KR102029447B1 - 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법 - Google Patents

전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법 Download PDF

Info

Publication number
KR102029447B1
KR102029447B1 KR1020140181438A KR20140181438A KR102029447B1 KR 102029447 B1 KR102029447 B1 KR 102029447B1 KR 1020140181438 A KR1020140181438 A KR 1020140181438A KR 20140181438 A KR20140181438 A KR 20140181438A KR 102029447 B1 KR102029447 B1 KR 102029447B1
Authority
KR
South Korea
Prior art keywords
group
carbon atoms
transition metal
formula
metal compound
Prior art date
Application number
KR1020140181438A
Other languages
English (en)
Other versions
KR20160073081A (ko
Inventor
정재엽
안상은
이인선
이혜경
김병석
박희광
전상진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020140181438A priority Critical patent/KR102029447B1/ko
Publication of KR20160073081A publication Critical patent/KR20160073081A/ko
Application granted granted Critical
Publication of KR102029447B1 publication Critical patent/KR102029447B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0801General processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Abstract

본 발명에 따르면, 올레핀 중합 반응에서 높은 활성을 나타낼 수 있을 뿐만 아니라, 합성되는 올레핀 중합체의 분자량, 용융 온도 및 결정화 온도 등의 특성을 용이하게 조절할 수 있는 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 상기 촉매 조성물을 이용한 올레핀 중합체의 제조 방법이 제공될 수 있다.

