WO2017096646A1 - 一种高纯碳酸锂的三合一制备工艺 - Google Patents

一种高纯碳酸锂的三合一制备工艺 Download PDF

Info

Publication number
WO2017096646A1
WO2017096646A1 PCT/CN2015/098414 CN2015098414W WO2017096646A1 WO 2017096646 A1 WO2017096646 A1 WO 2017096646A1 CN 2015098414 W CN2015098414 W CN 2015098414W WO 2017096646 A1 WO2017096646 A1 WO 2017096646A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactant
reaction
lithium
lithium carbonate
enters
Prior art date
Application number
PCT/CN2015/098414
Other languages
English (en)
French (fr)
Inventor
范兵
Original Assignee
范兵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 范兵 filed Critical 范兵
Publication of WO2017096646A1 publication Critical patent/WO2017096646A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a preparation process of high-purity lithium carbonate, in particular to a three-in-one preparation process of high-purity lithium carbonate.
  • lithium carbonate in lithium-ion batteries and polymer batteries With the improvement of domestic and international markets and the support of national nuclear technology and HEV, the demand for lithium carbonate in lithium-ion batteries and polymer batteries is increasing. The demand for lithium metal in China will grow at a rate of 30% per year. Its production scale has developed rapidly, and lithium and lithium salts are facing good market opportunities. At present, lithium metallurgy raw materials mainly include lithium ore and salt lake brine.
  • Lithium mica is one of the unique lithium resources in China, and the Li20 content is generally around 4.5%.
  • the object of the present invention is to provide a three-in-one preparation process for simultaneously extracting a high-purity lithium carbonate from lithium ore, salt lake brine and waste lithium in view of the state of the art.
  • a three-in-one preparation process of high-purity lithium carbonate comprising the following steps:
  • step (1) ball mill is sent to the reaction vessel and mixed with the reactant in the step (2), and sulfuric acid is introduced from the sulfuric acid tank to carry out the reaction, and the reaction is heated in a high temperature steaming furnace to obtain a cooked portion. Then, pumping water from the pool to complete the leaching;
  • the reactant enters the filtering device for filtration, and then enters the centrifugal separator to complete the separation, obtains lithium carbonate, and finally performs drying.
  • the process can also be carried out by adding waste lithium together to prepare lithium carbonate, including the following steps:
  • step (1) ball mill is sent to the reaction vessel and mixed with the reactants in the steps (2) and (3), and sulfuric acid is introduced from the sulfuric acid pool to carry out the reaction, and the reaction process is carried out using a high temperature steam furnace. Heating, obtaining clinker, and then pumping water from the pool to complete leaching;
  • the reactant enters the filtration device for filtration, and then enters the centrifugal separator to complete the separation, obtains lithium carbonate, and finally performs drying.
  • the calcination temperature of the kiln was set to 1200 degrees.
  • the lithium carbonate after the drying is sent to the Raymond machine for refining grinding, the particle size is controlled within the range of 325-1250, and the unqualified lithium carbonate is re-entered into the Raymond machine for grinding.
  • waste materials in the chemical reaction process are collected separately through pipes.
  • the rinsing device rinses the reaction vessel after each chemical reaction is completed, and the rinsing device uses the pool to supply water.
  • the raw material can complete the whole process of lithium carbonate extraction and preparation through the production line, without the need of other independent equipment for processing, the extraction efficiency is significantly improved;
  • FIG. 1 is a schematic structural view of a special device of the present invention.
  • a three-in-one preparation process of high-purity lithium carbonate comprising the following steps:
  • step (1) ball mill is sent to the reaction vessel and mixed with the reactant in the step (2), and sulfuric acid is introduced from the sulfuric acid tank to carry out the reaction, and the reaction is heated in a high temperature steaming furnace to obtain a cooked portion. Then, pumping water from the pool to complete the leaching;
  • the reactant enters the filtering device for filtration, and then enters the centrifugal separator to complete the separation, obtains lithium carbonate, and finally performs drying.
  • the process can also be carried out by adding waste lithium together to prepare lithium carbonate. Since the lithium lithium itself has a high lithium content of about 80%, it can be directly added to the chemical reaction, including the following steps:
  • step (1) ball mill is sent to the reaction vessel and mixed with the reactants in the steps (2) and (3), and sulfuric acid is introduced from the sulfuric acid pool to carry out the reaction, and the reaction process is carried out using a high temperature steam furnace. Heating, obtaining clinker, and then pumping water from the pool to complete leaching;
  • the reactant enters the filtration device for filtration, and then enters the centrifugal separator to complete the separation, obtains lithium carbonate, and finally performs drying.
  • the kiln can be controlled at a high temperature of about 1200 degrees to facilitate the subsequent chemical reaction.
  • the lithium carbonate after the drying meeting can be sent to the Raymond machine for refining and grinding, the particle size is controlled within the range of 325-1250, and the non-compliant lithium carbonate is re-entered into the Raymond machine. Grinding in.
  • the rinsing device rinses the reaction vessel after each chemical reaction is completed, and the rinsing device uses the pool to supply water.
  • the waste in the chemical reaction process is collected separately through the pipeline.
  • FIG. 1 is a schematic structural diagram of a special device of the present invention.
  • the kiln 16 to which the lithium ore bank 1 is connected, the kiln 16, the brine pool 2 for storing the raw material brine after the natural beach drying, and the waste lithium pool 3 are respectively connected to the reaction vessel 5, and the reaction kettle 5 is respectively passed through the pipeline It is connected with the auxiliary material pool 11, the pool 12, the sulfuric acid pool 13, the multi-cell savings pool is arranged in the auxiliary material pool 11, and the soda ash, sodium carbonate and the like are respectively stored in the multi-cell savings pool, and the lithium ore is used in combination with the sulfuric acid pool 13 to complete the lithium ore.
  • the reaction vessel 5 is provided with a flushing device 15 which is connected to the water tank 12 to complete the water supply. In addition to the completion of the reactant flushing process, the water tank 12 is also responsible for the water supply function of the acidified clinker leaching.
  • the reactor 5 is further provided with a high-temperature steam furnace 6 and a heater for heating and high-temperature calcining the reactants in the reactor 5, and the calcined reactants are passed into the ball mill 4 for grinding, thereby connecting between the reactor 5 and the furnace 13. There is a ball mill 4, and the discharge port of the reaction vessel 5 outputs a reactant to the filtering device 8 through a bidirectional pipe.
  • the bidirectional pipe is used for multiple round-trip transportation between the reaction vessel 5 and the filtering device 8, that is, a plurality of filtration processes are completed.
  • the connection between the filtering device 8 and the centrifugal separator 7 is a two-way conveying arrangement, and is also used for drying after single or multiple filtration.
  • the drying device 9 is the most terminal of the production line, but due to the final lithium carbonate.
  • the product has different conveying modes, and the conveying pipe connected to the collecting tank 14 can be further arranged at the discharging end of the drying device 9 to complete the finished product conveying.
  • a first valve 11 is disposed on the conveying passage between the ball mill 4 and the reaction vessel 5; a second valve 21 is disposed on the conveying passage between the brine pool 2 and the reaction vessel 5; A third valve 31 is disposed on the conveying passage between the reaction vessel 5 and the multi-gate is provided for precisely controlling the time when various raw materials enter the reaction kettle 5, wherein the brine tank 2 is installed with a pressure pump 22 for pumping unsinkable The dried brine enters the reaction vessel 5 to complete the heating and evaporation.
  • the purpose of the valve here is that the present invention can also separately extract lithium carbonate from any one of lithium ore, raw material brine and waste lithium by restricting the other two materials from entering the reaction vessel.
  • the high-temperature steaming furnace 6 and the drying device 9 are connected to the steam boiler 10 to complete the heating, and the capacity configuration is optimized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种高纯碳酸锂的三合一制备工艺,包括以下步骤:锂矿石通过管道从锂矿石库(1)进入窑炉(16)后完成高温煅烧,煅烧后将反应物输送至球磨机(4)中进行研磨,研磨后的反应物停留在球磨机(4)中;原料卤水进入反应釜(5)中通过高温蒸炉(6)加热蒸发,随后从辅料池(11)中引入纯碱溶液进入反应釜(5)中进行反应,反应物进入过滤装置(8)中完成过滤后返回至反应釜(5)中;将废弃锂库(3)中废弃锂输送至反应釜(5);将球磨机(4)中的反应物送至反应釜(5)中混合,从硫酸池(13)中引入硫酸进行反应,反应过程中使用高温蒸炉(6)进行加热,得到熟料,接着从水池(12)中抽水完成浸出;加入碳酸钠完成中和反应,反应物进入过滤装置(8)进行过滤,然后进入离心分离机(7)中完成分离,获得碳酸锂,最后进行烘干。

Description

一种高纯碳酸锂的三合一制备工艺 技术领域
本发明涉及高纯碳酸锂的的制备工艺,尤其涉及一种高纯碳酸锂的三合一制备工艺。
背景技术
随着国内外市场的好转以及国家政策对民用核技术和HEV的支持,锂离子电池和聚合物电池对碳酸锂的需求不断增加,中国金属锂的消耗需求将以每年30%的速度快速增长,其生产规模得到迅猛发展,锂及锂盐面临着良好的市场机遇。目前做为锂冶金原料主要有含锂矿石和盐湖卤水。
我国锂资源主要赋存于盐湖卤水中,仅青海和西藏盐湖卤水锂的远景储量能与世界其他国家已探明的总储量相当。另外我国不仅锂矿石资源丰富,还拥有很多特有的优质矿种,锂云母就是是我国特有的锂矿资源之一,Li20含量一般在4.5%左右。
由于我国锂盐厂目前多以锂矿石为原料进行生产,仍面临着资源枯竭、矿石品位低、加工成本高的困境,所以我们仍有必要研发新的工艺,以促进矿石提锂工艺的发展和进步,如何提高生产线的使用效率,实现节能减排,降低环境污染,成为制备碳酸锂工艺的攻关难点。
发明内容
本发明的目的在于针对已有的技术现状,提供一种可同时完成从锂矿石、盐湖卤水和废弃锂中提取一种高纯碳酸锂的三合一制备工艺。
为达到上述目的,本发明采用如下技术方案:
一种高纯碳酸锂的三合一制备工艺,包括以下步骤:
(1)锂矿石通过管道从锂矿石库进入窑炉后完成高温煅烧,煅烧后将反应物输送至球磨机中进行研磨,研磨后的反应物停留在球磨机中;
(2)原料卤水进入反应釜中通过高温蒸炉加热蒸发,随后从辅料池中引入纯碱溶液进入反应釜中进行反应,反应物进入过滤装置中完成过滤后返回至反应釜中;
(3)将步骤(1)球磨机中的反应物送至反应釜中与步骤(2)中的反应物混合,从硫酸池中引入硫酸进行反应,反应过程中使用高温蒸炉进行加热,得到熟料,接着从水池中抽水完成浸出;
(4)向步骤(3)中的反应物加入碳酸钠完成中和反应,反应物进入过滤装置进行过滤,然后进入离心分离机中完成分离,获得碳酸锂,最后进行烘干。
另外,该工艺还可以加入废弃锂一同进行碳酸锂的制备,包括以下步骤:
(1)锂矿石通过管道从锂矿石库进入窑炉后完成高温煅烧,煅烧后将反应物输送至球磨机中进行研磨,研磨后的反应物停留在球磨机中;
(2)原料卤水进入反应釜中通过高温蒸炉加热蒸发,随后从辅料池中引入纯碱溶液进入反应釜中进行反应,反应物进入过滤装置中完成过滤后返回至反应釜中;
(3)将废弃锂库中废弃锂输送至反应釜中;
(4)将步骤(1)球磨机中的反应物送至反应釜中与步骤(2)、(3)中的反应物混合,从硫酸池中引入硫酸进行反应,反应过程中使用高温蒸炉进行加热,得到熟料,接着从水池中抽水完成浸出;
(5)向步骤(3)中的反应物加入碳酸钠完成中和反应,反应物进入过滤装置进行过滤,然后进入离心分离机中完成分离,获得碳酸锂,最后进行烘干。
进一步地,将窑炉的煅烧温度设置为1200度。
进一步地,将烘干会后的碳酸锂送入雷蒙机中进行翻选研磨,将粒度控制在325-1250目的范围内,不符合要求的碳酸锂重新进入雷蒙机中研磨。
进一步地,化学反应过程中的废料均通过管道分开进行收集。
进一步地,每次化学反应完毕后冲洗装置都对反应釜进行冲洗,冲洗装置使用水池进行供水。
本发明的有益效果为:
1、在碳酸锂制备的生产线中,充分利用矿石法、卤水法以及废弃锂提取中的共同步骤,将原有的三条生产线精简化后进行合并,优化资源配置,最终达到产业节能减排,提高生产效率,减小环境污染的目标;
2、通过辅料池、水池、硫酸池的多线连接,配合冲洗装置的使用,完成矿石法、卤水法以及废弃锂制备碳酸锂的化学反应过程,是针对现有技术的有效突破;
3、原材料可通过生产线完成碳酸锂提取制备的全过程,无需其他独立设备进行配合加工,制备提取效率显著提高;
附图说明:
附图1为本发明专用设备的结构示意图。
具体实施方式:
为了使审查委员能对本发明之目的、特征及功能有更进一步了解,兹举较佳实施例并配合图式详细说明如下:
一种高纯碳酸锂的三合一制备工艺,包括以下步骤:
(1)锂矿石通过管道从锂矿石库进入窑炉后完成高温煅烧,煅烧后将反应物输送至球磨机中进行研磨,研磨后的反应物停留在球磨机中;
(2)原料卤水进入反应釜中通过高温蒸炉加热蒸发,随后从辅料池中引入纯碱溶液进入反应釜中进行反应,反应物进入过滤装置中完成过滤后返回至反应釜中;
(3)将步骤(1)球磨机中的反应物送至反应釜中与步骤(2)中的反应物混合,从硫酸池中引入硫酸进行反应,反应过程中使用高温蒸炉进行加热,得到熟料,接着从水池中抽水完成浸出;
(4)向步骤(3)中的反应物加入碳酸钠完成中和反应,反应物进入过滤装置进行过滤,然后进入离心分离机中完成分离,获得碳酸锂,最后进行烘干。
作为另一种实施方式,该工艺还可以加入废弃锂一同进行碳酸锂的制备,由于废弃锂本身锂含量较高,达到80%左右,因此可直接将其加入化学反应中,包括以下步骤:
(1)锂矿石通过管道从锂矿石库进入窑炉后完成高温煅烧,煅烧后将反应物输送至球磨机中进行研磨,研磨后的反应物停留在球磨机中;
(2)原料卤水进入反应釜中通过高温蒸炉加热蒸发,随后从辅料池中引入纯碱溶液进入反应釜中进行反应,反应物进入过滤装置中完成过滤后返回至反应釜中;
(3)将废弃锂库中废弃锂输送至反应釜中;
(4)将步骤(1)球磨机中的反应物送至反应釜中与步骤(2)、(3)中的反应物混合,从硫酸池中引入硫酸进行反应,反应过程中使用高温蒸炉进行加热,得到熟料,接着从水池中抽水完成浸出;
(5)向步骤(3)中的反应物加入碳酸钠完成中和反应,反应物进入过滤装置进行过滤,然后进入离心分离机中完成分离,获得碳酸锂,最后进行烘干。
上述两实施例中,可将窑炉控制在1200度左右进行高温煅烧,方便后续化学反应的进行。
此外,上述两实施例中还能将烘干会后的碳酸锂送入雷蒙机中进行翻选研磨,将粒度控制在325-1250目的范围内,不符合要求的碳酸锂重新进入雷蒙机中研磨。
进一步地,每次化学反应完毕后冲洗装置都对反应釜进行冲洗,冲洗装置使用水池进行供水。
为了防止对环境造成污染,化学反应过程中的废料均通过管道分开进行收集。
下表为本发明实施例测试数据对比情况:
Figure PCTCN2015098414-appb-000001
Figure PCTCN2015098414-appb-000002
请参阅图1所示,系为本发明之专用设备的结构示意图,
连接有锂矿石库1的窑炉16,窑炉16、用于存蓄经过自然滩晒后的原料卤水的卤水池2、废弃锂库3分别接入反应釜5中,反应釜5分别通过管道与辅料池11、水池12、硫酸池13连接,辅料池11内设置多格储蓄池,多格储蓄池中分别存有纯碱、碳酸钠等溶液,其与硫酸池13配合后用于完成锂矿石、原料卤水和废弃锂的化学反应,这部分辅料在反应釜5中完成各种化学反应后,生成的化学废料被分类进行收集处理。反应釜5上设置有冲洗装置15,冲洗装置15连至水池12完成供水,水池12在反应过程中除了完成反应物冲洗过程之外,同时承担酸化熟料浸出的供水功能。反应釜5还有设置高温蒸炉6和加热器用于对反应釜5中反应物进行加热和高温煅烧,煅烧后的反应物进入球磨机4进行研磨,因此在反应釜5与窑炉13之间连接有球磨机4,反应釜5出料口通过双向管道输出反应物至过滤装置8,双向管道用于反应釜5与过滤装置8之间的多次来回输送,即完成多次过滤工序。过滤装置8与离心分离机7之间的连接为双向输送设置,同样用于单次或多次过滤后的烘干,一般情况下烘干装置9作为生产线的最终端,但由于最终的碳酸锂产品具有不同输送方式,可进一步在烘干装置9的出料端设置输送管道连接至集料池14完成成品输送。
做为进一步的优选方案,球磨机4与反应釜5之间的输送通道上设置有第一阀门11;卤水池2与反应釜5之间的输送通道上设置有第二阀门21;废弃锂库3与反应釜5之间的输送通道上设置有第三阀门31,多闸门设置用于精确控制各种原料进入反应釜5时间,其中的卤水池2安装设置有压力泵22可用于泵送未滩晒的卤水进入反应釜5完成加热蒸发。此处设置阀门的目的是,本发明亦可通过限制另外两种材料进入反应釜,单独完成锂矿石、原料卤水、废弃锂中任意一种的碳酸锂提取。
为了进一步提高能源利用率,所述的高温蒸炉6和烘干装置9共同连接至蒸汽锅炉10完成供热,优化产能配置。
以上显示和描述了本发明的基本原理和主要特征及本发明的优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内,本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

  1. 一种高纯碳酸锂的三合一制备工艺,其特征在于包括以下步骤:
    (1)锂矿石通过管道从锂矿石库进入窑炉后完成高温煅烧,煅烧后将反应物输送至球磨机中进行研磨,研磨后的反应物停留在球磨机中;
    (2)原料卤水进入反应釜中通过高温蒸炉加热蒸发,随后从辅料池中引入纯碱溶液进入反应釜中进行反应,反应物进入过滤装置中完成过滤后返回至反应釜中;
    (3)将步骤(1)球磨机中的反应物送至反应釜中与步骤(2)中的反应物混合,从硫酸池中引入硫酸进行反应,反应过程中使用高温蒸炉进行加热,得到熟料,接着从水池中抽水完成浸出;
    (4)向步骤(3)中的反应物加入碳酸钠完成中和反应,反应物进入过滤装置进行过滤,然后进入离心分离机中完成分离,获得碳酸锂,最后进行烘干。
  2. 根据权利要求1所述的一种高纯碳酸锂的三合一制备工艺,其特征在于包括以下步骤:
    (1)锂矿石通过管道从锂矿石库进入窑炉后完成高温煅烧,煅烧后将反应物输送至球磨机中进行研磨,研磨后的反应物停留在球磨机中;
    (2)原料卤水进入反应釜中通过高温蒸炉加热蒸发,随后从辅料池中引入纯碱溶液进入反应釜中进行反应,反应物进入过滤装置中完成过滤后返回至反应釜中;
    (3)将废弃锂库中废弃锂输送至反应釜中;
    (4)将步骤(1)球磨机中的反应物送至反应釜中与步骤(2)、(3)中的反应物混合,从硫酸池中引入硫酸进行反应,反应过程中使用高温蒸炉进行加热,得到熟料,接着从水池中抽水完成浸出;
    (5)向步骤(3)中的反应物加入碳酸钠完成中和反应,反应物进入过滤装置进行过滤,然后进入离心分离机中完成分离,获得碳酸锂,最后进行烘干。
  3. 根据权利要求1或2所述的一种高纯碳酸锂的三合一制备工艺,其特征在于:将窑炉的煅烧温度设置为1200度。
  4. 根据权利要求1或2所述的一种高纯碳酸锂的三合一制备工艺,其特征在于:将烘干会后的碳酸锂送入雷蒙机中进行翻选研磨,将粒度控制在325-1250目的范围内,不符合要求的碳酸锂重新进入雷蒙机中研磨。
  5. 根据权利要求1或2所述的一种高纯碳酸锂的三合一制备工艺,其特征在于:化学反应过程中的废料均通过管道分开进行收集。
  6. 根据权利要求1或2所述的一种高纯碳酸锂的三合一制备工艺,其特征在于:每次化学反应完毕后冲洗装置都对反应釜进行冲洗,冲洗装置使用水池进行供水。
PCT/CN2015/098414 2015-12-08 2015-12-23 一种高纯碳酸锂的三合一制备工艺 WO2017096646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510899925.9 2015-12-08
CN201510899925.9A CN105329921A (zh) 2015-12-08 2015-12-08 一种高纯碳酸锂的三合一制备工艺

Publications (1)

Publication Number Publication Date
WO2017096646A1 true WO2017096646A1 (zh) 2017-06-15

Family

ID=55280728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098414 WO2017096646A1 (zh) 2015-12-08 2015-12-23 一种高纯碳酸锂的三合一制备工艺

Country Status (2)

Country Link
CN (1) CN105329921A (zh)
WO (1) WO2017096646A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939037A (zh) * 2021-04-02 2021-06-11 永州昊利新材料科技有限公司 一种高效分离精致碳酸锂装置及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106430260B (zh) * 2016-12-13 2017-11-24 宜春银锂新能源有限责任公司 一种锂云母制备高纯度碳酸锂的制备方法
CN107162024A (zh) * 2017-07-15 2017-09-15 汕头市泛世矿产资源股份有限公司 一种酸化法从锂磷铝石中提取碳酸锂的工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1335263A (zh) * 2001-09-07 2002-02-13 中信国安锂业科技有限责任公司 用碳化法从高镁锂比盐湖卤水中分离镁锂制取碳酸锂的方法
CN101698488A (zh) * 2009-11-04 2010-04-28 中国科学院青海盐湖研究所 利用高镁锂比盐湖卤水制备碳酸锂的方法
CN102502721A (zh) * 2011-11-15 2012-06-20 薛彦辉 一种从锂矿石中提锂制备碳酸锂的方法
WO2013049952A1 (es) * 2011-10-06 2013-04-11 Iholdi Minerales De Atacama Limitada Procedimiento de extracción de litio para la obtención de carbonato de litio, desde una salmuera o mineral y/o arcilla previamente tratado para estar libre de boro.
CN103435077A (zh) * 2013-09-03 2013-12-11 马迎曦 一种从卤水中提取锂的工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101508450B (zh) * 2009-03-18 2010-12-08 中南大学 一种钙循环固相转化法从低镁锂比盐湖卤水中提取锂盐的方法
CN101691231A (zh) * 2009-09-30 2010-04-07 达州市恒成能源(集团)有限责任公司 一种利用高含硼的盐卤饱和溶液制备碳酸锂的方法
KR101158527B1 (ko) * 2010-06-28 2012-06-21 한국광물자원공사 고순도 탄산리튬 제조방법
CN102070162B (zh) * 2011-01-30 2012-10-03 西安蓝晓科技新材料股份有限公司 一种从盐湖卤水中提取锂的方法
CN104140117A (zh) * 2014-06-06 2014-11-12 江西江锂新材料科技有限公司 一种锂云母硫酸压煮法提取锂盐的工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1335263A (zh) * 2001-09-07 2002-02-13 中信国安锂业科技有限责任公司 用碳化法从高镁锂比盐湖卤水中分离镁锂制取碳酸锂的方法
CN101698488A (zh) * 2009-11-04 2010-04-28 中国科学院青海盐湖研究所 利用高镁锂比盐湖卤水制备碳酸锂的方法
WO2013049952A1 (es) * 2011-10-06 2013-04-11 Iholdi Minerales De Atacama Limitada Procedimiento de extracción de litio para la obtención de carbonato de litio, desde una salmuera o mineral y/o arcilla previamente tratado para estar libre de boro.
CN102502721A (zh) * 2011-11-15 2012-06-20 薛彦辉 一种从锂矿石中提锂制备碳酸锂的方法
CN103435077A (zh) * 2013-09-03 2013-12-11 马迎曦 一种从卤水中提取锂的工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939037A (zh) * 2021-04-02 2021-06-11 永州昊利新材料科技有限公司 一种高效分离精致碳酸锂装置及其方法

Also Published As

Publication number Publication date
CN105329921A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
CN101698488B (zh) 利用高镁锂比盐湖卤水制备碳酸锂的方法
CN102718234B (zh) 从锂云母中提取碳酸锂的方法
CN109336140B (zh) 一种锂云母添加磷酸铁锂提锂的工艺
CN102295303B (zh) 提取碳酸锂的方法
CN103848407B (zh) 一种磷酸一铵的生产方法
WO2017096646A1 (zh) 一种高纯碳酸锂的三合一制备工艺
CN102583453A (zh) 一种生产电池级碳酸锂或高纯碳酸锂的工业化方法
CN102820468B (zh) 一种连续化生产电池用四氧化三钴的制备工艺
CN102502736A (zh) 一种利用粉煤灰生产氧化铝的方法
CN102424412B (zh) 一种利用粉煤灰生产氧化铝的方法
CN102502735B (zh) 利用粉煤灰生产氧化铝的方法
CN101892394A (zh) 一种从锂云母中提取锂的方法和设备
CN105271277A (zh) 一种负载氢氧化钙活性白土的制备方法
CN103183366A (zh) 纯碱压浸法从锂辉石提取锂盐的方法
CN102134644A (zh) 一种利用钽铌尾矿锂云母制备碳酸锂除氟的新方法
CN108423694B (zh) 以锂辉石为原料生产硫酸锂母液或碳酸锂的方法
CN102503190B (zh) 利用菱镁矿制备高纯高密度镁砂的方法和装置
CN203794645U (zh) 一种从锂辉石中提碳酸锂的装置
CN104600302A (zh) 磷酸铁锂溶剂热制备工艺
CN107673376A (zh) 制备5n级高纯碳酸锂的方法
CN102241409B (zh) 碳酸铯的制备方法
CN205170408U (zh) 制备高纯碳酸锂的三合一系统装置
CN102145902B (zh) 一种高品质氯化钾的生产方法
CN201458772U (zh) 一种氧化铁红的提纯装置
CN104577122A (zh) 磷酸铁锂溶剂热制备设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15910120

Country of ref document: EP

Kind code of ref document: A1