理剤で処理されている金属酸化物粒子であってもよい。
 下引き層の膜厚は、0.05μm以上30μm以下であることが好ましく、1μm以上25μm以下であることがより好ましい。下引き層には、さらに、有機樹脂微粒子、レべリング剤を含有させてもよい。
 次に電荷発生層について説明する。電荷発生層は、電荷発生物質を結着樹脂および溶剤とともに分散処理することによって得られた電荷発生層用塗布液を塗布して塗膜を形成し、得られた塗膜を乾燥させることによって形成することができる。また、電荷発生層は、電荷発生物質の蒸着膜としてもよい。
 電荷発生層に用いられる電荷発生物質としては、アゾ顔料、フタロシアニン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、スクワリリウム色素、ピリリウム塩、チアピリリウム塩、トリフェニルメタン色素、キナクリドン顔料、アズレニウム塩顔料、シアニン染料、アントアントロン顔料、ピラントロン顔料、キサンテン色素、キノンイミン色素、スチリル色素等が挙げられる。これら電荷発生物質は1種のみ用いてもよく、2種以上用いてもよい。これら電荷発生物質の中でも、感度の観点から、フタロシアニン顔料やアゾ顔料が好ましく、特にはフタロシアニン顔料がより好ましい。
 フタロシアニン顔料の中でも、特にオキシチタニウムフタロシアニンあるいはクロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニンが優れた電荷発生効率を示す。さらに、ヒドロキシガリウムフタロシアニンの中でも、感度の観点から、CuKα特性X線回折におけるブラッグ角2θが7.4°±0.3°および28.2°±0.3°にピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶がより好ましい。
 電荷発生層に用いられる結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン等のビニル化合物の重合体や、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂等が挙げられる。
 電荷発生物質と結着樹脂の質量比は、1:0.3~1:4の範囲であることが好ましい。
 電荷発生層の膜厚は、0.05μm以上1μm以下であることが好ましく、0.1μm以上0.5μm以下であることがより好ましい。
 次に、正孔輸送層について説明する。正孔輸送層が表面層の場合は、上述の通り、本発明の正孔輸送物質の重合物を含有する。
 一方、正孔輸送層上に保護層を設ける場合は、正孔輸送層は、正孔輸送物質と結着樹脂を溶剤に混合した正孔輸送層用塗布液の塗膜を形成し、この塗膜を乾燥させることによって形成することができる。以下に、正孔輸送層上に保護層を有する正孔輸送層に用いられる正孔輸送物質と結着樹脂について説明する。
 正孔輸送性物質としては、カルバゾール化合物、ヒドラゾン化合物、N,N-ジアルキルアニリン化合物、ジフェニルアミン化合物、トリフェニルアミン化合物、トリフェニルメタン化合物、ピラゾリン化合物、スチリル化合物、スチルベン化合物等が挙げられる。
 結着樹脂としては、アクリル酸エステル、メタクリル酸エステル、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル等が挙げられる。また、硬化型フェノール樹脂、硬化型ウレタン樹脂、硬化型メラミン樹脂、硬化型エポキシ樹脂、硬化型アクリル樹脂、硬化型メタクリル樹脂等の硬化性樹脂を用いることもできる。
 正孔輸送層用塗布液に用いられる溶剤としては、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、脂肪族ハロゲン化炭化水素系溶剤、芳香族炭化水素系溶剤等が挙げられる。
 正孔輸送層の膜厚は、1μm以上100μm以下であることが好ましく、さらに3μm以上50μm以下であることがより好ましく、さらには5μm以上40μm以下であることが好ましい。
 本発明の電子写真感光体の各層には、各種添加剤を添加することが可能である。具体的には、有機顔料、有機染料、塗膜表面調整剤、電子輸送剤、オイル、ワックス、酸化防止剤、光吸収剤、重合開始剤、ラジカル失活剤、有機樹脂微粒子、無機粒子等が挙げられる。
 電子写真感光体の各層の表面には、研磨シート、形状転写型部材、ガラスビーズ、ジルコニアビーズ等用いて表面加工を施してもよい。また、塗布液の構成材料を使って表面に凹凸を形成させてもよい。上記各層の塗布液を塗布する際には、例えば、浸漬塗布法、スプレー塗布法、円形量規制型(リング)塗布法、スピン塗布法、ローラー塗布法、マイヤーバー塗布法、ブレード塗布法のような公知の如何なる塗布方法も用いることができる。
 次に、本発明の電子写真感光体を備えたプロセスカートリッジおよび画像形成プロセスについて説明する。
 本発明のプロセスカートリッジの構成の一例を図1に示す。図1において、円筒状の電子写真感光体1は、矢印方向に所定の周速度で回転駆動される。回転駆動される電子写真感光体1の周面は、帯電手段(帯電ローラ等)2により、正または負の所定電位に均一に帯電される。次いで、帯電された電子写真感光体1の周面は、スリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される露光光(画像露光光)3を受ける。こうして電子写真感光体1の周面に、目的の画像に対応した静電潜像が順次形成されていく。帯電手段2に印加する電圧は、直流成分に交流成分を重畳した電圧、または直流成分のみの電圧のどちらを用いてもよい。
 電子写真感光体1の周面に形成された静電潜像は、現像手段4の現像剤に含まれるトナーにより現像されてトナー像となる。次いで、電子写真感光体1の周面に形成担持されているトナー像が、転写手段(転写ローラー等)5からの転写バイアスによって、転写材(紙や中間転写体等)6に順次転写されていく。転写材6は電子写真感光体1の回転と同期して給送される。
 トナー像転写後の電子写真感光体1の表面は、前露光手段(不図示)からの前露光光7により除電処理された後、クリーニング手段8によって転写残トナーの除去を受けて清浄面化され、電子写真感光体1は、画像形成に繰り返し使用される。なお、前露光手段はクリーニング工程の先でも後でもよいし、また前露光手段は必ずしも必要ではない。
 電子写真感光体1を複写機やレーザービームプリンター等の電子写真装置に装着してもよい。また、電子写真感光体1、帯電手段2、現像手段4およびクリーニング手段8等の構成要素のうち、複数のものを容器に納めて一体に支持して構成したプロセスカートリッジ9を、電子写真装置本体に対して着脱自在に構成してもよい。図1では、電子写真感光体1と、帯電手段2、現像手段4およびクリーニング手段8とを一体に支持し、電子写真装置本体に着脱自在なプロセスカートリッジ9としている。
 次に、本発明の電子写真感光体を備えた電子写真装置について説明する。
