WO2017098700A1 - 耐食性に優れる原油タンク用鋼材および原油タンク - Google Patents

耐食性に優れる原油タンク用鋼材および原油タンク Download PDF

Info

Publication number
WO2017098700A1
WO2017098700A1 PCT/JP2016/005011 JP2016005011W WO2017098700A1 WO 2017098700 A1 WO2017098700 A1 WO 2017098700A1 JP 2016005011 W JP2016005011 W JP 2016005011W WO 2017098700 A1 WO2017098700 A1 WO 2017098700A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
steel material
crude oil
steel
oil tank
Prior art date
Application number
PCT/JP2016/005011
Other languages
English (en)
French (fr)
Inventor
釣 之郎
村瀬 正次
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017515264A priority Critical patent/JP6409962B2/ja
Priority to CN201680071906.XA priority patent/CN108368578B/zh
Priority to KR1020187016303A priority patent/KR20180082523A/ko
Publication of WO2017098700A1 publication Critical patent/WO2017098700A1/ja
Priority to PH12018550078A priority patent/PH12018550078A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/22Safety features
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to an oil tank of a crude oil tanker formed by welding steel materials or a tank for transporting or storing crude oil (hereinafter collectively referred to as “crude oil tank”).
  • the present invention relates to a steel material for a crude oil tank that reduces the overall corrosion that occurs at the ceiling and side walls and the local corrosion that occurs at the bottom of the crude oil tank, and a crude oil tank that is composed of the steel material.
  • the steel material for crude oil tanks of the present invention includes thick steel plates, thin steel plates, and shaped steels.
  • the most effective method for preventing the above-described general corrosion and local corrosion is to apply heavy coating on the surface of the steel material to shield the steel material from the corrosive environment.
  • the painting operation of the crude oil tank not only has an enormous application area, but also requires repainting once every 10 years due to the deterioration of the coating film, resulting in an enormous cost for inspection and painting.
  • corrosion is promoted in the damaged part of the heavy-painted coating film in the corrosive environment of the crude oil tank.
  • Patent Document 1 discloses a marine vessel that has improved corrosion resistance in an environment that is exposed to constant temperature and high humidity including salt and an environment that includes sulfur, and that has excellent toughness without being subjected to painting or cathodic protection.
  • C 0.01 to 0.30%
  • Si 0.01 to 2.0%
  • Mn 0.01 to 2.0%
  • Al 0.01 to 2.0%
  • Bi 0.0005 to 0.40%
  • P 0.003 to 0.050 %
  • the balance Fe and inevitable impurities
  • a technology related to marine steel satisfying the following formulas (1) and (2) is disclosed.
  • Patent Document 2 discloses a steel material for an upper tank of a crude oil tanker or a cargo ship of a bulk carrier, and is exposed to a severe corrosive environment in which sulfur-containing substances such as sulfur, sulfur oxides and sulfides are present.
  • C 0.01 to 0.30%, Si : 0.20 to 1.0%, Mn: 0.50 to 1.60%, P: 0.005 to 0.040%, S: 0.005 to 0.020%, Al: 0.050 to 0.100%, Cu: 0.20 to 1.0%, Ni: 0.03% or less (0% Including: Cr: 0.05 to 0.30%, Zn: 0.001 to 0.50%, Sn: 0.005 to 0.050% and Ca: 0.0005 to 0.0050%, and the balance is made of Fe and inevitable impurities. ing.
  • the steel material described in Patent Document 2 cannot obtain a satisfactory effect for inhibiting the overall corrosion that occurs on the tanker upper plate. Because the actual crude oil tanker has a service life of 25 years and the design corrosion allowance of the tanker upper plate is about 2mm on one side, the corrosion rate of the corrosion-resistant steel applied to the upper plate is 0.08mm / y or less. This is because, even in the invention example described in Patent Document 2, even when the corrosion rate is the lowest, it is only about 0.11 mm / y. In particular, longages welded to the tanker upper plate are exposed to the corrosive environment inside the tanker, so repair is required when applying corrosion-resistant steel with a corrosion rate exceeding 0.1 mm / y. Therefore, the technique described in Patent Document 2 cannot be desired to omit painting.
  • the present invention was developed in view of the above situation, and a steel material for a crude oil tank that is excellent in both general corrosion resistance in a top plate of a crude oil tank such as a tanker oil tank portion and local corrosion resistance in a bottom plate of a crude oil tank, It aims at providing with the crude oil tank comprised from this steel material.
  • the gist configuration of the present invention is as follows. 1. % By mass C: 0.03-0.18% Si: 0.03-1.50%, Mn: 0.1-2.0% P: 0.025% or less, S: 0.010% or less, Al: 0.015-0.049%, N: 0.008% or less, W: 0.005-0.5% and Nd: 0.00002-0.010%
  • a steel material for a crude oil tank that has excellent corrosion resistance with the dislocation density ⁇ of the steel material satisfying the following formula (1), the balance being Fe and the balance consisting of Fe and inevitable impurities.
  • [% M] is the content of M element in steel (mass%)
  • the steel material is further in mass%, Cu: 0.05-0.4% Ni: 0.005-0.4%, Mo: 0.005-0.5% Sn: 0.005-0.4% and Sb: 0.005-0.4% 2.
  • the steel material for crude oil tanks according to 1 above, which contains one or more selected from the above, and the dislocation density ⁇ of the steel material satisfies the following formula (2) and is excellent in corrosion resistance.
  • [% M] is the content of M element in steel (mass%)
  • the steel material is further in mass%, Cr: 0.01-0.2% Nb: 0.001 to 0.1%, Ti: 0.001 to 0.1%, V: 0.002 to 0.2% Mg: 0.0002-0.01%, Ca: 0.0002 to 0.01% and REM: 0.0002 to 0.015% 3.
  • a crude oil tank comprising the steel material for a crude oil tank as described in any one of 1 to 3 above.
  • FIG. 5 is a diagram showing the relationship between the value of ⁇ / ⁇ 5 ⁇ ([% Al] ⁇ 0.01) ⁇ and the dislocation density.
  • FIG. 5 is a diagram showing the relationship between the value of ⁇ / ⁇ 5 ⁇ ([% Al] ⁇ 0.01) ⁇ and the dislocation density.
  • the test apparatus used for the general corrosion test In the Example of this invention, it is a figure explaining the test apparatus used for the pitting corrosion test.
  • C 0.03-0.18%
  • C is an element that increases the strength of steel.
  • C is added in an amount of 0.03% or more to ensure a desired strength (490 to 620 MPa).
  • the C content is in the range of 0.03 to 0.18%.
  • it is 0.06 to 0.16% of range.
  • Si 0.03-1.50%
  • Si is an element added as a deoxidizer, but is also an effective element for increasing the strength of steel. Therefore, in the present invention, 0.03% or more of Si is added to ensure a desired strength. However, addition of Si exceeding 1.50% reduces the toughness of the steel. Therefore, the Si content is in the range of 0.03 to 1.50%. Preferably it is 0.05 to 0.40% of range.
  • Mn 0.1-2.0%
  • Mn is an element that increases the strength of steel, and in the present invention, 0.1% or more is added to obtain a desired strength.
  • Mn addition exceeding 2.0% decreases the toughness and weldability of steel. Therefore, the Mn content is in the range of 0.1 to 2.0%. Preferably it is 0.80 to 1.60% of range.
  • P 0.025% or less
  • P is a harmful element that segregates at the grain boundaries and lowers the toughness of the steel, so it is desirable to reduce it as much as possible.
  • the toughness is greatly reduced.
  • the P content is 0.025% or less.