Description

전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법{TRANSITION METAL COMPOUND, CATALYST COMPOSITION COMPRISING THE SAME, AND METHOD FOR PREPARING OLEFIN POLYMER USING THE SAME}
본 발명은 메탈로센형 전이 금속 화합물, 상기 전이 금속 화합물을 포함하는 촉매 조성물 및 상기 촉매 조성물을 이용한 올레핀 중합체의 제조 방법에 관한 것이다.
기존의 폴리올레핀의 상업적 제조 과정에는 티타늄 또는 바나듐 화합물의 지글러-나타 촉매가 널리 사용되어 왔는데, 상기 지글러-나타 촉매는 높은 활성을 갖지만, 다활성점 촉매이기 때문에 생성 고분자의 분자량 분포가 넓으며 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있었다.
이에 따라, 최근에는 티타늄, 지르코늄, 하프늄 등의 전이 금속과 사이클로펜타디엔 작용기를 포함하는 리간드가 결합된 메탈로센 촉매가 개발되어 널리 사용되고 있다. 메탈로센 화합물은 일반적으로 알루미녹산, 보레인, 보레이트 또는 다른 활성화제를 이용하여 활성화시켜 사용한다. 예를 들어, 사이클로펜타다이에닐기를 포함한 리간드와 두 개의 시그마 클로라이드 리간드를 갖는 메탈로센 화합물은 알루미녹산을 활성화제로 사용한다. 이러한 메탈로센 촉매는 하나의 종류의 활성점을 가진 단일 활성점 촉매로 생성 중합체의 분자량 분포가 좁고 촉매와 리간드의 구조에 따라 분자량, 입체 규칙도, 결정화도, 특히 공단량체의 반응성을 조절할 수 있는 장점이 있다. 다만, 메탈로센 촉매로 중합한 폴리올레핀은 녹는점이 낮고, 분자량 분포가 좁아 일부 제품에 응용할 경우, 압출부하 등의 영향으로 생산성이 현저히 떨어지는 등 현장적용이 어려운 문제가 있었다.
상술한 메탈로센 촉매의 문제점을 해결하기 위하여, 헤테로 원자를 포함하는 리간드 화합물이 배위된 전이 금속 화합물들이 다수 소개되었다. 이러한 헤테로 원자를 포함하는 전이 금속 화합물의 구체적인 예로는 질소 원자를 포함하는 사이클로펜타디에닐기를 갖는 아자페로센(azaferrocene) 화합물, 다이알킬아민과 같은 기능기가 부가적인 사슬로서 사이클로펜타다이에닐기과 연결된 구조의 메탈로센 화합물, 또는 피페리딘(piperidine)과 같은 고리 형태의 알킬아민 기능기가 도입된 티타늄(lV) 메탈로센 화합물 등을 들 수 있다.
그러나, 이러한 모든 시도들 중에서 실제로 상업 공장에 적용되고 있는 메탈로센 촉매들은 몇몇에 불과한 수준이다.
본 발명은 높은 활성을 가지며, 고분자량을 가져 높은 용융 온도 및 결정화가공성 온도를 가지는 올레핀 중합체을 제공할 수 있는 전이 금속 화합물을 제공하기 위한 것이다.
또한, 본 발명은 상기 전이 금속 화합물을 포함하는 촉매 조성물을 제공하기 위한 것이다.
또한, 본 발명은 상기 촉매 조성물을 이용한 올레핀 중합체의 제조 방법을 제공하기 위한 것이다.
본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 전이 금속 화합물이 제공된다.
[화학식 1]
Figure 112014122132707-pat00001
상기 화학식 1에서,
M1은 3족 전이 금속, 4족 전이 금속, 5족 전이 금속, 란타나이드 계열의 전이 금속 및 악타나이드 계열의 전이 금속 중 어느 하나이고,
X1 및 X2는 서로 동일하거나 상이하며 각각 독립적으로 할로겐 중 어느 하나이고,
A는 14족의 원소 중 어느 하나이며, n은 1 내지 20 사이의 정수이고,
R1은 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 30의 알킬아릴, 탄소수 7 내지 30의 아릴알킬 및 탄소수 6 내지 30의 아릴 중 어느 하나이며,
R2는 수소, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 30의 알킬아릴, 탄소수 7 내지 30의 아릴알킬 및 탄소수 6 내지 30의 아릴 중 어느 하나이고,
R3 및 R5는 각각 독립적으로 탄소수 1 내지 20의 알킬 중 어느 하나이고,
R4 및 R6는 각각 독립적으로 탄소수 7 내지 30의 알킬아릴 및 탄소수 6 내지 30의 아릴 중 어느 하나이되,
R3, R4, R5 및 R6에서 R3와 R5는 서로 상이한 치환기이거나, 혹은 R4와 R6는 서로 상이한 치환기이다.
구체적으로, 상기 전이 금속 화합물은 R3 및 R5가 탄소수 1 내지 4의 알킬 중 어느 하나로 동일하며, R4 및 R6가 서로 상이하며 각각 독립적으로 탄소수 7 내지 12의 알킬아릴 및 탄소수 6 내지 12의 아릴 중 어느 하나인 화합물일 수 있다. 또한, 상기 전이 금속 화합물은 R3 및 R5가 서로 상이하며 각각 독립적으로 탄소수 1 내지 4의 알킬 중 어느 하나이고, R4 및 R6가 탄소수 7 내지 12의 알킬아릴 중 어느 하나로 동일한 화합물일 수 있다. 그리고, 상기 전이 금속 화합물은 M1이 4족 전이 금속 중 어느 하나인 화합물 일 수 있다.
한편, 본 발명의 다른 일 구현예에 따르면, 상기 화학식 1로 표시되는 전이 금속 화합물을 포함하는 촉매 조성물이 제공된다.
상기 촉매 조성물은 상기 전이 금속 화합물을 활성화시키기 위하여 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택된 1 종 이상의 조촉매를 추가로 포함할 수 있다.
[화학식 2]
R8-[Al(R7)-O]m-R9
상기 화학식 2에서,
R7, R8 및 R9은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이고,
m은 2 이상의 정수이며,
[화학식 3]
D(R10)3
상기 화학식 3에서,
D는 알루미늄 또는 보론이고,
R10는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 하이드로카빌기, 탄소수 1 내지 20의 하이드로카빌옥시기 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며,
[화학식 4]
[L-H]+[W(J)4]- 또는 [L]+[W(J)4]-
상기 화학식 4에서,
L은 중성 또는 양이온성 루이스 염기이고,
W는 13족 원소이며, J는 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기; 탄소수 1 내지 20의 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 하이드로카빌옥시기 및 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
또한, 상기 촉매 조성물은 상기 전이 금속 화합물을 담지하는 담체를 추가로 포함할 수 있다. 상기에서 담체는 실리카, 알루미나, 마그네시아 또는 이들의 혼합물일 수 있다.
한편, 본 발명의 또 다른 일 구현예에 따르면, 상기 촉매 조성물 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 올레핀 중합체의 제조 방법이 제공된다.
상기 제조 방법에 이용될 수 있는 올레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
본 발명에 따르면, 올레핀 중합 반응에서 높은 활성을 나타낼 수 있을 뿐만 아니라, 합성되는 올레핀 중합체의 분자량, 용융 온도 및 결정화 온도 등의 특성을 용이하게 조절할 수 있는 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 상기 촉매 조성물을 이용한 올레핀 중합체의 제조 방법이 제공될 수 있다.
이하 발명의 구체적인 구현예에 따른 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 상기를 이용하여 올레핀 중합체를 제조하는 방법 등에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 전이 금속 화합물이 제공된다.
[화학식 1]
Figure 112014122132707-pat00002
상기 화학식 1에서,
M1은 3족 전이 금속, 4족 전이 금속, 5족 전이 금속, 란타나이드 계열의 전이 금속 및 악타나이드 계열의 전이 금속 중 어느 하나이고,
X1 및 X2는 서로 동일하거나 상이하며 각각 독립적으로 할로겐 중 어느 하나이고,
A는 14족의 원소 중 어느 하나이며, n은 1 내지 20 사이의 정수이고,
R1은 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 30의 알킬아릴, 탄소수 7 내지 30의 아릴알킬 및 탄소수 6 내지 30의 아릴 중 어느 하나이며,
R2는 수소, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 7 내지 30의 알킬아릴, 탄소수 7 내지 30의 아릴알킬 및 탄소수 6 내지 30의 아릴 중 어느 하나이고,
R3 및 R5는 각각 독립적으로 탄소수 1 내지 20의 알킬 중 어느 하나이고,
R4 및 R6는 각각 독립적으로 탄소수 7 내지 30의 알킬아릴 및 탄소수 6 내지 30의 아릴 중 어느 하나이되,
R3, R4, R5 및 R6에서 R3와 R5는 서로 상이한 치환기이거나, 혹은 R4와 R6는 서로 상이한 치환기이다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.
