WO2017095079A1 - 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매 - Google Patents

혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매 Download PDF

Info

Publication number
WO2017095079A1
WO2017095079A1 PCT/KR2016/013651 KR2016013651W WO2017095079A1 WO 2017095079 A1 WO2017095079 A1 WO 2017095079A1 KR 2016013651 W KR2016013651 W KR 2016013651W WO 2017095079 A1 WO2017095079 A1 WO 2017095079A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
metallocene catalyst
catalyst
producing
Prior art date
Application number
PCT/KR2016/013651
Other languages
English (en)
French (fr)
Inventor
권헌용
신은영
권현지
이기수
홍대식
김세용
이승민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150172426A external-priority patent/KR101949456B1/ko
Priority claimed from KR1020150172424A external-priority patent/KR101953768B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/760,073 priority Critical patent/US10550207B2/en
Priority to EP16870975.6A priority patent/EP3330296B1/en
Priority to CN201680054968.XA priority patent/CN108026199B/zh
Publication of WO2017095079A1 publication Critical patent/WO2017095079A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention relates to a method for preparing a common supported metallocene catalyst that can be used to prepare polyolefins, a common supported metallocene catalyst prepared using the same, and a method for preparing a polyolefin using the common supported metallocene catalyst.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • the Ziegler-Natta catalyst has been widely applied to the existing commercial processes since the invention in the 50s, but has a wide molecular weight distribution of the polymer because it is a multi-active catalyst with multiple active sites. , There is a problem in that the composition distribution of the comonomer is not uniform and there is a limit in securing desired physical properties.
  • the metallocene catalyst is composed of a combination of a main catalyst mainly composed of a transition metal compound and a cocatalyst composed of an organic metal compound composed mainly of aluminum.
  • a catalyst is a homogeneous complex catalyst.
  • the molecular weight distribution is narrow according to the single ' active site characteristics, and the homogeneous composition of the comonomer is obtained, and the stereoregularity of the polymer is changed according to the ligand structure modification of the catalyst and the change of polymerization conditions, It has the characteristic to change molecular weight, crystallinity, etc.
  • U. S. Patent No. 5,032, 562 describes a process for preparing a polymerization catalyst by supporting two different transition metal catalysts on one supported catalyst. It is a bimodal di str ibut ion polymer supported by a titanium (Ti) -based Ziegler-Natta catalyst that generates high molecular weight and a zirconium (Zr) -based metallocene catalyst that produces low molecular weight on one support.
  • Ti titanium
  • Zr zirconium
  • US Patent Nos. 5, 525 and 678 disclose a method of using a catalyst system for olefin polymerization in which a metallocene compound and a nonmetallocene compound are simultaneously supported on a carrier to polymerize a high molecular weight polymer and a low molecular weight polymer at the same time. It is described. This has the disadvantage that the metallocene compound and the non-metallocene compound must be separately supported, and the carrier must be pretreated with various compounds for supporting reaction. ⁇
  • US Patent Nos. 5, 914 and 289 describe a method for controlling the molecular weight and molecular weight distribution of a polymer by using a metallocene catalyst supported on each carrier. This takes a lot of trouble, and the hassle of having to support the metallocene catalyst to be used on the carrier, respectively.
  • Korean Patent Application No. 2003-12308 discloses a method for controlling the molecular weight distribution by supporting a binuclear metallocene catalyst and a mononuclear metallocene catalyst on a carrier together with an activator to polymerize by changing a combination of catalysts in a reaction vessel. Doing.
  • this method has a limitation in realizing the characteristics of each catalyst at the same time, and also has the disadvantage that the metallocene catalyst portion is released from the carrier component of the finished catalyst to cause fouling during the reaction. . Therefore, in order to solve the above disadvantages, there is a continuous need for a method of preparing a polyolefin having a simple activity having excellent activity and preparing a polyolefin having a desired physical property.
  • Patent Document 0001 US Patent No. 5, 032, 562
  • Patent Document 0002 US Patent No. 5,525,678
  • Patent Document 0003 US Patent No. 5, 914, 289
  • Patent Document 0004 Republic of Korea Patent Application No. 2003-12308
  • the present invention is to provide a process for preparing a common supported metallocene catalyst that can be used to prepare polyolefins.
  • the present invention is to provide a common supported metallocene catalyst prepared using the above production method.
  • the present invention is to provide a method for producing a polyolefin using the common supported metallocene catalyst.
  • the present invention the step of supporting at least one first metallocene compound represented by the formula (1) or 2 on a carrier;
  • Supporting a promoter on a carrier on which the first metallocene compound is supported It provides a method for producing a common supported metallocene catalyst comprising a.
  • the present invention also provides a common supported metallocene catalyst prepared according to the method for preparing the common supported metallocene catalyst.
  • the present invention provides a method for producing a polyolefin comprising the step of polymerizing an olefin monomer in the presence of the common supported metallocene catalyst.
  • a method for preparing a common supported metallocene catalyst according to a specific embodiment of the present invention a common supported metallocene catalyst prepared using the same, and a method for preparing a polyolefin using the common supported metallocene catalyst will be described in detail. Shall be.
  • a method for preparing a common supported metallocene catalyst comprising:
  • i, 2 and 3 ⁇ 4 are the same as or different from each other, and each independently hydrogen or an alkyl group of C1 to C20,
  • R 3 , R 4 , and R 7 , 3 ⁇ 4 are the same as or different from each other, and each independently hydrogen or an alkyl group of C1 to C20, or two or more adjacent to each other of R 3 , R4 and R 7 are connected to each other to be substituted. Or may form an unsubstituted aliphatic or aromatic ring,
  • Q is a Group 4 transition metal
  • Rg and R 10 are pivalate groups,.
  • M is a Group 4 transition metal
  • B is carbon, silicon or germanium
  • Qi and Q 2 are the same as or different from each other, and are each independently hydrogen, halogen, alkyl group of C1 to C20, alkenyl group of C2 to C20, aryl group of C6 to C20, alkylaryl group of C7 to C20, and C7 to C20 Arylalkyl group, C1 to C20 alkoxy group C2 to C20 alkoxyalkyl group, C3 to C20 heterocycloalkyl group, or C5 to C20 heteroaryl group,
  • Xi and 3 ⁇ 4 are pivalate groups
  • Ci and C 2 are the same as or different from each other, and are each independently represented by one of the following Formula 3a, 3b, 3c, or 3d, provided that d and
  • At least one of C 2 is represented by Formula 3a;
  • Ri to R 28 are the same as or different from each other, and each independently hydrogen, halogen, alkyl group of C1 to C20, alkenyl group of C2 to C20, alkylsilyl group of C1 to C20, silylalkyl group of C1 to C20, and C1 to C20 Alkoxysilyl group, C1 to C20 ether group, C1 to C20 silyl ether group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group,
  • R'i to R' 3 are the same as or different from each other, and are each independently hydrogen, a halogen, an alkyl group of C1 to C20, an alkenyl group of C2 to C20, an aryl group of C6 to C20,
  • Two or more adjacent to each other of the above to R 28 may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring.
  • at least one first metallocene compound represented by Chemical Formula 1 or 2 wherein a pivalate group is first introduced into a transition metal before supporting a promoter on a carrier Support
  • the first metallocene compound represented by Formula 1 or 2 may be supported on one type or two or more types on the carrier, and when supporting two or more types, the two types of metallocene compounds are mixed to support the carrier at once.
  • the two metallocene compound may be supported on the carrier, and the other metallocene compound may be sequentially supported.
  • the cocatalyst is supported on the carrier on which the first metallocene compound is supported.
  • the catalyst is prepared by supporting at least one kind of the first metallocene compound represented by the formula (1) or (2) having the pivalate group introduced thereon, and supporting the promoter sequentially, Due to the interaction between the pivalate group and the carrier, the supporting efficiency is increased, so that the activity of the common supported metallocene catalyst is improved, and the polyolefin with improved bulk densi ty can be prepared.
  • the promoter is represented by Formula 1 or 2 on the carrier, where R 9 , Rio, Xi and X2 are each independently.
  • the second metallocene compound which is a pivalate group, a halogen, or a C1 to C20 alkyl group, may be further supported.
  • the first metallocene compound and the second metallocene compound are the same as those represented by Formula 1 or 2, but in Formula 1 or 2, there is a difference in a substituent connected to the transition metal. More specifically, the first metallocene compound in Formula 1 and Rio is a pivalate group, and in Formula 2 and 3 ⁇ 4 is a pivalate group, the second metallocene compound is represented by Formula 1 and R 10 and 3 ⁇ 4 and 3 ⁇ 4 of 2 are each independently a pivalate group, a halogen or an alkyl group of C1 to C20.
