WO2017098623A1 - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
WO2017098623A1
WO2017098623A1 PCT/JP2015/084609 JP2015084609W WO2017098623A1 WO 2017098623 A1 WO2017098623 A1 WO 2017098623A1 JP 2015084609 W JP2015084609 W JP 2015084609W WO 2017098623 A1 WO2017098623 A1 WO 2017098623A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
spectrum
range bin
value
signal
Prior art date
Application number
PCT/JP2015/084609
Other languages
English (en)
French (fr)
Inventor
論季 小竹
勝治 今城
俊平 亀山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580085101.6A priority Critical patent/CN108369276A/zh
Priority to EP15910239.1A priority patent/EP3388866A4/en
Priority to JP2017554729A priority patent/JP6305662B2/ja
Priority to PCT/JP2015/084609 priority patent/WO2017098623A1/ja
Priority to US15/781,173 priority patent/US10379136B2/en
Publication of WO2017098623A1 publication Critical patent/WO2017098623A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a laser radar device.
  • Patent Document 1 discloses a conventional laser radar device mounted on a platform.
  • the scattered light from the atmospheric aerosol is subjected to Fourier transform for each time to obtain the frequency spectrum of the scattered light for each time. Thereafter, the frequency spectrum for each time is integrated, and the wind speed value in the sight line direction is obtained from the peak value of the integrated frequency spectrum.
  • the fluctuation value is corrected with respect to the wind speed value obtained from the integrated frequency spectrum, and the wind speed value excluding the influence of the fluctuation is obtained.
  • the conventional laser radar apparatus performs the shake correction.
  • the fluctuation value used for the correction is an average value of the fluctuation in the accumulated time.
  • the conventional laser radar device since the conventional laser radar device accumulates the frequency spectrum for each time before correcting the fluctuation value, there is a problem that the peak of the accumulated frequency spectrum spreads.
  • the reason why the peak of the frequency spectrum spreads is that the fluctuation value varies with time, and the peak of the affected frequency spectrum changes with time, so that frequency spectra with different peaks are integrated.
  • the frequency spectrum of the conventional laser radar device is widened, the peak value against noise, that is, SNR (Signal to Noise Ratio) has deteriorated.
  • the laser radar device of the present invention includes an optical oscillator that oscillates laser light, an optical modulator that modulates the laser light oscillated by the optical oscillator, and radiates laser light modulated by the optical modulator to the atmosphere.
  • An optical antenna that receives the scattered light as received light, an optical receiver that performs heterodyne detection of the received light received by the optical antenna, a sensor that detects a fluctuation value of the optical antenna, and an optical receiver that performs heterodyne detection.
  • a signal processor that calculates the spectrum of the received signal, corrects the spectrum using the fluctuation value detected by the sensor, integrates the corrected spectrum, and calculates the speed of the radiation object from the integrated spectrum.
  • FIG. 1 is a block diagram showing an example of the configuration of a laser radar apparatus according to Embodiment 1 of the present invention.
  • This laser radar apparatus includes an optical oscillator 1 (an example of an optical oscillator), an optical coupler 2, an optical modulator 3 (an example of an optical modulator), an optical circulator 4, an optical antenna 5 (an example of an optical antenna), and a scanner 6 (a scanner). 1), a multiplexing coupler 7, an optical receiver 8 (an example of an optical receiver), an analog to digital converter (A / D) converter 9 (an example of an analog-digital converter), a signal processor 10, and a vibration sensor 11 (An example of a sensor) and a display 12 are provided.
  • the optical oscillator 1 is an optical oscillator that oscillates laser light.
  • the optical oscillator 1 is connected to the optical coupler 2 and outputs the oscillated laser light to the optical coupler 2.
  • a semiconductor laser, a solid-state laser, or the like is used for the optical oscillator 1.
  • the optical coupler 2 is an optical coupler that branches the laser light output from the optical oscillator 1 into local light and transmission light.
  • the local light means light passing through a path connecting from the optical coupler 2 to the optical receiver 8 via the multiplexing coupler 7, and the transmission light is connected to the optical antenna 5 from the optical coupler 2 via the optical modulator 3.
  • the optical coupler 2 is connected to the optical oscillator 1, the optical modulator 3, and the multiplexing coupler 7, outputs local light to the multiplexing coupler 7, and outputs transmission light to the optical modulator 3.
  • the optical coupler 2 may be a fused fiber coupler, a filter type coupler using a dielectric multilayer filter, or the like.
  • the optical modulator 3 is a modulator that shifts the frequency of the transmission light output from the optical coupler 2.
  • the optical modulator 3 is connected to the optical coupler 2, the optical circulator 4, the A / D converter 9, and the signal processor 10.
  • the optical modulator 3 performs frequency modulation and intensity modulation on the transmission light, shifts the frequency of the transmission light, and pulses the transmission light. Further, the optical modulator 3 outputs a pulse trigger signal indicating a pulse timing when the transmission light is pulsed to the A / D converter 9 and the signal processor 10.
  • the pulse trigger signal corresponds to, for example, a 5V TTL (Transistor-Transistor-Logic) signal.
  • an AO frequency shifter Acousticst
  • the optical circulator 4 is an optical circulator that separates transmission light modulated by the optical modulator and reception light obtained via the scanner 6 and the optical antenna 5.
  • the received light is aerosol scattered light with respect to the transmitted light.
  • the optical circulator 4 is connected to the optical modulator 3, the optical antenna 5, and the multiplexing coupler 7, outputs transmission light to the optical antenna 5, and outputs reception light to the multiplexing coupler 7.
  • the optical circulator 4 is a circulator configured by using a wave plate and a beam splitter, and the like is a spatial propagation type or fiber coupling type.
  • the optical antenna 5 is an optical antenna that outputs transmission light output from the optical circulator 4 and receives scattered light from the aerosol as reception light.
  • the optical antenna 5 is connected to the optical circulator 4 and the scanner 6, outputs transmission light to the scanner 6, and outputs reception light to the optical circulator 4.
  • an optical telescope or a camera lens is used for the optical antenna 5.
  • the eaves scanner 6 is a scanner that scans the transmission light output from the optical antenna 5 and changes the irradiation direction to the atmosphere (also referred to as the line-of-sight direction).
  • the scanner 6 includes a wedge prism, a motor for rotating the wedge prism, and an encoder.
  • As the motor for example, a stepping motor with an encoder is used.
  • the scanner 6 rotates the motor at an arbitrary speed, changes the line-of-sight direction of the wedge prism, and outputs angle information at which transmission light is irradiated to the signal processor 10.
  • a wedge prism mirror, a galvano scanner, or the like is used for the scanner 6.
  • the multiplexing coupler 7 is a multiplexing coupler that combines local light and received light.
  • the multiplexing coupler 7 is connected to the optical coupler 2, the optical circulator 4, and the optical receiver 8.
  • the multiplexing coupler 7 combines the local light output from the optical coupler 2 and the received light output from the optical circulator 4 and outputs the combined light to the optical receiver 8.
  • a fused fiber coupler a filter type coupler using a dielectric multilayer filter, or the like is used.
  • the optical receiver 8 is an optical receiver that performs heterodyne detection on the combined light output from the multiplexing coupler 7.
  • the optical receiver 8 is connected to the multiplexing coupler 7 and the A / D converter 9.
  • the optical receiver 8 performs heterodyne detection on the combined light output from the multiplexing coupler 7, converts the detected optical signal into an electrical signal, and outputs the electrical signal to the A / D converter 9.
  • a balanced receiver or the like is used for the optical receiver 8.
  • the A / D converter 9 is an A / D converter that converts an analog signal that has been heterodyne detected by the optical receiver 8 into a digital signal.
  • the A / D converter 9 is connected to the optical receiver 8, the optical modulator 3, and the signal processor 10.
  • the A / D converter 9 samples the analog electrical signal output from the optical receiver 8 using the laser pulse trigger signal output from the optical modulator 3 as a trigger, converts the analog signal into a digital signal, and converts the analog signal into a signal processor 10. Output to.
  • a double integration type A / D converter, a successive approximation type A / D converter, a parallel comparison type A / D converter, or the like is used for the A / D converter 9.
  • the signal processor 10 is a signal processor that performs signal processing on the digital signal output from the A / D converter 9 and calculates a wind vector that has been subjected to fluctuation correction.
  • FIG. 2 is a block diagram showing a configuration example of the signal processor 10 according to Embodiment 1 of the present invention.
  • the signal processor 10 includes a range bin divider 101 (an example of a range bin divider), an FFT processor 102 (an example of a fast Fourier transform processor), a correction coefficient calculator 103 (an example of a correction coefficient calculator), and a spectrum corrector 104.
  • an integrator 105 an example of an integrator
  • a wind speed calculator 106 an example of a wind speed calculator
  • a wind vector calculator 107 an example of a wind vector calculator
  • a scanner controller 108 Prepare.
  • the range bin divider 101 is a range bin divider that divides the digital signal output from the A / D converter 9 into an arbitrary number of range bins.
  • the range bin divider 101 is connected to the A / D converter 9 and the FFT processor 102.
  • the range bin divider 101 divides the digital signal output from the A / D converter 9 by an arbitrary number of range bins, and outputs the divided digital signal to the FFT processor 102.
  • To divide by range bin is to divide the signal at a certain time.
  • the range bin divider 101 uses a logic circuit of FPGA (Field Programmable Gate Array), a microcomputer (microcomputer), and the like.
  • the FFT processor 102 is an FFT processor that performs FFT (Fast Fourier Transform) processing on the signal output from the range bin divider 101.
  • the FFT processor 102 is connected to the range bin divider 101 and the correction coefficient calculator 103.
  • the FFT processor 102 performs fast Fourier transform on each range bin output from the range bin divider 101 and outputs the converted spectrum signal to the spectrum corrector 104.
  • the FFT processor 102 is an FPGA logic circuit, a microcomputer, or the like.
  • the correction coefficient calculator 103 is a correction coefficient calculator that acquires a fluctuation value obtained by the fluctuation sensor 11 and calculates a correction coefficient for correcting the fluctuation.
  • the correction coefficient calculator 103 is connected to the optical modulator 3, the fluctuation sensor 11, the spectrum corrector 104, and the scanner 6.
  • the correction coefficient calculator 103 is connected to the vibration sensor 11 through an interface such as USB (Universal Serial Bus), and acquires the vibration value output from the vibration sensor 11.
  • the fluctuation value may be acquired by requesting acquisition of the current fluctuation value based on the pulse trigger from the optical modulator 3.
  • the correction coefficient calculator 103 acquires a signal of angle information output from the encoder of the scanner 6.
  • the correction coefficient calculator 103 calculates parameters and a platform for projecting the beam exit angle in the shaken state to the ideal exit beam direction, that is, the exit beam direction without the shake, from the obtained shake value and angle information.
  • the parameter for correcting the influence of the translation speed is calculated, and the calculated parameter is output to the spectrum corrector 104.
  • the correction parameters are a projection coefficient and a shift coefficient output from the correction coefficient calculator 103.
  • the correction coefficient calculator 103 an FPGA logic circuit, a microcomputer, or the like is used as the correction coefficient calculator 103.
  • the spectrum corrector 104 is a spectrum corrector that corrects the spectrum signal output from the FFT processor 102 using the parameters calculated by the correction coefficient calculator 103.