탄소수 1 내지 20의 알킬은 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 구체적으로, 탄소수 1 내지 20의 알킬은 탄소수 1 내지 20의 직쇄 알킬; 탄소수 1 내지 10의 직쇄 알킬; 탄소수 1 내지 5의 직쇄 알킬; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 알킬는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기 또는 사이클로헥실기 등일 수 있다.
탄소수 2 내지 20의 알케닐은 직쇄, 분지쇄 또는 고리형 알케닐일 수 있다. 구체적으로, 탄소수 2 내지 20의 알케닐은 탄소수 2 내지 20의 직쇄 알케닐, 탄소수 2 내지 10의 직쇄 알케닐, 탄소수 2 내지 5의 직쇄 알케닐, 탄소수 3 내지 20의 분지쇄 알케닐, 탄소수 3 내지 15의 분지쇄 알케닐, 탄소수 3 내지 10의 분지쇄 알케닐, 탄소수 5 내지 20의 고리형 알케닐 또는 탄소수 5 내지 10의 고리형 알케닐일 수 있다. 보다 구체적으로, 탄소수 2 내지 20의 알케닐는 에테닐, 프로페닐, 부테닐, 펜테닐 또는 사이클로헥세닐 등일 수 있다.
탄소수 6 내지 30의 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를 의미할 수 있다. 구체적으로, 탄소수 6 내지 30의 아릴은 페닐기, 나프틸기 또는 안트라세닐기 등일 수 있다.
탄소수 7 내지 30의 알킬아릴은 아릴의 1 이상의 수소가 알킬에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, 탄소수 7 내지 30의 알킬아릴은 메틸페닐, 에틸페닐, n-프로필페닐, iso-프로필페닐, n-부틸페닐, iso-부틸페닐, tert-부틸페닐 또는 사이클로헥실페닐 등일 수 있다.
탄소수 7 내지 30의 아릴알킬은 알킬의 1 이상의 수소가 아릴에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, 탄소수 7 내지 30의 아릴알킬은 벤질기, 페닐프로필 또는 페닐헥실 등일 수 있다.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시, 할로겐, 알킬, 헤테로사이클로알킬, 알콕시, 알케닐, 실릴, 술포네이트, 술폰, 아릴 및 헤테로아릴로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.
상기 화학식 1로 표시되는 전이 금속 화합물은 2번 위치(R3 및 R5) 혹은 4번 위치(R4 및 R6)에 서로 상이한 치환기가 도입된 2개의 인데닐기(indenyl group)를 리간드로 포함하고, 상기 2개의 리간드를 연결하는 브릿지 그룹(bridge group)에 산소-주게(oxygen-donor)로서 루이스 염기의 역할을 할 수 있는 작용기가 포함된 구조를 가진다. 일 예로, 이러한 특정 구조를 가지는 전이 금속 화합물을 적절한 방법으로 활성화시켜 올레핀 중합체의 중합 반응에 촉매로 이용하면, 높은 활성을 나타내며, 고분자량을 가지는 올레핀 중합체를 제조할 수 있다.
구체적으로, 상기 화학식 1로 표시되는 전이 금속 화합물의 구조 내에서 인데닐 리간드는, 올레핀 중합 활성에 영향을 미치고, 치환된 작용기의 종류에 따라 입체 장애 효과의 정도를 조절하여 제조되는 올레핀 중합체의 분자량을 용이하게 조절할 수 있다.
특히, 화학식 1에서 R3 및 R5가 탄소수 1 내지 4의 알킬 중 어느 하나로 동일하며, R4 및 R6가 서로 상이하며 각각 독립적으로 탄소수 7 내지 12의 알킬아릴 및 탄소수 6 내지 12의 아릴 중 어느 하나인 경우; 혹은 R3 및 R5가 서로 상이하며 각각 독립적으로 탄소수 1 내지 4의 알킬 중 어느 하나이고, R4 및 R6가 탄소수 7 내지 12의 알킬아릴 중 어느 하나로 동일한 경우, 고분자량의 올레핀 중합체를 용이하게 제조할 수 있다. 보다 구체적으로, 상기 R3 및 R5는 각각 독립적으로 메틸, 에틸, n-프로필, iso-프로필, n-부틸 또는 t-부틸 등일 수 있고, R4 및 R6는 각각 독립적으로 iso-프로필페닐, iso-부틸페닐, t-부틸페닐 또는 나프틸 등일 수 있다.
상기 화학식 1에서 리간드를 연결하는 브릿지 그룹은 전이 금속 화합물의 담지 안정성에 영향을 미칠 수 있다. 일 예로, R1이 탄소수 1 내지 20의 알킬일 경우 벌크 중합을 위한 담지 효율을 상승시킬 수 있다. 또한, n이 3 내지 9 사이의 정수이고, R2가 수소 및 탄소수 1 내지 20의 알킬 중 어느 하나이며, A가 C 또는 Si인 경우 더욱 우수한 담지 안정성을 확보할 수 있다.
한편, M1로 4족 전이 금속 중 어느 하나를 사용하여 금속 착물의 보관 안정성을 향상시킬 수 있다.
상기 화학식 1로 표시되는 전이 금속 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.
한편, 발명의 다른 구현예에 따르면, 상기 화학식 1로 표시되는 전이 금속 화합물을 포함하는 촉매 조성물이 제공된다.
상기 촉매 조성물은 전이 금속 화합물을 활성화시킬 수 있는 조촉매를 추가로 포함할 수 있다. 이러한 조촉매로는 본 발명이 속하는 기술분야에서 통상적으로 사용하는 것을 특별한 제한 없이 사용할 수 있다. 비제한적인 예로, 상기 조촉매는 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
[화학식 2]
R8-[Al(R7)-O]m-R9
상기 화학식 2에서,
R7, R8 및 R9은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이고,
m은 2 이상의 정수이며,
[화학식 3]
D(R10)3
상기 화학식 3에서,
D는 알루미늄 또는 보론이고,
R10는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 하이드로카빌기, 탄소수 1 내지 20의 하이드로카빌옥시기 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며,
[화학식 4]
[L-H]+[W(J)4]- 또는 [L]+[W(J)4]-
상기 화학식 4에서,
L은 중성 또는 양이온성 루이스 염기이고,
W는 13족 원소이며, J는 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기; 탄소수 1 내지 20의 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 하이드로카빌옥시기 및 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
하이드로카빌기는 하이드로카본으로부터 수소 원자를 제거한 형태의 1가 작용기로서, 알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 아르알키닐기, 알킬아릴기, 알케닐아릴기 및 알키닐아릴기 등을 포함할 수 있다. 그리고, 탄소수 1 내지 20의 하이드로카빌기는 탄소수 1 내지 15 또는 탄소수 1 내지 10의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 20의 하이드로카빌기는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, n-헥실기, n-헵틸기, 사이클로헥실기 등의 직쇄, 분지쇄 또는 고리형 알킬기; 또는 페닐기, 나프틸기, 또는 안트라세닐기 등의 아릴기일 수 있다.
하이드로카빌옥시기는 하이드로카빌기가 산소에 결합한 작용기이다. 구체적으로, 탄소수 1 내지 20의 하이드로카빌옥시기는 탄소수 1 내지 15 또는 탄소수 1 내지 10의 하이드로카빌옥시기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 하이드로카빌옥시기는 메톡시기, 에톡시기, n-프로폭시기, iso-프로폭시기, n-부톡시기, iso-부톡시기, tert-부톡시기, n-펜톡시기, n-헥톡시기, n-헵톡시기, 사이클로헥톡시기 등의 직쇄, 분지쇄 또는 고리형 알콕시기; 또는 페녹시기 또는 나프탈렌옥시(naphthalenoxy)기 등의 아릴옥시기일 수 있다.
하이드로카빌(옥시)실릴기는 -SiH3의 1 내지 3개의 수소가 1 내지 3개의 하이드로카빌기 또는 하이드로카빌옥시기로 치환된 작용기이다. 구체적으로, 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기는, 탄소수 1 내지 15, 탄소수 1 내지 10 또는 탄소수 1 내지 5의 하이드로카빌(옥시)실릴기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기는 메틸실릴기, 다이메틸실릴기, 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기 및 다이메틸프로필실릴기 등의 알킬실릴기; 메톡시실릴기, 다이메톡시실릴기, 트라이메톡시실릴기 및 다이메톡시에톡시실릴기 등의 알콕시실릴기; 메톡시다이메틸실릴기, 다이에톡시메틸실릴기 및 다이메톡시프로필실릴기 등의 알콕시알킬실릴기 등일 수 있다.