 本発明の電子写真装置の構成の一例を図2に示す。イエロー色、マゼンタ色、シアン色、ブラック色、それぞれの色に対応したイエロー色用のプロセスカートリッジ17、マゼンタ色用のプロセスカートリッジ18、シアン色用のプロセスカートリッジ19、ブラック色用のプロセスカートリッジ20が、中間転写体10に沿って並置されている。図2に示す通り、電子写真感光体の径や構成材料、現像剤、帯電方式、およびその他の手段は、各色で必ずしも統一する必要はない。例えば、図2の電子写真装置では、電子写真感光体の径がカラー色(イエロー、マゼンタ、シアン)よりもブラック色の方が大きい。また、カラー色の帯電方式が直流成分に交流成分を重畳した電圧を印加する方式に対して、ブラック色ではコロナ放電を用いる方式を採用している。
 画像形成動作が始まると、上述の画像形成プロセスに従って、中間転写体10に各色のトナー像が順次重ねられていく。並行して、転写紙11が給紙経路12によって給紙トレイ13から送り出され、中間転写体の回転動作とタイミングを合わせて、二次転写手段14へと給送される。二次転写手段14からの転写バイアスによって、中間転写体10上のトナー像が転写紙11に転写される。転写紙11上に転写されたトナー像は、給紙経路12に沿って搬送され、定着手段15によって転写紙上に定着され、排紙部16から排紙される。
 以下、具体的な実施例を挙げて、本発明をより詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。また、電子写真感光体を以下単に「感光体」ともいう。
<電子写真感光体の作製>
〔実施例1〕
 外径30.0mm、長さ357.5mm、肉厚0.7mmの円筒状アルミニウムシリンダーを支持体(導電性支持体)とした。
 次に、酸化亜鉛粒子(比表面積:19m/g、粉体抵抗率:4.7×10Ω・cm)の10部をトルエンの50部と撹拌混合し、これにシランカップリング剤の0.08部を添加し、6時間攪拌した。その後、トルエンを減圧留去して、130℃で6時間加熱乾燥し、表面処理された酸化亜鉛粒子を得た。シランカップリング剤としては、信越化学工業(株)製のKBM602(化合物名:N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン)を用いた。
 次に、ポリビニルブチラール樹脂(重量平均分子量:40000、商品名:BM-1、積水化学工業(株)製)の15部およびブロック化イソシアネート(商品名:デュラネートTPA-B80E、旭化成ケミカルズ(株)製)の15部をメチルエチルケトンの73.5部と1-ブタノールの73.5部の混合溶液に溶解させた。この溶液に前記表面処理された酸化亜鉛粒子の80.8部、および2,3,4-トリヒドロキシベンゾフェノン(和光純薬工業(株)製)の0.8部を加え、これを直径0.8mmのガラスビーズを用いたサンドミル装置で23±3℃雰囲気下で3時間分散した。分散後、シリコーンオイル(商品名:SH28PA、東レダウコーニング(株)製)の0.01部、架橋ポリメタクリル酸メチル(PMMA)粒子(商品名:TECHPOLYMER SSX-102、積水化成品工業(株)製、平均一次粒径2.5μm)の5.6部を加えて攪拌し、下引き層用塗布液を調製した。
 この下引き層用塗布液を前記支持体上に浸漬塗布して塗膜を形成し、得られた塗膜を40分間160℃で乾燥させて、膜厚が18μmの下引き層を形成した。
 次に、CuKα特性X線回折におけるブラッグ角2θ±0.2の7.4°および28.2°にピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)を用意した。このヒドロキシガリウムフタロシアニン結晶の2部、下記式(A)で示されるカリックスアレーン化合物の0.02部、ポリビニルブチラール(商品名:エスレックBX-1、積水化学工業(株)製)の1部、および、シクロヘキサノンの60部を、直径1mmガラスビーズを用いたサンドミルに入れ、4時間分散処理した。その後、酢酸エチルの70部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を15分間90℃で乾燥させることによって、膜厚0.15μmの電荷発生層を形成した。
Figure JPOXMLDOC01-appb-C000035
 次に、下記式(B)で示される化合物の6部、下記式(C)で示される化合物の3部、下記式(D)で示される化合物の1部、および、ビスフェノールZ型ポリカーボネート樹脂(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製)の10部を、モノクロロベンゼンの60部/ジメトキシメタンの20部の混合溶剤に溶解させることによって、正孔輸送層用塗布液を調製した。この正孔輸送層用塗布液を電荷発生層上に浸漬塗布し、得られた塗膜を50分間100℃で乾燥させることによって、膜厚18μmの第一の正孔輸送層を形成した。
Figure JPOXMLDOC01-appb-C000036
 次に、例示化合物No.5で示される正孔輸送物質の3部と、下記式(E)で示される正孔輸送物質の3部を、溶剤として用いた1-プロパノールの7部およびゼオローラH(日本ゼオン(株)製)の7部に溶解させて保護層用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000037
 この保護層用塗布液を前記正孔輸送層上に浸漬塗布し、得られた塗膜を10分間50℃で乾燥させ、下記の条件で電子線照射と加熱による重合硬化処理を行った。
 酸素濃度100ppm以下の雰囲気にて、アルミニウムシリンダーを300rpmの速度で回転させながら、電子線照射装置を用いて、照射距離30mm、加速電圧70kV、ビーム電流7mA、照射時間2.4秒の条件で電子線照射をした。電子線照射後、酸素濃度100ppm以下の条件のまま、速やかに誘導加熱装置を用いて保護層塗膜表面を20秒かけて130℃に到達させた。
 次に、上記アルミニウムシリンダーを大気雰囲気に取り出し、さらに10分間100℃で加熱することによって、膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体1を作製した。
〔実施例2〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.10で示される正孔輸送物質の3部と、下記式(F)で示される正孔輸送物質の3部、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000038
 この保護層用塗布液を前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体2を作製した。
〔実施例3〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.22で示される正孔輸送物質の6部を、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。
 この保護層用塗布液を前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体3を作製した。
〔実施例4〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.25で示される正孔輸送物質の4部と前記式(F)で示される正孔輸送物質の2部、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。
 この保護層用塗布液を前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体4を作製した。
〔実施例5〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.34で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラH(日本ゼオン(株)製)の7部に溶解させて保護層用塗布液を調製した。
 この保護層用塗布液を前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体5を作製した。
〔実施例6〕
 実施例感光体1で使用したものと同様のアルミニウムシリンダーを支持体とした。
 次に、導電性粒子としての酸素欠損型SnOを被覆したTiO粒子(粉体抵抗率100Ω・cm、SnOの被覆率(質量比率)が35%)の60部、結着樹脂としてのフェノール樹脂(商品名:プライオーフェンJ-325、DIC(株)(旧大日本インキ化学工業(株))製、樹脂固形分60%)の36.5部、溶剤としてのメトキシプロパノールの20部を、直径1mmのガラスビーズを用いた横型サンドミル分散機で分散した。
 この分散液からメッシュでガラスビーズを取り除いた後、分散液に表面粗し付与材としてのシリコーン樹脂粒子(商品名:トスパール120、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社(旧GE東芝シリコーン(株))製、平均粒径:2μm)の1.6部、レベリング剤としてのシリコーンオイル(商品名:SH28PA、東レ・ダウコーニング・シリコーン(株)製)の0.008部を添加して攪拌することによって、導電層用塗布液を調製した。この導電層塗布液における酸素欠損型SnO被覆TiO粒子の平均粒径は0.35μmであった。前記導電層用塗布液を、前記支持体上に浸漬塗布し、これを30分間140℃で乾燥および硬化させることによって、膜厚が18μmの導電層を形成した。
 次に、メトキシメチル化6ナイロン樹脂(商品名:トレジンEF-30T、帝国化学(株)製)の10部を、メタノールの100部/n-ブタノールの50部の混合溶剤に溶解させることによって、下引き層用塗布液を調製した。この下引き層用塗布液を導電層上に浸漬塗布し、得られた塗膜を30分間100℃で乾燥させることによって、膜厚0.45μmの下引き層を形成した。続いて、実施例1と同様にして電荷発生層、正孔輸送層をこの順に形成した。
 次に、例示化合物No.36で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体6を作製した。
〔実施例7〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.36で示される正孔輸送物質の4部と前記式(E)で示される正孔輸送物質の2部、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体7を作製した。
〔実施例8〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.38で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体8を作製した。
 実施例感光体8の感光体表面の硬化膜のATR法によるIRスペクトルを以下のように測定した。実施例感光体8の硬化膜を、カッターの刃を用いて小片を切り取り剥離した。剥離した試験片の表面層側のIRスペクトルをIR測定装置により測定した。IR測定装置は、パーキンエルマー社製Frontier FT-IR装置に、ゲルマニウムプリズムを用いたATR法測定装置を装着したものを用いた。試験片表面をATRプリズム面に押し当ててスペクトル測定した。結果を図3に示す。
〔実施例9〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.38で示される正孔輸送物質の3部と、前記式(E)で示される正孔輸送物質の3部、を1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体9を作製した。
〔実施例10〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。
 フッ素原子含有樹脂(商品名:GF-400、東亜合成(株)製)の1.5部を、1-プロパノールの45部およびゼオローラHの45部の混合溶剤に溶解した。その後、フッ化エチレン樹脂粉体(商品名:ルブロンL-2、ダイキン工業(株)製)の30部を添加し、高圧分散機(商品名:マイクロフルイダイザーM-110EH、米Microfluidics(株)製)で分散することで、フッ化エチレン樹脂分散液を得た。
 例示化合物No.38で示される正孔輸送物質の2部と、前記式(E)で示される正孔輸送物質の2部、前記フッ化エチレン樹脂分散液の8部と、1-プロパノールの4部およびゼオローラHの4部を撹拌して均一に分散させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体10を作製した。
〔実施例11〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.41で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体11を作製した。
〔実施例12〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.41で示される正孔輸送物質の4部と、前記式(E)で示される正孔輸送物質の2部を、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体12を作製した。
〔実施例13〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.44で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体13を作製した。
 実施例感光体13の感光体表面の硬化膜のATR法によるIRスペクトルを、実施例8と同様の方法で測定した。結果を図4に示す。
〔実施例14〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.44で示される正孔輸送物質の4部と、前記式(E)で示される正孔輸送物質の2部、を1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体14を作製した。
〔実施例15〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.47で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体15を作製した。
〔実施例16〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.47で示される正孔輸送物質の4部と、前記式(E)で示される正孔輸送物質の2部、を1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体16を作製した。
〔実施例17〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.59で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体17を作製した。
〔実施例18〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.63で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体18を作製した。
〔実施例19〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.84で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体19を作製した。
〔実施例20〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.28で示される正孔輸送物質の4.8部、下記式(G)で示される正孔輸送性構造を有さないアクリル化合物の1.2部、
Figure JPOXMLDOC01-appb-C000039
および下記式(H)で示されるシロキサン変性アクリル化合物の0.06部、1-プロパノールの7部、ゼオローラHの7部を混合し、撹拌溶解させた。
Figure JPOXMLDOC01-appb-C000040
 その後メンブランフィルターでこの溶液を濾過することによって表面層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体20を作製した。
〔実施例21〕
 実施例1と同様のアルミニウムシリンダーに実施例1と同様の下引き層を形成した。
 次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の27.2°にピークを有する結晶形のオキシチタニウムフタロシアニン結晶(電荷発生物質)を用意した。このオキシチタニウムフタロシアニン結晶の2部、ポリビニルブチラール(商品名:エスレックBM-S、積水化学工業(株)製の)1部、および、シクロヘキサノンの50部を、直径1mmガラスビーズを用いたサンドミルに入れ、4時間分散処理した。その後、酢酸エチルの40部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を10分間80℃で乾燥させることによって、膜厚0.18μmの電荷発生層を形成した。
 上記電荷発生層上に実施例1と同様の電荷輸送層を形成した。
 次に、例示化合物No.38で示される正孔輸送物質の5.4部と、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトンの0.3部、前記実施例10で作製されたフッ化エチレン樹脂分散液の2.4部、1-プロパノールの6部およびゼオローラHの6部を混合、撹拌して均一に分散させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、塗膜を10分間45℃で乾燥させた後、下記条件で光硬化処理した。
 酸素濃度6000~8000ppmの雰囲気下で、上記保護層用塗布液の塗膜を有するアルミニウムシリンダーを100rpmの速度で回転させ、出力160W/cmのメタルハライドランプを用いて、照射距離100mm、照射強度600mW/cm、照射時間2分の条件で光照射した。光照射後、30分間135℃で加熱処理することによって膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体21を作製した。
〔実施例22〕
 保護層を以下のように形成した以外は、実施例感光体21と同様にして電子写真感光体を製造した。
 例示化合物No.38で示される正孔輸送物質の2.7部と、前記式(E)で示される正孔輸送物質の2.7部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトンの0.3部、前記実施例10で作製されたフッ化エチレン樹脂分散液の2.4部、1-プロパノールの6部およびゼオローラHの6部を混合し、実施例21と同様の条件で塗布、乾燥、光硬化処理した。実施例21と同様にして加熱処理することによって膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体22を作製した。
〔実施例23〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.108で示される正孔輸送物質の2部と、トリメチロールプロパントリアクリレート(TMPTA、東京化成工業株式会社製)の2部、および前記実施例10で作製されたフッ化エチレン樹脂分散液の8部と、1-プロパノールの4部およびゼオローラHの4部を撹拌して均一に分散させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体23を作製した。
〔実施例24〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.121で示される正孔輸送物質の2部と、前記式(F)で示される正孔輸送物質の2部、および前記実施例10で作製されたフッ化エチレン樹脂分散液の8部と、1-プロパノールの4部およびゼオローラHの4部を撹拌して均一に分散させて保護層用塗布液を調整した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体24を作製した。
〔実施例25〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.125で示される正孔輸送物質の2部と、前記式(E)で示される正孔輸送物質の4部、を1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体25を作製した。
〔実施例26〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.127で示される正孔輸送物質の2部と、前記式(E)で示される正孔輸送物質の2部、および前記実施例10で作製されたフッ化エチレン樹脂分散液の8部と、1-プロパノールの4部およびゼオローラHの4部を撹拌して均一に分散させて保護層用塗布液を調整した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体26を作製した。
〔実施例27〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.133で示される正孔輸送物質の1.5部と、前記式(E)で示される正孔輸送物質の2.5部、および前記実施例10で作製されたフッ化エチレン樹脂分散液の8部と、1-プロパノールの4部およびゼオローラHの4部を撹拌して均一に分散させて保護層用塗布液を調整した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体27を作製した。
〔実施例28〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.138で示される正孔輸送物質の2.5部と、前記式(E)で示される正孔輸送物質の1.5部、および前記実施例10で作製されたフッ化エチレン樹脂分散液の8部と、1-プロパノールの4部およびゼオローラHの4部を撹拌して均一に分散させて保護層用塗布液を調整した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体28を作製した。
〔実施例29〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.141で示される正孔輸送物質の2部と、前記式(E)で示される正孔輸送物質の2部、および前記実施例10で作製されたフッ化エチレン樹脂分散液の8部と、1-プロパノールの4部およびゼオローラHの4部を撹拌して均一に分散させて保護層用塗布液を調整した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体29を作製した。
〔実施例30〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。例示化合物No.146で示される正孔輸送物質の2部と、前記式(E)で示される正孔輸送物質の2部、および前記実施例10で作製されたフッ化エチレン樹脂分散液の8部と、1-プロパノールの4部およびゼオローラHの4部を撹拌して均一に分散させて保護層用塗布液を調整した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして実施例感光体30を作製した。
〔比較例1〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。下記比較化合物No.1で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして比較例感光体1を作製した。
Figure JPOXMLDOC01-appb-C000041
〔比較例2〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。下記比較化合物No.2で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして比較例感光体2を作製した。
Figure JPOXMLDOC01-appb-C000042
〔比較例3〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。下記比較化合物No.3で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして比較例感光体3を作製した。
Figure JPOXMLDOC01-appb-C000043
〔比較例4〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。下記比較化合物No.4で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして比較例感光体4を作製した。
Figure JPOXMLDOC01-appb-C000044
〔比較例5〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。下記比較化合物No.5で示される正孔輸送物質の6部と、1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして比較例感光体5を作製した。
Figure JPOXMLDOC01-appb-C000045
〔比較例6〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。下記比較化合物No.6で示される正孔輸送物質の4部と、前記式(G)で示される正孔輸送性構造を有さないアクリル化合物の2部を1-プロパノールの7部およびゼオローラHの7部に溶解させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。以上のようにして比較例感光体6を作製した。
Figure JPOXMLDOC01-appb-C000046
〔比較例7〕
 保護層を以下のように形成した以外は、実施例感光体21と同様にして電子写真感光体を製造した。上記実施例21における保護層に用いた正孔輸送物質のかわりに、上記比較化合物No.2で示される正孔輸送物質の5.4部を使用して保護層を形成した。実施例21と同様にして膜厚3.5μmの保護層を形成した。以上のようにして比較例感光体7を作製した。
〔比較例8〕
 保護層を以下のように形成した以外は、実施例感光体1と同様にして電子写真感光体を製造した。下記比較化合物No.7で示される正孔輸送物質の2部と、トリメチロールプロパントリアクリレート(TMPTA、東京化成工業株式会社製)の2部、および前記実施例10で作製されたフッ化エチレン樹脂分散液の8部と、1-プロパノールの4部およびゼオローラHの4部を撹拌して均一に分散させて保護層用塗布液を調製した。前記正孔輸送層上に浸漬塗布し、実施例1と同様にして膜厚3.5μmの保護層を形成した。このようにして比較例感光体8を作製した。
Figure JPOXMLDOC01-appb-C000047
<評価:初期感度と残留電位>
 作製した実施例感光体1~30と比較例感光体1~8について、以下の条件で感度と低湿環境下の耐久電位変動の評価を行った。
 感光体試験装置(商品名:CYNTHIA59、ジェンテック(株)製)を用いて、まず、温度23℃/湿度50%RHの環境下で、電子写真感光体の表面が-700Vになるように帯電装置の条件を設定した。これに波長780nmの単色光を照射して-700Vの電位を-200Vまで下げるのに必要な光量を測定し、感度(μJ/cm)とした。さらに、20(μJ/cm)の光量を照射した場合の感光体の電位を測定し、残留電位(-V)とした。
<評価:画像流れ評価>
 作製した実施例感光体1~30と比較例感光体1~8を使用して、以下の条件で画像流れを評価した。
 電子写真装置には、キヤノン(株)製の複写機、商品名iR-C3380Fの改造機を使用した。改造点としては、像露光レーザーパワー、帯電ローラーから電子写真感光体の支持体に流れる電流量(以降、総電流とも呼ぶ)、帯電ローラーへの印加電圧の、調節および測定ができるように改造した。さらにカセットヒーターを取り外した。
 まず、電子写真装置および電子写真感光体を、温度30℃/湿度80%RHの環境に24時間以上放置した後に、実施例および比較例の電子写真感光体を電子写真装置のシアン色のカートリッジに装着した。
 次に、A4サイズ普通紙でシアン単色にてベタ画像の出力を行い、分光濃度計(商品名:X-rite504、X-rite(株)製)にて紙上の濃度が1.45となるように像露光光量を設定した。
 次に、印加電圧を-400Vから100V間隔で-2000Vまで印加し、それぞれの印加電圧における総電流を測定した。そして、横軸に印加電圧を、縦軸に総電流をとったグラフを作成し、印加電圧-400V~-800Vにおける一次近似曲線から乖離する電流分(以降、放電電流とも呼ぶ)が100μAとなる印加電圧を求めた。放電電流100μAとなる印加電圧における総電流値に、総電流を設定した。
 次に、A4サイズ、線幅0.1mm、線間隔10mmの正方形格子画像を、スキャナーから読み込み、シアン単色にて連続で5000枚出力した。画像出力後、電子写真装置の主電源を切って三日間放置した。放置後、電子写真装置の主電源を入れてすぐに、上記の正方形格子画像を同様に1枚出力して、出力画像の画像流れを目視し、下記の基準で画像流れを評価した。
 評価ランクは以下の通りとした。
ランク5:格子画像に異常は認められない。
ランク4:格子画像の横線が破断しているが、縦線には異常は認められない。
ランク3:格子画像の横線が消失しているが、縦線には異常は認められない。
ランク2:格子画像の横線が消失しており、縦線が破断している。
ランク1:格子画像の横線が消失しており、縦線も消失している。
 このとき、格子画像における横線とは、感光体の円筒軸方向と平行な線を指し、縦線とは感光体円筒軸方向と垂直な線を指す。
<評価:低湿環境下の耐久使用時の電位変動および摩耗量の評価>
 製造した実施例感光体1~30と比較例感光体1~8を使用して、以下の条件で保護層の低湿環境下の耐久電位変動と摩耗量を評価した。
 電子写真装置には、キヤノン(株)製の複写機、iR ADVANCE C5051Fの改造機を使用した。改造点は、像露光レーザーパワーの調節ができるようにした。
 まず、電子写真感光体の50000枚出力前における保護層膜厚を、干渉膜厚計(商品名:MCPD-3700、大塚電子(株)製)を用いて測定した。
 電子写真装置および電子写真感光体を温度23℃湿度5%RHの環境に24時間以上放置した後に、電子写真感光体を電子写真装置のシアン色のカートリッジに装着した。先ず初期に電子写真感光体の表面が-700Vになるように帯電装置の条件を設定した。これに像露光レーザーパワーを調整して-700Vの電位を-200Vまで下げる光量設定を記録した。
 次に、A4サイズ普通紙でシアン単色にてハーフトーン画像の出力を行い、分光濃度計(商品名:X-rite504、X-rite(株)製)にて出力画像の濃度が0.85となるように像露光レーザーパワーを設定し、連続で50000枚出力した。
 その後、電子写真感光体の表面が-700Vになるように帯電装置の条件を設定し、初期に記録した像露光レーザーパワーに再調整し、その時の表面電位を読み取った。その電位の絶対値の増減分を耐久電位変動量として測定した。
 次に、電子写真装置から電子写真感光体を取出して50000枚出力後の保護層膜厚を測定し、50000枚出力前後の保護層膜厚の差分、すなわち摩耗量を算出した。以上の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の「式(E)」は式(E)で示される正孔輸送物質を、「式(F)」は式(F)で示される正孔輸送物質を表す。「式(G,H)」は式(G)で示される正孔輸送性構造を有さないアクリル化合物および式(H)で示されるシロキサン変性アクリル化合物を表し、「式(G)」は式(G)で示される正孔輸送性構造を有さないアクリル化合物を表す。
 表1の結果より、本発明の電子写真感光体は、電気特性および耐久特性が良好で、さらに画像流れの抑制についても実施例感光体の方が比較例感光体よりも一段と良好な性能を有する。
この出願は2015年12月14日に出願された日本国特許出願番号2015-243323および2016年10月25日に出願された日本国特許出願番号2016-208737からの優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。
1‥‥電子写真感光体
2‥‥帯電手段
3‥‥露光光
4‥‥現像手段
5‥‥転写手段
6‥‥転写材
7‥‥前露光光
8‥‥クリーニング手段
9‥‥プロセスカートリッジ
10‥‥中間転写体
11‥‥転写紙
12‥‥給紙経路
13‥‥給紙トレイ
14‥‥二次転写手段
15‥‥定着手段
16‥‥排紙部
17‥‥イエロー色用のプロセスカートリッジ
18‥‥マゼンタ色用のプロセスカートリッジ
19‥‥シアン色用のプロセスカートリッジ
20‥‥ブラック色用のプロセスカートリッジ

Claims (17)

  1.  支持体および該支持体上の感光層を有する電子写真感光体において、
     該電子写真感光体の表面層が、下記式(1)で示される正孔輸送性化合物の重合物を含有することを特徴とする電子写真感光体。
    Figure JPOXMLDOC01-appb-C000048
    (式(1)中、Arは、置換もしくは無置換のアリール基を示す。ArおよびArは、それぞれ独立に、置換もしくは無置換のアリーレン基を示す。Ar~Arは、フッ素原子を有さない。Ar~Arのアリール基またはアリーレン基が有してもよい置換基は、炭素数1以上6以下のアルキル基、炭素数1以上6以下のアルコキシ基、および、重合性官能基を有する1価の基からなる群より選択される基であり、Ar~Arのアリール基またはアリーレン基の少なくとも1つは、該重合性官能基を有する1価の基を有する。Zは、下記式(2)で示される1価の基、または、下記式(3)で示される1価の基を示す。Zは、水素原子、下記式(2)で示される1価の基、または、下記式(3)で示される1価の基を示す。ZおよびZが下記式(2)で示される1価の基であるとき、またはZおよびZが下記式(3)で示される1価の基であるとき、ZおよびZの構造は、同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000049
    (式(2)中、*は、式(1)中のArまたはArに結合する結合位置を示す。R21およびR22は、それぞれ独立に、水素原子、または、炭素数1以上4以下のアルキル基を示す。pは、0または1である。qは、1以上4以下の整数である。rは、0または1である。p、qおよびrは、2≦p+q+r≦4を満たす。qが2以上のとき、R21は、同一の基であってもよいし、異なる基であってもよく、R22は、同一の基であってもよいし、異なる基であってもよい。Ar21は、置換もしくは無置換のアレーンからs+1個の水素原子を除して導き出されるs+1価の基を示す。R23は、フッ素原子、置換基としてフッ素原子を有する炭素数1または2のアルキル基、または、置換基としてフッ素原子を有するメトキシ基を示す。sは、Ar21に直接結合するR23の数であり、1以上5以下の整数である。sが2以上のとき、R23は、同一の基であってもよいし、異なる基であってもよい。)
    Figure JPOXMLDOC01-appb-C000050
    (式(3)中、**は、式(1)中のArまたはArに結合する結合位置を示す。R31およびR32は、それぞれ独立に、水素原子、または、炭素数1以上4以下のアルキル基を示す。tは、1以上3以下の整数である。tが2以上のとき、R31は、同一の基であってもよいし、異なる基であってもよく、R32は、同一の基であってもよいし、異なる基であってもよい。Ar31は、置換もしくは無置換のアレーンからu+1個の水素原子を除して導き出されるu+1価の基を示す。R33は、フッ素原子、置換基としてフッ素原子を有する炭素数1以上4以下のアルキル基、または、置換基としてフッ素原子を有する炭素数1以上3以下のアルコキシ基を示す。uは、Ar31に直接結合するR33の数であり、1以上5以下の整数である。uが2以上のとき、R33は、同一の基であってもよいし、異なる基であってもよい。)
  2.  前記重合性官能基を有する1価の基が、下記式(4)で示される基である請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000051
    (式(4)中、***は、式(1)中のAr~Arのいずれかに結合する結合位置を示す。R41は、単結合、または、炭素数1以上6以下のアルキレン基を示す。R42は、水素原子、または、メチル基を示す。vは、0または1である。ただし、vが1のとき、R41は単結合ではない。)
  3.  前記式(1)中のArが、置換もしくは無置換のフェニル基である請求項1または2に記載の電子写真感光体。
  4.  前記式(1)中のArが、置換もしくは無置換のフェニレン基である請求項1~3のいずれか1項に記載の電子写真感光体。
  5.  前記式(1)中のArが、置換もしくは無置換のフェニレン基である請求項1~4のいずれか1項に記載の電子写真感光体。
  6.  前記式(1)中のZが前記式(2)で示される1価の基であり、Zが水素原子である請求項1~5のいずれか1項に記載の電子写真感光体。
  7.  前記式(2)中のAr21が、ベンゼンからs+1個の水素原子を除して導き出されるs+1価の基である請求項6に記載の電子写真感光体。
  8.  前記式(2)中の少なくとも1つのR23が、トリフルオロメチル基である請求項6または7に記載の電子写真感光体。
  9.  前記式(2)中のsが2であり、2個のR23がどちらもトリフルオロメチル基である請求項8に記載の電子写真感光体。
  10.  前記式(2)中のrが0である請求項6~9のいずれか1項に記載の電子写真感光体。
  11.  前記式(1)中のZが前記式(3)で示される1価の基であり、Zが水素原子である請求項1~5のいずれか1項に記載の電子写真感光体。
  12.  前記式(3)中のAr31が、ベンゼンからu+1個の水素原子を除して導き出されるu+1価の基である請求項11に記載の電子写真感光体。
  13.  前記式(3)中の少なくとも1個のR33が、トリフルオロメチル基である請求項11または12に記載の電子写真感光体。
  14.  前記式(3)中のuが1または2であり、すべてのR33がトリフルオロメチル基である請求項13に記載の電子写真感光体。
  15.  請求項1~14のいずれか1項に記載の電子写真感光体、ならびに、帯電手段、露光手段、現像手段および転写手段を有することを特徴とする電子写真装置。
  16.  請求項1~14のいずれか1項に記載の電子写真感光体と、帯電手段、現像手段およびクリーニング手段から選択される少なくとも1つの手段とを一体に支持し、電子写真装置の本体に着脱自在であることを特徴とするプロセスカートリッジ。
  17.  支持体および該支持体上の感光層を有する電子写真感光体の製造方法において、
     該製造方法が、下記式(1)で示される正孔輸送性化合物を含有する表面層用塗布液の塗膜を形成し、該表面層用塗布液の塗膜中の下記式(1)で示される正孔輸送性化合物を重合させ、該電子写真感光体の表面層を形成する工程を有することを特徴とする電子写真感光体の製造方法。
    Figure JPOXMLDOC01-appb-C000052
    (式(1)中、Arは、置換もしくは無置換のアリール基を示す。ArおよびArは、それぞれ独立に、置換もしくは無置換のアリーレン基を示す。Ar~Arは、フッ素原子を有さない。Ar~Arのアリール基またはアリーレン基が有してもよい置換基は、炭素数1以上6以下のアルキル基、炭素数1以上6以下のアルコキシ基、および、重合性官能基を有する1価の基からなる群より選択される基であり、Ar~Arのアリール基またはアリーレン基の少なくとも1つは、該重合性官能基を有する1価の基を有する。Zは、下記式(2)で示される1価の基、または、下記式(3)で示される1価の基を示す。Zは、水素原子、下記式(2)で示される1価の基、または、下記式(3)で示される1価の基を示す。ZおよびZが下記式(2)で示される1価の基であるとき、またはZおよびZが下記式(3)で示される1価の基であるとき、ZおよびZの構造は、同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000053
    (式(2)中、*は、式(1)中のArまたはArに結合する結合位置を示す。R21およびR22は、それぞれ独立に、水素原子、または、炭素数1以上4以下のアルキル基を示す。pは、0または1である。qは、1以上4以下の整数である。rは、0または1である。p、qおよびrは、2≦p+q+r≦4を満たす。qが2以上のとき、R21は、同一の基であってもよいし、異なる基であってもよく、R22は、同一の基であってもよいし、異なる基であってもよい。Ar21は、置換もしくは無置換のアレーンからs+1個の水素原子を除して導き出されるs+1価の基を示す。R23は、フッ素原子、置換基としてフッ素原子を有する炭素数1または2のアルキル基、または、置換基としてフッ素原子を有するメトキシ基を示す。sは、Ar21に直接結合するR23の数であり、Ar31に直接結合するR33の数であり、1以上5以下の整数である。sが2以上のとき、R23は、同一の基であってもよいし、異なる基であってもよい。)
    Figure JPOXMLDOC01-appb-C000054
    (式(3)中、**は、式(1)中のArまたはArに結合する結合位置を示す。R31およびR32は、それぞれ独立に、水素原子、または、炭素数1以上4以下のアルキル基を示す。tは、1以上3以下の整数である。tが2以上のとき、R31は、同一の基であってもよいし、異なる基であってもよく、R32は、同一の基であってもよいし、異なる基であってもよい。Ar31は、置換もしくは無置換のアレーンからu+1個の水素原子を除して導き出されるu+1価のアレーンを示す。R33は、フッ素原子、置換基としてフッ素原子を有する炭素数1以上4以下のアルキル基、または、置換基としてフッ素原子を有する炭素数1以上3以下のアルコキシ基を示す。uは、Ar31に直接結合するR33の数であり、1以上5以下の整数である。uが2以上のとき、R33は、同一の基であってもよいし、異なる基であってもよい。)
PCT/JP2016/005044 2015-12-14 2016-12-01 電子写真感光体、電子写真装置およびプロセスカートリッジ WO2017104116A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/002,421 US10310395B2 (en) 2015-12-14 2018-06-07 Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-243323 2015-12-14
JP2015243323 2015-12-14
JP2016-208737 2016-10-25
JP2016208737A JP6702844B2 (ja) 2015-12-14 2016-10-25 電子写真感光体、電子写真装置およびプロセスカートリッジ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/002,421 Continuation US10310395B2 (en) 2015-12-14 2018-06-07 Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge

Publications (1)

Publication Number Publication Date
WO2017104116A1 true WO2017104116A1 (ja) 2017-06-22

Family

ID=59056173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005044 WO2017104116A1 (ja) 2015-12-14 2016-12-01 電子写真感光体、電子写真装置およびプロセスカートリッジ

Country Status (1)

Country Link
WO (1) WO2017104116A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648999A (ja) * 1992-01-13 1994-02-22 Ricoh Co Ltd スチルベン誘導体
JP2007011006A (ja) * 2005-06-30 2007-01-18 Canon Inc 電子写真感光体、プロセスカートリッジ及び電子写真装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648999A (ja) * 1992-01-13 1994-02-22 Ricoh Co Ltd スチルベン誘導体
JP2007011006A (ja) * 2005-06-30 2007-01-18 Canon Inc 電子写真感光体、プロセスカートリッジ及び電子写真装置

Similar Documents

Publication Publication Date Title
JP6842992B2 (ja) 電子写真感光体、電子写真装置、プロセスカートリッジおよび電子写真感光体の製造方法
JP6702844B2 (ja) 電子写真感光体、電子写真装置およびプロセスカートリッジ
JP6344932B2 (ja) 電子写真感光体、プロセスカートリッジ、電子写真装置、および縮合多環芳香族化合物
JP6949620B2 (ja) 電子写真感光体、該電子写真感光体を有する電子写真装置およびプロセスカートリッジ
JP6815758B2 (ja) 電子写真感光体、電子写真感光体の製造方法、該電子写真感光体を有する電子写真装置およびプロセスカートリッジ
JP7129238B2 (ja) 電子写真感光体、電子写真装置、プロセスカートリッジおよび電子写真感光体の製造方法
JP5477683B2 (ja) 電子写真感光体とその製造方法及び画像形成装置
JP2020126236A (ja) 電子写真感光体、電子写真装置およびプロセスカートリッジ
JP5477625B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP6468898B2 (ja) 電子写真感光体、プロセスカートリッジ、および電子写真装置
JP2020201465A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005062301A (ja) 電子写真感光体
JP5585814B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP7336355B2 (ja) 電子写真感光体、電子写真装置およびプロセスカートリッジ
JP2017049547A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2001265033A (ja) 電子写真感光体、並びにそれを用いたプロセスカートリッジおよび電子写真装置
WO2017104116A1 (ja) 電子写真感光体、電子写真装置およびプロセスカートリッジ
JP2020201466A (ja) 電子写真感光体、電子写真装置およびプロセスカートリッジ
JP6072140B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2017049548A (ja) 電子写真感光体、プロセスカートリッジ、および電子写真装置
JP2023066793A (ja) 電子写真感光体、該電子写真感光体を有する電子写真装置およびプロセスカートリッジ
JP2016057353A (ja) 電子写真感光体、電子写真装置およびプロセスカートリッジ
JP2024070042A (ja) 電子写真感光体、該電子写真感光体を有する電子写真装置、及び該電子写真感光体を有するプロセスカートリッジ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875105

Country of ref document: EP

Kind code of ref document: A1