  • it is 0.015% or less.
  • S 0.010% or less
  • S is a harmful element that forms MnS, which is a non-metallic inclusion, and serves as a starting point for local corrosion and reduces local corrosion resistance. Therefore, it is desirable to reduce S as much as possible. In particular, when S exceeds 0.010%, the local corrosion resistance is significantly reduced. Therefore, the S amount is set to 0.010% or less. Preferably it is 0.005% or less.
  • Al 0.015-0.049%
  • Al is an element added as a deoxidizer, and in the present invention, 0.015% or more is added. However, when Al is added in excess of 0.049%, not only the toughness of the steel is reduced, but also the aluminum oxide formed on the surface of the steel material is preferentially dissolved in the acid and the corrosion resistance is also lowered. The upper limit is 0.049%.
  • N 0.008% or less Since N is a harmful element that lowers toughness, it is desirable to reduce it as much as possible. In particular, if N is contained in excess of 0.008%, the toughness is greatly reduced, so the upper limit of N content is 0.008%.
  • W 0.005-0.5% W not only suppresses pitting corrosion in the tanker tank bottom plate, but can also suppress overall corrosion of the tanker upper deck, and is an extremely effective element for improving corrosion resistance.
  • the effect of W appears when 0.005% or more is added, but when it exceeds 0.5%, the effect reaches saturation. Therefore, the W amount is in the range of 0.005 to 0.5%.
  • the range is preferably 0.01 to 0.3%, more preferably 0.02 to 0.2%.
  • the reason why W has the above-described effect of improving corrosion resistance is that WO 4 2- is produced in the rust produced as the steel sheet corrodes, and the presence of this WO 4 2- This is because sulfate ions are prevented from entering the steel sheet surface. Further, it is considered that corrosion of the steel material is also suppressed by the inhibitor action by adsorption of WO 4 2- on the steel material surface.
  • Nd 0.00002 ⁇ 0.010% Nd forms on the steel surface by reacting with crude oil-derived hydrogen sulfide dissolved in the water film formed on the steel material surface by condensation on the upper plate of the tanker oil tank section to form neodymium disulfide and dineodymium trisulfide. It has the effect of reinforcing the protection of the rust layer. Nd is an extremely effective element for securing the toughness of the welded joint at low temperature because neodymium oxide generated during high heat input welding prevents the structure of the heat-affected zone from becoming coarse. These effects of Nd are manifested when 0.00002% or more is added, but when it exceeds 0.010%, the effects reach saturation.
  • the Nd content is set in the range of 0.00002 to 0.010%.
  • the range is preferably 0.0001 to 0.005%, more preferably 0.0002 to 0.002%.
  • W and Nd as a corrosion resistant element in a predetermined amount.
  • Cu 0.05-0.4%
  • Cu not only increases the strength of the steel, but also exists in the rust generated by the corrosion of the steel, and has the effect of increasing the corrosion resistance by suppressing the diffusion of Cl - ions that promote the corrosion.
  • These effects of Cu cannot be sufficiently obtained with addition of less than 0.05%, while addition of more than 0.4% saturates the effect of improving corrosion resistance and may cause problems such as surface cracking during hot working. . Therefore, the Cu content is set in the range of 0.05 to 0.4%. Preferably it is 0.06 to 0.35% of range.
  • Ni 0.005-0.4%
  • Ni has the effect of refining the generated rust particles to improve the corrosion resistance in the bare state and the corrosion resistance in the state where the epoxy primer is applied to the zinc primer. Therefore, Ni is added when it is desired to further improve the corrosion resistance.
  • the effect of Ni described above is manifested when 0.005% or more is added. On the other hand, even if Ni exceeds 0.4%, the effect is saturated. Therefore, Ni is preferably added in the range of 0.005 to 0.4%. More preferably, it is in the range of 0.08 to 0.35%.
  • Mo 0.005-0.5%
  • Mo is an element effective in improving corrosion resistance, which not only suppresses pitting corrosion in the tanker tank bottom plate but also can suppress overall corrosion of the tanker upper deck.
  • the effect of Mo is manifested when 0.005% or more is added, but when it exceeds 0.5%, the effect reaches saturation. Therefore, the Mo content is preferably in the range of 0.005 to 0.5%. A more preferred range is 0.01 to 0.3%, and a further more preferred range is 0.02 to 0.2%.
  • the reason why Mo has the above-described effect of improving corrosion resistance is that MoO 4 2- is generated in the rust generated as the steel sheet corrodes, and the presence of WO 4 2- This is because sulfate ions are prevented from entering the steel sheet surface. Further, it is considered that corrosion of the steel material is also suppressed by the inhibitor action due to the adsorption of MoO 4 2- on the steel material surface.
  • Sn 0.005-0.4%
  • Sn is a useful element that contributes to the suppression of local corrosion and overall corrosion of steel by being taken into the rust layer during corrosion and forming a dense rust layer.
  • the effect of Sn is manifested by addition of 0.005% or more.
  • the Sn content is set in the range of 0.005 to 0.4%. Preferably it is in the range of 0.01 to 0.2%, more preferably in the range of 0.01 to 0.1%.
  • Sb 0.005-0.4% Sb not only suppresses pitting corrosion at the tanker tank bottom plate, but also has the effect of suppressing overall corrosion at the tanker upper deck.
  • the effect of the above Sb is manifested by addition of 0.005% or more, but the effect is saturated even if it exceeds 0.4%. Therefore, the Sb content is in the range of 0.005 to 0.4%.
  • the Cr content is in the range of 0.01 to 0.2%. Preferably it is 0.05 to 0.2% of range.
  • Nb 0.001 to 0.1%
  • Ti 0.001 to 0.1%
  • V 0.002 to 0.2%
  • Nb, Ti and V are all elements that increase the strength of the steel material, and can be appropriately selected and added according to the required strength. In order to obtain the above effects, it is preferable to add Nb and Ti to 0.001% or more and V to 0.002% or more, respectively. However, if Nb and Ti are added in excess of 0.1% and V is added in excess of 0.2%, the toughness is lowered. Therefore, Nb, Ti and V are preferably added in the above ranges.
  • Mg 0.0002 to 0.01% Mg not only contributes to improving the toughness of the weld heat-affected zone, but also has an effect of increasing the corrosion resistance by being present in rust generated by corrosion of steel. These effects of Mg cannot be sufficiently obtained when the addition amount is less than 0.0002%. On the other hand, if the addition amount exceeds 0.01%, the toughness is deteriorated, so the Mg amount is in the range of 0.0002 to 0.01%.
  • Ca 0.0002 to 0.01%
  • REM 0.0002 to 0.015%
  • Both Ca and REM are effective in improving the toughness of the weld heat-affected zone, and can be added as necessary.
  • the above effect can be obtained with addition of Ca: 0.0002% or more, REM: 0.0002% or more, but if Ca exceeds 0.01% and REM exceeds 0.015%, it causes a decrease in toughness.
  • Ca and REM are preferably added within the above ranges.
  • the various corrosion resistant elements are concentrated in the rust layer on the steel material surface formed in the corrosive environment of the tanker tank bottom plate and top plate. It suppresses the diffusion of various corrosion factors and reduces the corrosion rate of steel materials.
  • dislocations derived from the manufacturing process cannot be avoided.
  • these dislocations are thermodynamically unstable, they function as anode sites in which iron dissolves in a corrosive environment.
  • the rust layer formed on the surface of the corrosion-resistant steel has protective properties and has the effect of reducing the corrosion rate of the steel material, its function is not perfect, and changes depending on the density of dislocations on the steel material surface under the rust layer . That is, the allowable dislocation density of the steel material varies depending on the degree of protection of the rust layer formed on the steel material surface.
  • [% M] means the content (mass%) of M element in steel materials.
  • the horizontal axis shows ⁇ 10 20 ⁇ [% W] ⁇ [% Nd] ⁇ / ⁇ 5 ⁇ ([% Al] ⁇ 0.01) ⁇ or ⁇ 10 20 ⁇ [% W] ⁇ [ % Nd] +10 15 ⁇ ([% Cu] + [% Ni] + [% Mo] + 3 ⁇ [% Sn] + 3 ⁇ [% Sb]) ⁇ / ⁇ 5 ⁇ ([% Al] ⁇ 0.01) ⁇
  • the measured dislocation density of each steel material is plotted on the vertical axis.
  • indicates a case where the predicted amount of wear after 25 years when the method described in the examples is used in the dew condensation test is 2 mm or less, and ⁇ indicates a case where it exceeds 2 mm.
  • FIGS. 1 and 2 it was found that only when the dislocation density of the steel material satisfies the above formula (1) or (2), the target performance is satisfied in the dew condensation test. Furthermore, it was confirmed that the upper limit of the allowable dislocation density increases as the addition amount of Mo, Sn, Cu, Ni and Sb effective for the formation of protective rust increases.
  • FIG. 3 and FIG. 4 are the results in the acid resistance test.
  • indicates the case where the corrosion rate determined by the method described in the examples is 1.0 mm / y or less, and ⁇ indicates the case where it exceeds 1.0 mm / y.
  • FIGS. 3 and 4 it was found that only when the dislocation density of the steel material satisfies the above expression (1) or (2), the target performance is satisfied in the acid resistance test.
  • the steel material of the present invention is obtained by melting the steel adjusted to the above-mentioned preferred component composition using a known refining process such as a converter, electric furnace, vacuum degassing, etc., and continuously casting or ingot-bundling rolling
  • a steel material (slab) is obtained, and then the material is reheated and then hot-rolled to obtain a thick steel plate, a thin steel plate, a shaped steel, or the like.
  • the reheating temperature before hot rolling is preferably 900 to 1200 ° C. If the heating temperature is less than 900 ° C, the deformation resistance is large and it is difficult to perform hot rolling.On the other hand, if the heating temperature exceeds 1200 ° C, the austenite grains are coarsened and the toughness is reduced. This is because the above becomes remarkable and the yield decreases.
  • a more preferable heating temperature is in the range of 1000 to 1150 ° C.
  • the finish rolling finishing temperature is preferably 700 ° C. or higher. If the finish rolling finish temperature is less than 700 ° C, the deformation resistance of the steel increases, the rolling load increases and rolling becomes difficult, or there is a waiting time until the rolled material reaches a predetermined rolling temperature. Efficiency decreases. In addition, by performing finish rolling at a temperature significantly below the Ar 3 transformation point, the dislocation density of the steel material is increased, and the corrosion resistance is deteriorated.
  • the steel material after hot rolling may be cooled by either air cooling or accelerated cooling, but accelerated cooling is preferable when higher strength is desired.
  • accelerated cooling it is preferable that the cooling rate is 2 to 80 ° C./s and the cooling stop temperature is 650 to 400 ° C. If the cooling rate is less than 2 ° C / s and the cooling stop temperature exceeds 650 ° C, the effect of accelerated cooling is small and sufficient strength cannot be achieved, while the cooling rate exceeds 80 ° C / s and the cooling stop temperature is 400
  • the temperature is lower than 0 ° C., the toughness of the obtained steel material is lowered and the shape of the steel material is not only distorted, but also the dislocation density of the steel material is increased and the corrosion resistance is lowered.
  • This corrosion test apparatus includes a corrosion test tank 2 and a temperature control plate 3. Water 6 having a temperature maintained at 30 ° C. is injected into the corrosion test tank 2, and 13 vol% CO 2 , 4 vol% O 2 , 0.01 vol are introduced into the water 6 through the introduction gas pipe 4. A mixed gas consisting of% SO 2 , 0.05 vol% H 2 S and the balance N 2 is introduced to fill the corrosion test tank 2 with supersaturated steam, and the corrosive environment of the upper deck of the crude oil tank is reproduced. And the corrosion test piece 1 is set on the upper and lower surfaces of this test tank, and 25 ° C. ⁇ 1.5 hours + 50 ° C.
  • the corrosion amount is 2 mm or less, the overall corrosion resistance is good ( ⁇ ), and when it exceeds 2 mm Evaluated that the overall corrosion resistance was poor (x).
  • the test solution was preheated and maintained at 30 ° C. and replaced with a new test solution every 24 hours.
  • the apparatus used for the corrosion test is shown in FIG.
  • This corrosion test apparatus is a dual structure apparatus consisting of a corrosion test tank 8 and a constant temperature bath 9, and the test solution 10 is put in the corrosion test tank 8, and the test piece 7 is suspended and immersed in the teg 11 therein. Has been.
  • the temperature of the test solution 10 is maintained by adjusting the temperature of the water 12 placed in the thermostatic chamber 9.
  • the mass difference before and after the test is obtained, the difference is divided by the total surface area, and the reduction in thickness (corrosion rate on one side) per year is calculated. Asked. As a result, when the corrosion rate was 1.0 mm / y or less, the local corrosion resistance was evaluated as good ( ⁇ ), and when the corrosion rate was higher than 1.0 mm / y, the local corrosion resistance was evaluated as poor ( ⁇ ).
  • represents the X-ray wavelength of 1.789 mm
  • represents the true half-value width of the diffraction peak, and was obtained from the measured half-value width ⁇ m and the unstrained half-value width ⁇ s by the equation (3).
  • a Si powder standard sample was used as the unstrained standard sample ( ⁇ s at the peak position was obtained from interpolation calculation by parabolic approximation).
  • ( ⁇ m 2 - ⁇ s 2 ) 0.5 (3)
  • An approximate curve was drawn for the above three points by the least square method, and strain ⁇ was obtained from the slope as shown in equation (4), and dislocation density ⁇ and its average value were obtained from equation (5).
  • the thick steel plates Nos. 1, 2, and 5 to 36 that satisfy the conditions of the present invention are both in the overall corrosion test simulating the upper deck and the local corrosion test simulating the tanker bottom plate environment. Also showed good corrosion resistance.
  • the thick steel plates No. 3, 4, and 37 that do not satisfy the conditions of the present invention could not obtain good results in any of the corrosion resistance tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

鋼材の成分組成を、質量%で、C:0.03~0.18%、Si:0.03~1.50%、Mn:0.1~2.0%、P:0.025%以下、S:0.010%以下、Al:0.015~0.049%、N:0.008%以下、W:0.005~0.5%およびNd: 0.0001~0.010%を含有し、残部がFeおよび不可避的不純物からなる組成にすると共に、鋼材の転位密度αを次式(1)を満たす範囲とすることにより、タンカー油槽部等の原油タンクの上板における耐全面腐食性ならびに原油タンクの底板における耐局部腐食性の両者に優れる原油タンク用鋼材とする。 α(/m2)≦{1020×[%W]×[%Nd]}/{5×([%Al]-0.01)} ・・・(1) 但し、[%M]は鋼材中におけるM元素の含有量(質量%)

Description

耐食性に優れる原油タンク用鋼材および原油タンク
 本発明は、鋼材を溶接して形成される原油タンカーの油槽や原油を輸送あるいは貯蔵するためのタンク(以下、「原油タンク」と総称する)に関するものであり、具体的には、原油タンクの天井部や側壁部に発生する全面腐食および原油タンクの底部に発生する局部腐食を軽減した原油タンク用鋼材と、その鋼材から構成される原油タンクに関するものである。
 なお、本発明の原油タンク用鋼材には、厚鋼板、薄鋼板および形鋼が含まれる。
 タンカーの原油タンクの内面、特に上甲板裏面および側壁上部に用いられている鋼材には、全面腐食が生じることが知られている。この全面腐食が起こる原因としては、
(1) 昼夜の温度差による鋼板表面への結露と乾燥(乾湿)の繰り返し、
(2) 原油タンク内に防爆用に封入されるイナートガス(O2約4vol%、CO2約13vol%、SO2約0.01vol%、残部N2を代表組成とするボイラあるいはエンジンの排ガス等)中のO2,CO2,SO2の結露水への溶け込み、
(3) 原油から揮発するH2S等腐食性ガスの結露水への溶け込み、
(4) 原油タンクの洗浄に使用された海水の残留
などが挙げられる。
 これらは、通常、2.5年毎に行われる実船のドック検査で、強酸性の結露水中に、硫酸イオンや塩化物イオンが検出されていることからも窺い知ることができる。
 また、腐食によって生成した鉄錆を触媒としてH2Sが酸化されると、固体Sが鉄錆中に層状に生成するが、これらの腐食生成物は、容易に剥離して脱落し、原油タンクの底部に堆積する。そのため、ドック検査では、多大な費用をかけて、タンク上部の補修やタンク底部の堆積物の回収が行われているのが現状である。
 一方、タンカーの原油タンク等の底板として用いられる鋼材には、従来、原油そのものの腐食抑制作用や原油タンク内面に形成される原油由来の保護性コート(オイルコート)の腐食抑制作用により、腐食は生じないものと考えられていた。しかしながら、最近の研究によって、タンク底板の鋼材には、お椀型の局部腐食(孔食)が発生することが明らかになった。
 かような局部腐食が起こる原因としては、
(1) 塩化ナトリウムを代表とする塩類が高濃度に溶解した凝集水の存在、
(2) 過剰な洗浄によるオイルコートの離脱、
(3) 原油中に含まれる硫化物の高濃度化、
(4) 結露水に溶け込んだ防爆用イナートガス中のO2、CO2、SO2等の高濃度化、
などが挙げられる。
 実際、実船のドック検査時に、原油タンク内に滞留した水を分析した結果では、高濃度の塩化物イオンと硫酸イオンが検出されている。
 ところで、上記したような全面腐食や局部腐食を防止する最も有効な方法は、鋼材表面に重塗装を施し、鋼材を腐食環境から遮断することである。しかしながら、原油タンクの塗装作業は、その塗布面積が膨大であるだけでなく、塗膜の劣化により、約10年に一度は塗り替えが必要となるため、検査や塗装に膨大な費用が発生する。さらに、重塗装した塗膜が損傷を受けた部分は、原油タンクの腐食環境下では、かえって腐食が助長されることが指摘されている。
 上記のような腐食問題に対しては、鋼材自体の耐食性を改善して、原油タンクの腐食環境下における耐食性を改善する技術が幾つか提案されている。
 例えば、特許文献1には、塗装や電気防食を施さなくても、塩分を含む恒温多湿に曝される環境下や硫黄分を含む環境下における耐食性が高められ、かつ靭性にも優れた船舶用鋼材を提供することを目的して、C:0.01~0.30%、Si:0.01~2.0%、Mn:0.01~2.0%、Al:0.005~0.10%、Bi:0.0005~0.40%、P:0.003~0.050%を含有し、残部:Feおよび不可避不純物であり、下式(1)および(2)を満足する船舶用鋼材に関する技術が開示されている。
  [P]×7+[Bi]< 0.50%     ・・・(1)
   0.050 ≦[P]/[Bi]≦ 5.0    ・・・(2)
 また、特許文献2には、原油タンカーのタンク上甲板用またはバラ積み船の船倉用鋼材であって、硫黄や硫黄酸化物、硫化物等の硫黄含有物質が存在する過酷な腐食環境に曝された場合であっても、優れた耐食性を発現し、かつ溶接性や熱間加工性が通常の船舶用鋼材と同等以上である鋼材を提供することを目的として、C:0.01~0.30%、Si:0.20~1.0%、Mn:0.50~1.60%、P:0.005~0.040%、S:0.005~0.020%、Al:0.050~0.100%、Cu:0.20~1.0%、Ni:0.03%以下(0%を含む)、Cr:0.05~0.30%、Zn:0.001~0.50%、Sn:0.005~0.050%およびCa:0.0005~0.0050%を満たし、残部がFeおよび不可避不純物からなることを特徴とする技術が開示されている。
特開2007-197763号公報 特開2013-028830号公報
 海洋環境を保全し、かつ原油タンカーを安全に運航させるためには、原油タンクから原油が漏洩しないように管理することが重要であり、特に原油タンクにおいては腐食による貫通孔の発生を防止しなければならない。そのため、2.5年毎のドック入りの際に原油タンクの底板の腐食状況を調査し、深さ4mm超の孔食については補修を施すことになっている。
 かような現状に鑑み、原油タンカーの維持管理費を削減すべく、深さ4mm超の孔食発生を抑制する手段の一つとしてタンカーへの耐食鋼の適用が提案されてきた。
 しかしながら、特許文献1に記載された技術では、タンカー底板および溶接継手に発生する局部腐食(孔食)を、2.5年間で4mm以下に抑制することは困難である。というのは、近年における実船の腐食調査では、タンカー底板および溶接部に発生する孔食内部の溶液のpHは1.0以下であることが判明している。一般に、酸性液中における鋼材腐食は、水素還元反応に律速されており、pHの低下と共に飛躍的に腐食速度が大きくなることはよく知られている。従って、上記特許文献1の実施例に記載されているような塩水を噴霧し乾湿繰り返し試験を行う中性域での複合サイクル試験では、実船における腐食環境を十分に反映しているとは言えないからである。
 また、特許文献2に記載の鋼材では、タンカー上板に発生する全面腐食の抑止について、満足できる効果を得ることができない。というのは、実際の原油タンカーの耐用年数が25年であること、タンカー上板の設計腐食代が片面2mm程度であることから、上板に適用する耐食鋼の腐食速度は0.08mm/y以下が求められるが、特許文献2記載の発明例中、最も腐食速度の低い場合でも0.11mm/y程度にすぎないからである。特に、タンカー上板に溶接されているロンジについては、両面がタンカー内部の腐食環境に曝されるので、0.1mm/y超の腐食速度を有する耐食鋼を適用した場合には、補修が必要となることから、特許文献2に記載された技術では塗装の省略化は望むべくもない。
 本発明は、上記の現状に鑑み開発されたもので、タンカー油槽部等の原油タンクの上板における耐全面腐食性ならびに原油タンクの底板における耐局部腐食性の両者に優れる原油タンク用鋼材を、かかる鋼材から構成される原油タンクと共に提供することを目的とする。
 さて、発明者らは、上記課題の解決に向けて鋭意研究を重ねた。
 その結果、鋼の成分組成、特にWとNdを適正量範囲に厳密に管理し、かつ鋼の転位密度を厳密に制御することによって、上記した全面腐食や局部腐食を著しく軽減できるとの知見を得た。
 本発明は、上記の知見に立脚するものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
  C:0.03~0.18%、
  Si:0.03~1.50%、
  Mn:0.1~2.0%、
  P:0.025%以下、
  S:0.010%以下、
  Al:0.015~0.049%、
  N:0.008%以下、
  W:0.005~0.5%および
  Nd: 0.00002~0.010%
を含有し、残部がFeおよび不可避的不純物からなる鋼材であって、該鋼材の転位密度αが次式(1)を満たす耐食性に優れる原油タンク用鋼材。
 α(/m2)≦{1020×[%W]×[%Nd]}/{5×([%Al]-0.01)}・・・(1)
 但し、[%M]は鋼材中におけるM元素の含有量(質量%)
2.前記鋼材が、質量%でさらに、
  Cu:0.05~0.4%、
  Ni:0.005~0.4%、
  Mo:0.005~0.5%、
  Sn:0.005~0.4%および
  Sb:0.005~0.4%
のうちから選ばれる1種または2種以上を含有し、かつ鋼材の転位密度βが次式(2)を満たす前記1に記載の耐食性に優れる原油タンク用鋼材。
 β(/m2)≦{1020×[%W]×[%Nd]+1015×([%Cu]+[%Ni]+[%Mo]+3×[%Sn]+3×[%Sb])}/{5×([%Al]-0.01)}    ・・・(2)
 但し、[%M]は鋼材中におけるM元素の含有量(質量%)
3.前記鋼材が、質量%でさらに、
  Cr:0.01~0.2%、
  Nb:0.001~0.1%、
  Ti:0.001~0.1%、
  V:0.002~0.2%、
  Mg:0.0002~0.01%、
  Ca:0.0002~0.01%および
  REM:0.0002~0.015%
のうちから選ばれる1種または2種以上を含有する前記1または2に記載の耐食性に優れる原油タンク用鋼材。
4.前記1~3のいずれかに記載の原油タンク用鋼材で構成される原油タンク。
 本発明によれば、原油タンカーの油槽や原油を輸送あるいは貯蔵するタンク等に発生する全面腐食や局部腐食を効果的に抑制することができ、産業上極めて有用である。
結露試験における、鋼材の{1020×[%W]×[%Nd]}/{5×([%Al]-0.01)}の値と転位密度との関係を示した図である。 結露試験における、鋼材の{1020×[%W]×[%Nd]+1015×([%Cu]+[%Ni]+[%Mo]+3×[%Sn]+3×[%Sb])}/{5×([%Al]-0.01)}の値と転位密度との関係を示した図である。 耐酸試験における、鋼材の{1020×[%W]×[%Nd]}/{5×([%Al]-0.01)}の値と転位密度との関係を示した図である。 耐酸試験における、鋼材の{1020×[%W]×[%Nd]+1015×([%Cu]+[%Ni]+[%Mo]+3×[%Sn]+3×[%Sb])}/{5×([%Al]-0.01)}の値と転位密度との関係を示した図である。 本発明の実施例で、全面腐食試験に用いた試験装置を説明する図である。 本発明の実施例で、孔食試験に用いた試験装置を説明する図である。
 以下、本発明を具体的に説明する。
 まず、本発明の原油タンク用鋼材の成分組成を前記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.03~0.18%
 Cは、鋼の強度を高める元素であり、本発明では、所望の強度(490~620MPa)を確保するために0.03%以上添加する。しかしながら、0.18%を超えるC添加は、溶接性および溶接熱影響部の靭性を低下させる。よって、C量は0.03~0.18%の範囲とする。好ましくは0.06~0.16%の範囲である。
Si:0.03~1.50%
 Siは、脱酸剤として添加される元素であるが、鋼の強度を高めるのに有効な元素でもある。そこで、本発明では、所望の強度を確保するためにSiを0.03%以上添加する。しかしながら、1.50%を超えるSi添加は、鋼の靭性を低下させる。よって、Si量は0.03~1.50%の範囲とする。好ましくは0.05~0.40%の範囲である。
Mn:0.1~2.0%
 Mnは、鋼の強度を高める元素であり、本発明では、所望の強度を得るために0.1%以上添加する。しかしながら、2.0%を超えるMn添加は、鋼の靭性および溶接性を低下させる。よって、Mn量は0.1~2.0%の範囲とする。好ましくは0.80~1.60%の範囲である。
P:0.025%以下
 Pは、粒界に偏析して鋼の靭性を低下させる有害な元素であるので、極力低減させることが望ましい。特に、Pが0.025%を超えて含有されると、靭性が大きく低下する。また、Pが0.025%を超えて含有されると、タンク油槽内の耐食性にも悪影響を及ぼす。よって、P量は0.025%以下とする。好ましくは0.015%以下である。
S:0.010%以下
 Sは、非金属介在物であるMnSを形成して局部腐食の起点となり、耐局部腐食性を低下させる有害な元素であるので、極力低減させることが望ましい。特に、Sが0.010%を超えて含有されると、耐局部腐食性の顕著な低下を招く。よって、S量は0.010%以下とする。好ましくは0.005%以下である。
Al:0.015~0.049%
 Alは、脱酸剤として添加される元素であり、本発明では0.015%以上添加する。しかしながら、0.049%を超えてAlを添加すると、鋼の靭性が低下するだけでなく、鋼材表面に形成されたアルミ酸化物が酸中で優先的に溶解して耐食性も低下するので、Al量の上限は0.049%とする。
N:0.008%以下
 Nは、靭性を低下させる有害な元素であるので、極力低減させることが望ましい。特に、Nが0.008%を超えて含有されると、靭性の低下が大きくなるので、N量の上限は0.008%とする。
W:0.005~0.5%
 Wは、タンカー油槽部底板における孔食を抑制するだけでなく、タンカー上甲板部の全面腐食も抑制することができ、耐食性を向上させる上で極めて有効な元素である。このWの効果は0.005%以上の添加で発現するが、0.5%を超えるとその効果は飽和に達する。よって、W量は0.005~0.5%の範囲とする。好ましくは0.01~0.3%、より好ましくは0.02~0.2%の範囲である。
 なお、Wが上記のような耐食性向上効果を有する理由は、鋼板が腐食するのに伴って生成する錆中にWO4 2-が生成し、このWO4 2-の存在によって、塩化物イオンや硫酸イオンが鋼板表面に侵入するのが抑制されるからである。また、WO4 2-の鋼材表面への吸着によるインヒビター作用によっても、鋼材の腐食が抑制されると考えられる。
Nd:0.00002~0.010%
 Ndは、タンカー油槽部上板において、結露によって鋼材表面に形成される水膜中に溶解する原油由来の硫化水素と反応して二硫化ネオジムや三硫化二ネオジムを形成し、鋼材表面に形成された錆層の保護性を補強する効果を有する。また、Ndは、大入熱溶接時に生成する酸化ネオジムが熱影響部の組織の粗大化を阻止するので、溶接継手の低温における靱性を確保する上で極めて有効な元素である。これらのNdの効果は、0.00002%以上の添加で発現するが、0.010%を超えるとその効果が飽和に達する。したがって、Nd量は0.00002~0.010%の範囲とした。好ましくは0.0001~0.005%、より好ましくは0.0002~0.002%の範囲である。なお、上記耐食性に及ぼすNdの効果は、Wと併用した場合にその効果が著しく発現するため、本発明では、耐食性元素としてWとNdを所定量の範囲で併用することが特に重要である。
 以上、基本成分について説明したが、本発明では、上記した成分の他、次に述べる元素を適宜含有させることができる。
Cu:0.05~0.4%
 Cuは、鋼の強度を高めるだけでなく、鋼の腐食によって生成した錆中に存在し、腐食を促進させるCl-イオンの拡散を抑制することにより、耐食性を高める効果がある。これらのCuの効果は、0.05%未満の添加では十分に得られず、一方0.4%を超えて添加すると耐食性の向上効果が飽和する他、熱間加工時に表面割れなどの問題を引き起こすおそれがある。よって、Cu量は0.05~0.4%の範囲とする。好ましくは0.06~0.35%の範囲である。
 Ni:0.005~0.4%
 Niは、生成した錆粒子を微細化して、裸状態での耐食性およびジンクプライマーにエポキシ系塗装が施された状態での耐食性を向上させる効果を有する。従って、Niは、耐食性をより向上させたい場合に添加する。上記のNiの効果は、0.005%以上の添加で発現する。一方、0.4%超えてNiを添加してもその効果は飽和する。よって、Niは0.005~0.4%の範囲で添加するのが好ましい。より好ましくは0.08~0.35%の範囲である。
Mo:0.005~0.5%
 Moは、タンカー油槽部底板における孔食を抑制するだけでなく、タンカー上甲板部の全面腐食も抑制することができる、耐食性向上に有効な元素である。このMoの効果は0.005%以上の添加で発現するが、0.5%を超えるとその効果は飽和に達する。よって、Mo量は0.005~0.5%の範囲とすることが好ましい。より好ましくは0.01~0.3%の範囲、さらに好ましくは0.02~0.2%の範囲である。
 なお、Moが上記のような耐食性向上効果を有する理由は、鋼板が腐食するのに伴って生成する錆中にMoO4 2-が生成し、このWO4 2-の存在によって、塩化物イオンや硫酸イオンが鋼板表面に侵入するのが抑制されるからである。また、MoO4 2-の鋼材表面への吸着によるインヒビター作用によっても、鋼材の腐食が抑制されると考えられる。
Sn:0.005~0.4%
 Snは、腐食時に錆層中に取り込まれ、緻密な錆層を形成することにより、鋼材の局部腐食および全面腐食の抑制に寄与する有用元素である。このSnの効果は、0.005%以上の添加で発現するが、0.4%を超えて添加した場合には低温靭性が低下するだけでなく、溶接時に欠陥の発生を招く。従って、Sn量は0.005~0.4%の範囲とする。好ましくは0.01~0.2%の範囲、より好ましくは0.01~0.1%の範囲である。
Sb:0.005~0.4%
 Sbは、タンカー油槽部底板における孔食を抑制するだけでなく、タンカー上甲板部における全面腐食を抑制する効果がある。上記のSbの効果は、0.005%以上の添加で発現するが、0.4%を超えて添加してもその効果は飽和する。よって、Sb量は0.005~0.4%の範囲とする。
Cr:0.01~0.2%
 Crは、黒皮ままあるいはブラスト処理を施した状態で使用する鋼材に添加した場合は、タンク内の環境においては、耐食性向上に対して格段の効果は無い。しかしながら、Zn含有プライマーを鋼材表面に塗布したときには、Feを中心としたCrやZnの複合酸化物を形成して、長期間にわたり鋼板表面にZnを存続させることができ、これにより飛躍的に耐食性を向上させることができる。上記のCrの効果は、特にタンカー油槽の底板部のように、原油油分から分離された高濃度の塩分を含む液と接触する部分において顕著であり、Crを含有した上記部分の鋼材にZn含有プライマー処理を施すことにより、Crを含有しない鋼材と比較して、格段に耐食性を向上させることができる。このCrの効果は、0.01%未満では十分ではなく、一方0.2%を超えると溶接部の靭性を劣化させる。よって、Cr量は0.01~0.2%の範囲とする。好ましくは0.05~0.2%の範囲である。
Nb:0.001~0.1%、Ti:0.001~0.1%、V:0.002~0.2%
 Nb,TiおよびVはいずれも、鋼材強度を高める元素であり、必要とする強度に応じて適宜選択して添加することができる。上記の効果を得るためには、Nb,Tiはそれぞれ0.001%以上、Vは0.002%以上添加するのが好ましい。しかしながら、Nb,Tiはそれぞれ0.1%を超えて、Vは0.2%を超えて添加すると、靭性が低下するため、Nb,TiおよびVはそれぞれ上記の範囲で添加するのが好ましい。
Mg:0.0002~0.01%
 Mgは、溶接熱影響部の靭性向上に寄与するだけでなく、鋼の腐食によって生成した錆中に存在して耐食性を高める効果がある。これらのMgの効果は、添加量が0.0002%未満では十分に得られず、一方0.01%を超えて添加すると、かえって靱性の低下を招くので、Mg量は0.0002~0.01%の範囲とする。
Ca:0.0002~0.01%、REM:0.0002~0.015%
 CaおよびREMはいずれも、溶接熱影響部の靭性向上に効果があり、必要に応じて添加することができる。上記の効果は、Ca:0.0002%以上、REM:0.0002%以上の添加で得られるが、Caは0.01%を超えて、またREMは0.015%を超えて添加すると、かえって靭性の低下を招くので、CaおよびREMはそれぞれ上記の範囲で添加するのが好ましい。
 次に、本発明で規定した鋼材の転位密度について説明する。
 本発明の耐食鋼は、上記したように各種耐食性元素を所定量鋼材に添加することにより、タンカー油槽部底板および上板における腐食環境において形成された鋼材表面の錆層に各種耐食性元素が濃縮し、各種腐食因子の拡散を抑制して、鋼材の腐食速度を減じるものである。
 一方、鋼材には、その製造過程に由来する転位の形成を避けることができないが、この転位は熱力学的に不安定であるため、腐食環境においては鉄が溶解するアノードサイトとして機能する。耐食鋼の表面に形成された錆層は保護性を有し、鋼材の腐食速度を減じる効果があるものの、その機能は完全なものではなく、錆層下の鋼材表面における転位の密度によって変化する。すなわち、鋼材表面に形成された錆層の有する保護性の度合いに応じて許容される鋼材の転位密度は異なる。
 そこで、発明者らは、錆層の保護性と転位密度との関係について調査した。
 その結果、耐食性元素として所定量のWとNdを有する鋼材においては、次式(1)の右辺で規定される値より低い転位密度αを有する場合に、原油タンカーのタンク内の環境において良好な耐食性が得られることが明らかになった。
 α(/m2)≦{1020×[%W]×[%Nd]}/{5×([%Al]-0.01)}・・・(1)
 但し、[%M]は鋼材中におけるM元素の含有量(質量%)
 さらに、耐食性元素として、Cu、Ni、Mo、SnおよびSbの1種または2種以上を所定量含有する場合には、これらの耐食性元素の効果により、表面に形成される錆層の保護性がさらに向上するため、耐食性の観点から許容される転位密度βの上限が次式(2)の右辺で規定される値まで緩和できることが明らかになった。
 β(/m2)≦{1020×[%W]×[%Nd]+1015×([%Cu]+[%Ni]+[%Mo]+3×[%Sn]+3×[%Sb])}/5×([%Al]-0.01)}    ・・・(2)
 但し、[%M]は鋼材中におけるM元素の含有量(質量%)を意味する。
 以下に、錆層の保護性と転位密度の関係を見出した経緯を説明する。
 表1に示す成分組成の鋼材を、表2に記載の条件で圧延した。その後、転位密度を制御する目的で、一部の試験片に予歪を1%,3%,5%,7%付与した後に、後述する実施例に記載の寸法の腐食試験片を各25枚採取した。なお、予歪が大きくなるほど、鋼種に拠らず転位密度が増大する。これらの試験片を、実施例に記載の上甲板裏を模擬した全面腐食試験(結露試験)とタンカー底板環境を模擬した局部耐食試験(耐酸試験)にそれぞれ供した。何れの試験も実施例に記載の基準で評価した後、試験片の一部を切り出し、実施例に記載の方法で鋼材表面の転位密度を測定した。得られた結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図1および2は、横軸に各鋼材の{1020×[%W]×[%Nd]}/{5×([%Al]-0.01)}あるいは{1020×[%W]×[%Nd]+1015×([%Cu]+[%Ni]+[%Mo]+3×[%Sn]+3×[%Sb])}/{5×([%Al]-0.01)}の値をとり、縦軸にそれぞれの鋼材の測定した転位密度をプロットしたものである。図中の●は、結露試験において、実施例に記載の手法を用いた際の予測される25年後の予測損耗量が2mm以下の場合を、×は2mm超の場合をそれぞれ示す。
 図1および2に示したとおり、鋼材の転位密度が上記(1)式あるいは(2)式を満たす場合のみ、結露試験において目的とする性能を満たすことが明らかになった。さらに、保護性錆の形成に有効なMo,Sn,Cu,NiおよびSbの添加量が増大するほど、許容される転位密度の上限が増大することが確かめられた。
 同様に、図3および図4は、耐酸試験の場合の結果である。図中の●は実施例に記載の方法で求めた腐食速度が1.0mm/y以下の場合を、×は1.0mm/y超の場合を示す。
 図3および4に示したとおり、鋼材の転位密度が上記(1)式あるいは(2)式を満たす場合のみ、耐酸試験において目的とする性能を満たすことが明らかになった。
 次に、本発明の原油タンク用鋼材の好適製造方法について説明する。
 本発明の鋼材は、上記した好適成分組成に調整した鋼を、転炉や電気炉、真空脱ガス等、公知の精錬プロセスを用いて溶製し、連続鋳造法あるいは造塊-分塊圧延法により鋼素材(スラブ)とし、ついでこの素材を再加熱してから熱間圧延することにより、厚鋼板、薄鋼板および形鋼等とすることができる。
 ここに、熱間圧延前の再加熱温度は、900~1200℃の温度とするのが好ましい。加熱温度が900℃に満たないと変形抵抗が大きく、熱間圧延することが難しくなり、一方加熱温度が1200℃を超えると、オーステナイト粒が粗大化して靭性の低下を招く他、酸化によるスケールロスが顕著となって歩留りが低下するからである。より好ましい加熱温度は1000~1150℃の範囲である。
 また、熱間圧延で所望の形状、寸法の鋼材に圧延するに当たっては、仕上圧延終了温度は700℃以上とするのが好ましい。仕上圧延終了温度が700℃未満では、鋼の変形抵抗が大きくなり、圧延負荷が増大して圧延が困難になったり、圧延材が所定の圧延温度に達するまでの待ち時間が発生するため、圧延能率が低下する。また、Ar3変態点を大きく下回る温度で仕上圧延を行うことにより、鋼材の転位密度が増加し、耐食性の劣化を招く。
 熱間圧延後の鋼材の冷却は、空冷、加速冷却のいずれの方法でもよいが、より高強度を得たい場合には、加速冷却を行うことが好ましい。なお、加速冷却を行う場合には、冷却速度を2~80℃/s、冷却停止温度を650~400℃とするのが好ましい。冷却速度が2℃/s未満、冷却停止温度が650℃超えでは、加速冷却の効果が小さく、十分な高強度化が達成されず、一方冷却速度が80℃/s超え、冷却停止温度が400℃未満では、得られる鋼材の靭性が低下したり、鋼材の形状に歪が発生するだけでなく、鋼材の転位密度が増大し、耐食性が低下するからである。
 表3にNo.1~37で示した種々の成分組成になる鋼を、真空溶解炉で溶製して鋼塊とするか、または転炉で溶製して連続鋳造により鋼スラブとし、これらを1150℃に再加熱後、表4に示す仕上圧延終了温度で熱間圧延を施して板厚:25mmの厚鋼板とした後に、水冷速度:10℃/sで表4に示す冷却停止温度まで冷却した。
 かくして得られたNo.1~37の厚鋼板について、結露試験および耐酸試験を行って、その耐食性を評価した。併せて鋼材の転位密度も測定した。
 すなわち、以下の要領で、上甲板裏を模擬した全面腐食試験(結露試験)とタンカー底板環境を模擬した局部耐食試験(耐酸試験)をそれぞれ行った。
(1) タンカー上甲板環境を模擬した全面腐食試験(結露試験)
 タンカー上甲板裏面における全面腐食に対する耐食性を評価するため、上記No.1~37の厚鋼板それぞれについて、表面1mmの位置から、幅25mm×長さ60mm×厚さ5mmの矩形の小片を設定試験期間(21日間、49日間、77日間、98日間)にて5枚となるよう計20枚切り出し、その表面を600番手のエメリー紙で研磨した。ついで、裏面および端面は腐食しないようにテープでシールし、図5に示す腐食試験装置を用いて全面腐食試験を行った。
 この腐食試験装置は、腐食試験槽2と温度制御プレート3とから構成されている。腐食試験槽2には温度が30℃に保持された水6が注入されており、またその水6中には、導入ガス管4を介して、13vol%CO2、4vol%O2、0.01vol%SO2、0.05vol%H2S、残部N2からなる混合ガスを導入して腐食試験槽2内を過飽和の水蒸気で充満し、原油タンク上甲板裏の腐食環境が再現されている。そして、この試験槽の上裏面に腐食試験片1をセットし、この腐食試験片1に対して、ヒーターと冷却装置を内蔵した温度制御プレート3を介して25℃×1.5時間+50℃×22.5時間を1サイクルとする温度変化を21日間、49日間、77日間および98日間繰り返して付与し、試験片1の表面に結露水を生じさせて、全面腐食を起こさせるようにした。図5中、5は試験槽からの排出ガス管を示す。
 上記の腐食試験後、各試験片表面の錆を除去し、試験前後の質量変化から腐食による質量減を求め、この値から板厚減少量に換算した。そして、試験期間の値から25年後の予測損耗量を指数関数を用いた最小二乗法で求め、腐食量が2mm以下の場合には耐全面腐食性が良好(○)、2mm超の場合には耐全面腐食性が不良(×)と評価した。
(2) タンカー油槽部底板環境を模擬した局部腐食試験(耐酸試験)
 タンカー油槽部底板における孔食に対する耐食性を評価するため、上記No.1~37の厚鋼板についてそれぞれ、表面1mmの位置から、幅25mm×長さ60mm×厚さ5mmの矩形の小片を5枚切り出し、その表面を600番手のエメリー紙で研磨した。
 ついで、10%NaCl水溶液を、濃塩酸を用いてClイオン濃度:10%、pH:0.85に調製した試験溶液を作製し、試験片の上部に開けた3mmφの孔にテグスを通して吊るし、各試験片について2Lの試験溶液中に168時間浸漬する腐食試験を行った。なお、試験溶液は、予め30℃に加温・保持し、24時間毎に新しい試験溶液と交換した。
 上記腐食試験に用いた装置を図6に示す。この腐食試験装置は、腐食試験槽8、恒温槽9の二重構造の装置で、腐食試験槽8には上記試験溶液10が入れられ、その中に試験片7がテグス11で吊るされて浸漬されている。試験溶液10の温度は、恒温槽9に入れた水12の温度を調整することで保持している。
 上記の腐食試験後、試験片表面に生成した錆を除去した後、試験前後の質量差を求め、この差を全表面積で割り戻し、1年当たりの板厚減少量(片面の腐食速度)を求めた。その結果、腐食速度が1.0mm/y以下の場合を耐局部腐食性が良好(○)、腐食速度が1.0mm/y超の場合を耐局部腐食性が不良(×)と評価した。
(3) 鋼材の転位密度の測定
 耐酸試験および98日間結露試験を行った後のNo.1~37の試験片から、それぞれ20×20×5mmtの試験片を切り出し、元の鋼材の表面1mm側の面を測定面とした。X線回折測定装置を用いて、鋼材の(110)、(211)および(220)面の回折ピークを測定し、それぞれの回折角2θと半価幅βmを各試験片についてそれぞれ求めた。
 横軸にsinθ/λ、縦軸にβcosθ/λをとり、上記の各結晶面の測定結果をプロットした。
 ただし、λはX線波長1.789Å、βは真の回折ピーク半価幅をそれぞれ示し、実測半価幅βmおよび無歪半価幅βsから(3)式により求めた。
 なお,無歪標準試料としてSi粉末標準試料を使用した(ピーク位置でのβsは放物線近似による補間計算から求めた)。
 β =(βm2-βs20.5      ・・・(3)
 上記のプロット3点に対し最小二乗法により近似曲線を引き、(4)式に示すようにその傾きから歪εを求め、(5)式より転位密度ρとその平均値を求めた。
 β・cosθ/λ = 0.9 /D + 2ε・sinθ/λ   ・・・(4)
 ρ = 14.4 ε2 / b2              ・・・(5)
 ただし、bはバーガースベクトル 0.25nm、
     Dは結晶子サイズを表す。
 得られた結果を、表4に併記する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4に示したとおり、本発明の条件を満たす厚鋼板No.1、2、5~36はいずれも、上甲板裏を模擬した全面腐食試験およびタンカー底板環境を模擬した局部腐食試験のいずれにおいても良好な耐食性を示した。
 これに対し、本発明の条件を満たさない厚鋼板No.3、4、37は、いずれの耐食性試験においても良好な結果を得ることができなかった。
 1,7 腐食試験片
 2,8 腐食試験槽
 3 温度制御プレート
 4 導入ガス管
 5 排出ガス管
 6,12 水
 9 恒温槽
 10 試験溶液
 11 テグス

Claims (4)

  1.  質量%で、
      C:0.03~0.18%、
      Si:0.03~1.50%、
      Mn:0.1~2.0%、
      P:0.025%以下、
      S:0.010%以下、
      Al:0.015~0.049%、
      N:0.008%以下、
      W:0.005~0.5%および
      Nd: 0.00002~0.010%
    を含有し、残部がFeおよび不可避的不純物からなる鋼材であって、該鋼材の転位密度αが次式(1)を満たす耐食性に優れる原油タンク用鋼材。
     α(/m2)≦{1020×[%W]×[%Nd]}/{5×([%Al]-0.01)}    ・・・(1)
     但し、[%M]は鋼材中におけるM元素の含有量(質量%)
  2.  前記鋼材が、質量%でさらに、
      Cu:0.05~0.4%、
      Ni:0.005~0.4%、
      Mo:0.005~0.5%、
      Sn:0.005~0.4%および
      Sb:0.005~0.4%
    のうちから選ばれる1種または2種以上を含有し、かつ鋼材の転位密度βが次式(2)を満たす請求項1に記載の耐食性に優れる原油タンク用鋼材。
     β(/m2)≦{1020×[%W]×[%Nd]+1015×([%Cu]+[%Ni]+[%Mo]+3×[%Sn]+3×[%Sb])}/{5×([%Al]-0.01)}    ・・・(2)
     但し、[%M]は鋼材中におけるM元素の含有量(質量%)
  3.  前記鋼材が、質量%でさらに、
      Cr:0.01~0.2%、
      Nb:0.001~0.1%、
      Ti:0.001~0.1%、
      V:0.002~0.2%、
      Mg:0.0002~0.01%、
      Ca:0.0002~0.01%および
      REM:0.0002~0.015%
    のうちから選ばれる1種または2種以上を含有する請求項1または2に記載の耐食性に優れる原油タンク用鋼材。
  4.  請求項1~3のいずれかに記載の原油タンク用鋼材で構成される原油タンク。
     
PCT/JP2016/005011 2015-12-09 2016-11-29 耐食性に優れる原油タンク用鋼材および原油タンク WO2017098700A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017515264A JP6409962B2 (ja) 2015-12-09 2016-11-29 耐食性に優れる原油タンク用鋼材および原油タンク
CN201680071906.XA CN108368578B (zh) 2015-12-09 2016-11-29 耐腐蚀性优异的原油罐用钢材和原油罐
KR1020187016303A KR20180082523A (ko) 2015-12-09 2016-11-29 내식성이 우수한 원유 탱크용 강재 및 원유 탱크
PH12018550078A PH12018550078A1 (en) 2015-12-09 2018-06-05 Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-240520 2015-12-09
JP2015240520 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017098700A1 true WO2017098700A1 (ja) 2017-06-15

Family

ID=59012935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005011 WO2017098700A1 (ja) 2015-12-09 2016-11-29 耐食性に優れる原油タンク用鋼材および原油タンク

Country Status (5)

Country Link
JP (1) JP6409962B2 (ja)
KR (1) KR20180082523A (ja)
CN (1) CN108368578B (ja)
PH (1) PH12018550078A1 (ja)
WO (1) WO2017098700A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063610A (ja) * 2005-08-31 2007-03-15 Jfe Steel Kk 原油タンク用耐食鋼材
JP2012057236A (ja) * 2010-09-13 2012-03-22 Sumitomo Metal Ind Ltd バラストタンク用鋼材
WO2015087531A1 (ja) * 2013-12-12 2015-06-18 Jfeスチール株式会社 原油タンク用鋼材および原油タンク
JP2015113506A (ja) * 2013-12-12 2015-06-22 Jfeスチール株式会社 耐食性に優れる原油タンク用鋼材および原油タンク

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110089205A (ko) * 2009-01-30 2011-08-04 제이에프이 스틸 가부시키가이샤 원유 탱크용 내식 강재와 그 제조 방법 그리고 원유 탱크

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063610A (ja) * 2005-08-31 2007-03-15 Jfe Steel Kk 原油タンク用耐食鋼材
JP2012057236A (ja) * 2010-09-13 2012-03-22 Sumitomo Metal Ind Ltd バラストタンク用鋼材
WO2015087531A1 (ja) * 2013-12-12 2015-06-18 Jfeスチール株式会社 原油タンク用鋼材および原油タンク
JP2015113506A (ja) * 2013-12-12 2015-06-22 Jfeスチール株式会社 耐食性に優れる原油タンク用鋼材および原油タンク

Also Published As

Publication number Publication date
CN108368578A (zh) 2018-08-03
PH12018550078B1 (en) 2019-01-28
CN108368578B (zh) 2020-12-04
KR20180082523A (ko) 2018-07-18
JP6409962B2 (ja) 2018-10-24
JPWO2017098700A1 (ja) 2017-12-07
PH12018550078A1 (en) 2019-01-28

Similar Documents

Publication Publication Date Title
JP4502075B1 (ja) 原油タンカー用耐食鋼材
JP4577158B2 (ja) 原油タンク用耐食鋼材
KR101772812B1 (ko) 강재 및 그 강재의 제조 방법
JP6048385B2 (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP5453840B2 (ja) 耐食性に優れた船舶用鋼材
JP4968395B2 (ja) 耐食性に優れる溶接継手および原油タンク
JP4968394B2 (ja) 耐食性に優れる溶接継手および原油タンク
JP2005023421A (ja) 耐食性に優れた溶接継手を有する原油油槽
JP6064888B2 (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP6149943B2 (ja) 原油タンク用鋼材および原油タンク
JP2014201759A (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP2014201758A (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP2014201755A (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP6409963B2 (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP6409962B2 (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP2012117137A (ja) 耐食性に優れる原油タンク用鋼材、溶接継手および原油タンク
JP2012117138A (ja) 耐食性に優れる原油タンク用鋼材、溶接継手および原油タンク
JP6201376B2 (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP2014201756A (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP2014201757A (ja) 耐食性に優れる原油タンク用鋼材および原油タンク
JP2012117139A (ja) 耐食性に優れる原油タンク用鋼材、溶接継手および原油タンク

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017515264

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12018550078

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20187016303

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016303

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872602

Country of ref document: EP

Kind code of ref document: A1