  • the spectrum corrector 104 is connected to the FFT processor 102, the correction coefficient calculator 103, and the integrator 105.
  • the spectrum corrector 104 corrects the spectrum signal for each range bin output from the FFT processor 102 using the correction coefficient calculated by the correction coefficient calculator 103, thereby correcting the fluctuation of the spectrum signal for each range bin.
  • the obtained spectrum data is output to the integrator 105.
  • the spectrum corrector 104 uses an FPGA logic circuit, a microcomputer, or the like.
  • the integrator 105 is an integrator that integrates spectrum signals.
  • the integrator 105 is connected to the spectrum corrector 104 and the wind speed calculator 106.
  • the integrator 105 integrates the spectrum output from the spectrum corrector 104 any number of times, and outputs the integrated spectrum signal to the wind speed calculator 106.
  • the integration process is performed by integrating the spectrum signal for each range bin in each shot for each same range bin in each shot.
  • an FPGA logic circuit, a microcomputer, or the like is used for the integrator 105.
  • the wind speed calculator 106 is a wind speed calculator that calculates the wind speed from the integrated spectrum data.
  • the wind speed calculator is connected to the integrator 105 and the wind vector calculator 107.
  • the wind speed calculator 106 calculates the Doppler shift amount of the laser light from the spectrum signal integrated by the integrator 105, and calculates the wind speed value in the line-of-sight direction of the laser light from the Doppler shift amount.
  • the wind speed calculator 106 outputs the wind speed value in each line-of-sight direction to the wind vector calculator 107.
  • an FPGA logic circuit, a microcomputer, or the like is used for the wind speed calculator 106.
  • the wind vector calculator 107 is a wind vector calculator that calculates a wind vector from the wind speed value in the line-of-sight direction and the angle information in the line-of-sight direction.
  • the wind vector calculator 107 is connected to the wind speed calculator 106 and the scanner controller 108.
  • the wind vector calculator 107 calculates a wind vector from the wind speed value in each line-of-sight direction output from the wind speed calculator 106 and the prism angle information read by the scanner controller 108, and outputs the wind vector to the scanner controller 108.
  • an FPGA logic circuit, a microcomputer, or the like is used for the wind vector calculator 107.
  • the scanner controller 108 is a scanner controller that generates a control signal for controlling the scanner 6.
  • the scanner controller 108 is connected to the wind vector calculator 107, the correction coefficient calculator 103, the scanner 6, and the display device 12.
  • the scanner controller 108 generates a control signal for switching the viewing direction from the result of the wind vector calculated by the wind vector calculator 107, and outputs the generated control signal to the scanner 6.
  • the scanner controller 108 holds the angle information obtained from the scanner 6 and transmits the angle information to the correction coefficient calculator 103. Further, the scanner controller 108 outputs the calculation result of the wind vector output from the wind vector calculator 107 to the display unit 12.
  • an FPGA logic circuit, a microcomputer, or the like is used for the scanner controller 108.
  • the motion sensor 11 is a motion sensor that measures the motion value of the laser radar device.
  • the fluctuation sensor 11 is connected to the signal processor 10.
  • the fluctuation sensor 11 acquires the fluctuation value of the platform on which the laser radar device is mounted, and outputs the acquired fluctuation value to the signal processor 10.
  • the sway value is a value representing the platform roll, pitch, and angle in the yaw direction, or a value representing the translational velocity in the east-west-north-west vertical direction.
  • a gyro sensor using an accelerometer or a GPS (Global Positioning System) gyro sensor is used as the motion sensor 11.
  • the indicator 12 is an indicator that displays the line-of-sight wind speed value calculated by the signal processor 10.
  • the display 12 is connected to the signal processor 10.
  • the display 12 displays the data calculated by the signal processor 10, for example, the line-of-sight wind speed value, its SNR, or the wind vector.
  • a liquid crystal display, an organic EL (Electro Luminescence) display, etc. are used for the indicator 12.
  • the display device 12 may include a storage device such as a RAM (Random Access Memory) or a hard disk, and may store the line-of-sight wind speed value, its SNR, or the wind vector with respect to time.
  • the optical oscillator 1 oscillates laser light and outputs the oscillated laser light to the optical coupler 2.
  • the optical coupler 2 distributes the laser light output from the optical oscillator 1 into transmission light and local light with an arbitrary branching ratio, and outputs the transmission light to the optical modulator 3 and the local light to the multiplexing coupler 7.
  • the transmission light is light that is output from the optical antenna 5 to the atmosphere
  • the local light is light that is combined with the reception light in the multiplexing coupler 7 in order to perform heterodyne detection in the optical receiver 8.
  • the branching ratio of the optical coupler 2 is determined by system design.
  • ⁇ , K, and S 0 represent a backscattering coefficient (m ⁇ 1 sr ⁇ 1 ), atmospheric transmittance, and coherence diameter (m) of scattered light, respectively, and represent parameters representing atmospheric conditions that cannot be controlled by the system.
  • D, F, and N represent a beam diameter (m), a collection distance (m), an incoherent integration number (times), and represent parameters that can be changed in the system.
  • h, ⁇ , P, ⁇ F , and B are Planck's constant (Js), wavelength (m), transmission light pulse energy (J), Far Field transmission / reception efficiency, and reception bandwidth (Hz), respectively.
  • the vignetting represents a state where a transmitted or received Gaussian beam is blocked by the effective aperture diameter of the telescope and partially clipped.
  • the above Ac corresponds to a coefficient related to a Gaussian curve when fitting with a Gaussian curve to a clipped Gaussian beam.
  • the optical modulator 3 performs frequency modulation and intensity modulation on the transmission light distributed by the optical coupler 2, and outputs the modulated transmission light to the optical circulator 4.
  • the optical modulator 3 determines the pulse width and repetition frequency (PRF) of the transmission light. Since the pulse width corresponds to the distance resolution value, the pulse width corresponding to the desired distance resolution value can be set in the signal processor 10, and the signal processor 10 can set the pulse width in the optical modulator 3.
  • the optical modulator 3 may output a fixed pulse width and PRF set at the time of design. If the output light of the optical modulator 3 is insufficient, an optical amplifier may be added after the optical modulator 3.
  • the optical modulator 3 may shift the frequency of the transmission light by phase-modulating the transmission light.
  • the optical modulator 3 outputs to the A / D converter 9 and the signal processor 10 a pulse trigger signal indicating the pulse timing when the transmission light is pulsed.
  • the optical circulator 4 allows the transmission light modulated by the optical modulator 3 to pass through the optical antenna 5 and outputs the reception light received by the optical antenna to the multiplexing coupler 7.
  • the optical circulator 4 separates transmission light and reception light in this way.
  • the optical antenna 5 collimates the transmitted light and irradiates it in the atmosphere.
  • the optical antenna 5 collects scattered light from the aerosol with respect to the transmitted light and receives it as received light.
  • the optical antenna 5 may have a condensing adjustment function.
  • the eaves scanner 6 receives the control signal output from the signal processor 10, rotates the wedge prism, and arbitrarily changes the direction of light emitted by the optical antenna 5. Further, the scanner 6 outputs an electrical signal corresponding to the encoder information to the signal processor 10 to transmit the angle information.
  • the multiplexing coupler 7 combines the local light output from the optical coupler 2 and the received light output from the optical circulator 4, and outputs the combined light to the optical receiver 8.
  • the optical receiver 8 photoelectrically converts the combined light output from the combining coupler 7, performs frequency demodulation of the received light by heterodyne detection, and outputs the frequency-demodulated received signal to the A / D converter 9.
  • the A / D converter 9 After receiving the pulse trigger signal generated in the optical modulator 3, the A / D converter 9 performs A / D conversion of the received signal output from the optical receiver 8 at the sampling frequency fs, and performs signal processing on the digital signal. To the device 10.
  • FIG. 3 is a diagram showing the relationship between the observation distance and the reception time in the laser radar apparatus according to Embodiment 1 of the present invention.
  • the range bin divider 101 divides the received signal from each distance by an arbitrary time width. Hereinafter, the divided time, that is, the distance divided is called a range bin.
  • the range bin divider 101 divides the received waveform by an arbitrary number of range bins, and outputs the voltage value of the received waveform in the range bin section to the FFT processor 102.
  • the formula is as follows.
  • Tstart is the data acquisition start time of each range bin
  • Tend is the data acquisition end time of each range bin
  • Tcen is the data acquisition center time of each range bin
  • m is the range bin, and has a value range of 1 to M.
  • Rmin is a value for adjusting the observation start distance, that is, a delay timing until A / D conversion is performed on the pulse trigger signal, as a distance value.
  • the delay amount of the A / D start with respect to the trigger is 0, for example, when measuring from 40 m, a value such as 40 is inserted into Rmin.
  • time interval range bin division is performed here, the present invention is not limited to this, and the observation start distance corresponding to Tstart may be determined by the user, or may be set for each range bin, You may overlap the range of Tstart and Tend.
  • the FFT processor 102 performs FFT processing on the time waveform of each range bin acquired by the range bin divider 101 with the number of FFT bins (NFFT) to obtain a received signal spectrum.
  • NFFT represents the number of points to be subjected to FFT processing, and a value such as 256 is used, for example.
  • the received signal spectrum here corresponds to SPC (i, n, R) described later.
  • the correction coefficient calculator 103 acquires a fluctuation value output from the fluctuation sensor 11 at a fixed period. Further, the correction coefficient calculator 103 acquires angle information from the scanner controller 108. The correction coefficient calculator 103 calculates a correction coefficient used for subsequent spectral correction from the obtained fluctuation value and angle information. The correction coefficient calculator 103 may acquire the fluctuation value by requesting the fluctuation sensor 11 to acquire the fluctuation value based on the pulse trigger from the optical modulator 3, but in the following embodiments, the fixed period is fixed. Describes the fluctuation correction method in the fluctuation value acquisition at.
  • FIG. 4 is a diagram showing a configuration example of the correction coefficient calculator 103 according to Embodiment 1 of the present invention.
  • the shake value extractor 301 acquires the shake value from the shake sensor 11 in order to calculate the shake correction amount, and outputs the acquired shake value to the correction amount calculator 302.
  • the motion sensor 11 oscillates the swing value in six axis degrees of freedom such as roll, pitch, yaw direction and east-west-north-north-vertical direction, elevation angle (EL), azimuth angle from north (AZ), and east-west-north-north-vertical translation speed. Output to the value extractor 301.
  • FIG. 5 is a flowchart showing an example of the operation of the fluctuation value extractor 301 according to the first embodiment of the present invention.
  • the fluctuation value extractor 301 acquires a fluctuation value from the fluctuation sensor 11 as described above.
  • the obtained sway value shall include a time stamp.
  • the fluctuation value extractor 301 compares the time stamp of the pulse trigger signal output from the optical modulator 3 with the time stamp of the fluctuation value, and whether the time difference is within a threshold value (Tth). Judge whether or not.
  • Tth threshold value
  • step S103 when the time difference is within the threshold (Tth), in step S103, the shake value extractor 301 uses the obtained shake value as it is for calculating the correction amount, and calculates the obtained shake value as the correction amount. The data is output to the device 302, and the flow ends.
  • step S104 when the time difference is larger than the threshold value (Tth), in step S104, the fluctuation value extractor 301 uses an estimated value of the fluctuation value obtained by, for example, a Kalman filter. The fluctuation value extractor 301 outputs the estimated value of the fluctuation value to the correction amount calculator 302 and ends the flow.