  • At least one first metallocene compound represented by Formula 1 or 2 having a pivalate group introduced thereon is first supported on a carrier, and then a cocatalyst is supported thereon.
  • the supporting efficiency is increased to improve the activity of the common supported metallocene catalyst, bulk densi ty is improved to improve productivity Can be.
  • the MFRR value which is an index of workability, can be finely adjusted to a desired level, it is easy to control workability and physical properties of the polyolefin produced.
  • the alkyl group of C1 to C20 is a linear or branched alkyl group And, specifically, methyl group ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nucleosil group, heptyl group, octyl group and the like, but is not limited thereto.
  • Group 4 transition metal examples include titanium (Ti), zirconium (Zr), hafnium (Hf), and the like, but are not limited thereto.
  • the alkenyl group of C2 to C20 includes a linear or branched alkenyl group, and specifically, may include an allyl group, ethenyl group, propenyl group, butenyl group, pentenyl group, and the like, but is not limited thereto.
  • the C6 to C20 aryl group includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the C5 to C20 heteroaryl group includes a monocyclic or condensed ring heteroaryl group, carbazolyl group, pyridyl group, quinoline group, isoquinoline group, thiophenyl group, furanyl group, imidazole group, oxazolyl group, thiazolyl group
  • the triazine group, the tetrahydropyranyl group, the tetrahydrofuranyl group, etc. can be mentioned, but it is not limited to this.
  • alkoxy group of Q to C20 examples include mesoxy group, ethoxy group, phenyloxy group, cyclonuclear oxy group, tert-subspecific nucleosil group, and the like, but are not limited thereto.
  • alkylsilyl group of C1 to C20 examples include methylsilyl group, dimethylsilyl group, trimethylsilyl group, and the like, but are not limited thereto.
  • silylalkyl group of C1 to C20 examples include silylmethyl group, dimethylsilylmethyl group (-CH 2 -Si (CH 3 ) 2 H), trimethylsilylmethyl group (-CH 2 — S CH 3 ) 3 ), and the like. It is not limited only.
  • 3 ⁇ 4 and 3 ⁇ 4 of Formula 1 are hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert- It is preferable that they are a butyl group, a methoxymethyl group, a tert- appendyl methyl group ,; [—especial ethyl group, i-methyl-methoxyethyl group, tert-subspecific nucleosil group, tetrahydropyranyl group, or tetrahydrofuranyl group, It is not limited only to this.
  • 3 ⁇ 4 and R7, R8 of the formula (1) is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert- butyl group, mesoxymethyl group, tert- subspecific methyl group, 1-ethoxy It may be an ethyl group, 1-methyl-1-methoxyethyl group, tert-butoxynucleosil group, tetrahydropyranyl group, or tetrahydrofuranyl group. Or wherein, R4 and R 7, is 3 ⁇ 4. May be connected to each other such as a phenyl group, a cycloalkyl group nucleus.
  • R4, and R 7, 3 ⁇ 4 is not limited to the above-described substituents.
  • the present invention can be used not only to produce a highly active polyolefin using a formula (3a) having a specific substituent in one or more of the formula (2) and C 2 can maintain excellent co-polymerization.
  • R 28 of Formulas 3a, 3b, 3c, and 3d are each independently hydrogen, halogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, nuclear, hep Tyl group, octyl group, ethylene group, propylene group, butylene group, phenyl group, benzyl group, naphthyl group, halogen group, ether group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triisopropyl
  • the silyl group, the trimethylsilylmethyl group, the dimethyl ether group, the tert-butyldimethylsilyl ether group, the mesophilic group, the eigen group, or the tert-subspecific nucleosil group is preferable, but not limited thereto.
  • And 3 ⁇ 4 of Formula 2 are hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, methoxymethyl group, tert-butoxymethyl group, 1-ethoxyethyl group, 1-methyl- It is preferable that it is a 1- methoxyethyl group, a tert- butoxy nuxyl group, a tetrahydropyranyl group, or a tetrahydrofuranyl group, but it is not limited to this.
  • B of Formula 2 is preferably silicon, but is not limited thereto.
  • the metallocene compound of Chemical Formula 2 is characterized by including at least one C1 to C20 silylalkyl group such as trimethylsilyl methyl group in the substituent of Chemical Formula 3a.
  • the indene derivative of Formula 3a has a lower electron density than the indenoindole derivative or fluorenyl derivative, and has a steric hindrance effect and an electron density as it contains a silylalkyl group having a large steric hindrance. Due to the factor, a relatively low molecular weight olepin polymer can be polymerized with high activity compared to a metallocene compound having a similar structure.
  • Indeon indole derivatives that may be represented by Formula 3b, fluorenyl derivatives that may be represented by Formula 3c, or indenes that may be represented by Formula 3d.
  • the derivative forms a crosslinked structure by a bridge and exhibits high polymerization activity by having a lone pair of electrons which can act as a Lewis base in the ligand structure.
  • specific examples of the functional group represented by Chemical Formula 3a may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • Chemical Formula 3b may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • Chemical Formula 3c may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • first metallocene compound may be selected from the group of compounds represented by the following structural formulas:
  • the second metallocene compound may be selected from the group consisting of compounds represented by the following structural formulas:
  • the first metallocene compound to the metallocene compound and the second metal to the first metal 99 to the "99: 1 is preferable to be supported on the carrier in a mass ratio of 5:95 to 5:95.
  • supporting the first and second metallocene compounds in the carrier in the above-described content ratio is preferable because it can express all the properties of the first and second metallocene compounds.
  • the cocatalyst compound used in the method for preparing the common supported metallocene catalyst of the embodiment may include one or more of the cocatalyst compounds represented by the following Chemical Formula 4, 5, or 6:
  • R 29 may be the same as or different from each other, and each independently halogen; Hydrocarbons having 1 to 20 carbon atoms; Or a hydrocarbon having 1 to 20 carbon atoms substituted with halogen;
  • n is an integer of 2 or more
  • is as defined in Formula 4 above;
  • J is aluminum or boron
  • E is a neutral or cationic Lewis acid
  • H is a hydrogen atom
  • Z is a Group 13 element
  • a ' may be the same as or different from each other, and each independently one or more hydrogen atoms are unsubstituted or substituted with halogen, hydrocarbon having 1 to 20 carbon atoms, alkoxy or phenoxy ' aryl group having 6 to 20 carbon atoms or 1 to 20 carbon atoms Alkyl group.
  • Examples of the compound represented by the formula (4) include methyl aluminoxane (MA0), ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane and the like, and more preferred compound is methyl aluminoxane.
  • Examples of the compound represented by Formula 5 include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tritributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-s-butylaluminum, tricyclo Pentyl Aluminum, Tripentyl Aluminum, Triisopentyl Aluminum, Trinuclear Aluminum, Trioctyl Aluminum, Ethyl Dimethyl Aluminum, Methyl Diethyl Aluminum, Triphenyl Aluminum, Tri-P-allyl Aluminum, Dimethyl Aluminum Meside, Dimethyl Aluminum , Trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like, and more preferred compounds are selected from trimethyl aluminum, triethyl aluminum and triisobutyl aluminum.
  • Examples of the compound represented by Formula 6 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, Trimethylammoniumtetra (p-lryl) boron, trimethylammoniumtetra ( ⁇ , ⁇ -dimethylphenyl) boron, tributylammoniumtetra ( ⁇ —trifluoromethylphenyl) boron, trimethylammoniumtetra ( ⁇ -trifluoro Methylphenyl) boron ,
  • Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) aluminum Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) aluminum
  • Triphenylcarbonium tetrapentafluorophenylboron Triphenylcarbonium tetrapentafluorophenylboron, and the like.
  • the carrier used in the method for preparing the common supported metallocene catalyst of the above embodiment is not particularly limited as long as it is a kind of metal, metal salt or metal oxide used in the supported catalyst. Specifically, it may be in a form including any one carrier selected from the group consisting of silica, silica-alumina, and silica-magnesia.
  • the carrier may typically comprise an oxide, carbonate, sulfate or nitrate component of a metal such as Na 2 0, K 2 CO 3 , BaSO 4 and Mg (N3 ⁇ 4) 2 .
  • the carrier may be used in a completely dried state before the metallocene compound, the promoter, and the like are supported.
  • the drying temperature of the carrier is preferably 200 to 100CTC, more preferably 400 to 800 ° C.
  • the drying temperature of the carrier is less than 400 ° C., the moisture is too much and the surface of the carrier reacts with the catalyst, and when it exceeds 800 ° C, the pores on the surface of the carrier are combined to reduce the surface area, and also the hydroxy on the surface. It is not preferable because there is a lot of groups and only siloxane groups are left to decrease the reaction space with the promoter.
  • the first and the second metallocene compound may each carry about 0.1 to about 20 parts by weight, preferably about 1 to about 15 parts by weight.
  • the promoter may be supported by about 1 to about 1,000 parts by weight, preferably about 10 to about 500 parts by weight.
  • the step of supporting the first metallocene compound represented by the formula (1) or 2 on the carrier; And supporting the cocatalyst on the carrier on which the first metallocene compound is carried; may be performed at about ⁇ 30 to 150 ° C., preferably about 0 to 100 ° C.