상기에서 화학식 2로 표시되는 화합물의 비제한적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 tert-부틸알루미녹산 등을 들 수 있다. 그리고, 화학식 3으로 표시되는 화합물의 비제한적인 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-sec-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드 또는 디메틸알루미늄에톡시드 등을 들 수 있다. 마지막으로, 화학식 4로 표시되는 화합물의 비제한적인 예로는 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 n-부틸트리스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 벤질트리스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(4-(t-부틸디메틸실릴)-2,3,5,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(4-(트리이소프로필실릴)-2,3,5,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐리늄 펜타플루오로페녹시트리스(펜타플루오로페닐)보레이트, N,N-디메틸-2,4,6-트리메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 헥사데실디메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, N-메틸-N-도데실아닐리늄 테트라키스(펜타플루오로페닐)보레이트 또는 메틸디(도데실)암모늄 테트라키스(펜타플루오로페닐)보레이트 등을 들 수 있다.
상기 조촉매의 사용 함량은 목적하는 촉매 조성물의 물성 또는 효과에 따라 적절하게 조절될 수 있다.
상기 촉매 조성물은 상술한 전이 금속 화합물이 담체에 담지된 담지 촉매일 수 있다. 상기 화학식 1로 표시되는 전이 금속 화합물은 상술한 구조적 특징을 가져 담체에 안정적으로 담지될 수 있다. 또한, 이러한 전이 금속 화합물이 담지된 담지 촉매는 올레핀 중합에 높은 활성을 나타내며, 고분자량의 올레핀 중합체를 용이하게 제공할 수 있다.
상기 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반응성이 큰 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 보다 구체적으로, 상기 담체로는 실리카, 알루미나, 마그네시아 또는 이들의 혼합물 등을 사용할 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 질산염 성분을 포함할 수 있다.
한편, 발명의 다른 구현예에 따르면, 상기 촉매 조성물의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 올레핀 중합체의 제조 방법이 제공된다.
상술한 바와 같이, 상기 촉매 조성물은 특정 구조로 인하여 기존의 메탈로센 촉매를 이용하여 중합되는 폴리올레핀에 비하여 고분자량의 올레핀 중합체를 제공하며, 올레핀 단량체의 중합시 더 높은 활성을 나타낼 수 있다.
상기 촉매 조성물로 중합 가능한 올레핀 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 있으며, 이중 결합을 2개 이상 가지고 있는 다이엔 올레핀계 단량체 또는 트라이엔 올레핀계 단량체 등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종 이상 혼합하여 공중합할 수도 있다. 상기 올레핀 중합체가 에틸렌과 다른 공단량체의 공중합체인 경우에, 상기 공단량체는 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐 및 1-옥텐으로 이루어진 군에서 선택된 하나 이상의 공단량체인 것이 바람직하다.
상기 올레핀 단량체의 중합 반응을 위하여, 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정, 슬러리 중합 공정 또는 유화 중합 공정 등 올레핀 단량체의 중합 반응으로 알려진 다양한 중합 공정을 채용할 수 있다.
구체적으로, 상기 중합 반응은 약 50 내지 110℃ 또는 약 60 내지 100℃의 온도와 약 1 내지 100kgf/cm2의 압력 하에서 수행될 수 있다.
또한, 상기 중합 반응에서, 상기 촉매 조성물는 펜탄, 헥산, 헵탄, 노난, 데칸, 톨루엔, 벤젠, 디클로로메탄, 클로로벤젠 등과 같은 용매에 용해 또는 희석된 상태로 이용될 수 있다. 이때, 상기 용매를 소량의 알킬알루미늄 등으로 처리함으로써, 촉매에 악영향을 줄 수 있는 소량의 물 또는 공기 등을 미리 제거할 수 있다.
상기와 같은 방법으로 제조되는 올레핀 중합체는 전술한 담지 촉매를 이용하여 제조됨에 따라 현저히 높은 분자량을 가져 기존 메탈로센 촉매로 제조되는 올레핀 중합체 대비 높은 용융 온도 및 높은 결정화 온도를 가질 수 있다.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
제조예 1: 전이 금속 화합물의 제조
1 단계: (6-t-부톡시헥실)디클로로메틸실란의 제조
1L 플라스크에 Mg 95g을 넣고, 1.0M HCl로 3회 MeOH로 3회, 아세톤으로 3회 세척한 후, 3 시간 동안 25℃에서 감압 건조하였다. 건조한 Mg, THF 1.0L, 1,2-DBE 5.0mL를 순차적으로 반응기에 투입하고, 이를 교반하였다. Dropping funnel에 t-부톡시헥실 클로라이드 500g을 투입한 후, 이중 약 5% 가량을 상기 반응기에 5 분간 투입하였다. 이후, 반응기의 온도를 70℃로 올리고, 반응 혼합물을 30 분간 교반하였다. 이어서, 나머지 함량의 t-부톡시헥실 클로라이드를 약 3 시간에 걸쳐 상기 반응기에 서서히 투입하고, 반응 혼합물을 70℃의 온도에서 약 15 시간 동안 교반하였다. 이후, 상기 반응기의 온도를 25℃로 냉각시키고, 반응 혼합물을 여과하여 과량의 Mg를 제거하고, 여액을 3L 플라스크로 이송시켰다.
한편, 반응기를 세척 및 감압 건조한 후, 상기 반응기에 트리클로로메틸실란 583g과 THF 3.3L를 투입하고, 반응기의 온도를 -15℃로 냉각시켰다. 이후, 상기 반응기에 상기에서 제조한 여액을 2 시간 동안 -5℃로 유지시키며 서서히 적가하였다. 반응기의 온도를 25℃로 올리고, 16 시간 동안 약 130rpm으로 교반하였다. 이후, 반응 혼합물을 25℃에서 감압 증류하고, 헥산 4.3L에 분산시킨 다음, 30분간 교반하였다. 이후, 반응 혼합물로부터 고체를 여과한 다음, 헥산 1.0L로 추가 세척 및 여과하고, 여액을 25℃에서 감압 증류하여 85%의 수율로 (6-t-부톡시헥실)디클로로메틸실란을 얻었다.
2 단계: (6-(t-부톡시)헥실)(4-(4-(t-부틸)페닐)-2-메틸-1H-인덴-1-일)(메틸)(2-메틸-4-(나프탈렌-1-일)-1H-인덴-1-일)실란의 제조
2-메틸-4-(4-(t-부틸)페닐)인덴 5g (19.1mmol)을 혼합 용매(Hex/MTBE = 5/1) 78mL에 녹인 후, -20℃에서 상기 용액에 n-부틸리튬 용액 (2.5M in hexane) 8.4mL를 천천히 적가하였다. 이후, 얻어지는 반응 혼합물을 상온에서 하루 동안 교반한 후, -20℃에서 상기 혼합 용액에 앞서 제조한 (6-t-부톡시헥실)디클로로메틸실란 5.18g (19.1 mmol)을 헥산에 녹인 용액 21mL를 천천히 첨가하고, 얻어지는 반응 혼합물을 상온에서 하루 동안 교반하였다. 이후, 반응 혼합물을 감압 증류하여 용매를 제거하고 헥산에 재분산하여 감압 여과하였다. 그리고, 여과된 용액을 건조하여 모노 실란을 얻었다.
한편, 별도로 준비된 플라스크에 2-메틸-4-나프틸인덴 4.64g (18.1mmol)과 CuCN 85mg (0.949mmol)을 MTBE 45mL에 녹인 후, -20℃에서 상기 용액에 n-부틸리튬 용액 (2.5M in hexane) 8.0mL를 천천히 적가하였다. 이후, 얻어지는 반응 혼합물을 상온에서 하루 동안 교반한 후, 상기 반응 혼합물에 앞서 제조한 모노 실란을 MTBE 45mL에 녹인 후 첨가하였다. 이후, 얻어지는 반응 혼합물을 상온에서 하루 동안 교반한 후, 물과 MTBE를 이용하여 유기물을 추출하고, 감압 증류하였다. 이어서 감압 증류된 생성물을 컬럼 크로마토그래피를 통하여 정제하여 50%의 수율로 최종 리간드를 얻었다.
3 단계: (6-(t-부톡시)헥실)(4-(4-(t-부틸)페닐)-2-메틸-1H-인덴-1-일)(메틸)(2-메틸-4-(나프탈렌-1-일)-1H-인덴-1-일)실란 지르코늄 디클로라이드의 제조
앞서 제조한 (6-(t-부톡시)헥실)(4-(4-(t-부틸)페닐)-2-메틸-1H-인덴-1-일)(메틸)(2-메틸-4-(나프탈렌-1-일)-1H-인덴-1-일)실란 1.00g (1.39mmol)을 혼합 용매 (Tol/THF = 5/1) 3.6mL에 녹인 후, -20℃에서 상기 용액에 n-부틸리튬 용액 (2.5M in hexane) 1.2mL를 천천히 적가하였다. 이후, 얻어지는 반응 혼합물을 상온에서 약 4 시간 동안 교반한 후, 상기 반응 혼합물에 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄 비스(테트라하이드로퓨란) [Zr(C5H6NCH2CH2CH2NC5H6)Cl2(C4H5O)2] 811mg (1.53mmol)을 톨루엔 7.7mL에 녹여 상온에서 첨가한 후, 하루 동안 교반하였다. 이후, 붉은색 반응 용액을 -20℃로 냉각하여, 상기 냉각된 용액에 1M의 HCl 에테르 용액 4 당량을 천천히 적가한 후, 얻어지는 용액을 다시 상온에서 1 시간 동안 교반하였다. 이후, 여과 및 진공 건조하고 얻은 고체를 pentane/ether=40/1의 혼합 용매 41mL에 첨가하고, 하루 동안 교반하여 감압 여과 후 고체를 건조하여 오렌지색의 전이 금속 화합물을 33%의 수율로 얻었다(rac only).
1H NMR (500 MHz, CDCl3, 7.26 ppm): 1.21 (3H, s), 1.35 (9H, s), 1.52 ~ 1.90 (10H, m), 2.17~2.30 (6H, m), 3.36~3.41 (2H, m), 6.48 (1H, s), 7.02 (1H, s), 7.05~7.89 (17H, m)
Figure 112014122132707-pat00003