  • the shake value extractor 301 stores spectral data in addition to the method using the previous shake value as it is, and when the shake value is obtained, linear interpolation is performed using the past shake value, and the linear value is obtained.
  • the supplemented fluctuation value may be extracted as the fluctuation value when the optical modulator 3 outputs the pulse trigger signal.
  • Tth is determined by the expected fluctuation correction accuracy.
  • the correction amount calculator 302 calculates the correction amount as follows using the obtained fluctuation value.
  • the parameters to be corrected are the projection coefficient Pc and the shift amount T (Hz).
  • the projection coefficient Pc is expressed by the following expression, where ⁇ a is the elevation angle value in an ideal state where there is no oscillation and ⁇ b is the elevation angle value after oscillation.
  • the kite shift amount T is expressed by the following equation using the translation speed Vs obtained from the fluctuation sensor 11.
  • Vs the translation speed obtained from the fluctuation sensor 11.
  • the wavelength of the transmitted light.
  • the method for deriving the projection coefficient or the shift amount is not limited to this, and it is only necessary to obtain an expression or variable that can be used to correct for non-swaying using the shaking value.
  • the spectrum corrector 104 prepares an array for storing a spectrum for each shaking value, and stores the spectrum corresponding to each shaking value in the prepared array.
  • the stored spectrum is spectrum data in each line-of-sight direction.
  • FIG. 6 is a configuration diagram showing a configuration example of the spectrum corrector 104 according to the first embodiment of the present invention.
  • the resampling processor 401 changes the frequency resolution in a pseudo manner by changing the size of the frequency bin, and increases the total frequency bin.
  • FIG. 7 is a conceptual diagram showing the processing of the resampling processor 401 according to Embodiment 1 of the present invention.
  • the resampling processor 401 uses the projection coefficient output from the correction amount calculator 302 to multiply the value of each frequency bin by the projection coefficient Pc to calculate spectral data in which the projection coefficient is corrected, and the spectral data Is stored in the frequency bin. However, depending on the value of Pc, two data may be stored in one frequency bin.
  • the resampling processor 401 changes the frequency bin size as shown in FIG. 7 and resamples the spectrum data to reduce the degradation of the frequency resolution.
  • the resampling method will be described in detail.
  • the frequency bin may be changed by changing the total number of FFT points, or the size of the frequency bin may be changed directly.
  • the resampling processor 401 may change the size of the frequency bin by changing the total number of FFT points using a fixed value set in advance, and the line-of-sight direction
  • Nfft a is the original total frequency bin number
  • Nfft b is the changed total frequency bin.
  • the coefficient for changing the frequency bin may be determined in the first shot in the integration number N, and thereafter fixed. Also, in the case of a platform where the fluctuation value may become larger in time than the first shot, and the memory amount can be secured sufficiently, the spectrum from the first to (N-1) th shot is saved. Nfft b may be determined as 1 / cos (
  • the spectrum inserter 402 performs the following calculation and stores the value of the spectrum data (SPC (i, n, R)) in the array of each frequency bin created by the resampling processor 401.
  • i is a frequency bin number, that is, a number indicating the number of data among the data arranged in order of frequency
  • n is a shot number
  • R is a range bin number.
  • SPC (i, 2) means spectral data for the second irradiation.
  • SPCb (i, n, R) is spectral data with the projection angle corrected.
  • i 1, 2,... (Nfft a ) ⁇ 1 / cos (
  • the accumulator 105 performs incoherent accumulation of the number of times (N) designated by the user on the spectrum obtained in each shot. Incoherent integration is performed using the following formula for the spectrum data of each range bin.
  • FIG. 8 is a conceptual diagram showing the integration process of the integrator 105 according to the first embodiment of the present invention. The accumulator 105 performs integration processing by adding the spectrum data of the same range bin number to the spectrum data of each range bin in each shot. The integration process is expressed as follows:
  • FIG. 9 is a conceptual diagram of the integration result of the integrator 105 according to the first embodiment of the present invention.
  • the solid line is the spectrum of the present method, and the dotted line is the spectrum of the conventional method. In each shot, the signal value is small and the SNR is low. Further, when the projection coefficient is not corrected for each shot, the frequency of the signal value is different for each shot.
  • the signal value is dispersed.
  • the projection coefficient is corrected, since the aerosol Doppler frequency is constant, the frequency of the signal value matches each shot. Therefore, by performing the integration process, the noise value is averaged, but the signal value is integrated, so that the SNR can be improved.
  • FIG. 10 is a relationship diagram showing the relationship between the deviation of the irradiation angle due to the shaking of the laser radar apparatus according to Embodiment 1 of the present invention and the wind speed.
  • V is a true wind speed in the horizontal direction
  • ⁇ 1 to ⁇ 3 are irradiation angles of the laser beam.
  • v1 to v3 are wind speeds obtained from the measurement results in the ⁇ 1 to ⁇ 3 directions, respectively.
  • the laser radar device calculates the wind speed by calculating the Doppler shift between the transmitted light and the scattered light from the aerosol in the air.
  • FIG. 11 is a comparison diagram showing a comparison between the integration result of the conventional method and the integration result of the present method.
  • the spectrum to be integrated is a spectrum before the shake correction. For this reason, the peak of the integrated spectrum result spreads.
  • the peak spread of the spectrum result is small and the peak value is large.
  • FIG. 12 is a diagram showing a spectrum when the aerosol differs depending on the line-of-sight direction.
  • spectrum intensity serves as an index of frequency
  • a frequency with a peak as shown in FIG. 12 corresponds to taking an average value of the frequency.
  • the fluctuation average value during the spectrum integration is used, correction with high accuracy is possible by performing correction using the average wind speed value and the fluctuation average value.
  • the received intensity varies depending on the frequency, that is, the wind speed value, as shown in the lower diagram of FIG. 12, but the fluctuation value does not take the influence into consideration. For this reason, the frequency at which the peak value exists is dragged to the higher aerosol amount, that is, the reception intensity is higher, which becomes the wind speed error after the shake correction. This is a phenomenon that appears because of shake correction after integration. According to this configuration, since the spread spectrum is integrated while being concentrated in one place, the correction error due to the dependence of the atmospheric aerosol amount on the beam direction is greatly reduced.
  • the wind speed calculator 106 calculates the Doppler frequency in the line-of-sight direction, that is, the wind speed value, from the integrated spectrum.
  • a center of gravity calculation may be used in addition to detection by spectral peak detection. Calculation of the Doppler frequency fd by the center of gravity calculation is expressed by the following equation.
  • F is a frequency corresponding to the number (i) of each frequency bin.
  • the received spectrum is weighted with the frequency f. Thereby, the most statistically significant frequency value can be calculated.
  • Wind vector calculator 107 calculates a wind vector using vector synthesis or VAD (VelocitycAzimuth Display) method.
  • VAD Vector synthesis
  • the wind speed (Vr) in the line-of-sight direction is the horizontal wind speed (U) in the east-west direction
  • the horizontal wind speed (V) in the north-south direction the wind speed (W) in the vertical direction
  • the elevation angle ( ⁇ ) Using the azimuth angle ( ⁇ ) with reference to
  • U, V, and W can be calculated by solving simultaneous equations. Thereby, a three-dimensional wind vector is obtained.
  • the scanner controller 108 generates a control signal for operating the scanner in order to switch the line-of-sight direction.
  • the scanner 6 operates to a desired angle by driving a stepping motor in the scanner by a control signal from the scanner controller 108 and performing a desired step operation.
  • the scanner 6 transmits an angle signal from the mounted encoder to the scanner controller 108, and the scanner controller 108 holds the angle information after the operation. This angle information corresponds to the above-described ideal elevation value ⁇ .
  • the display 12 stores information such as the line-of-sight wind speed value calculated by the signal processor 10, the SNR of the line-of-sight wind speed value, or the wind vector in a memory and displays the information.
  • the shake correction is performed before the integration process is performed, and the integration process is performed on the shake corrected spectrum. SNR degradation can be suppressed. As a result, the accuracy of wind measurement can be improved.
  • the pulse type laser radar device is described as a premise, but a CW (Continuous Wave) method may be used, and the present invention is not limited to this.
  • the optical connection method is described based on an optical fiber, but the connection method may be a space propagation type without using an optical fiber.
  • the laser radar apparatus may have a configuration using an optical switch instead of the scanner configuration as described above.
  • FIG. 13 is a block diagram showing another configuration example according to Embodiment 1 of the present invention.
  • the optical switch 13 switches the optical path of the transmission light and is connected to the optical antenna 5 having a different line-of-sight direction in each subsequent stage, whereby a wind speed value in a multi-line-of-sight direction can be obtained.
  • the optical switch 13 may be a mechanical optical switch used in communication, a MEMS (Micro Electro Mechanical Systems) optical switch, or the like.
  • each component of the signal processor 10 may be executed by hardware such as FPGA, or the processor reads and executes a program representing the function of each component stored in the memory. May be implemented in software.
  • Embodiment 2 a laser radar apparatus will be described in which the range bin is shifted in accordance with the fluctuation value, and the region cut by the range bin is changed with respect to the received signal. Thereby, an error in observation altitude due to shaking can be suppressed, and wind speed measurement accuracy can be improved.
  • FIG. 14 is a block diagram showing a configuration example of the laser radar apparatus according to Embodiment 2 of the present invention. 14, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
  • the laser radar device includes an optical oscillator 1, an optical coupler 2, an optical modulator 3, an optical circulator 4, an optical antenna 5, a scanner 6, a multiplexing coupler 7, an optical receiver 8, an A / D converter 9, and a signal processor. 14, a fluctuation sensor 11 and a display 12 are provided.
  • a signal processor 14 is used instead of the signal processor 10, and the connection relationship between the A / D converter 9 and the signal processor 14 is different from that of the first embodiment. As will be described later, the signal output from the signal processor 14 enters the A / D converter 9 once, and the signal output from the A / D converter 9 is input to the signal processor 14 again.
  • FIG. 15 is a configuration diagram showing a configuration example of the signal processor 14 according to the second embodiment of the present invention. 15, the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
  • the signal processor 14 includes a correction coefficient calculator 103, a range bin divider 109, an FFT processor 102, a spectrum corrector 104, an accumulator 105, a wind speed calculator 106, a wind vector calculator 107, and a scanner controller 108.
  • a correction coefficient calculator 103 is provided in front of the range bin divider 109. After calculating the correction coefficient for the fluctuation value, the range bin is divided, the divided range bin is output to the A / D converter 9, and based on the range bin.
  • the signal processor 10 is different from the signal processor 10 in that an A / D converted signal is input to the FFT processor 102.
  • the range bin divider 109 is a range bin divider that changes the size of the range bin according to the fluctuation value.
  • the range bin divider 109 is connected to the optical modulator 3, the correction coefficient calculator 103, and the FFT processor 102.
  • the range bin divider 109 outputs the A / D conversion start timing of each range bin to the A / D converter 9 according to the fluctuation value obtained via the correction coefficient calculator 103.
  • the A / D converter 9 is connected to the range bin divider 109 and the FFT processor 102, and outputs an A / D converted digital signal of each range bin to the FFT processor 102.
  • the range bin divider 109 uses an FPGA, a microcomputer, or the like.