  • a common supported metallocene catalyst prepared by the above-described method.
  • a method for producing polyolefin comprising the step of polymerizing an olefinic monomer in the presence of a common supported metallocene catalyst prepared by the above-described method.
  • the method comprises: preparing a common supported metallocene catalyst; And under the common supported metallocene catalyst, by improving the morphology of the powder produced by the method comprising the step of polymerizing the olefin monomer, the bulk densi ty is improved, it is possible to prepare a polyolefin having a desired processability and physical properties have.
  • the common supported metallocene catalyst can be used for polymerization of olefinic monomers as such.
  • the above may also be prepared as a prepolymerized catalyst in contact with an olefinic monomer and used as a catalyst.
  • the catalyst may be separately polymerized by contacting with an olefinic monomer such as ethylene, propylene, 1-butene, 1-hexene or 1-octene. It can also be manufactured and used as a catalyst.
  • examples of the olefin monomers include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1- Undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene, 1-aitosen, norbornene, norbornadiene, ethylidene norbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene 1, 4 Butadiene, 1, 5-pentadiene, 1, 6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene, or 3-chloromethylstyrene, and these monomers may be mixed and copolymerized. .
  • the step of polymerizing the olefinic monomer under the common supported metallocene catalyst it is preferable to polymerize the olefinic monomer at a temperature of 50 to 150 ° C.
  • the olefin polymerization process using the catalyst may proceed according to a slurry, a gas phase process or a mixing process of a slurry and a gas phase, and a slurry or a gas phase 'process is preferable.
  • the common supported metallocene catalyst may be an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonan, decane, or an isomer thereof; Aromatic hydrocarbon solvents such as toluene and benzene; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; It can be dissolved in a back or distilled and injected.
  • the solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • a method for preparing a common supported metallocene catalyst which can not only exhibit high activity in the olefin polymerization reaction but also easily control the characteristics of the internal structure, mechanical properties, etc. of the olefin polymer produced,
  • a supported supported metallocene catalyst and a method for producing a polyolefin using the supported supported metallocene catalyst.
  • the dried 250 mL Schlenk flask was charged with 4.05 g (20 ⁇ l) of ((lH-inden-3-yl) methyl) trimethylsilane and dissolved in 40 mL of diethylether under argon gas. After the solution was cooled to 0 ° C., 1.2 equivalents of 2.5 M n-BuLi (hexane solution) dissolved in nucleic acid (hexane) was slowly added dropwise. The reaction mixture was slowly heated to room temperature and stirred for 24 hours. In another 250 ml Schlenk flask, a solution of 3 g (10 ⁇ l) of silicone tether dissolved in 30 ml of nucleic acid was prepared.
  • the solution was added to -78 ° C., and then the mixture prepared above was slowly added dropwise thereto. After the dropwise addition, the mixture was slowly warmed to room temperature and stirred for 24 hours. 50 mL of water was added thereto, and the organic layer was extracted three times with 50 mL of ether. Collected An appropriate amount of MgS0 4 was added to the organic layer, the mixture was stirred for a while, and then filtered to dry the solvent under reduced pressure. Thus, 6.1 g (molecular weight: 603.11, 10.05 Pa, 100.5% yield) of a yellow oily ligand compound was obtained. The obtained ligand compound was used for the preparation of the metallocene compound without separate separation process.
  • the ligand compound synthesized in 1-1 was dissolved in 4 equivalents of methyl tert-butyl ether and 60 ml of toluene, and then 2 equivalents of n-BuLi hexane solution. was added to lithiation. After one day, all of the solvent inside the flask was removed under vacuum and dissolved in the same amount of toluene.
  • One equivalent of ZrCl 4 (THF) 2 was taken in a glove box and placed in a 250 mL Schlenk flask to prepare a suspension with inluene.
  • the lithiated ligand compound was slowly added to the toluene suspension of ZrCl 4 (THF) 2 .
  • the reaction mixture was slowly raised to room temperature and stirred for one day to proceed with the reaction.
  • the vacuum was reduced to about 1/5 by vacuum decompression to about 1/5 of the volume of the remaining ruluene.
  • a volume of hexane was added to recrystallize.
  • the mixture was filtered to avoid contact with outside air to obtain a metallocene compound.
  • the filter cake was washed on the upper portion of the filter using a slight amount of nucleic acid, and then weighed in a glove box to synthesize the water. Purity was confirmed.
  • the metallocene compound Dichloro [rac-ethylene bis (indenyl)] zirconi ⁇ (IV) of the structural formula was prepared (Sigma-Aldr ich)
  • the supported catalyst was prepared in the same manner as in the catalyst preparation example 1, except that 0.76 g of the catalyst precursor structure B was used instead of the catalyst precursor structure A.
  • the supported catalyst was prepared in the same manner as in the catalyst preparation example 1, except that 0.70 g of the catalyst precursor structure C was used instead of the catalyst precursor structure A.
  • a supported catalyst was prepared in the same manner as in Preparation Example 4, except that 0.61 g of the catalyst precursor structure B was used instead of the catalyst precursor structure A.
  • a precursor solution 0.50 g of A and 30 mL of toluene were added thereto to prepare a precursor solution.
  • 100 mL of toluene was added to a 300 mL high pressure glass reactor, and 7 g of silica (Grace Davi son, SP952X was calcined at 650 ° C) was added at 40 ° C, followed by stirring for 30 minutes.
  • the precursor solution prepared in 50 mL f lask was added to a glass reaction machine and the temperature was raised to 60 ° C., followed by stirring for 6 hours while stirring. Lower the reaction temperature to 40 ° C and stop stirring. Sett ling for 10 minutes and then Decantat ion.
  • Catalyst except that 0.50 g of new catalyst precursor structure A was used, and 0.72 g of catalyst precursor structure C was used instead of catalyst precursor structure B.
  • the supported catalyst was prepared in the same manner as in Preparation Example 6.
  • a supported catalyst was prepared in the same manner as in Preparation Example 6, except that 0.35 g of catalyst precursor structure A was used instead of 0.50 g, and 0.24 g of catalyst precursor structure E was used instead of catalyst precursor structure B.
  • the supported catalyst was prepared in the same manner as in Preparation Example 1, except that 0.85 g of the catalyst precursor structure D prepared in Comparative Preparation Example 1 was used instead of the catalyst precursor structure A.
  • the supported catalyst was prepared in the same manner as in Preparation Example 5, except that 0.51 g of the catalyst precursor structure E prepared in Comparative Preparation Example 1 was used instead of the catalyst precursor structure B.
  • Catalyst Preparation Comparative Example 4 A supported catalyst was prepared in the same manner as in Comparative Preparation Example 3, except that 0.61 g of the catalyst precursor structure C prepared in Preparation Example 3 was used instead of the catalyst precursor structure A.
  • Catalyst Preparation Comparative Example 5 A supported catalyst was prepared in the same manner as in Comparative Preparation Example 3, except that 0.61 g of the catalyst precursor structure C prepared in Preparation Example 3 was used instead of the catalyst precursor structure A.
  • the nucleic acid was added up to 100 mL, the hexane slurry was transferred to a Schlenk flask, and the nucleic acid solution was decanted at ion. It was dried under reduced pressure at room temperature for 3 hours.
  • the obtained polymer was first removed with nucleic acid through a filter, and then dried in an 80 ° C. oven for 3 hours.
  • the reaction conditions and results of the polymerization examples 1 to 10 and the polymerization comparative examples 1 to 6 are summarized in Table 1 and Table 2 below.
  • the common supported metallocene catalyst prepared by first supporting the metallocene compound having a pivalate group introduced therein and then carrying a cocatalyst as described in Examples 1 to 5 does not introduce a pivalate group.
  • the non-metallocene compound was used, or compared to Comparative Examples 1 to 4 prepared by supporting the promoter first, it was confirmed that the catalytic activity is equal or higher.
  • the polyolefin prepared using the metallocene catalysts of Examples 1 to 5 is expected to have excellent processability since PDI has a larger value than that of the metallocene catalysts of Comparative Examples 1 to 4, Bulk densi ty was also found to be improved.
  • the metallocene compound into which the pivalate group is introduced is first supported, and then the metallocene compound into which the promoter and the pivalate is introduced or not introduced is supported.
  • the prepared supported metallocene catalyst was confirmed to have a higher or higher catalytic activity than Comparative Examples 5 to 6 prepared by using a metallocene compound to which a pivalate group was not introduced or by supporting the cocatalyst first.
  • the polyolefins prepared using the metallocene catalysts of Examples 6 to 10 have better bulk densi ty than the metallocene catalysts of Comparative Examples 5 to 6 to improve productivity, as well as MFR values. It can be finely adjusted to the desired level, it is expected that the processability and physical properties of the polyolefin will be easy.

Abstract

본 발명은 폴리올레핀을 제조하는데 사용될 수 있는 혼성 담지 메탈로센 촉매의 제조 방법, 이를 이용하여 제조된 혼성 담지 메탈로센 촉매 및 상기 혼성 담지 메탈로센 촉매를 이용한 폴리올레핀의 제조방법을 제공한다.

Description

【명세서】
【발명의 명칭】
흔성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 흔성 담지 메탈로센 촉매
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2015 년 12 월 4 일자 한국 특허 출원 제 10-2015- 0172424호 및 2015 년 12 월 4 일자 한국 특허 출원 제 10-2015-0172426 에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 폴리을레핀을 제조하는데 사용될 수 있는 흔성 담지 메탈로센 촉매의 제조 방법, 이를 이용하여 제조된 흔성 담지 메탈로센 촉매 및 상기 흔성 담지 메탈로센 촉매를 이용한 폴리올레핀의 제조방법에 관한 것이다.
【발명의 배경이 되는 기술】
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 흔재하는 다활성점 촉매 (mul t i-si te catalyst )이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (single si te catalyst )이며, 단일 ' 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
미국 특허 제 5 ,032, 562호에는 두 개의 상이한 전이금속 촉매를 한 개의 담지 촉매 상에 지지시켜 중합 촉매를 제조하는 방법아 기재되어 있다. 이는 고분자량을 생성하는 티타늄 (Ti ) 계열의 지글러 -나타 촉매와 저분자량을 생성하는 지르코늄 (Zr ) 계열의 메탈로센 촉매를 하나의 지지체에 담지시켜 이정 분산 (bimodal di str ibut ion) 고분자를 생성하는 방법으로써, 담지 과정이 복잡하고, 조촉매로 인해 중합체의 형상 (morphology)이 나빠지는 단점이 있다.
미국 특허 게 5 , 525 , 678호에는 메탈로센 화합물과 비메탈로센 화합물을 담체 위에 동시에 담지시켜 고분자량의 중합체와 저분자량의 중합체가 동시에 중합될 수 있는 올레핀 중합용 촉매계를 사용하는 방법을 기재하고 있다. 이는 메탈로센 화합물과 비메탈로센 화합물들을 각각 따로 담지시켜야 하고, 담지 반웅을 위해 담체를 여러 가지 화합물로 전처리해야 하는 단점이 있다. 、
미국 특허 게 5 , 914 , 289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다. 대한민국 특허 출원 제 2003-12308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반웅기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반웅기에 파울링 ( foul ing)을 유발하는 단점이 있다. 따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 메탈로센 담지 촉매를 제조하여 원하는 물성의 폴리올레핀을 제조하는 방법에 대한 요구가 계속되고 있다.
【선행기술문헌】
[특허문헌】 (특허문헌 0001) 미국 특허 제 5 , 032 , 562호
(특허문헌 0002) 미국 특허 제 5,525,678호
(특허문헌 0003) 미국특허 제 5, 914 , 289호
(특허문헌 0004) 대한민국 특허 출원 제 2003-12308호
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 폴리올레핀을 제조하는데 사용될 수 있는 흔성 담지 메탈로센 촉매의 제조 방법을 제공하기 위한 것이다.
또한, 본 발명은 상기 제조 방법을 이용하여 제조된 흔성 담지 메탈로센 촉매를 제공하기 위한 것이다.
또, 본 발명은 상기 흔성 담지 메탈로센 촉매를 이용한 폴리올레핀의 제조 방법을 제공하기 위한 것이다. 【과제의 해결 수단】
본 발명은, 담체에 하기 화학식 1 또는 2 로 표시되는 제 1 메탈로센 화합물을 1종 이상 담지시키는 단계; 및
상기 제 1 메탈로센 화합물이 담지된 담체에 조촉매를 담지시키는 단계; 를 포함하는 흔성 담지 메탈로센 촉매의 제조 방법을 제공한다. 또한, 본 발명은 상기 흔성 담지 메탈로센 촉매의 제조 방법에 따라 제조된 흔성 담지 메탈로센 촉매를 제공한다.
또, 본 발명은 상기 흔성 담지 메탈로센 촉매의 존재 하에, 올레핀계 단량체를 중합시키는 단계를 포함하는 폴리올레핀의 제조 방법을 제공한다. 이하 발명의 구체적인 구현예에 따른 흔성 담지 메탈로센 촉매의 제조 방법, 이를 이용하여 제조된 흔성 담지 메탈로센 촉매 및 상기 흔성 담지 메탈로센 촉매를 이용한 폴리올레핀의 제조방법에 관하여 보다 상세하게 설명하기로 한다.
발명의 일 구현예에 따르면, 담체에 하기 화학식 1 또는 2 로 표시되는 제 1 메탈로센 화합물을 1종 이상 담지시키는 단계; 및 상기 제 1 메탈로센 화합물이 담지된 담체에 조촉매를 담지시키는 단계; 를 포함하는 흔성 담지 메탈로센 촉매의 제조 방법이 제공될 수 있다:
[화학식 1]
Figure imgf000005_0001
상기 화학식 1에서,
i , 2 및 , ¾는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 C1 내지 C20의 알킬기이고,
R3 , R4 및 R7 , ¾는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 C1 내지 C20의 알킬기이거나, 또는 상기 R3 , R4 및 R7 , 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있으며,
Q은 4족 전이금속이고,
Rg 및 R10 은 피발레이트기이고, .
[화학식 2]
Figure imgf000005_0002
상기 화학식 2에서,
M은 4족 전이금속이고,
B는 탄소, 실리콘 또는 게르마늄이고,
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기 C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고,
Xi 및 ¾은 피발레이트기이고,
Ci 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 3a , 화학식 3b , 화학식 3c , 또는 화학식 3d 중 하나로 표시되고, 단, d 및
C2 중 하나 이상은 화학식 3a로 표시되며 ;
Figure imgf000006_0001
[화학식 3d]
Figure imgf000007_0001
상기 화학식 3a , 3b , 3c , 및 3d에서,
Ri 내지 R28은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 에테르기, C1 내지 C20의 실릴에테르기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고,
' i 내지 R ' 3은 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 할로겐, C1 내지 C20의 알킬기, C2내지 C20의 알케닐기, C6 내지 C20의 아릴기이며,
상기 내지 R28중 서로 인접하는 2 개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다. 상기 일 구현예의 흔성 담지 메탈로센 촉매의 제조 방법에서는, 담체에 조촉매를 담지 시키기 전에 먼저 전이금속에 피발레이트기가 도입된 상기 화학식 1 또는 2로 표시되는 제 1 메탈로센 화합물을 1종 이상 담지시킨다. 이 때, 상기 화학식 1 또는 2로 표시되는 제 1 메탈로센 화합물은 담체에 1종 또는 2종 이상 담지시킬 수 있으며, 2종 이상 담지시키는 경우, 2종의 메탈로센 화합물을 흔합하여 한번에 담체와 반웅사켜 담지시킬 수도 있고, 담체에 하나의 메탈로센 화합물을 담지시키고, 순차적으로 다른 메탈로센 화합물을 담지시킬 수도 있다.
다음으로, 상기 제 1 메탈로센 화합물이 담지된 담체에 조촉매를 담지 시킨다. 이와 같이, 담체에 피발레이트기가 도입된 화학식 1 또는 2로 표시되는 제 1 메탈로센 화합물을 1종 이상 먼저 담지하고, 이에 순차적으로 조촉매를 담지시켜 촉매를 제조하는 경우, 도입된 피발레이트기와 담체의 상호 작용으로 담지 효율이 높아져 흔성 담지 메탈로센 촉매의 활성이 향상되고, bulk densi ty가 개선된 폴리올레핀을 제조할 수 있다.
그리고, 상기 제 1 메탈로센 화합물이 담지된 담체에 조촉매를 담지 시킨 후, 상기 조촉매가 담지된 담체에 상기 화학식 1 또는 2로 표시되나, R9 , Rio , Xi 및 X2이 각각 독립적으로 피발레이트기, 할로겐 또는 C1 내지 C20의 알킬기인 제 2 메탈로센 화합물을 더 담지시킬 수 있다.
상기 화학식 1 또는 2로 표시되는 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물에 대하여 보다 구체적으로 설명하면 하기와 같다.
본 명세서에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데' 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만사용된다.
제 1 메탈로센 화합물과쎄 2 메탈로센 화합물은 화학식 1 또는 2로 표시되는 화합물인 것은 동일하나, 화학식 1 또는 2 중에서, 전이금속에 연결된 치환기에 차이점이 있다. 보다 구체적으로, 제 1 메탈로센 화합물은 상기 화학식 1에서 및 Rio이 피발레이트기이고, 화학식 2에서 및 ¾가 피발레이트기이지만, 제 2 메탈로센 화합물은 상기 화학식 1에서 및 R10와 화학식 2의 ¾ 및 ¾가 각각 독립적으로 피발레이트기, 할로겐 또는 C1 내지 C20의 알킬기이다.
즉, 상기 일 구현예의 흔성 담지 메탈로센 촉매의 제조 방법에서는 담체에 피발레이트기가 도입된 화학식 1 또는 2로 표시되는 제 1 메탈로센 화합물을 1종 이상 먼저 담지하고, 조촉매를 담지시킨 후, 필요에 따라 제 2 메탈로센 화합물을 담지시키는데, 이와 같은 순서로 촉매를 제조하는 경우, 담지 효율이 높아져 흔성 담지 메탈로센 촉매의 활성이 향상되고, bulk densi ty가 개선되어 생산성이 향상될 수 있다. 또한, 가공성의 지표인 MFRR값을 원하는 수준으로 미세 조절할 수 있어, 생성되는 폴리을레핀의 가공성 및 물성 조절이 용이한 특징이 있다.
그리고, 상기 화학식 1 또는 화학식 2의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 C1 내지 C20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 4족 전이금속으로는 티타늄 (Ti), 지르코늄 (Zr), 하프늄 (Hf) 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2 내지 C20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6 내지 C20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C5 내지 C20의 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드로피라닐기, 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 Q 내지 C20의 알콕시기로는 메특시기, 에톡시기, 페닐옥시기, 시클로핵실옥시기, tert-부특시핵실기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 알킬실릴기로는 메틸실릴기, 디메틸실릴기, 트리메틸실릴기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 실릴알킬기로는 실릴메틸기, 디메틸실릴메틸기 (- CH2-Si(CH3)2H), 트리메틸실릴메틸기 (-CH2— S CH3)3) 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 화학식 1 또는 2로 표시되는 제 1 및 게 2 메탈로센 화합물에 있어서, 상기 화학식 1의 , ¾ 및 , ¾는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert- 부록시메틸기, ;[—에특시에틸기, i -메틸 -메톡시에틸기, tert-부특시핵실기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 화학식 1의 , ¾ 및 R7 , R8는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메특시메틸기, tert- 부특시메틸기, 1-에록시에틸기, 1-메틸 -1-메톡시에틸기, tert-부록시핵실기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기가 될 수 있다. 또는 상기 , R4 및 R7 , ¾는 서로 연결되어 페닐기, 시클로핵실기 등이 될 .수 있다. 다만, , R4 및 R7 , ¾는 상술한 치환기에만 한정되는 것은 아니다. 한편 , 본 발명은 상기 화학식 2의 및 C2 중 하나 이상에 특정의 치환기를 갖는 화학식 3a를 사용하여 높은 활성의 폴리올레핀을 생성 가능할 뿐만 아니라 우수한공증합성을 유지할 수 있다.