제조예 2: 전이 금속 화합물의 제조
1 단계: (6-(t-부톡시)헥실)(4-(4-(t-부틸)페닐)-2-메틸-1H-인덴-1-일)(메틸)(2-이소프로필-4-(4-(t-부틸)페닐)-1H-인덴-1-일)실란의 제조
2-메틸-4-(4-(t-부틸)페닐)인덴 20g (76.222mmol)을 혼합 용매(Hex/MTBE = 15/1) 640mL에 녹인 후, -20℃에서 상기 용액에 n-부틸리튬 용액 (2.5M in hexane) 33.5mL를 천천히 적가하였다. 이후, 얻어지는 반응 혼합물을 상온에서 하루 동안 교반한 후, -20℃에서 상기 혼합 용액에 앞서 실시예 1에서 제조한 (6-t-부톡시헥실)디클로로메틸실란 19.7g (72.411 mmol)을 헥산에 녹인 용액 80.5mL를 천천히 첨가하고, 얻어지는 반응 혼합물을 상온에서 하루 동안 교반하였다. 이후, 반응 혼합물을 감압 증류하여 용매를 제거하고 헥산에 재분산하여 감압 여과하였다. 그리고, 여과된 용액을 건조하여 모노 실란을 얻었다.
한편, 별도로 준비된 플라스크에 2-이소프로필-4-(4-(t-부틸)페닐)인덴 22.1g (76.222 mmol)과 CuCN 136.5mg (1.525 mmol)을 디에틸 에테르 200mL에 녹인 후, -20℃에서 상기 용액에 n-부틸리튬 용액 (2.5M in hexane) 33.5mL를 천천히 적가하였다. 이후, 얻어지는 반응 혼합물을 상온에서 하루 동안 교반한 후, 상기 반응 혼합물에 앞서 제조한 모노 실란을 디에틸 에테르 180mL에 녹인 후 첨가하였다. 이후, 얻어지는 반응 혼합물을 상온에서 하루 동안 교반한 후, 물과 MTBE를 이용하여 유기물을 추출하고, 감압 증류하였다. 이어서 감압 증류된 생성물을 컬럼 크로마토그래피를 통하여 정제하여 67%의 수율로 최종 리간드를 얻었다.
2 단계: (6-(t-부톡시)헥실)(4-(4-(t-부틸)페닐)-2-메틸-1H-인덴-1-일)(메틸)(2-이소프로필-4-(4-(t-부틸)페닐)-1H-인덴-1-일)실란 지르코늄 디클로라이드의 제조
앞서 제조한 (6-(t-부톡시)헥실)(4-(4-(t-부틸)페닐)-2-메틸-1H-인덴-1-일)(메틸)(2-이소프로필-4-(4-(t-부틸)페닐)-1H-인덴-1-일)실란 1.00g (1.331mmol)을 디에틸 에테르 33mL에 녹인 후, -20℃에서 상기 용액에 n-부틸리튬 용액 (2.5M in hexane) 1.1mL를 천천히 적가하였다. 이후, 얻어지는 반응 혼합물을 상온에서 약 4 시간 동안 교반한 후, 상기 반응 혼합물에 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄 비스(테트라하이드로퓨란) [Zr(C5H6NCH2CH2CH2NC5H6)Cl2(C4H5O)2] 706mg (1.331mmol)을 디에틸 에테르 33mL에 녹여 상온에서 첨가한 후, 하루 동안 교반하였다. 이후, 붉은색 반응 용액을 -20℃로 냉각하여, 상기 냉각된 용액에 1M의 HCl 에테르 용액 4 당량을 천천히 적가한 후, 얻어지는 용액을 다시 상온에서 1 시간 동안 교반하였다. 이후, 여과 및 진공 건조하고 얻은 고체를 pentane에 녹인 후, 48 시간 동안 결정을 석출시켜 감압 여과 후 고체를 건조하여 오렌지색의 전이 금속 화합물을 8%의 수율로 얻었다(rac only).
1H NMR (500 MHz, CDCl3, 7.26 ppm): 1.05 (3H, d), 1.09 (3H, d), 1.20 (3H, s), 1.34 (9H, s), 1.50~1.93 (10H, m), 2.27~2.31 (1H, m), 3.37 (2H, t), 6.48 (1H, s) 6.98 (1H, s), 7.01 (1H, s), 7.09~7.12 (2H, m), 7.34~7.70 (12H, m)
Figure 112014122132707-pat00004