  • Embodiment 2 of the present invention Next, the operation of the laser radar device according to Embodiment 2 of the present invention will be described. The description of the same operation as that of the first embodiment will be omitted, and an operation different from that of the first embodiment will be described.
  • the A / D converter 9 converts the analog signal output from the optical receiver 8 into a digital signal, and performs conversion for each trigger signal output from the range bin divider 109 at that time.
  • the range bin divider 109 acquires a fluctuation value from the fluctuation sensor 11 via the correction coefficient calculator 103. Then, the range bin divider 109 performs the following processing to shift the region where the received signal is cut out by the height deviated from the desired observation height due to shaking.
  • FIG. 16 is a simulation diagram showing that the observation altitude shifts due to shaking.
  • ⁇ a is an elevation angle value in an ideal state without shaking
  • ⁇ b is an elevation angle value after shaking.
  • the radar radar apparatus of FIG. 16 irradiates laser light in the direction of ⁇ a. If there is oscillation at that time, the laser beam is actually irradiated in the direction of ⁇ b. Will do. Since the set angle is different from the actually irradiated angle, the observation altitude will be different even if the observation distance is the same. If the observed altitude shifts, an error occurs in the observed wind speed, as will be described later.
  • FIG. 17 is a relationship diagram showing the relationship between the observed altitude and the wind speed value.
  • the relationship between the horizontal wind speed value and the altitude is expressed by a power law as shown in FIG. Therefore, the occurrence of difference in observation altitude corresponds to wind speed measurement error.
  • the start time (Tstart) and the end time (Tend) of the range bin are expressed by the following equations.
  • c is the speed of light
  • Hdiff is the difference in observation altitude when there is no fluctuation
  • Rres is the size of the time gate, that is, the width of the range bin.
  • Rmin is a distance (gate start distance) corresponding to the time when the time gate starts in the case of shaking
  • R is a distance to the observation center before correction (observation center distance before correction) in the case of shaking.
  • m is the range bin number.
  • Rstart is a distance corresponding to the time when the time gate starts when the observation altitude is corrected (corrected gate start distance)
  • Rend is a distance corresponding to the time when the time gate ends when the observation altitude is corrected. (Gate end distance after correction).
  • This laser radar device corrects the deviation in observation altitude by correcting the start time and end time of the range bin using the fluctuation value, and measures the wind speed at the same observation altitude as when there was no fluctuation. As a result, the observation altitude can be kept constant even if fluctuations occur, and errors in wind speed measurement due to differences in observation altitude can be reduced.
  • the laser radar device of the first embodiment determines the range bin with respect to the reception time, but the laser radar device of the second embodiment is different in that the range bin is determined with respect to the observation altitude.
  • the range bin divider 109 outputs to the A / D converter 9 an A / D start signal corresponding to the range bin whose observation altitude has been corrected as described above.
  • the A / D converter 9 performs A / D conversion on the reception signal input from the optical receiver 8 in accordance with the range bin section input from the range bin divider 109 and outputs the converted reception signal to the FFT processor 102. To do.
  • the laser radar apparatus changes the region from which the range bin cuts the received signal in accordance with the fluctuation value, so that the observation altitude can be matched and the wind speed measurement accuracy can be matched. There is an effect that can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

従来のレーザレーダ装置は、動揺により風速値のSNRが劣化する課題があった。 本発明のレーザレーダ装置は、レーザ光を発振する光発振器と、光発振器が発振したレーザ光を変調する光変調器と、光変調器が変調したレーザ光を大気へ放射し、被放射物からの散乱光を受信光として受信する光アンテナと、光アンテナが受信した受信光をヘテロダイン検波する光受信器と、光アンテナの動揺値を検出するセンサと、光受信器がヘテロダイン検波することにより得られた受信信号のスペクトルを算出し、センサが検出した動揺値を用いてスペクトルを補正し、補正したスペクトルを積算し、積算したスペクトルから被放射物の速度を算出する信号処理器とを備える。

Description

レーザレーダ装置
 本発明は、レーザレーダ装置に関するものである。
 レーザ光を空気中に出射し、大気中に浮遊する微小な液体または固体の粒子(エアロゾル)に反射した散乱光を受信することで、風の速度を知ることができるレーザレーダ装置が知られている。このレーザレーダ装置の使用用途には、動揺が発生する航空機や洋上浮体などといったプラットフォームへの搭載がある。このようなプラットフォームは、風、波などの外的要因によって動揺が発生することが一般的である。
 例えば、プラットフォームに搭載する従来のレーザレーダ装置が特許文献1に開示されている。従来のレーザレーダ装置では、大気中エアロゾルからの散乱光を時間ごとにフーリエ変換して、時間ごとの散乱光の周波数スペクトルを求める。その後、時間ごとの周波数スペクトルを積算し、積算した周波数スペクトルのピーク値から視線方向の風速値を求める。そして、積算した周波数スペクトルから求めた風速値に対して動揺値を補正し、動揺の影響を取り除いた風速値を求めている。このように、従来のレーザレーダ装置は動揺補正を行っていた。ここで、補正に用いる動揺値は、積算した時間における動揺の平均値である。
 特開 2013-253910号公報
 しかしながら、従来のレーザレーダ装置は、動揺値の補正を行う前に時間ごとの周波数スペクトルを積算しているため、積算した周波数スペクトルのピークが広がってしまう課題があった。周波数スペクトルのピークが広がってしまう理由は、動揺値は時間ごとに異なり、その影響を受けた周波数スペクトルのピークは時間ごとに変化するため、ピークの異なる周波数スペクトルが積算されるからである。このように、従来のレーザレーダ装置は、周波数スペクトルが広がってしまうため、雑音に対するピーク値、つまりSNR(Signal to Noise Ratio)が劣化していた。
本発明のレーザレーダ装置は、レーザ光を発振する光発振器と、光発振器が発振したレーザ光を変調する光変調器と、光変調器が変調したレーザ光を大気へ放射し、被放射物からの散乱光を受信光として受信する光アンテナと、光アンテナが受信した受信光をヘテロダイン検波する光受信器と、光アンテナの動揺値を検出するセンサと、光受信器がヘテロダイン検波することにより得られた受信信号のスペクトルを算出し、センサが検出した動揺値を用いてスペクトルを補正し、補正したスペクトルを積算し、積算したスペクトルから被放射物の速度を算出する信号処理器とを備える。
本発明によれば、レーザレーダ装置が動揺することによるSNRの劣化を抑制できるという効果がある。
この発明の実施の形態1に係るレーザレーダ装置の一構成例を示す構成図である。 この発明の実施の形態1に係る信号処理器10の一構成例を示す構成図である。 この発明の実施の形態1に係るレーザレーダ装置における観測距離と受信時間との関係を示す図である。 この発明の実施の形態1に係る補正係数算出器103の一構成例を示す図である。 この発明の実施の形態1に係る動揺値抽出器301の動作の一例を示すフローチャートである。 この発明の実施の形態1に係るスペクトル補正器104の一構成例を示す構成図である。 この発明の実施の形態1に係るリサンプリング処理器401の処理を表す概念図である。 この発明の実施の形態1に係る積算器105の積算処理を表す概念図である。 この発明の実施の形態1に係る積算器105の積算結果の概念図である。 この発明の実施の形態1に係るレーザレーダ装置の動揺による照射角度のずれと風速との関係を示す関係図である。 従来方式の積算結果と本方式の積算結果との比較を示す比較図である。 視線方向によってエアロゾルが異なる場合のスペクトルを示す図である。 この発明の実施の形態1に係る実施の形態1の他の構成例を示す構成図である。 この発明の実施の形態2のレーザレーダ装置の一構成例を示す構成図である。 この発明の実施の形態2の信号処理器14の一構成例を示す構成図である。 動揺によって観測高度がずれることを示す模擬図である。 観測高度と風速値との関係を示す関係図である。