상기 화학식 3a, 3b , 3c , 및 3d의 내지 R28은 각각 독립적으로 수소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert- 부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 디메틸에테르기, tert-부틸디메틸실릴에테르기, 메특시기, 에특시기, 또는 tert-부특시핵실기인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 2의 및 ¾는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert-부록시메틸기, 1-에톡시에틸기, 1-메틸 -1-메록시에틸기, tert-부록시핵실기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 바람직하나, 이에만 한정되는 것은 아니다.
또한, 상기 화학식 2의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 2의 메탈로센 화합물은 특히, 상기 화학식 3a의 치환기에서 트리메틸실릴 메틸기 (tr imethyl si lyl methyl )와 같은 C1 내지 C20의 실릴알킬기를 적어도 하나 이상 포함하는 것을 특.징으로 한다.
보다 구체적으로, 상기 화학식 3a의 인덴 유도체는 인데노인돌 유도체나 플루오레닐 유도체에 비해 상대적으로 전자 밀도가 낮으며, 입체 장애가 큰 실릴알킬기를 포함함에 따라 입체 장애 효과 및 전자 밀도적 요인에 의하여 유사한 구조의 메탈로센 화합물에 비해 상대적으로 낮은 분자량의 을레핀 중합체를 고활성으로 중합할 수 있다.
또한, 상기 화학식 3b와 같이 표시될 수 있는 인데노 인돌 ( Indeno indole) 유도체, 상기 화학식 3c와 같이 표시될 수 있는 플루오레닐 (Fluorenyl ) 유도체, 상기 화학식 3d와 같이 표시될 수 있는 인덴 ( Indene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 높은 중합 활성을 나타낸다.
본 발명의 일 실시예에 따르면, 상기 화학식 3a로 표시되는 작용기의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000012_0002
그리고, 상기 화학식 3b로 표시되는 작용기의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000012_0003
Figure imgf000013_0001
/、
Figure imgf000013_0002
상기 화학식 3c로 표시되는 작용기의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000013_0003
Figure imgf000014_0001
또한, 상기 화학식 3d로 표시되는 작용기의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 : 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000014_0002
Figure imgf000015_0001
Figure imgf000015_0002
부가하여, 상기 제 1 메탈로센 화합물은 하기 구조식으로 표시되는 화합물로 군으로부터 선택될 수 있다:
Figure imgf000015_0003
또한, 상기 제 2 메탈로센 화합물은 하기 구조식으로 표시되는 화합물로 이루어진 군으로부터 선택될 수 있다:
Figure imgf000016_0001
그리고, 상기 제 1 메탈로센 화합물과 제 2 메탈로센 화합물은 1:99 내지' 99:1 바람직하게는 5:95 내지 5:95의 질량비로 담체에 담지될 수 있다. 이와 같이 상기 제 1 및 제 2 메탈로센 화합물을 상술한 함량 비율로 담체에 담지하는 것이 상기 제 1 및 제 2 메탈로센 화합물의 특성을 모두 발현시킬 수 있으므로 바람직하다. 그리고, 상기 일 구현예의 흔성 담지 메탈로센 촉매의 제조 방법에 사용되는 조촉매 화합물은 하기 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 조촉매 화합물 중 1종 이상을 포함할 수 있다:
[화학식 4]
-[Al(R29)-0]n- 상기 화학식 4에세
R29은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
n은 2 이상의 정수이며;
[화학식 5] 상기 화학식 5에서,
ο은 상기 화학식 4에서 정의된 바와 같고;
J는 알루미늄 또는 보론이며;
[화학식 6]
[E-H] + [ZA ' 4]—또는 [E] + [ZA ' 4]"
상기 화학식 6에서,
E는 중성 또는 양이온성 루이스 산이고;
H는 수소 원자이며;
Z는 13족 원소이고;
A '는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의'아릴기 또는 탄소수 1 내지 20의 알킬기이다.
상기 화학식 4로 표시되는 화합물의 예로는 메틸알루미녹산 (MA0) , 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 더욱 바람직한 화합물은 메틸알루미녹산이다.
상기 화학식 5로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트ᅳ리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리- s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄ᅳ 트리이소펜틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P- 를릴알루미늄, 디메틸알루미늄메특시드, 디메틸알루미늄에특시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 더욱 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 6으로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라 (p-를릴)보론, 트리메틸암모니움테트라 (ο , ρ- 디메틸페닐)보론, 트리부틸암모니움테트라 (ρ—트리플로로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐 )보론,
트리부틸암모니움테트라펜타플로로페닐보론, Ν , Ν- 디에틸아닐리니움테트라페닐보론, Ν,Ν- 디에틸아닐리니움테트라펜타플로로페닐보론,
디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라 (Ρ- 를릴)알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)알루미늄, 트리에틸암모니움테트라 (ο , ρ-디메틸페닐)알루미늄,
트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)알루미늄,
트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐)알루미늄,
트리부틸암모니움테트라펜타플로로페닐알루미늄, Ν ,Ν- 디에틸아닐리니움테트라페닐알루미늄, Ν ,Ν- 디에틸아닐리니움테트라펜타플로로페닐알루미늄 ,
디에틸암모니움테트라펜타테트라페닐알루미늄,
트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라 (ρ—를릴)보론, 트리에틸암모니움테트라 (ο , ρ- 디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론, 트리페닐카보니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리페닐카보니움테트라펜타플로로페닐보론 등이 있다.
그리고, 상기 일 구현예의 흔성 담지 메탈로센 촉매의 제조 방법에 사용되는 담체는 통상 담지 촉매에 사용되는 금속, 금속 염 또는 금속 산화물의 종류이면 그 구성의 한정이 없다. 구체적으로 실리카, 실리카- 알루미나 및 실리카-마그네시아로 이루어진 군에서 선택된 어느 하나의 담체를 포함한 형태일 수 있다. 상기 담체는 통상적으로 Na20 , K2C03 , BaS04 및 Mg(N¾)2 등과 같은 금속의 산화물, 탄산염, 황산염 또는 질산염 성분을 포함할 수 있다. 그리고, 상기 담체는 메탈로센 화합물, 조촉매 등이 담지되기 전에 층분히 건조된 상태로 사용하는 것이 좋다. 이때, 담체의 건조 온도는 200 내지 100CTC가 바람직하고, 400 내지 800°C가 더욱 바람직하다. 상기 담체의 건조 온도가 400°C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반웅하게 되고, 800°C를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반웅자리가 감소하기 때문에 바람직하지 않다.
그리고, 상기 담체 100 중량부에 대해, 상기 제 1 및 제 2 메탈로센 화합물은 각각 약 0. 1 내지 약 20 중량부, 바람직하게는 약 1 내지 약 15 증량부 담지될 수 있다. '
또한, 상기 담체 100 중량부에 대해, 상기 조촉매는 약 1 내지 약 1 , 000 중량부, 바람직하게는 약 10 내지 약 500 중량부 담지될 수 있다. 또, 상기 담체에 하기 화학식 1 또는 2 로 표시되는 제 1 메탈로센 화합물을 담지시키는 단계; 및 상기 제 1 메탈로센 화합물이 담지된 담체에 조촉매를 담지시키는 단계;는 약 -30 내지 150°C , 바람직하게는 약 0 내지 100°C에서 수행될 수 있다. 한편, 발명의 다른 구현예에 따르면, 상술한 방법으로 제조된 흔성 담지 메탈로센 촉매가 제공된다.
또한, 발명의 또 다른 구현예에 따르면, 상술한 방법으로 제조된 흔성 담지 메탈로센 촉매의 존재 하에, 올레핀계 단량체를 중합시키는 단계를 포함하는 폴리을레핀의 제조방법이 제공된다.
이러한 폴리올레핀의 제조 방법에서는, 상술한 일 구현예에 따라 흔성 담지 메탈로센 촉매를 제조하는 단계; 및 상기 흔성 담지 메탈로센 촉매 하에서, 올레핀계 단량체를 중합시키는 단계를 포함하는 방법으로 생성된 파우더의 모폴로지 개선을 통해 bulk densi ty 가 향상되고, 원하는 수준의 가공성 및 물성을 갖는 폴리올레핀을 제조할 수 있다.
이러한 폴리올레핀의 제조방법에 있어서, 상기 흔성 담지 메탈로센 촉매는 그 자체로서 올레핀계 단량체의 중합에 사용될 수 있다. 또한, 상기 올레핀계 단량체와 접촉 반웅되어 예비 중합된 촉매로 제조하여 촉매로서 사용할 수도 있으며, 예컨대 별도로 촉매를 에틸렌, 프로필렌, 1-부텐, 1- 핵센 또는 1-옥텐 등과 같은 올레핀계 단량체와 접촉시켜 예비 중합된 촉매로 제조하여 사용할 수도 있다.
상기 흔성 담지 메탈로센 촉매를 사용하여 중합 가능한 올레핀계 단량체로는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2 개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀 등을 들 수 .있다. 보다 구체적으로, 상기 올레핀계 단량체의 예로서, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1- 도데센, 1-테트라데센, 1-핵사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔 1 , 4- 부타디엔, 1 , 5-펜타디엔, 1 , 6—핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 또는 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상흔합하여 공중합할 수도 있다.
상기 흔성 담지 메탈로센 촉매 하에서 올레핀계 단량체를 중합시키는 단계에서는, 50 내지 150°C의 온도에서 을레핀계 단량체를 중합하는 것이 바람직하다.
상기 촉매를 이용한 올레핀 중합공정은 슬러리, 기상 공정 또는 슬러리와 기상의 흔합 공정 등에 따라 진행할 수 있고, 슬러리 또는 기상 ' 공정이 바람직하다.
그리고, 상기 폴리올레핀의 제조방법에 있어서, 상기 흔성 담지 메탈로센 촉매는 탄소수 5 내지 12 의 지방족 탄화수소 용매, 예를 들면, 펜탄, 핵산, 헵탄, 노난, 데칸, 또는 이들의 이성질체; 를루엔, 벤젠과 같은 방향족 탄화수소 용매; 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매; 등에 용해하거나 회석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 【발명의 효과】 본 발명에 따르면, 올레핀 중합 반웅에서 높은 활성을 나타낼 수 있을 뿐만 아니라 제조되는.올레핀 중합체의 내부 구조, 기계적 물성 등의 특성을 용이하게 조절할 수 있는 흔성 담지 메탈로센 촉매의 제조 방법, 이를 이용하여 제조된 흔성 담지 메탈로센 촉매 및 상기 흔성 담지 메탈로센 촉매를 이용한 폴리올레핀의 제조 방법이 제공된다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<메탈로센 화합물의 제조예 >
제조예 1: 전구체 A
Figure imgf000021_0001
1-1리간드 화합물의 제조
건조된 250 mL Schlenk flask에 4.05 g (20 隱 ol)의 ((lH-inden-3- yl)methyl)trimethylsilane을 채우고 아르곤 기체 하에서 40 mL의 디에틸에테르 (Diethylether)에 녹였다. 이 용액을 0°C까지 넁각한 후, 핵산 (hexane)에 녹인 1.2 당량의 2.5 M의 n-BuLi (hexane solution) 9.6 mL (24 誦 ol)를 천천히 적가하였다. 반웅 흔합물을 천천히 '상온으로 승온시킨 후, 24시간 동안 교반하였다. 다른 250ml Schlenk flask에 silicone tether 2.기 3g(10隱 ol)을 핵산 30ml에 녹인 용액을 준비하고, 이를 -78°C까지 넁각한 뒤, 여기에 위에서 준비된 흔합물을 천천히 적가하였다. 적가한 후 흔합물을 상온으로 천천히 승온하고, 24시간 동안 교반시켰다. 여기에 50 mL의 물을 넣고 유기층올 50 mL의 ether 로 3회 추출하였다. 모아진 유기층에 적당량의 MgS04를 넣어 잠시 교반시킨 후, 필터하여 감압 하에 용매를 건조시킨 결과, 6.1 g (분자량: 603.11, 10.05 匪 ol, 100.5 % 수율)의 노란색 오일 형태의 리간드 화합물을 수득하였다. 얻어진 리간드 화합물은 별도의 분리 과정없이 메탈로센 화합물의 제조에 사용하였다.
¾ NMR (500丽 z, CDCls): 0.02 (18H, m), 0.82 (3H, m), 1.15 (3H, m), 1.17 (9H, m), 1.42 (H, m) , 1.96 (2H, m), 2.02 (2H, m), 3.21 (2H, m), 3.31 (1H, s), 5.86 (1H, m), 6.10 (1H, m) , 7.14 (3H, m) , 7.14 (2H, m) 7.32 (3H, m).
1-2메탈로센 화합물 전구체의 제조
Figure imgf000022_0001
오븐에 건조한 250 mL Schlenk flask에 1-1에서 합성한 리간드 화합물을 넣고 4당량의 메틸터셔리부틸에테르 (methyl tert-butyl ether)와 60ml의 를루엔에 녹인 다음, 2 당량의 n-BuLi hexane solution 을 가해 lithiation시켰다. 하루가 지난 후 진공 조건에서 플라스크 내부의 용매를 모두 제거하고 동량의 를루엔에 용해시켰다. Glove box 내에서 1 당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 를루엔을 넣은 서스펜션 (suspension)을 준비하였다. 위의 두 개의 플라스크 모두 - 78°C까지 넁각시킨 후 lithiation된 리간드 화합물을 천천히 ZrCl4(THF)2의 를루엔 서스펜션에 가하였다. 주입이 끝난 후, 반웅 흔합물은 천천히 상온까지 올려 하룻동안 교반하여 반응을 진행시킨 후 흔합물 내의 를루엔을 약 1/5 부피까지 진공 감압을 통해 제거하고 남은 를루엔의 5배 정도 부피의 헥산을 가해 재결정시켰다. 외부 공기와 닿지 않게 흔합물올 여과하여 메탈로센 화합물을 수득하였으며, 약간의 핵산을 사용하여 필터 윗 부분에 얻어진 필터 케엌 (filter cake)을 씻어준 다음, glove box 내에서 계량하여 합성 여부, 수을, 순도를 확인하였다.
6.1g (10誦 ol)의 리간드 화합물로부터 7.3g (9.56讓 ol, 95.6%)의 자주색 오일을 얻어 를루엔 용액으로 보관하였다. (순도: 10 , 분자량: 763.23)
¾ 證 (500MHz, CDC13): 0.03 (18H, m), 0,98, 1.28 (3H, d), 1.40 (9H, m), 1.45 (4H, m), 1.66 (6H, m) , 2.43 (4H, s), 3.47 (2H, m), 5.34 (1H, m), 5.56 (1H, m), 6.95 (1H, m), 6.97 (1H, m), 6.98(1H, m), 7.22 (1H, m), 7.36 (2H, m), 7.43 (1H, m), 7.57 (1H, m)
Figure imgf000023_0001
오븐에서 건조된 250 mL Schlenk flask에 1-2에서 제조한 메탈로센 화합물 전구체 1.52 g(2 隱 ol)을 투입한 다음, 40 mL의 dry toluene에 희석하였다. 이 용액을 -78도까지 넁각시킨 후 아르곤 하에서 840 mg(6 隱 ol, 3 당량)의 potassium pivalate를 넣어주었다. 반웅 흔합물을 서서히 상온까지 승온시키면 반웅이 진행됨에 따라 붉은 색의 용액이 반웅이 진행되면서 노란색으로 변하는 것을 확인할 수 있다. 이 반응물을 약 2 시간 동안 추가로 교반시킨 후, 아르곤 하에서 celite pad를 통과시켜 여분의 potassium pivalate와 무기물을 제거한 다음, 여과액을 진공 감압 하에서 용매를 제거하여 연한 노란색의 화합물을 8OT의 수율로 얻었다.
¾ 赚 (500 MHz, CDCI3): 0.05 - 0.24 (18H, m), 0.89 - 0.92 (3H, m), 1.28 - 1.43 (31H, m), 1.50 - 1.62 (4H, m) , 2.17 -2.23 (2H, m) , 2.46 (4H, s)ᅳ 3.34 (2H, m), 6.32 (2H, m), 6.67 (2H
(8H, m)
Figure imgf000024_0001
메탈로센 화합물 전구체로 Dichloro [rac-ethylenebis(4, 5,6,7- tertahydro-l-indenyl)]zirconium(IV)를 준비하였다 (Sigma—Aldrich사 구입, Cas Number 100163-29-9). 오븐에서 건조된 250 mL Schlenk flask에 상기 메탈로센 화합물 전구체 2.13 g(5 瞧 ol) 를 투입하였다. 여기에 아르곤 하에서 1.02 g(10 瞧 ol)의 pivalic acid를 넣고 50 mL의 dichloromethane에 녹였다. 반웅 흔합물은 0 °C까지 넁각시킨 다음 1.4 mL(10 讓 ol)의 triethylamine을 천천히 주입하였다. bath를 제거하고 반웅 흔합물을 천천히 상온까지 올리면 30분 이내에 노란색이 사라지고 전체적으로 흰색으로 변하는 것이 확인되었다. 약 1 시간이 지난 후, 반웅 용매를 감압 하에서 완전히 제거하고 100 mL의 ether를 가한 다음 sonicat ion을 통해 흰색 고체가 완전히 풀어지도록 하였다. flask 내의 흔합물은 아르곤 분위기 하에서 여과하여 무색의 ether 여과액을 얻고, 이를 완전히 건조하며 2.65 g(~90% yield)의 흰색 고체가 얻어졌다.
¾ NMR (500 MHz, CDC13): 1.19 (18H, s), 1.41 - 1.58 (4H, m), 1.72 -1.79 (2H, m), 1.81 ― 1.88 (2H, m), 2.21 ― 2.25 (2H, m), 2.33 - 2.39 (2H, m), 2.52 - 2.60 (2H, m), 2.82 - 2.88 (2H, m), 3.03 - 3.16 (4H, m), 5.57 (2H, s), 5.92 (2H, s) 제조예 3: 전구체 C
Figure imgf000025_0001
메탈로센 화합물 전구체로
bis(indenyl)]zirconium(IV)를 준비하였다 (Sigma-Aldrich사 구입, CAS Number 100080-82-8). 오븐에서 건조된 250 mL Schlenk flask에 상기 메탈로센 화합물 전구체 2.05 g(5 誦 ol)를 투입한 다음, 60 mL의 dry toluene을 넣어 suspension 형태로 만들었다. 아르곤 하에서 2.11 g(15 隱 ol, 3 당량)의 potassium pivalate를 넣어주면 약 2 시간 이내에 부유물이 사라지고 전체적으로 투명한 노락색 용액으로 변하는 것을 확인하였다. 이 반웅물을 3 시간 동안 추가로 교반시킨 후, 아르곤 하에서 celite pad를 통과시켜 여분의 potassium pivalate와 무기물을 제거하였다. 얻어진 여과액은 진공 감압 하에서 용매를 제거하고 pentane으로 재결정하여 연한 노란색의 화합물을 의 수율로 얻었다.
¾ NMR (500 MHz, CDC13): 0.98 - 1.22 (18H, m), 3.34 (4H, s), 6.61 (2H, m), 6.83 (2H, m), 7.26 ― 7.35 (4H, m), 7.37 ― 7.41 (2H, m), 7.43 - 7.48 (1H, m), 7.54- 7.58 (1H, m) 교 제조예 1: 전구체 D
Figure imgf000025_0002
제조예 1의 1-2에서 제조한 상기 구조식의 메탈로센 화합물 전구체 사용하였다. 비교 제조예 2: 전구체 E
Figure imgf000026_0001
상기 구조식의 메탈로센 화합물 Dichloro [rac-ethylenebis(4,5,6,7- tertahydro—lᅳ indenyl )]zirconium(IV)를 준비하였다 (Sigma-Aldr ich사 구입, Cas Number 100163-29-9). 비교 제조예 3: 전구체 F
Figure imgf000026_0002
구조식의 메탈로센 화합물 Dichloro[rac-ethylene bis(indenyl)]zirconi醒 (IV)를 준비하였다 (Sigma-Aldr ich사
Number 100080-82-8).
<담지 촉매의 제조실시예 >
촉매 제조 실시예 1
50 mL Schlenk flask에 상기 제조예 1에서 제조된 촉매 전구체 구조
A 0.95 g과 를루엔 30 mL를 투입한 후 전구체 용액을 준비하였다. 300 mL 고압용 유리 반웅기에 를루엔 100 mL를 넣고, 40°C에서. 실리카 (Grace Davison, SP952X를 65CTC에서 소성함) 10 g을 투입한 후 30분 동안 교반 후 정치시켰다. 50 mL flask에 준비해놓은 전구체 용액을 유리반웅기에 투입하고 온도를 60 °C로 올린 후 교반하면서 6 시간 동안 반웅시켰다. 반웅기 온도를 40 °C으로 낮춘 후 교반 중지하고 10분 동안 Settling 시킨 후 Decantation 하였다. 반웅기에 를루엔 30 mL를 투입한 후, 10 wt% MA0 70 g을 투입하고 온도를 80 °C로 올린 후 교반하면서. 12시간 동안 반웅시켰다. 반웅기 온도를 상은으로 낮춘 후 교반을 중지하고, 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 반웅기에 핵산을 100 mL까지 투입하고 핵산 슬러리를 Schlenk f lask에 이송하고 핵산 용액을 Decantat ion하였다. 100 mL까지 투입상온에서 3 시간 동안 감압 하에서 건조하였다. 촉매 제조실시예 2
촉매 전구체 구조 A 대신에 촉매 전구체 구조 B 0.76 g을 사용한 것을 제외하고는, 촉매 제조 실시예 1과 동일한 방법으로 담지 촉매를 제조하였다. 촉매 제조실시예 3
촉매 전구체 구조 A 대신에 촉매 전구체 구조 C 0.70 g을 사용한 것을 제외하고는, 촉매 제조 실시예 1과 동일한 방법으로 담지 촉매를 제조하였다. 촉매 제조실시예 4
50 mL Schlenk f l ask에 상기 제조예 1에서 제조된 촉매 전구체 구조 A 0.76 g과 를루엔 30 mL를 투입한 후 전구체 용액을 준비하였다. 300 mL 고압용 유리 반웅기에 를루엔 100 mL를 넣고, 40°C에서 실리카 (Grace
Davi son, SP952X를 650°C에서 소성함) 10 g을 투입한 후 30분 동안 교반 후 정치시켰다. 50 mL f lask에 준비해놓은 전구체 용액을 유리반웅기에 투입하고 온도를 80 °C로 을린 후 교반하면서 6 시간 동안 반웅시켰다. 반웅기 온도를 40 °C으로 낮춘 후 교반 중지하고 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 반웅기에 를루엔 30 mL를 투입한 후, 10 wt% MA0
70 g을 투입하고 온도를 80 °C로 올린 후 교반하면서 12시간 동안 반웅시켰다. 반웅기 온도를 상은으로 낮춘 후 교반을 중지하고, 10분 동안
Set t l ing 시킨 후 Decantat ion 하였다. 반웅기에 핵산을 100 mL까지 투입하고 핵산 슬러리를 Schlenk f l ask에 이송하고 핵산 용액을 Decant at ion하였다. 100 mL까지 투입상온에서 3 시간 동안 감압 하에서 건조하였다. 촉매 제조실시예 5
촉매 전구체 구조 A 대신에 촉매 전구체 구조 B 0.61 g을 사용한 것을 제외하고는, 촉매 제조 실시예 4과 동일한 방법으로 담지 촉매를 제조하였다. 촉매 제조 실시예 6
50 mL Schlenk f lask에 상기 제조예 1에서 제조된 촉매 전구체 구조
A 0.50 g과 를루엔 30 mL를 투입한 후 전구체 용액을 준비하였다. 300 mL 고압용 유리 반웅기에 를루엔 100 mL를 넣고, 40°C에서 실리카 (Grace Davi son, SP952X를 650°C에서 소성함) 7 g을 투입한 후 30분 동안 교반 후 정치시켰다. 50 mL f lask에 준비해놓은 전구체 용액을 유리반웅기에 투입하고 온도를 60 °C로 올린 후 교반하면서 6 시간 동안 반웅시켰다. 반웅기 온도를 40 °C으로 낮춘 후 교반 중지하고. 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 반웅기에 를루엔 30 mL를 투입한 후, 10 wt MAO 54 g을 투입하고 온도를 80 °C로 올린 후 교반하면서 12시간 동안 반응시켰다. 반응기 온도를 상온으로 낮춘 후 교반을 중지하고, 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 를루엔 30 mL를 투입한 후 반응기 온도를 80 °C로 올리고, 교반하면서 상기 제조예 2에서 제조된 촉매 전구체 구조 B 0.25 g을 투입하고 4시간동안 반웅시켰다. 반웅기 온도를 상온으로 낮춘 후 교반을 중지하고, 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 반웅기에 핵산을 100 mL까지 투입하고 핵산 슬러리를 Schlenk f l ask에 이송하고 핵산 용액을 Decant at ion하였다. 상온에서 3 시간 동안 감압 하에서 건조하였다. 촉매 제조실시예 7
촉매 전구체 구조 A를 0.50 g 신 0.77 g 사용하고, 촉매 전구체 구조 B 대신에 촉매 전구체 구조 C 0.52 g을 사용한 것을 제외하고는, 촉매 제조 실시예 6과 동일한 방법으로 담지 촉매를 제조하였다. 촉매 제조실시예 8
촉매 전구체 구조 A를 0.50 g 대신 0.35 g 사용하고, 촉매 전구체 구조 B 대신에 촉매 전구체 구조 E 0.24 g을 사용한 것을 제외하고는, 촉매 제조 실시예 6과 동일한 방법으로 담지 촉매를 제조하였다. 촉매 제조실시예 9
50 mL Schlenk f lask에 상기 제조예 1에서 제조된 촉매 전구체 구조 A 0.50 g과 를루엔 30 mL를 투입한 후 전구체 용액을 준비하였다. 300 mL 고압용 유리 반응기에 를루엔 100 n 를 넣고, 40°C에서 실리카 (Grace Davi son, SP952X를 650°C에서 소성함) 8 g을 투입한 후 30분 동안 교반 후 정치시켰다. 50 mL f lask에 준비해놓은 전구체 용액을 유리반웅기에 투입하고 온도를 60 °C로 올린 후 교반하면서 3 시간 동안 반응시켰다. 반웅기에 상기 제조예 2에서 제조된 촉매 전구체 구조 B 0.25 g을 투입하고 5시간 동안 반웅 시켰다. 반응기 온도를 40 °C으로 낮춘 후 교반 중지하고 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 반웅기에 를루엔 30 mL를 투입한 후 10 wt% MAO 54 g을 투입하고 온도를 80 °C로 을린 후 교반하면서 12시간 동안 반웅시켰다. 반응기 온도를 상온으로 낮춘 후 교반을 중지하고, 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 를루엔 30 mL를 투입한 후 반응기 온도를 80 °C로 올린 후 교반하면서 상기 비교 제조예 3에서 제조된 촉매 전구체 구조 F 0. 17 g을 투입하고 4시간동안 반웅시켰다. 반웅기 온도를 상온으로 낮춘 후 교반을 증지하고, 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 반웅기에 핵산을 100 mL까지 투입하고 핵산 슬러리를 Schlenk f lask에 이송하고 헥산 용액을 Decant at ion하였다. 상온에서 3 시간 동안 감압 하에서 건조하였다. 촉매 제조 실시예 10
촉매 전구체 구조 A 대신 촉매 전구체 구조 B 0.41 g을 사용하고, 촉매 전구체 구조 B 대신에 촉매 전구체 구조 C 0.50 g을 사용한 것을 제외하고는, 촉매 제조 실시예 6과 동일한 .방법으로 담지 촉매를 제조하였다. 촉매 제조 비교예 1
촉매 전구체 구조 A 대신에 비교 제조예 1에서 제조된 촉매 전구체 구조 D 0.85 g을 사용한 것을 제외하고는, 촉매 제조 실시예 1과 동일한 방법으로 담지 촉매를 제조하였다. 촉매 제조 비교예 2
촉매 전구체 구조 B 대신에 비교 제조예 1에서 제조된 촉매 전구체 구조 E 0.51 g을 사용한 것을 제외하고는, 촉매 제조 실시예 5과 동일한 방법으로 담지 촉매를 제조하였다. 촉매 제조 비교예 3
300 mL 고압용 유리 반웅기에 를루엔 100 mL를 넣고, 40°C에서 실리카 (Grace Davi son, SP952X를 650°C에서 소성함) 10 g을 투입한 후 30분 동안 교반 후 정치시켰다. 10 wt% MAO 70 g을 반웅기에 투입하고 온도를 80 °C로 올린 후 교반하면서 12시간 동안 반웅시켰다. 반웅기 온도를 40 °C으로 낮춘 후 교반 중지하고 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 반웅기에 를루엔 50 mL를 투입한 후 5분간 교반하였다. 그 후, 교반을 중지하고 10분간 Sett l ing 시킨 후 Decantat ion 하였다. 반웅기에 를루엔 30 mL를 투입한 후, 상기 제조예 1에서 제조된 촉매 전구체 구조 A 0.68 g과 를루엔 30 mL 용액을 반웅기로 투입하였다. 온도를 60 °C로 올린 후 교반하면서 4시간 동안 반웅시켰다. 반웅기 온도를 40 °C로 낮춘 후 교반을 중지하고, 10분 동안 Sett l ing 시킨 후 Decantat ion 하였다. 반웅기에 핵산을 100 mL까지 투입하고 핵산 슬러리를 Schlenk f lask에 이송하고 핵산 용액을 Decant at ion하였다. 상온에서 3 시간 동안 감압 하에서 건조하였다. 촉매 제조 비교예 4 촉매 전구체 구조 A 대신에 제조예 3에서 제조된 촉매 전구체 구조 C 0.61 g을 사용한 것을 제외하고는, 촉매 제조 비교예 3과 동일한 방법으로 담지 촉매를 제조하였다. 촉매 제조 비교예 5
300 mL 고압용 유리 반웅기에 를루엔 100 mL를 넣고, 40°C에서 실리카 (Grace Davison, SP952X를 650°C에서 소성함) 10 g을 투입한 후 30분 동안 교반 후 정치시켰다. 10 wt MAO 70 g을 반웅기에 투입하고 온도를 80 °C로 을린 후 교반하면서 12시간 동안 반응시켰다. 반웅기 온도를 40 °C으로 낮춘 후 교반 중지하고 10분 동안 Settling 시킨 후 Decantation 하였다. 반웅기에 를루엔 50 mL를 투입한 후 5분간 교반하였다. 그 후, 교반을 중지하고 10분간 Settling 시킨 후 Decantation 하였다. 반응기에 를루엔 30 mL를 투입한 후, 상기 제조예 1에서 제조된 촉매 전구체 구조 A 0.33 g과 를루엔 30 mL 용액올 반웅기로 투입하였다. 온도를 60 °C로 올린 후 교반하면서 2시간 동안 반웅시켰다. 그 후, 제조예 2에서 제조된 촉매 전구체 구조 B 0.45g과 를루엔 30ml 용액을 반응기로 투입하고 교반하면서 2시간 동안 반웅시켰다. 반웅기 온도를 40 °C로 낮춘 후 교반을 중지하고, 10분 동안 Settling 시킨 후 Decantation 하였다. 반웅기에 핵산을 100 mL까지 투입하고 헥산 슬러리를 Schlenk flask에 이송하고 핵산 용액을 Decant at ion하였다. 상온에서 3 시간동안 감압 하에서 건조하였다.
<폴리에틸렌 중합의 실시예 >
중합실시예 1내지 10및 중합비교예 1내지 6: 폴리올레핀의 제조 에틸렌 중합
2L Autoclave 고압 반웅기에 TEAL 2 mL(lM in Hexane), 1-Hexane 70 g을 투입하고, 핵산 0.6 kg을 투입한 후 500 rpm으로 교반하면서 온도를 85 °C로 승온하였다. 그리고, 담지 촉매 (촉매 제조예 1~10 및 촉매 제조 비교예 1~5) 30~45mg과 핵산을 vial에 담아 반웅기에 투입하였다. 반웅기 내부 온도가 85 °C가 되면 에틸렌 압력 30 bar 하에서 500 rpm으로 교반하면서 1시간 동안 반웅시켰다. 에틸렌 유량에 따른 정해진 비율 (0.005~0.001%)의 수소량을 조절하여 투입하였다. 반웅 종료 후 얻어진 폴리머는 필터를 통해 핵산을 1차 제거시킨 후, 80 °C 오븐 (Oven)에서 3시간 동안 건조하였다. 상기 중합 실시예 1 내지 10 및 중합 비교예 1 내지 6의 반웅 조건 및 결과를 정리하면 다음 표 1, 표 2와 같다.
【표 II
Figure imgf000032_0001
상기 표 1 을 참고하면, 실시예 1 내지 5 와 같이 피발레이트기가 도입된 메탈로센 화합물을 먼저 담지시키고, 다음으로 조촉매를 담지시켜 제조한 흔성 담지 메탈로센 촉매는, 피발레이트기가 도입되지 않은 메탈로센 화합물을 사용하였거나, 조촉매를 먼저 담지시켜 제조한 비교예 1 내지 4 에 비하여 촉매 활성이 동등 또는 그 이상으로 높은 것을 확인할 수 있었다.
또한, 상기 실시예 1 내지 5 의 메탈로센 촉매를 사용하여 제조한 폴리올레핀은 비교예 1 내지 4 의 메탈로센 촉매를 사용한 경우에 비하여 PDI 가 큰 값을 가지므로 가공성이 우수할 것으로 예측되며, bulk densi ty 또한 개선된 것을 확인할 수 있었다.
【표 2】
Figure imgf000033_0001
상기 표 2 를 참고하면, 실시예 6 내지 10 와 같이 피발레이트기가 도입된 메탈로센 화합물을 먼저 담지시키고, 다음으로 조촉매와, 피발레이트가가 도입 또는 미도입된 메탈로센 화합물을 담지시켜 제조한 흔성 담지 메탈로센 촉매는, 피발레이트기가 도입되지 않은 메탈로센 화합물을 사용하였거나, 조촉매를 먼저 담지시켜 제조한비교예 5 내지 6에 비하여 촉매 활성이 동등 또는 그 이상으로 높은 것을 확인할 수 있었다. 또한, 상기 실시예 6 내지 10 의 메탈로센 촉매를 사용하여 제조한 폴리올레핀은 비교예 5 내지 6 의 메탈로센 촉매를 사용한 경우에 비하여 bulk densi ty 가 우수하여 생상성이 향상될 뿐만 아니라, MFR 값을 원하는 수준으로 미세 조절할 수 있어, 폴리올레핀의 가공성 및 물성 조절이 용이할 것으로 예측된다.

Claims

【특허청구범위】 【청구항 1】 담체에 하기 화학식 1 또는 2 로 ί시되는 제 1 메탈로센 화합물을 1종 이상 담지시키는 단계; 및 상기 제 1 메탈로센 화합물이 담지된 담체에 조촉매를 담지시키는 단계 ; 를 포함하는 흔성 담지 메탈로센 촉매의 제조 방법 :
[화학식 1]
Figure imgf000035_0001
상기 화학식 1에서,
Ri , R2 및 , ¾는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 C1 내지 C20의 알킬기이고,
R3 , R4 및 R7 , R8는 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 C1 내지 C20의 알킬기이거나 또는 상기 R3 , R4 및 R그 ¾ 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있으며,
Q은 4족 전이금속이고,
Rg 및 R10 은 피발레이트기이고,
[화학식 2]
Figure imgf000035_0002
상기 화학식 2에서,
M은 4족 전이금속이고,
B는 탄소, 실리콘 또는 게르마늄이고 Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고,
Xi 및 ¾은 피발레이트기이고,
Ci 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 3a , 화학식 3b , 화학식 3c, 또는 화학식 3d 중 하나로 표시되고, 단, 및 C2 중 하나 이상은 화학식 3a로 표시되며;
3a]
Figure imgf000036_0001
Figure imgf000036_0002
3c]
Figure imgf000036_0003
[화학식 3d]
Figure imgf000037_0001
상기 화학식 3a, 3b , 3c , 및 3d에서,
Ri 내지 R28은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 에테르기, C1 내지 C20의 실릴에테르기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고,
R ' i 내지 R ' 3은 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 할로겐, C1 내지 C20의 알킬기, C2내지 C20의 알케닐기, C6 내지 C20의 아릴기이며,
상기 내지 1½중 서로 인접하는 2 개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다. 【청구항 2】
제 1항에 있어서,
상기 조촉매가 담지된 담체에 상기 화학식 1 또는 2 로 표시되나, , Rio , Xi 및 ¾이 각각 독립적으로 피발레이트기, 할로겐 또는 C1 내지 C20의 알킬기인 제 2 메탈로센 화합물을 담지시키는 단계;를 더 포함하는 흔성 담지 메탈로센 촉매의 제조 방법 .
【청구항 3]
제 1항에 있어서,
상기 제 1 메탈로센 화합물은 하기 구조식으로 표시되는 화합물로 이루어진 군으로부터 선택되는 흔성 담지 메탈로센 촉매의 제조 방법:
Figure imgf000038_0001
【청구항 4】
제 1항에 있어서,
상기 제 2 메탈로센 화합물은 하기 구조식으로 표시되는 화합물로 이루어 군으로부터 선택되는 흔성 담지 메탈로센 촉매의 제조 방법:
Figure imgf000038_0002
【청구항 5】
제 2항에 있어서,
상기 제 1 메탈로센 화합물과 제 2 메탈로센 화합물은 1:99 내지
99:1의 질량비로 담지되는 흔성 담지 메탈로센 촉매의 제조 방법.
【청구항 6】
제 1항에 있어서, 상기 조촉매 화합물은 하기 화학식 4, 화학식 5, 또는 화학식 6으로 표시되는 화합물 중 1종 이상을 포함하는 흔성 담지 메탈로센 촉매의 제조 방법:
[화학식 4]
— [Al (R29)-0]n- 상기 화학식 4에서,
9은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
n은 2 이상의 정수이며;
[화학식 5]
J ( 0 )3
상기 화학식 5에서,
Rso은 상기 화학식 4에서 정의된 바와 같고;
J는 알루미늄 또는 보론이며;
[화학식 6]
[E-H] + [ZA ' 4]"또는 [Ε] + [ΖΑ'4Γ
상기 화학식 6에서,
Ε는 중성 또는 양이온성 루이스 산이고;
Η는 수소 원자이며;
Ζ는 13족 원소이고;
A '는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
【청구항 7】
게 1항에 있어서,
상기 조촉매는 메틸알루미녹산 (ΜΑ0) , 에틸알루미녹산, 이소부틸알루미녹산 및 부틸알루미녹산으로 이루어진 군으로부터 선택되는 1종 이상의 화합물을 포함하는 흔성 담지 메탈로센 촉매의 제조 방법 .
【청구항 8】
제 1항에 있어서,
상기 담체는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군으로부터 선택된 1 종 이상을 포함하는 흔성 담지 메탈로센 촉매의 제조 방법 .
【청구항 9】
제 1 항에 있어서,
상기 담체는 200 내지 1000°C에서 건조된 것인 흔성 담지 메탈로센 촉매의 제조 방법 .
【청구항 10】
제 2항에 있어서,
상기 담체 100 중량부에 대해, 상기 제 1 및 제 2 메탈로센 화합물은 각각 0. 1 내지 20 중량부 담지되는 흔성 담지 메탈로센 촉매의 제조 방법 .
【청구항 11】
제 1항에 있어서, 一
상기 담체 100 중량부에 대해, 상기 조촉매는 1 내지 1 , 000 중량부 담지되는 흔성 담지 메탈로센 촉매의 제조 방법.
【청구항 12】
제 1 항 내지 제 11 항 중 어느 한 항의 방법으로 제조된 흔성 담지 메탈로센 촉매.
【청구항 13】
제 12항의 흔성 담지 메탈로센 촉매의 존재 하에, 올레핀계 단량체를 중합시키는 단계를 포함하는 폴리올레핀의 제조 방법.
PCT/KR2016/013651 2015-12-04 2016-11-24 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매 WO2017095079A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/760,073 US10550207B2 (en) 2015-12-04 2016-11-24 Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
EP16870975.6A EP3330296B1 (en) 2015-12-04 2016-11-24 Method for preparing supported metallocene catalyst
CN201680054968.XA CN108026199B (zh) 2015-12-04 2016-11-24 制备负载型混杂茂金属催化剂的方法以及使用该方法制备的负载型混杂茂金属催化剂

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150172426A KR101949456B1 (ko) 2015-12-04 2015-12-04 혼성 담지 메탈로센 촉매의 제조 방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR10-2015-0172424 2015-12-04
KR1020150172424A KR101953768B1 (ko) 2015-12-04 2015-12-04 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR10-2015-0172426 2015-12-04

Publications (1)

Publication Number Publication Date
WO2017095079A1 true WO2017095079A1 (ko) 2017-06-08

Family

ID=58797158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013651 WO2017095079A1 (ko) 2015-12-04 2016-11-24 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매

Country Status (4)

Country Link
US (1) US10550207B2 (ko)
EP (1) EP3330296B1 (ko)
CN (1) CN108026199B (ko)
WO (1) WO2017095079A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019236349A1 (en) * 2018-06-04 2019-12-12 Exxonmobil Chemical Patents Inc. Catalyst systems including two hafnocene catalyst compounds
US11198747B2 (en) 2018-06-04 2021-12-14 Exxonmobil Chemical Patents Inc. Catalyst systems including two hafnocene catalyst compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069109A (en) * 1998-07-01 2000-05-30 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of half-sandwich transition metal based catalyst precursors
WO2006101595A1 (en) * 2005-03-17 2006-09-28 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation
KR20150066484A (ko) * 2013-12-06 2015-06-16 주식회사 엘지화학 메탈로센 화합물

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871705A (en) 1988-06-16 1989-10-03 Exxon Chemical Patents Inc. Process for production of a high molecular weight ethylene a-olefin elastomer with a metallocene alumoxane catalyst
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
IT1314261B1 (it) 1999-12-03 2002-12-06 Enichem Spa Composti metallocenici pontati, processo per la loro preparazione eloro uso come catalizzatori per la polimerizzazione di olefine.
US6552137B1 (en) 2000-11-16 2003-04-22 Univation Technologies, Llc Catalyst system and its use in olefin polymerization
US7220804B1 (en) 2000-10-13 2007-05-22 Univation Technologies, Llc Method for preparing a catalyst system and its use in a polymerization process
US6555495B2 (en) 2000-12-06 2003-04-29 Univation Technologies, Llc Catalyst support method and polymerization with supported catalysts
JP2002293789A (ja) 2001-03-29 2002-10-09 Sumitomo Chem Co Ltd 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
CN1169845C (zh) 2002-02-07 2004-10-06 中国石油化工股份有限公司 用于烯烃聚合的固体催化剂组分和含该催化剂组分的催化剂及其应用
JP4034108B2 (ja) 2002-04-24 2008-01-16 東邦キャタリスト株式会社 オレフィン類重合用触媒
KR20040076965A (ko) 2003-02-27 2004-09-04 호남석유화학 주식회사 올레핀 중합용 담지 다중핵 메탈로센 촉매 및 이의 제조방법
KR101637026B1 (ko) 2013-11-18 2016-07-07 주식회사 엘지화학 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
WO2016093678A1 (ko) 2014-12-12 2016-06-16 주식회사 엘지화학 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069109A (en) * 1998-07-01 2000-05-30 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of half-sandwich transition metal based catalyst precursors
WO2006101595A1 (en) * 2005-03-17 2006-09-28 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation
KR20150066484A (ko) * 2013-12-06 2015-06-16 주식회사 엘지화학 메탈로센 화합물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAMINSKY, W. ET AL.: "Asymmetric Oligomerization of Propene and 1-Butene with a Zirconocene/Alumoxane Catalyst", ANGEWANDTE CHEMIE, vol. 101, no. 9, 1989, pages 1304 - 1306, XP055470104 *
See also references of EP3330296A4 *
SONG, W. ET AL.: "Error Formation in Ansa-zirconocene Catalyzed Isotactic Propylene Polymerization", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 512, no. 1 -2, 1996, pages 131 - 140, XP004036059 *

Also Published As

Publication number Publication date
US10550207B2 (en) 2020-02-04
EP3330296B1 (en) 2020-02-19
US20180251580A1 (en) 2018-09-06
EP3330296A4 (en) 2018-11-07
CN108026199B (zh) 2020-08-11
EP3330296A1 (en) 2018-06-06
CN108026199A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
JP6236155B2 (ja) メタロセン化合物、これを含む触媒組成物およびこれを用いるオレフィン系重合体の製造方法
KR101644113B1 (ko) 혼성 담지 메탈로센 촉매
KR101637026B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
CN105473601B (zh) 茂金属化合物、包含其的催化剂组合物及使用其制备烯烃聚合物的方法
KR102002983B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
US11767377B2 (en) Metallocene-supported catalyst and method of preparing polyolefin using the same
JP6896303B2 (ja) エチレン/アルファ−オレフィン共重合体
JP6681462B2 (ja) エチレンスラリー重合用混成担持触媒システムおよびこれを用いたエチレン重合体の製造方法
WO2016099117A1 (ko) 메탈로센 화합물, 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조 방법
WO2014061921A1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀계 중합체의 제조방법
KR20170073385A (ko) 가공성이 우수한 폴리올레핀
CN106661072A (zh) 金属茂化合物、包含其的催化剂组合物以及使用其制备基于烯烃的聚合物的方法
KR101725349B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
WO2017095079A1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR101953768B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
WO2016195424A1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조 방법
KR102029447B1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
KR101949456B1 (ko) 혼성 담지 메탈로센 촉매의 제조 방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
WO2016195423A1 (ko) 메탈로센 화합물
WO2015056974A1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
WO2019124792A1 (ko) 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
WO2017034142A1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016870975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15760073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE