WO2017101174A1 - 用于有机电激光显示的基板的蒸镀方法和蒸镀装置 - Google Patents

用于有机电激光显示的基板的蒸镀方法和蒸镀装置 Download PDF

Info

Publication number
WO2017101174A1
WO2017101174A1 PCT/CN2016/070272 CN2016070272W WO2017101174A1 WO 2017101174 A1 WO2017101174 A1 WO 2017101174A1 CN 2016070272 W CN2016070272 W CN 2016070272W WO 2017101174 A1 WO2017101174 A1 WO 2017101174A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
vapor deposition
crucible
substrate
film layer
Prior art date
Application number
PCT/CN2016/070272
Other languages
English (en)
French (fr)
Inventor
匡友元
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/907,885 priority Critical patent/US10319950B2/en
Publication of WO2017101174A1 publication Critical patent/WO2017101174A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to the field of display technology, and in particular to an evaporation method and a vapor deposition apparatus for a substrate for organic electro-laser display.
  • OLED Organic Light-Emitting Diode
  • liquid crystal display devices organic electric laser display devices have the advantages of ultra-thin, high responsivity, high contrast, and low power consumption.
  • an organic electro-laser display substrate is often formed by an evaporation method. That is, the organic small molecule material is heated in the vacuum chamber to be sublimated or melted into a material vapor, and deposited on the glass substrate through the opening of the metal mask.
  • the doping of different materials has been widely used in the manufacture of OLEDs.
  • the uniformity of the doped materials directly affects the display indicators such as luminous efficiency and brightness of the OLED device.
  • the vapor deposition device 50 includes a crucible platform 53 and a crucible 52 disposed on the crucible platform 53. During the evaporation process, the two crucibles 52 are adjacent to form a mixed film layer 54 on the substrate 51.
  • this method can improve the uniformity of doping between the vapor deposition materials to some extent, the production method is easy to reduce the uniformity of the thickness of the film formed on the glass substrate, that is, deposited on the glass substrate. The thickness of the film varies greatly. Thus, production of an OLED device in this manner is limited in terms of luminous efficiency, brightness enhancement, and the like.
  • the present invention proposes an evaporation method and a vapor deposition apparatus for a substrate for organic electro-laser display.
  • the vapor deposition method for a substrate for organic electro-laser display can make the film layer formed on the substrate more uniform, thereby increasing the light-emitting effect of the organic electro-laser display device having such a substrate.
  • the vapor deposition device has a simple structure and contributes to the uniformity of the film layer formed on the substrate.
  • an evaporation method for a substrate for organic electro-laser display comprising the steps of:
  • Step one adjusting a distance between the support component of the evaporation device for supporting the substrate and the crucible platform
  • Step 2 adjusting the opening direction of the crucible disposed on the crucible platform
  • the substrate to be evaporated is disposed on the support assembly, and the evaporation source disposed in the crucible is volatilized and attached to the surface of the substrate.
  • the evaporation source is selected to be volatilized to form a single film layer on the corresponding first test substrate, and different first test points are selected on the first test substrate to obtain each a single film layer thickness value at a test point, calculating a ratio of a difference between a maximum value and a minimum value of a single film layer thickness value of the first test point on each first test substrate to a sum of a maximum value and a minimum value to obtain The uniformity of the thickness of the single film layer was tested, and the distance between the support component and the crucible platform was adjusted by comparing the uniformity of the test film thickness and the uniformity of the uniform thickness of the single film layer.
  • the uniformity parameter of the single film layer thickness is 1-3%, and when the uniformity parameter of the test single film layer thickness is less than 1%, the distance between the support component and the crucible platform is reduced, and when the test single film layer thickness is When the uniformity parameter is greater than 3%, the distance between the support component and the crucible platform is increased.
  • 12-24 first test points are selected on the first test substrate.
  • the first test points are evenly distributed on the diagonal.
  • step two the opening directions of the respective turns are coarsely adjusted so that the evaporation sources in the respective turns are outwardly inclined outward or the vapor deposition sources in the respective turns are equally inclined inward.
  • the vapor deposition source in the crucible emits an angle of 10 to 80 degrees from the plane of the crucible platform.
  • each evaporation source is volatilized to form a mixed film layer on the second test substrate, and different second test points are selected on the second test substrate to obtain the second test points.
  • the thickness of the mixed film layer is calculated, and the ratio of the difference between the maximum value and the minimum value of the mixed film layer thickness value to the average value of the maximum value and the minimum value is calculated to obtain a uniform parameter of the test mixed film layer thickness, and when the mixed film layer thickness uniform parameter is tested When the uniform parameter of the mixed film thickness is smaller than the standard, the opening direction of each turn is fixed.
  • an evaporation apparatus for carrying out an evaporation method, comprising:
  • the raft platform is set under the support assembly, and the raft is provided on the platform.
  • a drive assembly for driving a crucible including a drive shaft fixedly coupled to the crucible and a drive source coupled to the drive shaft.
  • a thermal insulation is placed between the drive shaft and the bore.
  • the present invention has an advantage in that the uniformity of the film layer formed on the substrate can be ensured by adjusting the distance between the support assembly for supporting the substrate and the crucible platform, thereby improving the display of the corresponding OLED device. effect.
  • the uniformity of doping of the organic material in each evaporation source on the substrate can be ensured, thereby enhancing the luminous effect of the OLED device.
  • the vapor deposition method is simple and easy to implement.
  • Figure 1 shows a flow chart of an evaporation method according to the present invention
  • FIG. 2 shows a schematic view of an evaporation apparatus according to an embodiment of the present invention
  • Figure 3 shows a distribution diagram of the first test point on the first test substrate
  • Figure 4 is a schematic view showing an operation state of the vapor deposition device according to the present invention.
  • Figure 5 is a schematic view showing another working state of the vapor deposition device according to the present invention.
  • FIG. 6 is a schematic view showing the working state of the vapor deposition device in the prior art
  • Fig. 2 shows a schematic view of an evaporation apparatus 100 according to a first embodiment of the present invention.
  • the vapor deposition apparatus 100 includes a support assembly 1, a crucible platform 2, a crucible 3 disposed on the crucible platform 2, and a drive assembly 4.
  • the support assembly 1 is used to support the substrate 5 during the evaporation process.
  • the crucible platform 2 is disposed below the support assembly 1 for placing the crucible 3. ⁇ 3 is used to hold the evaporation source 6.
  • the vapor deposition source 6 is an organic molecular material that can be deposited on the substrate 5. After the crucible 3 is heated, the vapor deposition source 6 can be volatilized to form a film layer on the substrate 5.
  • the drive assembly 4 is used to drive the movement of the crucible 3 to adjust the thickness of the film deposited on the substrate 5.
  • the drive assembly 4 includes a drive source 7 and a drive shaft 8. One end of the drive shaft 8 is connected to the drive source 7 to be driven by the drive source 7, and the other end of the drive shaft 8 is connected to the crucible 3 to adjust the opening direction of the crucible 3.
  • the adjustability of the opening direction of the crucible 3 can be achieved by the vapor deposition apparatus 100, thereby contributing to the improvement of the doping uniformity of the film layer deposited on the substrate 5 to ensure the production by the vapor deposition apparatus 100.
  • the luminous efficiency of the OLED device of the substrate 2 is obtained.
  • a heat insulating member 9 is provided between the drive shaft 8 and the crucible 3.
  • the heat insulating member 9 may be a micro-nano heat insulating plate.
  • the vapor deposition apparatus 100 also includes some other structures and components which are well known to those skilled in the art and will not be described in detail herein.
  • FIG. 1 a method of vapor-depositing the substrate 5 by the vapor deposition device 100 is shown.
  • the evaporation method of the substrate 5 for organic electro-laser display will be discussed in detail below with reference to FIGS.
  • S01 is performed, that is, step one is performed.
  • the distance between the support assembly 1 and the crucible platform 2 is adjusted to ensure the uniformity of the film deposited on the substrate 5 by the organic molecular material in each evaporation source 6.
  • S02 is performed, that is, step 2 is performed to adjust the opening direction of the crucible 3 disposed on the crucible platform 2 to adjust the uniformity of doping of different organic molecular materials deposited on the substrate 5.
  • step 3 is performed, the substrate 5 to be vapor-deposited is disposed on the support assembly 1, and the vapor deposition source 6 disposed in the crucible 3 is volatilized and attached on the surface of the substrate 1, thereby opposing the substrate 5. Processing.
  • an evaporation source 6 is selected to volatilize the organic molecular material to form a single film layer on the corresponding first test substrate 5'.
  • Selecting a different first test point 10 ′ on the first test substrate 5 ′ to obtain a single film layer thickness value at each first test point 10 ′, and calculating a first test point 10 ′ on each first test substrate 5 ′ The ratio of the difference between the maximum value and the minimum value of the single film thickness value to the sum of the maximum value and the minimum value to obtain a uniform parameter of the test single film layer thickness, by comparing the test single film layer thickness uniform parameter with the specification single film layer thickness
  • the uniform parameters are sized to adjust the distance between the support assembly 1 and the raft platform 2.
  • the uniform single film thickness uniform parameter is 1-3%, and when the test single film layer thickness uniform parameter is less than 1%, the distance between the support assembly 1 and the crucible platform 2 is reduced, and when the test single film layer thickness is uniform When the parameter is greater than 3%, the distance between the support assembly 1 and the crucible platform 2 is increased.
  • first test points 10' are selected on the first test substrate 5'. Further preferably, when the first test substrate 5' is square, the first test point 10' is evenly distributed on the diagonal. This setting ensures the accuracy of the test method while ensuring test efficiency.
  • the two vapor deposition sources 6 are the vapor deposition source 6A and the vapor deposition source 6B.
  • a piece of the first test substrate 5' is placed on the vapor deposition apparatus 100, except that the evaporation source 6A is heated to form a single film layer on the first test substrate 5'.
  • the opening of the crucible 3 faces directly upward.
  • first test points 10' are selected, which are respectively a1', a2'...a8', b1', b2'...b8', as shown in the figure. 3 is shown.
  • the thickness of the single film at the 10' position of the 16 first test points was tested separately.
  • the uniform parameter of the single film thickness is (H a4 ' - H b1 ' ) / (H a4' + H b1 ).
  • a single film thickness uniformity parameter is obtained.
  • the distance between the support assembly 1 and the crucible platform 2 is adjusted according to whether the uniformity parameter of the single film layer thickness is within the range of the uniform parameter of the uniform thickness of the single film layer. Until the uniformity parameter of the single film layer thickness corresponding to each of the evaporation sources 6 is within the range of the uniform parameter of the uniform thickness of the single film layer, the distance between the support assembly 1 and the crucible platform 2 is adjusted in place.
  • step two the opening direction of each of the turns 3 is roughly positioned by operating the drive assembly 4.
  • the evaporation source 6 in each of the crucibles 3 is emitted obliquely outward so that the peak of the film thickness formed by each of the vapor deposition sources 6 is outside the substrate 5, which contributes to the improvement of the respective evaporation sources 6
  • the uniformity of mixing of organic molecular materials is shown in Figure 4.
  • the evaporation source 6 in each of the crucibles 3 is uniformly inclined inward, so that the peaks of the respective film thicknesses formed by the respective vapor deposition sources 6 are on the substrate 5, which also helps The mixing uniformity of the organic molecular materials of the respective vapor deposition sources 6 is improved, as shown in FIG.
  • the angle ⁇ formed by the evaporation source 6 in the crucible 3 and the plane of the crucible platform 2 is 10-80 degrees. This arrangement can satisfy the requirement of improving the uniformity of the film thickness of the substrate 5, and can also ensure the deposition efficiency of the organic molecular material on the substrate 5.
  • the second test substrate 5" is placed in the vapor deposition device 100, and each vapor deposition source 6 (for example, when only two vapor deposition sources are required to be simultaneously vapor-deposited, two evaporation sources) are simultaneously volatilized for the second test.
  • a mixed film layer is formed on the substrate 5".
  • a different second test point 10" is selected on the second test substrate 5" to obtain a mixed film layer thickness value of each second test point 10".
  • the difference and maximum value of the maximum value and the minimum value in the mixed film layer thickness value are calculated.
  • the ratio of the average value of the value to the minimum value is used to obtain a uniform parameter of the thickness of the test mixed film layer.
  • the uniform parameter of the test mixed film layer thickness is smaller than the uniform parameter of the thickness of the mixed film layer, the opening direction of each of the crucibles 3 is fixed.
  • the standard mixing is performed.
  • the film thickness uniformity parameter is 1%.
  • 12-24 second test points 10" may be disposed on the second test substrate 5" (not shown in the drawing, and the specific distribution may refer to FIG. 3, 5", which is equivalent to 5', 10" equivalent to 10 '). Further preferably, when the second test point 10" is square, the second test point 10" is evenly distributed on the diagonal. This setting ensures the accuracy of the test method while ensuring test efficiency.
  • the driving unit 4 is operated to rotate the crucible 6 at the evaporation source 6A to the left direction, or to make the crucible at the evaporation source 6B. 6 is rotated in the left direction, or the crucible 6 at the vapor deposition source 6A and the vapor deposition source 6B is simultaneously rotated in the left direction.
  • the test mixture film thickness uniform parameter is smaller than the standard mixed film thickness uniform parameter, fix the position of each ⁇ 3, It is considered that the substrate 5 is officially produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种用于有机电激光显示的基板(5)的蒸镀方法,包括:步骤一,调整蒸镀装置(100)的用于支撑基板(5)的支撑组件(1)与坩埚平台(2)之间的距离,步骤二,调整设置在坩埚平台(2)上的坩埚(3)的开口方向,步骤三,将需要蒸镀的基板(5)设置在支撑组件(1)上,并使设置在坩埚(3)内的蒸镀源(6)挥发附着在基板(5)的表面上。以及一种蒸镀装置(100)。

Description

用于有机电激光显示的基板的蒸镀方法和蒸镀装置
相关申请的交叉引用
本申请要求享有于2015年12月15日提交的名称为“用于有机电激光显示的基板的蒸镀方法和蒸镀装置”的中国专利申请CN201510932728.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及显示技术领域,尤其是涉及一种用于有机电激光显示的基板的蒸镀方法和蒸镀装置。
背景技术
近几年来,有机电激光显示(Organic Light-Emitting Diode,OLED)作为新一代的固态自发光显示技术取得了突飞猛进的发展。相比较于液晶显示装置,有机电激光显示装置具有超薄、响应度高、对比度高、功耗低等优势。目前,在生产OLED装置过程中,常采用蒸镀法制成有机电激光显示基板。也就是,在真空腔体内加热有机小分子材料,使其升华或者熔融气化成材料蒸汽,透过金属光罩的开孔沉积在玻璃基板上。
OLED基板在制作的过程中,不同材料相互掺杂已经在OLED制成中广泛采用。掺杂的各材料的均匀性直接影响OLED装置的发光效率、亮度等显示指标。
在现有技术中,在生产OLED基板过程中,常常使不同的蒸镀源临近以提高掺杂的均匀性。例如,如图5所示,蒸镀装置50包括坩埚平台53和设置在坩埚平台53上的坩埚52。在蒸镀进行过程中,两个坩埚52临近以在基板51上形成混合膜层54。虽然这种方式能在一定程度上提高各蒸镀材料之间掺杂的均匀性,但是这种生产方式容易使得形成在玻璃基板上的膜层厚度均匀性下降,也就是沉积在玻璃基板上的膜层各处厚薄差异较大。从而,通过这种方式生产OLED装置,发光效率和亮度提高等受限。
由此,需要提供一种用于有机电激光显示的基板的蒸镀方法和蒸镀装置以提高OLED装置的发光效果。
发明内容
针对现有技术中所存在的上述技术问题,本发明提出了一种用于有机电激光显示的基板的蒸镀方法和蒸镀装置。该用于有机电激光显示的基板的蒸镀方法能能使得形成在基板上的膜层更均匀,从而增加具有这种基板的有机电激光显示装置的发光效果。同时,该蒸镀装置结构简单,有助于实现形成在基板上的膜层的均匀性。
根据本发明的一方面,提出了一种用于有机电激光显示的基板的蒸镀方法,包括以下步骤:
步骤一,调整蒸镀装置的用于支撑基板的支撑组件与坩埚平台之间的距离,
步骤二,调整设置在坩埚平台上的坩埚的开口方向,
步骤三,将需要蒸镀的基板设置在支撑组件上,并使设置在坩埚内的蒸镀源挥发附着在基板的表面上。
在一个实施例中,在步骤一中,选择蒸镀源使其挥发以在相对应的第一测试基板上形成单膜层,在第一测试基板上选取不同的第一测试点以得到各第一测试点处的单膜层厚值,计算各第一测试基板上的第一测试点的单膜层厚值中的最大值和最小值的差与最大值和最小值的和的比以得到试验单膜层厚均匀参数,通过比较试验单膜层厚均匀参数与规范单膜层厚均匀参数的大小以调整支撑组件与坩埚平台之间的距离。
在一个实施例中,规范单膜层厚均匀参数为1-3%,当试验单膜层厚均匀参数小于1%时,减小支撑组件与坩埚平台之间的距离,当试验单膜层厚均匀参数大于3%时,增加支撑组件与坩埚平台之间的距离。
在一个实施例中,在第一测试基板上选择12-24个第一测试点。
在一个实施例中,当第一测试基板为方形时,第一测试点均匀分布在对角线上。
在一个实施例中,在步骤二中,粗调整各坩埚的开口方向,以使各坩埚内的蒸镀源发出均斜向向外或者使各坩埚内的蒸镀源发出均斜向向内。
在一个实施例中,坩埚内的蒸镀源发出所在直线与坩埚平台所在平面形成的夹角为10-80度。
在一个实施例中,在步骤二中,使各蒸镀源挥发以在第二测试基板上形成混合膜层,在第二测试基板上选取不同的第二测试点以得到各第二测试点的混合膜层厚值,计算混合膜层厚值中的最大值和最小值的差与最大值和最小值的平均值的比以得到试验混合膜层厚均匀参数,当试验混合膜层厚均匀参数小于规范混合膜层厚均匀参数时,固定各坩埚的开口方向。
根据本发明的另一方面,提出一种为实施蒸镀方法的蒸镀装置,包括:
用于支撑基板的支撑组件,
设置在支撑组件下方的坩埚平台,坩埚平台上设置有坩埚,
设置在坩埚内的蒸镀源,
用于驱动坩埚旋转的驱动组件,驱动组件包括与坩埚固定连接的驱动轴和与驱动轴连接的驱动源。
在一个实施例中,在传动轴与坩埚之间设置隔热件。
与现有技术相比,本发明的优点在于,通过调整用于支撑基板的支撑组件与坩埚平台之间的距离能够保证形成在基板上的膜层的均匀性,从而提高相应的OLED装置的显示效果。同时,通过调整坩埚的开口方向,能保证各蒸镀源内的有机材料在基板上掺杂的均匀性,从而增强了OLED装置的发光效果。另外,该蒸镀方法简单,易于实现。
附图说明
下面将结合附图来对本发明的优选实施例进行详细地描述,在图中:
图1显示了根据本发明的蒸镀方法的流程图;
图2显示了根据本发明的实施例的蒸镀装置的示意图;
图3显示了第一测试点在第一测试基板上的分布图;
图4显示了根据本发明的蒸镀装置的一种工作状态示意图;
图5显示了根据本发明的蒸镀装置的另一种工作状态示意图;
图6显示了现有技术中的蒸镀装置工作状态示意图;
在附图中,相同的部件使用相同的附图标记,附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明做进一步说明。
图2显示了根据本发明的第一实施例的蒸镀装置100的示意图。如图2所示,蒸镀装置100包括支撑组件1、坩埚平台2、设置在坩埚平台2上的坩埚3以及驱动组件4。其中,支撑组件1用于在蒸镀过程中支撑基板5。坩埚平台2设置在支撑组件1的下方,以用于放置坩埚3。坩埚3用于盛放蒸镀源6。蒸镀源6为能够沉积在基板5上的有机分子材料,在对坩埚3进行加热后,蒸镀源6能够挥发以在基板5向生成膜层。驱动组件4用于驱动坩埚3运动,以调整蒸镀在基板5上的膜层厚度。并且,驱动组件4包括驱动源7和驱动轴8。驱动轴8的一端与驱动源7连接,以在驱动源7带动下运动,而驱动轴8的另一端与坩埚3连接,以调整坩埚3的开口方向。
由此,通过该蒸镀装置100能实现坩埚3的开口方向的可调性,从而有助于提高沉积在基板5上的膜层的掺杂均匀性,以保证具有通过该蒸镀装置100生产出的基板2的OLED装置的发光效率。
为了保证蒸镀装置100的安全运行,在传动轴8与坩埚3之间设置隔热件9。优选地,隔热件9可以为微纳隔热板。通过设置隔热件9,避免了坩埚3内的过多的热量向传动轴8上传递而影响蒸镀源6的蒸镀温度。同时,通过设置隔热件9,避免了传动轴8得到更多的热量,以影响传动轴8正常工作。
需要说明地是,蒸镀装置100还包括一些其它的结构和部件,而这些结构和部件是本领域技术人员熟知的,在此略去详细描述。
在图1中,显示了利用蒸镀装置100对基板5进行蒸镀的方法。则下面结合图1-4详细论述用于有机电激光显示的基板5的蒸镀方法。
如图1所示,首先,进行S01,也就是进行步骤一。在步骤一中,调整支撑组件1与坩埚平台2之间的距离,以保证各蒸镀源6内的有机分子材料沉积在基板5上的膜层的均匀性。接着,进行S02,也就是进行步骤二,调整设置在坩埚平台2上的坩埚3的开口方向,以调整不同的有机分子材料沉积在基板5上掺杂的均匀性。最后,进行S03,也就是进行步骤三,将需要蒸镀的基板5设置在支撑组件1上,并使设置在坩埚3内的蒸镀源6挥发附着在基板1的表面上,从而对基板5进行加工。
具体地,在步骤一中,选择一种蒸镀源6使有机分子材料挥发以在相对应的第一测试基板5’上形成单膜层。在第一测试基板5’上选取不同的第一测试点10’以得到各第一测试点10’处的单膜层厚值,计算各第一测试基板5’上的第一测试点10’的单膜层厚值中的最大值和最小值的差与最大值和最小值的和的比以得到试验单膜层厚均匀参数,通过比较试验单膜层厚均匀参数与规范单膜层厚均匀参数的大小以调整支撑组件1与坩埚平台2之间的距离。
优选地,规范单膜层厚均匀参数为1-3%,当试验单膜层厚均匀参数小于1%时,减小支撑组件1与坩埚平台2之间的距离,当试验单膜层厚均匀参数大于3%时,增加支撑组件1与坩埚平台2之间的距离。通过这种设置能保证不同的蒸镀源6的有机分子材料挥发到基板5上的均匀性,也能防止发生支撑组件1与坩埚平台2之间的距离过大引起的蒸镀装置100体积过大的问题。
在一个优选地实施例中,在第一测试基板5’上选择12-24个第一测试点10’。进一步优选地,当第一测试基板5’为方形时,第一测试点10’均匀分布在对角线上。通过这种设置方式保证了测试方法的精确度,同时保证了测试效率。
在蒸镀方法中,以同时需要蒸镀两种有机分子材料为例论述调整支撑组件1与坩埚平台2之间的距离的具体操作方法。例如,两种蒸镀源6为蒸镀源6A和蒸镀源6B。先选取一块第一测试基板5’放入到蒸镀装置100上,只是加热蒸镀源6A,以在第一测试基板5’形成单膜层。此时,坩埚3的开口朝向正上方。在此第一测试基板5’的两条对角线方向个选取8个第 一测试点10’,分别为a1’、a2’……a8’,b1’、b2’……b8’,如图3所示。并分别测试这16个第一测试点10’位置处的单膜层厚。在16个单膜层厚值中,如果a4’处的厚度Ha4’最大,而b1’处的厚度Hb1’最小,则单膜层厚均匀参数为(Ha4’-Hb1’)/(Ha4’+Hb1)。
接下来,再停止对蒸镀源6A加热,选取另一块第一测试基板5’放入到蒸镀装置100上,只是加热蒸镀源6B。相似地,又得到一个单膜层厚均匀参数。并根据单膜层厚均匀参数是否在规范单膜层厚均匀参数的范围内,来调整支撑组件1与坩埚平台2之间的距离。直到每个蒸镀源6所对应的单膜层厚均匀参数均在规范单膜层厚均匀参数的范围内,则支撑组件1与坩埚平台2之间的距离调整到位。
具体地,在步骤二中,通过操作驱动组件4,粗定位各坩埚3的开口方向。一方面,使各坩埚3内的蒸镀源6发出均斜向向外,以使得各蒸镀源6对应形成的膜厚的峰值在基板5之外,有助于提高了各蒸镀源6的有机分子材料的混合均匀性,如图4所示。另一方面,通过操作驱动组件4,使各坩埚3内的蒸镀源6发出均斜向向内,以使得各蒸镀源6对应形成的膜厚的峰值均在基板5之上,也有助于提高了各蒸镀源6的有机分子材料的混合均匀性,如图5所示。
优选地,坩埚3内的蒸镀源6发出所在直线与坩埚平台2所在平面形成的夹角α为10-80度。这种设置方式既能满足提高基板5膜厚混合均匀性要求,也能保证有机分子材料在基板5上的沉积效率。
将第二测试基板5”放入到蒸镀装置100内,使各蒸镀源6(例如,只需要两种蒸镀源同时蒸镀时,两种蒸镀源)同时挥发以在第二测试基板5”上形成混合膜层。在第二测试基板5”上选取不同的第二测试点10”以得到各第二测试点10”的混合膜层厚值。计算混合膜层厚值中的最大值和最小值的差与最大值和最小值的平均值的比以得到试验混合膜层厚均匀参数,当试验混合膜层厚均匀参数小于规范混合膜层厚均匀参数时,固定各坩埚3的开口方向。优选地,规范混合膜层厚均匀参数为1%。
相似地,也可以在第二测试基板5”上设置12-24个第二测试点10”(图中未示出,具体分布可参照图3,5”相当于5’,10”相当于10’)。进一步优选地,当第二测试点10”为方形时,第二测试点10”均匀分布在对角线上。通过这种设置方式保证了测试方法的精确度,同时保证了测试效率。
例如,在图4中,如果试验混合膜层厚均匀参数大于规范混合膜层厚均匀参数,并且混合膜层厚的最大值出现在靠近蒸镀源6A(两个蒸镀源6中的一个)且远离蒸镀源6B(两个蒸镀源6中的另一个)的位置处,则操作驱动组件4使蒸镀源6A处的坩埚6向左方向旋转,或者使蒸镀源6B处的坩埚6向左方向旋转,或者使蒸镀源6A和蒸镀源6B处的坩埚6同时向左方向旋转。直至试验混合膜层厚均匀参数小于规范混合膜层厚均匀参数,固定各坩埚3的位置, 以为正式生产基板5做好准备。
以上所述仅为本发明的优选实施方式,但本发明保护范围并不局限于此,任何本领域的技术人员在本发明公开的技术范围内,可容易地进行改变或变化,而这种改变或变化都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求书的保护范围为准。

Claims (20)

  1. 一种用于有机电激光显示的基板的蒸镀方法,其中,包括以下步骤:
    步骤一,调整蒸镀装置的用于支撑基板的支撑组件与坩埚平台之间的距离,
    步骤二,调整设置在所述坩埚平台上的坩埚的开口方向,
    步骤三,将需要蒸镀的基板设置在所述支撑组件上,并使设置在所述坩埚内的蒸镀源挥发附着在所述基板的表面上。
  2. 根据权利要求1所述的蒸镀方法,其中,在步骤一中,选择蒸镀源使其挥发,以在相对应的第一测试基板上形成单膜层,在所述第一测试基板上选取不同的第一测试点以得到各所述第一测试点处的单膜层厚值,计算各所述第一测试基板上的所述第一测试点的单膜层厚值中的最大值和最小值的差与最大值和最小值的和的比以得到试验单膜层厚均匀参数,通过比较试验单膜层厚均匀参数与规范单膜层厚均匀参数的大小以调整支撑组件与坩埚平台之间的距离。
  3. 根据权利要求2所述的蒸镀方法,其中,规范单膜层厚均匀参数为1-3%,当试验单膜层厚均匀参数小于1%时,减小支撑组件与坩埚平台之间的距离,当试验单膜层厚均匀参数大于3%时,增加支撑组件与坩埚平台之间的距离。
  4. 根据权利要求2所述的蒸镀方法,其中,在所述第一测试基板上选择12-24个所述第一测试点。
  5. 根据权利要求4所述的蒸镀方法,其中,当所述第一测试基板为方形时,所述第一测试点均匀分布在对角线上。
  6. 根据权利要求1所述的蒸镀方法,其中,在步骤二中,粗调整各所述坩埚的开口方向,以使各所述坩埚内的所述蒸镀源发出均斜向向外或者使各所述坩埚内的蒸镀源发出均斜向向内。
  7. 根据权利要求2所述的蒸镀方法,其中,在步骤二中,粗调整各所述坩埚的开口方向,以使各所述坩埚内的所述蒸镀源发出均斜向向外或者使各所述坩埚内的蒸镀源发出均斜向向内。
  8. 根据权利要求3所述的蒸镀方法,其中,在步骤二中,粗调整各所述坩埚的开口方向,以使各所述坩埚内的所述蒸镀源发出均斜向向外或者使各所述坩埚内的蒸镀源发出均斜向向内。
  9. 根据权利要求4所述的蒸镀方法,其中,在步骤二中,粗调整各所述坩埚的开口方向,以使各所述坩埚内的所述蒸镀源发出均斜向向外或者使各所述坩埚内的蒸镀源发出均斜向向内。
  10. 根据权利要求5所述的蒸镀方法,其中,在步骤二中,粗调整各所述坩埚的开口方向,以使各所述坩埚内的所述蒸镀源发出均斜向向外或者使各所述坩埚内的蒸镀源发出均斜向向内。
  11. 根据权利要求6所述的蒸镀方法,其中,所述坩埚内的所述蒸镀源发出所在直线与所述坩埚平台所在平面形成的夹角为10-80度。
  12. 根据权利要求6所述的蒸镀方法,其中,在步骤二中,使各蒸镀源挥发,以在第二测试基板上形成混合膜层,在所述第二测试基板上选取不同的第二测试点以得到各所述第二测试点的混合膜层厚值,计算混合膜层厚值中的最大值和最小值的差与最大值和最小值的平均值的比以得到试验混合膜层厚均匀参数,当试验混合膜层厚均匀参数小于规范混合膜层厚均匀参数时,固定各所述坩埚的开口方向。
  13. 一种蒸镀装置,为实施包括有步骤:
    步骤一,调整蒸镀装置的用于支撑基板的支撑组件与坩埚平台之间的距离,
    步骤二,调整设置在所述坩埚平台上的坩埚的开口方向,
    步骤三,将需要蒸镀的基板设置在所述支撑组件上,并使设置在所述坩埚内的蒸镀源挥发附着在所述基板的表面上:
    的蒸镀方法,
    所述蒸镀装置包括:
    用于支撑基板的支撑组件,
    设置在所述支撑组件下方的坩埚平台,所述坩埚平台上设置有坩埚,
    设置在所述坩埚内的蒸镀源,
    用于驱动所述坩埚旋转的驱动组件,所述驱动组件包括与所述坩埚固定连接的驱动轴和与所述驱动轴连接的驱动源。
  14. 根据权利要求13所述的蒸镀装置,其中,在步骤一中,选择蒸镀源使其挥发,以在相对应的第一测试基板上形成单膜层,在所述第一测试基板上选取不同的第一测试点以得到各所述第一测试点处的单膜层厚值,计算各所述第一测试基板上的所述第一测试点的单膜层厚值中的最大值和最小值的差与最大值和最小值的和的比以得到试验单膜层厚均匀参数,通过比较试验单膜层厚均匀参数与规范单膜层厚均匀参数的大小以调整支撑组件与坩埚平台之间的距离。3.根据权利要求2所述的蒸镀方法,其中,规范单膜层厚均匀参数为1-3%,当试验单膜层厚均匀参数小于1%时,减小支撑组件与坩埚平台之间的距离,当试验单膜层厚均匀参数大于3%时,增加支撑组件与坩埚平台之间的距离。
  15. 根据权利要求14所述的蒸镀装置,其特征在于,规范单膜层厚均匀参数为1-3%,当 试验单膜层厚均匀参数小于1%时,减小支撑组件与坩埚平台之间的距离,当试验单膜层厚均匀参数大于3%时,增加支撑组件与坩埚平台之间的距离。
  16. 根据权利要求14所述的蒸镀装置,其中,在所述第一测试基板上选择12-24个所述第一测试点。
  17. 根据权利要求16所述的蒸镀装置,其中,当所述第一测试基板为方形时,所述第一测试点均匀分布在对角线上。
  18. 根据权利要求13所述的蒸镀装置,其中,在步骤二中,粗调整各所述坩埚的开口方向,以使各所述坩埚内的所述蒸镀源发出均斜向向外或者使各所述坩埚内的蒸镀源发出均斜向向内。
  19. 根据权利要求13所述的蒸镀装置,其中,在所述传动轴与所述坩埚之间设置隔热件。
  20. 根据权利要求14所述的蒸镀装置,其中,在所述传动轴与所述坩埚之间设置隔热件。
PCT/CN2016/070272 2015-12-15 2016-01-06 用于有机电激光显示的基板的蒸镀方法和蒸镀装置 WO2017101174A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,885 US10319950B2 (en) 2015-12-15 2016-01-06 Evaporation method and evaporation device for organic light-emitting diode substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510932728.2 2015-12-15
CN201510932728.2A CN105401125B (zh) 2015-12-15 2015-12-15 用于有机电激光显示的基板的蒸镀方法和蒸镀装置

Publications (1)

Publication Number Publication Date
WO2017101174A1 true WO2017101174A1 (zh) 2017-06-22

Family

ID=55466874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070272 WO2017101174A1 (zh) 2015-12-15 2016-01-06 用于有机电激光显示的基板的蒸镀方法和蒸镀装置

Country Status (3)

Country Link
US (1) US10319950B2 (zh)
CN (1) CN105401125B (zh)
WO (1) WO2017101174A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106996747B (zh) * 2017-03-31 2019-10-11 武汉华星光电技术有限公司 蒸镀图案检测系统及蒸镀图案检测方法
US11111574B2 (en) 2018-05-28 2021-09-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. Vapor deposition apparatus and vapor deposition method
CN108728801B (zh) * 2018-05-28 2019-11-12 深圳市华星光电技术有限公司 蒸镀装置及蒸镀方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140669A (ja) * 2006-12-04 2008-06-19 Canon Inc 真空蒸着装置および真空蒸着方法
CN102453872A (zh) * 2010-10-27 2012-05-16 应用材料公司 蒸发系统和方法
CN103261468A (zh) * 2010-12-21 2013-08-21 太阳能光电股份公司 蒸发源、蒸发室、涂覆方法以及喷嘴板
CN103710682A (zh) * 2012-10-09 2014-04-09 三星显示有限公司 沉积装置以及使用该装置制造有机发光显示器的方法
CN103726017A (zh) * 2012-10-12 2014-04-16 三星显示有限公司 沉积装置以及使用该装置制造有机发光显示器的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054325A1 (ja) * 2002-12-12 2004-06-24 Semiconductor Energy Laboratory Co., Ltd. 発光装置、製造装置、成膜方法、およびクリーニング方法
EP1997638B1 (en) 2007-05-30 2012-11-21 Océ-Technologies B.V. Method of forming an array of piezoelectric actuators on a membrane
US8137147B2 (en) * 2007-10-30 2012-03-20 Toppan Printing Co., Ltd. Organic electroluminescence display and method for manufacturing the same
CN101565813B (zh) * 2009-05-18 2012-08-08 南京华显高科有限公司 MgO薄膜电子束蒸发制备方法及装置
DE102009038519B4 (de) * 2009-08-25 2012-05-31 Von Ardenne Anlagentechnik Gmbh Verfahren und Vorrichtung zur Herstellung von Stöchiometriegradientenschichten
CN103938161A (zh) 2014-04-29 2014-07-23 京东方科技集团股份有限公司 基板蒸镀装置和蒸镀方法
CN105177510B (zh) * 2015-10-21 2018-04-03 京东方科技集团股份有限公司 蒸镀设备及蒸镀方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140669A (ja) * 2006-12-04 2008-06-19 Canon Inc 真空蒸着装置および真空蒸着方法
CN102453872A (zh) * 2010-10-27 2012-05-16 应用材料公司 蒸发系统和方法
CN103261468A (zh) * 2010-12-21 2013-08-21 太阳能光电股份公司 蒸发源、蒸发室、涂覆方法以及喷嘴板
CN103710682A (zh) * 2012-10-09 2014-04-09 三星显示有限公司 沉积装置以及使用该装置制造有机发光显示器的方法
CN103726017A (zh) * 2012-10-12 2014-04-16 三星显示有限公司 沉积装置以及使用该装置制造有机发光显示器的方法

Also Published As

Publication number Publication date
US10319950B2 (en) 2019-06-11
US20180034005A1 (en) 2018-02-01
CN105401125A (zh) 2016-03-16
CN105401125B (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
Shen et al. Interfacial potassium‐guided grain growth for efficient deep‐blue perovskite light‐emitting diodes
Gorter et al. Toward inkjet printing of small molecule organic light emitting diodes
US6869636B2 (en) Method of evaporating film used in an organic electro-luminescent display
CN109148525A (zh) 有机发光二极管显示面板及其制作方法
JP2007063664A (ja) 有機蒸着源及びその加熱源の制御方法
Wang et al. Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Light‐Emitting Diodes
WO2017101174A1 (zh) 用于有机电激光显示的基板的蒸镀方法和蒸镀装置
KR20060098755A (ko) 유기 발광 다이오드의 진공 증착 장치 및 방법
WO2018120710A1 (zh) Oled显示面板及其制造方法、显示装置
US10256417B2 (en) Organic electroluminescent and preparation method thereof
WO2014169524A1 (zh) 光罩掩模板的制作方法及用该方法制作的光罩掩模板
KR20130010730A (ko) 증착 소스 및 이를 구비한 증착 장치
CN106098955B (zh) 一种电致发光器件及其制作方法
US20190044068A1 (en) Mask plate
US10141510B2 (en) OLED display panel, manufacturing method thereof and display device
US20160230272A1 (en) Evaporation source heating device
CN105908129B (zh) 一种有机材料蒸镀设备和方法
US10190207B2 (en) Evaporation method
WO2015169087A1 (zh) 掩模板及其制作方法、掩模组件
TW201316584A (zh) 有機發光二極體的製造方法
KR102654923B1 (ko) 표시 장치, 표시 장치의 제조장치 및 표시 장치의 제조방법
JP2007305439A (ja) 有機電界発光表示装置の製造方法
CN212713726U (zh) 一种oled蒸镀设备
TWI388056B (zh) 有機電致發光元件
CN108807484A (zh) 柔性显示面板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874241

Country of ref document: EP

Kind code of ref document: A1