実施の形態1.
 図1は、この発明の実施の形態1に係るレーザレーダ装置の一構成例を示す構成図である。
 本レーザレーダ装置は、光発振器1(光発振器の一例)、光カプラ2、光変調器3(光変調器の一例)、光サーキュレータ4、光アンテナ5(光アンテナの一例)、スキャナ6(スキャナの一例)、合波カプラ7、光受信器8(光受信機の一例)、A/D(Analogue to Digital converter)変換器9(アナログデジタル変換器の一例)、信号処理器10、動揺センサ11(センサの一例)、及び表示器12を備える。
 光発振器1は、レーザ光を発振する光発振器である。光発振器1は、光カプラ2に接続され、発振したレーザ光を光カプラ2に出力する。例えば、光発振器1には半導体レーザ、固体レーザなどが用いられる。
 光カプラ2は、光発振器1が出力したレーザ光をローカル光と送信光とに分岐する光カプラである。ローカル光とは、光カプラ2から合波カプラ7を介して光受信器8に繋がる経路を通る光をいい、送信光とは、光カプラ2から光変調器3を介して光アンテナ5に繋がる経路を通る光をいう。光カプラ2は、光発振器1、光変調器3、及び合波カプラ7に接続され、ローカル光を合波カプラ7に出力し、送信光を光変調器3に出力する。例えば、光カプラ2には、溶融ファイバカプラ、誘電体多層膜フィルタを用いたフィルタ型カプラなどが用いられる。
 光変調器3は、光カプラ2が出力した送信光の周波数をシフトさせる変調器である。光変調器3は、光カプラ2、光サーキュレータ4、A/D変換器9、及び信号処理器10に接続される。光変調器3は、送信光に対して周波数変調及び強度変調を行い、送信光の周波数をシフトさせるとともに、送信光をパルス化する。また、光変調器3は、送信光をパルス化するときのパルスタイミングを示すパルストリガ信号をA/D変換器9及び信号処理器10に出力する。パルストリガ信号は例えば5VのTTL(Transistor-Transistor Logic)信号に相当する。例えば、光変調器3にはAO周波数シフタ(Acoust Optical Frequency Shifter)、光位相変調器などが用いられる。
 光サーキュレータ4は、光変調器が変調した送信光と、スキャナ6及び光アンテナ5を介して得られる受信光とを分離する光サーキュレータである。ここで受信光は、送信光に対するエアロゾルの散乱光である。光サーキュレータ4は、光変調器3、光アンテナ5、及び合波カプラ7に接続され、送信光を光アンテナ5に出力し、受信光を合波カプラ7に出力する。例えば、光サーキュレータ4には、波長板とビームスプリッタを用いて構成されるサーキュレータなどで、空間伝搬型、ファイバ結合型のものが用いられる。
 光アンテナ5は、光サーキュレータ4が出力した送信光を出力し、エアロゾルからの散乱光を受信光として受信する光アンテナである。光アンテナ5は、光サーキュレータ4及びスキャナ6に接続され、送信光をスキャナ6に出力し、受信光を光サーキュレータ4に出力する。例えば、光アンテナ5には光学望遠鏡、カメラレンズが用いられる。
 スキャナ6は、光アンテナ5が出力した送信光を走査し、大気中への照射方向(視線方向ともいう)を変化させるスキャナである。スキャナ6は、ウェッジプリズムとそれを回転させるモータ、エンコーダから構成される。モータには、例えば、エンコーダ付ステッピングモータが使用される。スキャナ6は、モータを任意速度で回転させ、ウェッジプリズムの視線方向を変化させるとともに、信号処理器10に送信光が照射される角度情報を出力する。例えば、スキャナ6には、ウェッジプリズムミラー、ガルバノスキャナーなどが用いられる。
 合波カプラ7は、ローカル光と受信光とを合波する合波カプラである。合波カプラ7は、光カプラ2、光サーキュレータ4、及び光受信器8に接続される。合波カプラ7は、光カプラ2が出力したローカル光と光サーキュレータ4が出力した受信光とを合波し、合波光を光受信器8に出力する。例えば、合波カプラ7には、溶融ファイバカプラ、誘電体多層膜フィルタを用いたフィルタ型カプラなどが用いられる。
 光受信器8は、合波カプラ7が出力した合成光をヘテロダイン検波する光受信器である。光受信器8は、合波カプラ7とA/D変換器9に接続される。光受信器8は、合波カプラ7が出力した合成光をヘテロダイン検波し、検波した光信号を電気信号に変換し、A/D変換器9に出力する。例えば、光受信器8には、バランスドレシーバなどが用いられる。
 A/D変換器9は、光受信器8がヘテロダイン検波したアナログ信号をデジタル信号に変換するA/D変換器である。A/D変換器9は、光受信器8、光変調器3、及び信号処理器10に接続される。A/D変換器9は、光受信器8が出力したアナログ電気信号を、光変調器3が出力したレーザパルストリガ信号をトリガとしてサンプリングし、アナログ信号をデジタル信号へ変換して信号処理器10に出力する。例えば、A/D変換器9には、二重積分型A/D変換器、逐次比較形A/D変換器、並列比較型A/D変換器などが用いられる。
 信号処理器10は、A/D変換器9が出力したデジタル信号を信号処理し、動揺補正を行った風ベクトルを算出する信号処理器である。
 図2は、この発明の実施の形態1に係る信号処理器10の一構成例を示す構成図である。
 信号処理器10は、レンジビン分割器101(レンジビン分割器の一例)、FFT処理器102(高速フーリエ変換処理器の一例)、補正係数算出器103(補正係数算出器の一例)、スペクトル補正器104(スペクトル補正器の一例)、積算器105(積算器の一例)、風速算出器106(風速算出器の一例)、風ベクトル算出器107(風ベクトル算出器の一例)、及びスキャナ制御器108を備える。
 レンジビン分割器101は、A/D変換器9が出力するデジタル信号を任意個数のレンジビンに分割するレンジビン分割器である。レンジビン分割器101は、A/D変換器9及びFFT処理器102に接続される。レンジビン分割器101は、A/D変換器9が出力したデジタル信号を、任意個数のレンジビンで区切り、区切ったデジタル信号をFFT処理器102に出力する。レンジビンで区切るということは、信号を一定時間で分割することである。例えば、レンジビン分割器101には、FPGA(Field Programmable Gate Array)の論理回路、マイコン(マイクロコンピュータ)などが用いられる。
 FFT処理器102は、レンジビン分割器101が出力した信号をFFT(Fast Fourier Transform )処理するFFT処理器である。FFT処理器102は、レンジビン分割器101及び補正係数算出器103に接続される。FFT処理器102は、レンジビン分割器101が出力する各レンジビンで区切られた信号を、レンジビンごとに高速フーリエ変換し、変換したスペクトル信号をスペクトル補正器104に出力する。例えば、FFT処理器102は、FPGAの論理回路、マイコンなどが用いられる。
 補正係数算出器103は、動揺センサ11によって得られた動揺値を取得し、動揺を補正する補正係数を算出する補正係数算出器である。補正係数算出器103は、光変調器3、動揺センサ11、スペクトル補正器104、及びスキャナ6に接続される。補正係数算出器103は、動揺センサ11とUSB(Universal Serial Bus)などのインターフェースで接続され、動揺センサ11が出力する動揺値を取得する。もしくは、光変調器3からのパルストリガを基準として現在の動揺値取得をリクエストすることで、動揺値を取得しても良い。また、補正係数算出器103は、スキャナ6のエンコーダが出力する角度情報の信号を取得する。補正係数算出器103は、取得した動揺値及び角度情報から、動揺した状態でのビーム射出角度を、理想的な射出ビーム方向、つまり動揺がない状態の射出ビーム方向に射影するためのパラメータとプラットフォームの並進速度の影響を補正するパラメータとを算出し、算出したパラメータをスペクトル補正器104に出力する。ここで、補正パラメータは、補正係数算出器103が出力する射影係数及びシフト係数である。例えば、補正係数算出器103には、FPGAの論理回路、マイコンなどが用いられる。
 スペクトル補正器104は、補正係数算出器103が算出したパラメータを用いて、FFT処理器102が出力したスペクトル信号を補正するスペクトル補正器である。スペクトル補正器104は、FFT処理器102、補正係数算出器103、積算器105に接続される。スペクトル補正器104は、補正係数算出器103が算出した補正係数を用いて、FFT処理器102が出力したレンジビンごとのスペクトル信号を補正することで、レンジビンごとにスペクトル信号の動揺補正を行い、補正したスペクトルデータを積算器105に出力する。例えば、スペクトル補正器104には、FPGAの論理回路、マイコンなどが用いられる。
 積算器105は、スペクトル信号を積算する積算器である。積算器105は、スペクトル補正器104及び風速算出器106に接続される。積算器105は、スペクトル補正器104が出力したスペクトルを任意回数積算処理し、積算処理したスペクトル信号を風速算出器106に出力する。積算処理は、各ショットにおけるレンジビンごとのスペクトル信号を、各ショットの同じレンジビンごとに積算することで行う。例えば、積算器105には、FPGAの論理回路、マイコンなどが用いられる。
 風速算出器106は、積算されたスペクトルデータから風速を算出する風速算出器である。風速算出器は、積算器105及び風ベクトル算出器107に接続される。風速算出器106は、積算器105によって積算されたスペクトル信号から、レーザ光のドップラーシフト量を算出し、ドップラーシフト量からレーザ光の視線方向に対する風速値を算出する。風速算出器106は、各視線方向の風速値を風ベクトル算出器107に出力する。例えば、風速算出器106には、FPGAの論理回路、マイコンなどが用いられる。
 風ベクトル算出器107は、視線方向の風速値及び視線方向の角度情報から風ベクトルを算出する風ベクトル算出器である。風ベクトル算出器107は、風速算出器106、スキャナ制御器108に接続される。風ベクトル算出器107は、風速算出器106が出力した各視線方向の風速値とスキャナ制御器108で読み取ったプリズムの角度情報とから風ベクトルを算出し、スキャナ制御器108に出力する。例えば、風ベクトル算出器107には、FPGAの論理回路、マイコンなどが用いられる。
 スキャナ制御器108は、スキャナ6を制御する制御信号を生成するスキャナ制御器である。スキャナ制御器108は、風ベクトル算出器107、補正係数算出器103、スキャナ6、及び表示器12に接続される。スキャナ制御器108は、風ベクトル算出器107が算出した風ベクトルの結果から、視線方向切換のための制御信号を生成し、生成した制御信号をスキャナ6に出力する。スキャナ制御器108は、スキャナ6より得た角度情報を保持するとともに、補正係数算出器103にその角度情報を送信する。また、スキャナ制御器108は、風ベクトル算出器107が出力した風ベクトルの算出結果を表示器12に出力する。例えば、スキャナ制御器108には、FPGAの論理回路、マイコンなどが用いられる。
 図1のレーザレーダ装置の構成の説明に戻る。
 動揺センサ11は、本レーザレーダ装置の動揺値を測定する動揺センサである。動揺センサ11は、信号処理器10に接続される。動揺センサ11は、本レーザレーダ装置が搭載されるプラットフォームの動揺値を取得し、取得した動揺値を信号処理器10に出力する。動揺値とは、プラットフォームのロール、ピッチ、及びヨー方向の角度を表す値、又は東西南北鉛直方向の並進速度を表す値である。例えば、動揺センサ11には、加速度計を用いたジャイロセンサ、GPS(Global Positioning System)ジャイロセンサが用いられる。
 表示器12は、信号処理器10が算出した視線方向風速値を表示する表示器である。表示器12は、信号処理器10に接続される。表示器12は、信号処理器10が算出したデータ、例えば、視線方向風速値、そのSNR、または風ベクトルを表示する。例えば、表示器12には、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイなどが用いられる。表示器12は、RAM(Random Access Memory)またはハードディスクなどの記憶装置を有し、時間に対して、視線方向風速値、そのSNR、または風ベクトルを記憶するようにしても良い。
 次に、この発明の実施の形態1に係るレーザレーダ装置の動作について説明する。
 光発振器1は、レーザ光を発振させ、発振したレーザ光を光カプラ2に出力する。
 光カプラ2は、光発振器1が出力したレーザ光を送信光とローカル光とに任意分岐比により分配し、送信光を光変調器3に、ローカル光を合波カプラ7に出力する。送信光は、光アンテナ5から大気中に出力する光であり、ローカル光は、光受信器8でヘテロダイン検波するために、合波カプラ7において受信光と合波する光である。光カプラ2の分岐比は、システム設計により決定される。
 システム設計のための回線計算には、例えば、以下の式が用いられる。
Figure JPOXMLDOC01-appb-M000001
 β、K、Sは、それぞれ、後方散乱係数(m-1sr-1)、大気透過率、散乱光のコヒーレンス径(m)を表し、システムで制御不可な大気条件を表すパラメータを表す。D、F、Nはそれぞれ、ビーム径(m)、集光距離(m)、インコヒーレント積算数(回)を表し、システム内において変更可能なパラメータを表す。h、λ、P、η、Bは、それぞれ、プランク定数(Js)、波長(m)、送信光パルスエネルギー(J)、Far Fieldの送受信効率、受信帯域幅(Hz)であり、Acは、光アンテナによってケラレたガウシアンビーム(NGB:Nearest Gaussian Beam)に対して相関の高い回折限界のガウシアンビームに置き換えるための近似係数を表し、Lは観測距離(m)を表す。ケラレとは送信もしくは受信するガウシアンビームが望遠鏡の有効開口径によって遮断され、一部をクリッピングされた状態を表す。上記Acはクリッピングされたガウシアンビームに対しガウシアン曲線でフィッティングを行った場合に、当該ガウシアン曲線に係る係数に相当する。
 光変調器3は、光カプラ2が分配した送信光を周波数変調及び強度変調し、変調した送信光を光サーキュレータ4に出力する。ここで、光変調器3は、送信光のパルス幅、繰り返し周波数(PRF)を決定している。パルス幅は距離分解能値にも相当するため、所望する距離分解能値に相当するパルス幅を信号処理器10において設定し、信号処理器10が光変調器3にそのパルス幅を設定することも可能であるし、光変調器3は、設計時に設定された固定のパルス幅、PRFを出力するようにしても良い。また、光変調器3の出力光が不足している場合、光変調器3の後段に光増幅器を追加しても良い。光変調器3は、送信光を位相変調することにより、送信光の周波数をシフトさせても良い。光変調器3は、送信光をパルス化するときのパルスタイミングを示すパルストリガ信号をA/D変換器9及び信号処理器10に出力する。
 光サーキュレータ4は、光変調器3が変調した送信光を光アンテナ5に通過させ、光アンテナが受信した受信光を合波カプラ7に出力する。光サーキュレータ4は、このように送信光と受信光とを分離する。
 光アンテナ5は、送信光をコリメートにし、大気中に照射する。また、光アンテナ5は、送信光に対するエアロゾルからの散乱光を集め、受信光として受信する。光アンテナ5は、集光調整機能を有するものでも良い。
 スキャナ6は、信号処理器10が出力した制御信号を受け、ウェッジプリズムを回転させ、光アンテナ5が照射する光の方向を任意に変更する。また、スキャナ6は、エンコーダ情報に相当する電気信号を信号処理器10に出力し、角度情報を伝達する。
 合波カプラ7は、光カプラ2が出力したローカル光と光サーキュレータ4が出力した受信光とを合波し、合波した光を光受信器8に出力する。
 光受信器8は、合波カプラ7が出力した合波光を光電変換し、ヘテロダイン検波により受信光の周波数復調を行い、周波数復調した受信信号をA/D変換器9に出力する。
 A/D変換器9は、光変調器3において発生するパルストリガ信号を受けた後、サンプリング周波数fsで光受信器8が出力した受信信号のA/D変換を行い、そのデジタル信号を信号処理器10に出力する。
 信号処理器10の動作について説明する。
 信号処理器10の構成図を図2に示す。上述したように、本レーザレーダ装置はパルス方式を用いている。
 図3は、この発明の実施の形態1に係るレーザレーダ装置における観測距離と受信時間との関係を示す図である。レンジビン分割器101は、各距離からの受信信号を任意時間幅で区切る。以降では、区切られた時間、すなわち距離を区切ったものをレンジビンと呼ぶ。レンジビン分割器101は、任意個数のレンジビンで受信波形を区切り、レンジビン区間の受信波形の電圧値をFFT処理器102に出力する。
 例えば、距離分解能Rresを30mと設定した場合、A/D変換された時間波形を区切る時間幅t = 2Rres/c (c:光速)のように設定できる。ゆえに、総レンジビン数がM個であった場合、A/D変換を開始するためのトリガ、ここでは光変調器3からのトリガ信号タイミングを基準にして、各レンジビンで区切られる時間を表すと、その式は以下のようになる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 Tstartは、各レンジビンのデータ取得開始時間、Tendは、各レンジビンのデータ取得終了時間、Tcenは、各レンジビンのデータ取得中心時間、mはレンジビンであり、1~Mの値域を持つ。Rminは、観測開始距離を調整するための値、すなわち、パルストリガ信号に対しA/D変換を行うまでのディレイタイミングを距離値で表したものである。トリガに対するA/D開始の遅延量が0の場合、例えば40mから測定したい場合は、Rminに40などの値が挿入される。
 なお、ここでは、当時間間隔レンジビン分割を行っているが、これに限らず、Tstartに相当する観測開始距離をユーザによって決定してもよいし、それをレンジビンごとに設定してもよいし、TstartとTendの範囲をオーバーラップさせてもよい。
 FFT処理器102は、レンジビン分割器101が取得した各レンジビンの時間波形をFFTビン数(NFFT)でFFT処理し、受信信号スペクトルを得る。NFFTは、FFT処理を行う点数を表し、例えば256等の値が用いられる。ここでの受信信号スペクトルは、後述するSPC(i,n,R)に対応する。
 補正係数算出器103は、動揺センサ11より固定周期で出力される動揺値を取得する。また、補正係数算出器103は、スキャナ制御器108から角度情報を取得する。補正係数算出器103は、取得した動揺値及び角度情報から後段のスペクトル補正に用いる補正係数を算出する。
 なお、補正係数算出器103は、光変調器3からのパルストリガを基準として動揺センサ11に動揺値取得をリクエストすることで動揺値を取得しても良いが、以降の実施の形態では固定周期での動揺値取得での動揺補正手法を記載する。
 図4は、この発明の実施の形態1に係る補正係数算出器103の一構成例を示す図である。
 動揺値抽出器301は、動揺補正量を算出するために、動揺値を動揺センサ11から取得し、取得した動揺値を補正量算出器302に出力する。動揺センサ11は、ロール、ピッチ、ヨー方向の揺れや東西南北鉛直方向といった6軸自由度における動揺値、仰角(EL)、北からの方位角(AZ)、及び東西南北鉛直の並進速度を動揺値抽出器301に出力する。
 図5は、この発明の実施の形態1に係る動揺値抽出器301の動作の一例を示すフローチャートである。
 まず、ステップS101において、動揺値抽出器301は、上述したように動揺センサ11から動揺値を取得する。取得した動揺値にはタイムスタンプを含むものとする。
 次に、ステップS102において、動揺値抽出器301は、光変調器3において出力されるパルストリガ信号のタイムスタンプと、動揺値のタイムスタンプとを比較し、その時間差異が閾値(Tth)以内か否かを判断する。
 次に、その時間差異が閾値(Tth)以内の場合、ステップS103において、動揺値抽出器301は、取得した動揺値をそのまま補正量の算出に使用することとし、取得した動揺値を補正量算出器302に出力し、フローを終了する。
 次に、その時間差異が閾値(Tth)より大きい場合、ステップS104において、動揺値抽出器301は、例えば、カルマンフィルタにより求めた動揺値の推測値を用いる。動揺値抽出器301は、動揺値の推測値を補正量算出器302に出力し、フローを終了する。なお、動揺値抽出器301は、直前の動揺値をそのまま用いる手法の他、スペクトルデータを保存しておき、動揺値が得られた時点で、過去の動揺値を用いて線形補完し、その線形補完した動揺値を、光変調器3のパルストリガ信号出力時の動揺値として抽出しても良い。
 Tthの値は、期待する動揺補正精度によって定められ、ユーザによる固定値での設定の他、同時にPRF間の許容ビーム角度差(Ath)を設け、Tth = Ath ÷ 動揺センサで得られる前回の角速度ω(deg/sec) などで動的に決定しても良い。例えば、海洋などで用いた場合、角速度の変動周期は1Hzオーダであり、PRFと比較して遅いため、前回の角速度を用いたとしても精度に及ぼす影響は小さい。Athの値については動揺センサの持つスペックから決定するなどの方法がある。これにより、高サンプリングでの動揺センサを用いずに、比較的精度の高い動揺値取得を可能とし、動揺センサにかかるコストの低下が可能となる。
 補正量算出器302は、取得した動揺値を用いて以下のように補正量を算出する。補正するパラメータは、射影係数Pc及びシフト量T(Hz)である。仰角方向の動揺を考えた場合、射影係数Pcは、動揺がない理想的な状態の仰角値をθaとし、動揺後の仰角値θbとすると、以下の式で表される。
Figure JPOXMLDOC01-appb-M000005
 シフト量Tは、動揺センサ11から得られる並進速度Vsを用いて、以下の式で表される。ここでは、説明の簡易化のために、単一軸方向の並進があった場合を示す。λは、送信光の波長である。
Figure JPOXMLDOC01-appb-M000006
 射影係数もしくはシフト量の導出方法は、これに限るものではなく、動揺値を用いて非動揺時への補正を成せる式もしくは変数が得られれば良い。
 スペクトル補正器104は、各動揺値に対して、スペクトルを格納する配列を用意し、用意した配列に各動揺値に対応するスペクトルを格納する。ここで、格納するスペクトルは、各視線方向のスペクトルデータである。
 図6は、この発明の実施の形態1に係るスペクトル補正器104の一構成例を示す構成図である。
 リサンプリング処理器401は、周波数ビンの大きさを変更することで周波数分解能を擬似的に変更し、また、総周波数ビンを増やす。
 図7は、この発明の実施の形態1に係るリサンプリング処理器401の処理を表す概念図である。
 リサンプリング処理器401は、補正量算出器302が出力した射影係数を用いて、各周波数ビンの値に対して射影係数Pcをかけて、射影係数を補正したスペクトルデータを算出し、そのスペクトルデータを周波数ビンに格納する。しかし、Pcの値によっては、1つの周波数ビンに2つのデータが格納されることもあり得る。各周波数ビンに複数個のデータが格納される場合は、平均値を用いる方法もあるが、これでは、周波数分解能が低下する問題が発生する。そのため、リサンプリング処理器401は、図7のように周波数ビンの大きさを変更し、スペクトルデータのリサンプルを行うことによって、周波数分解能の劣化を低減する。以下、リサンプリングの方法について詳しく説明する。
 周波数ビンの変更は、総FFT点数を変更することで行っても良いし、直接、周波数ビンの大きさを変更しても良い。
 総FFT点数を変更する場合、リサンプリング処理器401は、事前に設定された固定値を用いて総FFT点数を変更することで周波数ビンの大きさを変更しても良いし、また、視線方向風速値を取得する1ショット目の動揺値を用い、Nfft=Nfft×1/cos(|θa-θb|)倍にするといったように動的に変化させても良い。ここで、Nfftは元の総周波数ビン数であり、Nfftは、変更後の総周波数ビンである。
 一方、周波数ビンの大きさを変更する場合、リサンプリング処理器401は、例えば、元の周波数ビンの大きさをΔfaとすると、Δfb=Δf×cos(|θa-θb|)のように、周波数ビンを変更する。本処理により、余剰なFFTビン数の確保を抑圧し、メモリ容量の低減に寄与できる。
 なお、周波数ビンを変更する係数の決定は、積算数Nの中で1ショット目に行い、その後は固定としても良い。また、1ショット目に比べ動揺値が時間的に大きくなる可能性があるプラットフォームの場合であって、メモリ量が十分確保できる場合は、1~(N-1)ショット目までのスペクトルを保存し、Nショット目までの最大射影係数値の時の動揺値(θbmax)を用いて、1/cos(|θa-θbmax|)倍のようにNfftを決定しても良い。
 スペクトル挿入器402は、以下の計算を行い、リサンプリング処理器401が作成した各周波数ビンの配列にスペクトルデータ(SPC(i,n,R))の値を格納する。iは、周波数ビンの番号、つまり周波数順に並んだデータのうちで何番目のデータであるかを示す番号であり、nは、ショット番号であり、Rは、レンジビンの番号ある。例えば、SPC(i,2)とは、2回目の照射に対するスペクトルデータであることを意味する。
 例えば、スペクトルデータ(SPC(i,n,R))は、射影係数Pcを用いて、SPCb(i,n,R)=Pc(n)×SPC(i,n,R)のように変換され、リサンプリング処理器401が作成した各周波数ビンの配列に格納される。ここで、SPCb(i,n,R)は、射影角度を補正したスペクトルデータである。i=1,2,・・・(Nfft)×1/cos(|θa-θb|)である。
 積算器105は、各ショットで得られたスペクトルに対して、ユーザによって指定された回数(N)のインコヒーレント積算を行う。インコヒーレント積算は、各レンジビンのスペクトルデータに対して以下の式で行う。
 図8は、この発明の実施の形態1に係る積算器105の積算処理を表す概念図である。積算器105は、各ショットにおける各レンジビンのスペクトルデータについて、同じレンジビン番号のスペクトルデータを足し合わせることで積算処理を行う。積算処理は、数式で表すと以下のようになる。
Figure JPOXMLDOC01-appb-M000007
 iは周波数ビンの番号、nはショットの番号、Rはレンジビンの番号である。SPCbは、射影角度を補正した後のスペクトルデータである。このように積算処理を行うことにより、雑音値に対してスペクトルデータのピーク値(信号値)を大きくすることができる。つまり、SNRを改善することができる。
 図9は、この発明の実施の形態1に係る積算器105の積算結果の概念図である。
 実線が、本方式のスペクトルであり、点線が、従来方式のスペクトルである。 各ショットでは、信号値が小さく、SNRが低い。また、各ショットに対して射影係数を補正していない場合、信号値の周波数は、各ショットに対して異なるので、各ショットのスペクトルデータを積算しても、信号値は、分散してしまう。しかし、射影係数を補正した場合、エアロゾルのドップラー周波数は一定であるので、各ショットに対して、信号値の周波数は一致する。したがって、積算処理をすることにより、雑音値は、平均化されるが、信号値は、積算されるので、SNRを改善することができる。
 上記で説明した処理により、SNRが改善することについてもう少し説明する。
 図10は、この発明の実施の形態1に係るレーザレーダ装置の動揺による照射角度のずれと風速との関係を示す関係図である。
 Vは、水平方向の真の風速であり、θ1~θ3は、レーザ光の照射角度である。v1~v3は、それぞれ、θ1~θ3方向の測定結果から求めた風速である。
 レーザレーダ装置は、送信光と空気中のエアロゾルからの散乱光とのドップラーシフトを算出することで風速を算出する。したがって、エアロゾルを含む風とレーザ光との角度によって風に対するレーザ光の相対速度は変化するから、ドップラーシフトは変化する。
 図10の例では、角度補正(動揺補正)をしない場合、θ1>θ2>θ3であるから、v3>v2>v1となり、真の風速Vに対して、様々な値をとることになる。よって、風速値は、角度によって異なる値をとり、時間によって角度が変わるとすると、真の風速が一定であっても、時間によって風速は異なる値をとる。したがって、時間に対して積算処理を行っても、ピークの位置は各時間で一致せず、ピークが拡がってしまう。
 図11は、従来方式の積算結果と本方式の積算結果との比較を示す比較図である。
 上述したように、従来方式では積算した後に動揺補正を行うため、積算するスペクトルは、動揺補正前のスペクトルである。このため、積算したスペクトル結果のピークは拡がってしまう。これに対して、本方式では動揺補正を行った後に積算するため、スペクトル結果のピークの拡がりは小さく、ピーク値は大きくなる。
 図12は、視線方向によってエアロゾルが異なる場合のスペクトルを示す図である。一般的に、スペクトル強度∝受信SNR∝大気エアロゾル量の関係がある。ビーム指向方向によって大気エアロゾル量依存性がない場合、スペクトル強度は頻度の指標となり、図12上のようにピークがある周波数は頻度の平均値を取ることに相当する。この場合、従来構成では、スペクトル積算を行う間の動揺平均値を用いるため、平均風速値と動揺平均値を用いた補正を行うことで高い精度を持った補正が可能となる。
 しかし、実際は異なり、ビーム指向方向によってエアロゾル量が異なるため、周波数、すなわち風速値によって受信強度が異なり図12の下の図のようになるが、動揺値はその影響を加味していない。そのため、ピーク値が存在する周波数はエアロゾル量が多い、すなわち受信強度が高い方に引きずられ、それが動揺補正後の風速誤差となる。これは、積算後に動揺補正を行うために現れる現象である。本構成によれば、広がったスペクトルを一か所に集約しながら積算を行うため、大気エアロゾル量のビーム指向方向依存による補正誤差は大幅に軽減できる特長がある。
 風速算出器106は、積算されたスペクトルから視線方向のドップラー周波数、すなわち、風速値を算出する。ドップラー周波数の導出には、スペクトルのピーク検出による検出の他、重心演算を用いても良い。重心演算によるドップラー周波数fdの算出は、以下の式で表される。
Figure JPOXMLDOC01-appb-M000008
 S(f)は、あるレンジビン(R)に対する受信信号のスペクトルであり、S(f)=S(i,R)である。また、fは、各周波数ビンの番号(i)に対応する周波数である。受信スペクトルに対して周波数fで重みづけを行っている。これにより、最も統計的に有意な周波数値を算出できる。
 風ベクトル算出器107は、ベクトル合成もしくは、VAD(Velocity Azimuth Display)法を用いて風ベクトルを算出する。ベクトル合成の場合、例えば、視線方向の風速(Vr)は、東西方向の水平方向風速(U)、南北方向の水平方向風速(V)、鉛直方向の風速(W)、仰角(θ)、北を基準とした方位角(φ)を用いて、以下の式で表される。
Figure JPOXMLDOC01-appb-M000009
 本式を用いて、例えば、3方向の視線方向風速値が得られた場合、連立方程式を解くことによって、U、V、Wを算出することができる。これにより、3次元の風ベクトルを得る。
 スキャナ制御器108は、視線方向を切り替えるために、スキャナを動作させるための制御信号を生成する。スキャナ6は、スキャナ制御器108からの制御信号によってスキャナ内ステッピングモータを駆動し、所望ステップ動作させることによって所望角度への動作を行う。また、スキャナ6は、搭載されるエンコーダによる角度信号をスキャナ制御器108に送信し、スキャナ制御器108では動作後の角度情報を保持する。この角度情報は、上述の理想的な仰角値θに相当する。
 表示器12は、信号処理器10が算出した視線方向風速値、視線方向風速値のSNR、または風ベクトルなどの情報をメモリに保存し、表示する。
 以上の通り、この発明の実施の形態1によれば、積算処理を行う前に動揺補正を行い、動揺補正したスペクトルに対して積算処理を行うので、時間に対して動揺値が変化しても、SNRの劣化を抑制することがきる。この結果、風計測の精度を改善することができる。
 なお、本構成では、パルス型のレーザレーダ装置を前提に記載しているが、CW(Continuous Wave)方式を用いても良く、これに限るものではない。また、本構成では、光接続方法について光ファイバをベースに記載しているが、接続方法は、光ファイバを用いずに空間伝搬型としても良い。
 さらに、本レーザレーダ装置は、上述したようなスキャナ構成ではなく、光スイッチを用いた構成でも良い。
 図13は、この発明の実施の形態1に係る他の構成例を示す構成図である。
 光スイッチ13が、送信光の光路を切り替え、それぞれ後段の異なる視線方向を持った光アンテナ5に接続されることで、多視線方向の風速値を得ることができる。例えば、光スイッチ13には、通信で用いられるメカニカル光スイッチやMEMS(Micro Electro Mechanical Systems)光スイッチ等が用いられる。
 また、信号処理器10の各構成要素の機能は、FPGAなどのハードウェアで実行されても良いし、メモリに記憶された各構成要素の機能を表すプログラムをプロセッサが読みだして実行するように、ソフトウェアで実行されても良い。
実施の形態2.
 実施の形態2では、動揺値に応じてレンジビンをずらし、受信信号に対してレンジビンが切り取る領域を変化させるレーザレーダ装置について説明する。これにより、動揺による観測高度の誤差を抑制でき、風速測定精度を向上させることができる。
 図14は、この発明の実施の形態2のレーザレーダ装置の一構成例を示す構成図である。
 図14において図1と同一の符号は、同一または相当の部分を示している。本レーザレーダ装置は、光発振器1、光カプラ2、光変調器3、光サーキュレータ4、光アンテナ5、スキャナ6、合波カプラ7、光受信器8、A/D変換器9、信号処理器14、動揺センサ11、及び表示器12を備える。信号処理器10の代わりに信号処理器14を用いており、A/D変換器9と信号処理器14との接続関係が、実施の形態1と異なる。後述するが、信号処理器14が出力した信号がA/D変換器9に一度に入り、A/D変換器9が出力した信号が再度、信号処理器14に入力される。
 図15は、この発明の実施の形態2の信号処理器14の一構成例を示す構成図である。
 図15において図3と同一の符号は、同一または相当の部分を示している。
 信号処理器14は、補正係数算出器103、レンジビン分割器109、FFT処理器102、スペクトル補正器104、積算器105、風速算出器106、風ベクトル算出器107、及びスキャナ制御器108を備える。レンジビン分割器109の前に補正係数算出器103が設けられており、動揺値に対する補正係数を算出した後にレンジビンを分割し、分割したレンジビンをA/D変換器9に出力し、そのレンジビンに基づいてA/D変換された信号がFFT処理器102に入力されている点が、信号処理器10と異なる。
 レンジビン分割器109は、動揺値に応じてレンジビンの大きさを変更するレンジビン分割器である。レンジビン分割器109は、光変調器3、補正係数算出器103、及びFFT処理器102に接続される。レンジビン分割器109は、補正係数算出器103を介して得られる動揺値に応じ、各レンジビンのA/D変換開始タイミングをA/D変換器9に出力する。A/D変換器9はレンジビン分割器109、FFT処理器102に接続され、A/D変換した各レンジビンのデジタル信号をFFT処理器102に出力する。例えば、レンジビン分割器109には、FPGA、マイコンなどが用いられる。
 次に、この発明の実施の形態2に係るレーザレーダ装置の動作について説明する。実施の形態1と同じ動作については説明を省略し、実施の形態1と異なる動作を説明する。
 光発振器1から光受信器8までの動作は、実施の形態1と同じであるので、説明を省略する。
 A/D変換器9は、光受信器8が出力したアナログ信号をデジタル信号に変換するが、その際にレンジビン分割器109が出力するトリガ信号ごとに変換を行なう。
 レンジビン分割器109は、動揺センサ11から補正係数算出器103を介して動揺値を取得する。そして、レンジビン分割器109は、以下の処理を行うことにより、動揺によって所望の観測高度からずれた高度分だけ受信信号を切り取る領域をずらす処理を行う。
 図16は、動揺によって観測高度がずれることを示す模擬図である。
 θaは、動揺がない理想的な状態の仰角値であり、θbは動揺後の仰角値である。仰角方向(EL方向)の動揺を考えると、図16のレーダレーダ装置は、θaの方向にレーザ光を照射するが、そのときに動揺が存在した場合、実際にはθbの方向にレーザ光を照射することになる。設定した角度と実際に照射した角度が異なるため、観測距離が同じでも観測高度にずれが生じる。観測高度にずれが生じると、後述するが、観測する風速に誤差が生じる。
 図17は、観測高度と風速値との関係を示す関係図である。
 一般的に、水平方向風速値と高度との関係は、図17のように、べき乗則で表される。そのため、観測高度差の発生は、風速測定誤差に対応する。
 EL方向でθa>θbの揺れを考えると、動揺による高度差を補正するためには、例えば、レンジビンの開始時間(Tstart)及び終了時間(Tend)は、以下の式で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 図16に示したように、cは、光速、Hdiffは、動揺がない場合と動揺がある場合の観測高度の差、Rresは、時間ゲートの大きさ、つまりレンジビンの幅である。Rminは、動揺ありの場合で時間ゲートが開始する時間に相当する距離(ゲート開始距離)であり、Rは、動揺ありの場合で補正前の観測中心までの距離(補正前観測中心距離)であり、mは、レンジビン番号である。Rstartは、観測高度を補正したときに時間ゲートが開始する時間に相当する距離(補正後ゲート開始距離)であり、Rendは、観測高度を補正したときに時間ゲートが終了する時間に相当する距離(補正後ゲート終了距離)である。
 本レーザレーダ装置は、動揺値を用いてレンジビンの開始時間及び終了時間を補正することによって、観測高度のずれを補正し、動揺がなかった場合と同じ観測高度で風速を測定する。これにより、動揺が生じても、観測高度を一定に保つことができ、観測高度の違いによる風速測定の誤差を低減することができる。
 実施の形態1のレーザレーダ装置は、受信時間に対してレンジビンを決定するが、実施の形態2のレーザレーダ装置は、観測高度に対してレンジビンを決定する点が異なる。
 レンジビン分割器109は、上記で説明したように観測高度を補正したレンジビンに対応するA/D開始信号をA/D変換器9に出力する。
 A/D変換器9は、レンジビン分割器109から入力されたレンジビンの区間にしたがって、光受信器8から入力された受信信号をA/D変換し、変換した受信信号をFFT処理器102に出力する。
 FFT処理器102以降の動作は、実施の形態1と同様であるので、説明を省略する。
 以上の通り、この発明の実施の形態2によれば、本レーザレーダ装置は、動揺値に応じてレンジビンが受信信号を切り取る領域を変化させるので、観測高度を一致させることができ、風速測定精度を向上できる効果がある。
1  光発振器、2  光カプラ、3  光変調器、4 光サーキュレータ、5 光アンテナ 、6 スキャナ、7 合波カプラ、8 光受信器、9 A/D変換器、10 信号処理器、11 動揺センサ、12 表示器、13 光スイッチ、14 信号処理器、101 レンジビン分割器、102 FFT処理器、103 補正係数算出器、104 スペクトル補正器、105 積算器、106 風速算出器、107 風ベクトル算出器、108 スキャナ制御器、109 レンジビン分割器、301 動揺値抽出器、302 補正量算出器、401 リサンプリング処理器、402 スペクトル挿入器。

Claims (7)

  1.  レーザ光を発振する光発振器と、
     前記光発振器が発振した前記レーザ光を変調する光変調器と、
     前記光変調器が変調した前記レーザ光を大気へ放射し、被放射物からの散乱光を受信光として受信する光アンテナと、
     前記光アンテナが受信した前記受信光をヘテロダイン検波する光受信器と、
     前記光アンテナの動揺値を検出するセンサと、
     前記光受信器がヘテロダイン検波することにより得られた受信信号のスペクトルを算出し、前記センサが検出した前記動揺値を用いて前記スペクトルを補正し、補正した前記スペクトルを積算し、積算した前記スペクトルから前記被放射物の速度を算出する信号処理器と
    を備えたことを特徴とするレーザレーダ装置。
  2.  前記信号処理器は、
     設定されたレンジビンで前記受信信号を分割するレンジビン分割器と、
     前記レンジビン分割器が分割した前記受信信号をフーリエ変換し、前記レンジビンごとの前記受信信号のスペクトルを算出する高速フーリエ変換処理器と、
     前記センサが検出した前記動揺値を用いて、動揺した状態での前記レーザ光の放射方向を、動揺がない状態の放射方向に射影するパラメータを算出する補正係数算出器と、
     前記補正係数算出器が算出した前記パラメータを用いて、前記高速フーリエ変換処理器が算出した前記スペクトルを補正するスペクトル補正器と、
     前記レンジビン分割器が分割したレンジビンごとに、前記スペクトル補正器が補正した前記スペクトルを積算する積算器と、
     前記積算器が積算した前記スペクトルから前記被放射物のドップラーシフト成分を算出し、前記ドップラーシフト成分から前記被放射物の風速を算出する風速算出器と、
     を備えたことを特徴とする請求項1に記載のレーザレーダ装置。
  3.  前記光アンテナが放射した前記レーザ光の視線方向を切り替えるスキャナを備え、
     前記信号処理器は、
     前記風速算出器が算出した複数の視線方向の風速値から風ベクトルを算出する風ベクトル算出器と、
     を備えたことを特徴とする請求項2に記載のレーザレーダ装置。
  4.  前記レンジビン分割器は、前記センサが検出した前記動揺値を用いて、動揺による観測高度誤差を補正するように、前記受信信号のレンジビンを決定することを特徴とする請求項2に記載のレーザレーダ装置。
  5.  前記光受信器がヘテロダイン検波することにより得られた受信信号を、前記レンジビン分割器が決定したレンジビンを用いて、デジタル信号に変換するアナログデジタル変換器を備えたことを特徴とする請求項4に記載のレーザレーダ装置。
  6.  前記光変調器は、前記光発振器が発振した前記レーザ光をパルス化するときのパルスタイミングを示すパルストリガ信号を出力し、
     前記センサが検出した前記動揺値は、タイムスタンプを含み、
     前記信号処理器は、前記光変調器が出力した前記パルストリガ信号と前記動揺値のタイムスタンプとを比較し、前記受信信号のスペクトルの補正に用いる前記動揺値を決定することを特徴とする請求項1に記載のレーザレーダ装置。
  7. 前記信号処理器は、前記光変調器が出力した前記パルストリガ信号と前記動揺値のタイムスタンプとの時間的差異が設定された閾値より大きい場合、前記受信信号のスペクトルの補正において前記動揺値の推測値を用いることを特徴とする請求項6に記載のレーザレーダ装置。
PCT/JP2015/084609 2015-12-10 2015-12-10 レーザレーダ装置 WO2017098623A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580085101.6A CN108369276A (zh) 2015-12-10 2015-12-10 激光雷达装置
EP15910239.1A EP3388866A4 (en) 2015-12-10 2015-12-10 Laser radar apparatus
JP2017554729A JP6305662B2 (ja) 2015-12-10 2015-12-10 レーザレーダ装置
PCT/JP2015/084609 WO2017098623A1 (ja) 2015-12-10 2015-12-10 レーザレーダ装置
US15/781,173 US10379136B2 (en) 2015-12-10 2015-12-10 Laser radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084609 WO2017098623A1 (ja) 2015-12-10 2015-12-10 レーザレーダ装置

Publications (1)

Publication Number Publication Date
WO2017098623A1 true WO2017098623A1 (ja) 2017-06-15

Family

ID=59013877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084609 WO2017098623A1 (ja) 2015-12-10 2015-12-10 レーザレーダ装置

Country Status (5)

Country Link
US (1) US10379136B2 (ja)
EP (1) EP3388866A4 (ja)
JP (1) JP6305662B2 (ja)
CN (1) CN108369276A (ja)
WO (1) WO2017098623A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395958B1 (ja) * 2017-07-04 2018-09-26 三菱電機株式会社 レーザレーダ装置
JP2019105577A (ja) * 2017-12-13 2019-06-27 メトロウェザー株式会社 ドップラーライダー装置、及び乱気流警報システム
WO2020255759A1 (ja) * 2019-06-20 2020-12-24 ソニーセミコンダクタソリューションズ株式会社 測距装置、測距方法、および、測距システム
CN114740641A (zh) * 2022-06-09 2022-07-12 成都凯天电子股份有限公司 一种紫外光开关及其构成的激光扫描系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366880B2 (ja) * 2016-04-05 2018-08-01 三菱電機株式会社 レーザレーダ装置
EP3754364B1 (en) * 2018-03-29 2023-01-11 Mitsubishi Electric Corporation Laser radar device
CN112534217A (zh) * 2018-08-10 2021-03-19 夏普株式会社 水位检测装置以及加湿装置
DE102018131059A1 (de) * 2018-12-05 2020-06-10 SIKA Dr. Siebert & Kühn GmbH & Co. KG Strömungsmessverfahren und Strömungsmessvorrichtung zur optischen Strömungsmessung
US11366206B2 (en) 2019-03-18 2022-06-21 Aeva, Inc. Lidar apparatus with an optical amplifier in the return path
EP3719537B1 (de) 2019-04-04 2021-03-17 Sick Ag Messen von abständen
CN111239705B (zh) * 2020-02-12 2022-06-28 北京未感科技有限公司 激光雷达的信号处理方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103050A (ja) * 2010-11-08 2012-05-31 Japan Aerospace Exploration Agency 遠隔乱気流検知方法及びそれを実施する装置
JP2013253910A (ja) 2012-06-08 2013-12-19 Mitsubishi Electric Corp 風計測装置
JP2014055889A (ja) * 2012-09-13 2014-03-27 Mitsubishi Electric Corp 風計測装置
JP2015502540A (ja) * 2011-11-29 2015-01-22 エフライダーFlidar 動き安定lidarおよび風の速さの測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080589B2 (ja) 1996-08-28 2000-08-28 防衛庁技術研究本部長 レーダ装置
JP2005326297A (ja) 2004-05-14 2005-11-24 Mitsubishi Electric Corp レーダ装置
US7777866B1 (en) * 2006-07-25 2010-08-17 Kyrazis Demos T Fixed difference, dual beam laser Doppler velocimetry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103050A (ja) * 2010-11-08 2012-05-31 Japan Aerospace Exploration Agency 遠隔乱気流検知方法及びそれを実施する装置
JP2015502540A (ja) * 2011-11-29 2015-01-22 エフライダーFlidar 動き安定lidarおよび風の速さの測定方法
JP2013253910A (ja) 2012-06-08 2013-12-19 Mitsubishi Electric Corp 風計測装置
JP2014055889A (ja) * 2012-09-13 2014-03-27 Mitsubishi Electric Corp 風計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3388866A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395958B1 (ja) * 2017-07-04 2018-09-26 三菱電機株式会社 レーザレーダ装置
WO2019008670A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 レーザレーダ装置
US11899112B2 (en) 2017-07-04 2024-02-13 Mitsubishi Electric Corporation Laser radar device
JP2019105577A (ja) * 2017-12-13 2019-06-27 メトロウェザー株式会社 ドップラーライダー装置、及び乱気流警報システム
WO2020255759A1 (ja) * 2019-06-20 2020-12-24 ソニーセミコンダクタソリューションズ株式会社 測距装置、測距方法、および、測距システム
CN114740641A (zh) * 2022-06-09 2022-07-12 成都凯天电子股份有限公司 一种紫外光开关及其构成的激光扫描系统

Also Published As

Publication number Publication date
JP6305662B2 (ja) 2018-04-04
US20180356440A1 (en) 2018-12-13
US10379136B2 (en) 2019-08-13
JPWO2017098623A1 (ja) 2018-05-24
EP3388866A1 (en) 2018-10-17
CN108369276A (zh) 2018-08-03
EP3388866A4 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6305662B2 (ja) レーザレーダ装置
JP6366880B2 (ja) レーザレーダ装置
US11474256B2 (en) Data processing device, laser radar device, and wind measurement system
EP2884306B1 (en) Radar device
WO2019202676A1 (ja) レーザレーダ装置
EP3637134B1 (en) Laser radar device
WO2018198225A1 (ja) Ai装置、レーザレーダ装置、及びウインドファーム制御システム
EP2929368B1 (en) Bistatic synthetic aperture ladar system
IL156703A (en) An artificial Dar opening system that uses cohesive laser beats
CN104597452A (zh) 对称三角线性调频连续波激光雷达探测目标的方法
US10215569B2 (en) Method and system for determining a relative position to a target
RU2660450C1 (ru) Устройство радиолокационной станции с непрерывным линейно-частотно-модулированным сигналом и синтезом апертуры
EP2659283B1 (fr) Procede de synchronisation de systemes optroniques et ensemble de systemes optroniques synchronises selon ce procede
EP3789786B1 (en) Laser radar device
JP7336134B2 (ja) 遠隔気流観測装置、遠隔気流観測方法及びプログラム
JP7004860B2 (ja) 測距装置、車両、及び測距方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015910239

Country of ref document: EP