제조예 3: 전이 금속 화합물의 제조
1 단계: (6-t-부톡시헥실)디클로로메틸실란의 제조
100mL의 트리클로로메틸실란 용액(약 0.21mol, 헥산)에 100mL의 t-부톡시헥실 마그네슘 클로라이드 용액(약 0.14mol, 에테르)을 -100℃에서 3 시간 동안 천천히 적가한 후, 상온에서 3 시간 동안 교반하였다.
상기 혼합 용액에서 투명한 유기층을 분리한 후, 분리된 투명 유기층을 진공 건조하여 과량의 트리클로로메틸실란을 제거하였다. 이로써, 투명한 액상의 (6-t-부톡시헥실)디클로로메틸실란을 얻었다(수율 84 %).
1H NMR (500 MHz, CDCl3, 7.24 ppm): 0.76 (3H, s), 1.11 (2H, t), 1.18 (9H, s), 1.32~1.55 (8H, m), 3.33 (2H, t)
2 단계: (6-t-부톡시헥실)(메틸)-비스(2-메틸-4-페닐인데닐)실란의 제조
77mL의 2-메틸-4-페닐인덴 톨루엔/THF=10/1 용액(34.9mmol)에 n-부틸리튬 용액(2.5M in haxane) 15.4mL를 0℃에서 천천히 적가하였고, 80℃에서 1 시간 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, -78℃에서 상기 혼합 용액에 앞서 제조한 (6-t-부톡시헥실)디클로로메틸실란 5g을 천천히 적가하였고, 약 10 분 동안 교반한 뒤 80℃에서 1 시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 78%의 수율로 얻었다(racemic:meso = 1:1)
1H NMR (500 MHz, CDCl3, 7.24 ppm): 0.10 (3H, s), 0.98 (2H, t), 1.25 (9H, s), 1.36~1.50 (8H, m), 1.62 (8H, m), 2.26 (6H, s), 3.34 (2H, t), 3.81 (2H, s), 6.87 (2H, s), 7.25 (2H, t), 7.35 (2H, t), 7.45 (4H, d), 7.53 (4H, t), 7.61 (4H, d)
3 단계: [(6-t-부톡시헥실메틸실란-디일)-비스(2-메틸-4-페닐인데닐)] 지르코늄 디클로라이드의 제조
앞서 제조한 (6-t-부톡시헥실)(메틸)비스(2-메틸-4-페닐)인데닐실란 에테르/헥산=1/1 용액(3.37 mmol) 50 mL에 n-부틸리튬 용액(2.5M in hexane) 3.0 mL를 -78℃에서 천천히 적가한 후, 상온에서 약 2 시간 동안 교반한 뒤 진공 건조하였다. 그 뒤, 헥산으로 염을 세척한 후 여과 및 진공 건조하여 노란색의 고체를 얻었다. 글로브 박스(glove box) 내에서 합성한 리간드 염(ligand salt)과 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄 비스(테트라하이드로퓨란) [Zr(C5H6NCH2CH2CH2NC5H6)Cl2(C4H8O)2]을 쉬링크 플라스크(schlenk flask)에 칭량(weighing)한 후, -78℃에서 에테르를 천천히 적가한 뒤 상온에서 하루 동안 교반하였다. 이후에, 붉은색 반응 용액을 여과 분리한 후 HCl 에테르 용액(1M) 4 당량을 -78℃에서 천천히 적가한 후 상온에서 3 시간 동안 교반하였다. 이후 여과하고 진공 건조하여 오렌지색 고체 성분의 전이 금속 화합물을 85%의 수율로 얻었다(racemic:meso = 10:1).
1H NMR (500 MHz, C6D6, 7.24 ppm): 1.19 (9H, s), 1.32 (3H, s), 1.48~1.86 (10H, m), 2.25 (6H, s), 3.37 (2H, t), 6.95 (2H, s), 7.13 (2H, t), 7.36 (2H, d), 7.43 (6H, t), 7.62 (4H, d), 7.67 (2H, d)
Figure 112014122132707-pat00005

제조예 4: 담지 촉매의 제조
실리카 3g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산(MAO) 10mmol을 넣어 90℃에서 24 시간 동안 반응시켰다. 침전 후 상층부는 제거하고 톨루엔으로 1 회 세척하였다. 상기 제조예 1에서 제조한 전이 금속 화합물 60umol을 톨루엔에 녹인 후, 70℃에서 5 시간 동안 반응시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반응 생성물을 톨루엔으로 1회 세척하였다. 이후, 반응 생성물에 디메틸아닐리니윰 테트라키스(펜타플루오로페닐)보레이트 48umol을 넣고, 70℃에서 5 시간 동안 반응시켰다. 반응 종료 후, 톨루엔으로 세척하고, 헥산으로 재차 세척한 후 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매를 얻었다.
제조예 5: 담지 촉매의 제조
실리카 3g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산(MAO) 10mmol을 넣어 90℃에서 24 시간 동안 반응시켰다. 침전 후 상층부는 제거하고 톨루엔으로 1 회 세척하였다. 상기 제조예 2에서 제조한 전이 금속 화합물 60umol을 톨루엔에 녹인 후, 70℃에서 5 시간 동안 반응시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반응 생성물을 톨루엔으로 1회 세척하였다. 이후, 반응 생성물에 디메틸아닐리니윰 테트라키스(펜타플루오로페닐)보레이트 48umol을 넣고, 70℃에서 5 시간 동안 반응시켰다. 반응 종료 후, 톨루엔으로 세척하고, 헥산으로 재차 세척한 후 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매를 얻었다.
제조예 6: 담지 촉매의 제조
실리카 3g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산(MAO) 52mmol을 넣어 90℃에서 24 시간 동안 반응시켰다. 침전 후 상층부는 제거하고 톨루엔으로 2 회에 걸쳐 세척하였다. 상기 제조예 3에서 제조한 전이 금속 화합물 240umol을 톨루엔에 녹인 후, 40℃에서 5 시간 동안 반응시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반응 생성물을 톨루엔으로 세척한 후 헥산으로 재차 세척한 후 진공 건조하여 고체 입자 형태의 담지 촉매 5 g을 얻었다.
실시예 1 내지 2 및 비교예 1: 올레핀 단량체의 랜덤 중합
먼저, 2L 스테인레스 반응기를 65℃에서 진공 건조한 후 냉각하고, 실온에서 트리에틸알루미늄 1.5mmol을 넣고, 표 1에 기재된 함량의 프로필렌 및 에틸렌을 순차적으로 투입하였다. 이를 10분 동안 교반한 후, 표 1에 기재된 촉매를 질소 압력으로 반응기에 투입하였다. 이때, 상기 촉매와 함께 표 1에 기재된 함량의 수소 기체를 투입하였다. 이후 반응기 온도를 70℃까지 서서히 승온한 후 1 시간 동안 중합하였다. 반응 종료 후 미반응된 프로필렌 및 에틸렌은 벤트하였다.
촉매 중합 온도 중합 시간 프로필렌 투입량 에틸렌 투입량 수소 투입량
실시예 1 제조예 4 70℃ 1 시간 770g 12,000cc 331ppm
실시예 2 제조예 5
비교예 1 제조예 6
시험예 1: 촉매의 활성 및 올레핀 중합체의 물성 평가
상기 실시예 1 내지 2 및 비교예 1의 고분자 합성 반응에 이용된 촉매의 질량과 시간당 산출된 고분자의 질량을 측정하여 각 실시예 및 비교예들에서 사용한 촉매의 활성(activity)을 산출하고 그 결과를 하기 표 1에 나타내었다.
그리고, 각 실시예 및 비교예들에서 제조한 고분자에서 샘플을 취하여 ASTM D 1238 규격에 따라 melt flow rate (MFR)를 측정하고 그 결과를 표 1에 나타내었다.
또한, Differential Scanning Calorimeter (DSC)를 이용하여 실시예 및 비교예들에서 제조한 고분자의 용융 온도 (melting temperature: Tm) 및 결정화 온도 (crystallization temperature: Tc)를 구하여 표 2에 나타내었다.
활성[kg/gㆍh] MFR[g/10min] DSC Tm DSC Tc
실시예 1 7.1 15.2 137.4 93.7
실시예 2 6.7 6.8 136.5 93.0
비교예 1 7.8 65.0 135.1 76.8
실시예 1과 같이 화학식 1에서, R4 및 R6가 서로 상이한 전이 금속 화합물을 포함하는 촉매를 사용하고, 실시예 2와 같이 화학식 1에서 R3 및 R5가 서로 상이한 전이 금속 화합물을 포함하는 촉매를 사용하면 높은 용융 온도 및 결정화 온도를 보이고, 낮은 MFR 값을 보이는 고분자를 제공하는 것이 확인된다. 이로부터 실시예 1 및 2에서 사용된 촉매는 비교예 1에 비하여 고분자량의 고분자를 제공함이 확인된다.
실시예 3 내지 4 및 비교예 2: 올레핀 단량체의 단독 중합
먼저, 2L 스테인레스 반응기를 65℃에서 진공 건조한 후 냉각하고, 실온에서 트리에틸알루미늄 1.5mmol을 넣고, 표 3에 기재된 함량의 프로필렌을 투입하였다. 이를 10분 동안 교반한 후, 표 3에 기재된 촉매를 질소 압력으로 반응기에 투입하였다. 이때, 상기 촉매와 함께 표 3에 기재된 함량의 수소 기체를 투입하였다. 이후, 반응기 온도를 70℃까지 서서히 승온한 후 1 시간 동안 중합하였다. 반응 종료 후 미반응된 프로필렌은 벤트하였다.
촉매 중합 온도 중합 시간 프로필렌 투입량 수소 투입량
실시예 3 제조예 4 70℃ 1 시간 770g 331ppm
실시예 4 제조예 5
비교예 2 제조예 6
시험예 2: 촉매의 활성 및 올레핀 중합체의 물성 평가
시험예 1과 동일한 방법으로 실시예 3 내지 4 및 비교예 1에서 사용된 촉매의 활성 및 고분자의 물성을 측정하여 표 4에 나타내었다.
활성[kg/gㆍh] MFR[g/10min] DSC Tm DSC Tc
실시예 3 6.5 15.9 150.9 104.9
실시예 4 7.6 12.8 153.6 107.7
비교예 2 7.1 42.7 148.7 99.2
상기 표 4를 참조하면, 화학식 1에서, R4 및 R6가 서로 상이한 전이 금속 화합물 및 R3 및 R5가 서로 상이한 전이 금속 화합물을 이용한 촉매는 올레핀의 랜덤 중합뿐 아니라 단독 중합에서도 높은 용융 온도 및 결정화 온도를 보이고, 낮은 MFR 값을 보여 고분자량의 고분자를 제공함이 확인된다.

Claims (10)

  1. 하기 화학식 1-1 또는 1-2로 표시되는 전이 금속 화합물:
    [화학식 1-1]
    Figure 112019085554887-pat00006

    [화학식 1-2]
    Figure 112019085554887-pat00007
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제 1 항의 화학식 1-1 또는 1-2로 표시되는 전이 금속 화합물을 포함하는 촉매 조성물.
  6. 제 5 항에 있어서, 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택된 1 종 이상의 조촉매를 포함하는 촉매 조성물:
    [화학식 2]
    R8-[Al(R7)-O]m-R9
    상기 화학식 2에서,
    R7, R8 및 R9은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이고,
    m은 2 이상의 정수이며,
    [화학식 3]
    D(R10)3
    상기 화학식 3에서,
    D는 알루미늄 또는 보론이고,
    R10는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 하이드로카빌기, 탄소수 1 내지 20의 하이드로카빌옥시기 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며,
    [화학식 4]
    [L-H]+[W(J)4]- 또는 [L]+[W(J)4]-
    상기 화학식 4에서,
    L은 중성 또는 양이온성 루이스 염기이고,
    W는 13족 원소이며, J는 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기; 탄소수 1 내지 20의 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 하이드로카빌옥시기 및 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
  7. 제 5 항에 있어서, 상기 전이 금속 화합물을 담지하는 담체를 추가로 포함하는 촉매 조성물.
  8. 제 7 항에 있어서, 상기 담체는 실리카, 알루미나, 마그네시아 또는 이들의 혼합물인 촉매 조성물.
  9. 제 5 항의 촉매 조성물 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 올레핀 중합체의 제조 방법.
  10. 제 9 항에 있어서, 상기 올레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 올레핀 중합체의 제조 방법.
KR1020140181438A 2014-12-16 2014-12-16 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법 KR102029447B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140181438A KR102029447B1 (ko) 2014-12-16 2014-12-16 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140181438A KR102029447B1 (ko) 2014-12-16 2014-12-16 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법

Publications (2)

Publication Number Publication Date
KR20160073081A KR20160073081A (ko) 2016-06-24
KR102029447B1 true KR102029447B1 (ko) 2019-10-07

Family

ID=56343270

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140181438A KR102029447B1 (ko) 2014-12-16 2014-12-16 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법

Country Status (1)

Country Link
KR (1) KR102029447B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248557B1 (ko) * 2017-12-20 2021-05-06 주식회사 엘지화학 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549206B1 (ko) * 2012-05-08 2015-09-02 주식회사 엘지화학 안사-메탈로센 화합물 및 이를 이용한 담지 촉매의 제조방법

Also Published As

Publication number Publication date
KR20160073081A (ko) 2016-06-24

Similar Documents

Publication Publication Date Title
JP6681462B2 (ja) エチレンスラリー重合用混成担持触媒システムおよびこれを用いたエチレン重合体の製造方法
KR102028063B1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조 방법
KR20160084181A (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
KR20170073385A (ko) 가공성이 우수한 폴리올레핀
CN107406475B (zh) 过渡金属化合物、包含其的催化剂组合物和使用该催化剂组合物制备烯烃聚合物的方法
KR101725349B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
KR102117650B1 (ko) 올레핀 중합체 및 이의 제조 방법
KR102089057B1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
KR102248557B1 (ko) 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
US10550207B2 (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR102029447B1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
KR101953768B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR102157784B1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
KR102564398B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
KR101828930B1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
EP3670544B1 (en) Catalyst composition and method for preparing olefin polymer by using same
KR102432898B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합체의 제조 방법
KR102227351B1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조 방법
KR101949456B1 (ko) 혼성 담지 메탈로센 촉매의 제조 방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR20220069822A (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조 방법
WO2017155211A1 (ko) 에틸렌 슬러리 중합용 혼성 담지 촉매 시스템 및 이를 이용한 에틸렌 중합체의 제조 방법
WO2017034142A1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant