WO2017094888A1 - 磁気検知装置 - Google Patents

磁気検知装置 Download PDF

Info

Publication number
WO2017094888A1
WO2017094888A1 PCT/JP2016/085920 JP2016085920W WO2017094888A1 WO 2017094888 A1 WO2017094888 A1 WO 2017094888A1 JP 2016085920 W JP2016085920 W JP 2016085920W WO 2017094888 A1 WO2017094888 A1 WO 2017094888A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
inclined side
substrate
magnetic
magnetoresistive effect
Prior art date
Application number
PCT/JP2016/085920
Other languages
English (en)
French (fr)
Inventor
梅津 英治
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to EP16870823.8A priority Critical patent/EP3385739B1/en
Priority to CN201680070678.4A priority patent/CN108369260B/zh
Priority to JP2017554203A priority patent/JP6554553B2/ja
Publication of WO2017094888A1 publication Critical patent/WO2017094888A1/ja
Priority to US15/996,199 priority patent/US10466315B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/37Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using galvano-magnetic devices, e.g. Hall-effect devices using Hall or Hall-related effect, e.g. planar-Hall effect or pseudo-Hall effect
    • G11B5/372Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using galvano-magnetic devices, e.g. Hall-effect devices using Hall or Hall-related effect, e.g. planar-Hall effect or pseudo-Hall effect in magnetic thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/37Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using galvano-magnetic devices, e.g. Hall-effect devices using Hall or Hall-related effect, e.g. planar-Hall effect or pseudo-Hall effect
    • G11B5/372Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using galvano-magnetic devices, e.g. Hall-effect devices using Hall or Hall-related effect, e.g. planar-Hall effect or pseudo-Hall effect in magnetic thin films
    • G11B5/374Integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3945Heads comprising more than one sensitive element
    • G11B5/3948Heads comprising more than one sensitive element the sensitive elements being active read-out elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Definitions

  • the present invention relates to a magnetic detection device in which a magnetoresistive element is arranged on an inclined side surface of a recess formed in a substrate.
  • Patent Document 1 describes an invention relating to a magnetic sensor in which a groove is formed on a substrate and a detection portion is formed on an inclined surface of the groove.
  • a silicon wafer having a (100) crystal plane is etched to form an inclined surface to be a (111) crystal plane on the side surface of the groove.
  • a pair of detectors are formed on the same inclined surface of the groove, a fixed resistor is formed on the other inclined surface, and a bridge circuit is configured by the detector and the fixed resistor.
  • the magnetization sensitivity direction is determined to be the depth direction of the slope.
  • Patent Document 2 also describes a silicon substrate etched to form a recess and an inclined surface, and a TMR or GMR magnetoresistive element formed on the inclined surface.
  • This magnetoresistive element has a PIN layer and a soft layer. After the magnetoresistive element is formed on the silicon substrate, annealing is performed by applying a magnetic field in a direction perpendicular to the substrate surface of the silicon substrate, so that the magnetization of the PIN layer is directed in the depth direction of the recess.
  • the pair of detection portions are formed on the same inclined surface of the groove of the substrate. Since a pair of detection units have the same polarity sensitivity to an external magnetic field, each detection unit and a fixed resistor must be connected in series to form a bridge circuit. Since the fixed resistor does not react to an external magnetic field, there is a limit to increasing the sensitivity of the magnetic detection output detected by the bridge circuit.
  • the magnetoresistive element described in Patent Document 2 is annealed by applying a magnetic field perpendicular to the substrate surface of the silicon substrate, and the magnetization of the PIN layer of the magnetoresistive element formed on the opposing inclined surface is changed to the depth of the inclined surface. They are aligned in the same direction and upward. Therefore, the resistance values of the magnetoresistive effect elements formed on the inclined surfaces facing each other with respect to the external magnetic field can have opposite polarities.
  • Patent Document 2 is merely a description of how to manufacture the magnetoresistive effect element, and it is unclear what detection circuit is configured using each magnetoresistive effect element. It has become.
  • the present invention solves the above-mentioned conventional problems, and uses a magnetoresistive element provided on the inclined side surface of the substrate to accurately measure magnetism in various directions, particularly in the Z direction perpendicular to the substrate surface. It is an object of the present invention to provide a magnetic detection device that can detect a magnetic field.
  • the present invention provides a magnetic sensing device having a substrate having a recess and a magnetoresistive effect element provided on an inclined side surface of the recess. At least two Z detection recesses are provided, and each of the Z detection recesses has a first inclined side surface and a second inclined side surface that face each other and gradually increase a facing interval toward the substrate surface, A magnetoresistive effect element is provided on each of the first inclined side surface and the second inclined side surface, The magnetoresistive effect element includes a pinned magnetic layer, a free magnetic layer, and a nonmagnetic intermediate layer formed between the pinned magnetic layer and the free magnetic layer.
  • the direction of fixed magnetization of the fixed magnetic layer is set obliquely along the inclined side surface and toward the thickness direction of the substrate.
  • the magnetoresistive effect elements whose directions of fixed magnetization are opposite to each other in the thickness direction of the substrate are connected in series to form an element row, and two rows of the element rows Are connected in parallel to form a bridge circuit,
  • the bridge circuit detects magnetism in the Z direction, which is the thickness direction of the substrate.
  • the first inclined side surface of the same Z detection concave portion and the magnetoresistive effect element provided on the second inclined side surface have fixed magnetization.
  • the directions are opposite to each other in the thickness direction of the substrate.
  • the fixed magnetization of the magnetoresistive effect element provided on the first inclined side surface and the second inclined side surface is both downward in the plate thickness direction of the substrate.
  • the Z detection concave portion, and the fixed magnetization of the magnetoresistive effect element provided on the first inclined side surface and the second inclined side surface are both upward in the thickness direction of the substrate.
  • the magnetoresistive elements provided in the first inclined side surfaces of the different Z detection recesses and having the fixed magnetization directions opposite to each other are connected in series to form a first element row
  • the magnetoresistive elements provided in the second inclined side surfaces of the different Z detection recesses and having the fixed magnetization directions opposite to each other are connected in series to form a second element row
  • the first element row and the second element row are connected in parallel to form the bridge circuit.
  • the magnetic detection device of the present invention at least two horizontal detection recesses are provided on the substrate together with the Z detection recesses, and the horizontal detection recesses are opposed to each other and the opposing interval gradually increases toward the substrate surface.
  • a first inclined side surface and a second inclined side surface, and the magnetoresistive effect element is provided on the first inclined side surface and the second inclined side surface,
  • the fixed magnetization direction of the fixed magnetic layer is set obliquely along the inclined side surface and toward the thickness direction of the substrate.
  • the magnetoresistive effect elements whose fixed magnetization directions are opposite to each other along the substrate surface are connected in series to form an element array.
  • Two rows of the element rows are connected in parallel to form a bridge circuit, The bridge circuit may be configured to detect magnetism in a direction parallel to the substrate surface.
  • the magnetic detection device in all the horizontal detection recesses, includes the magnetoresistive element provided on the first inclined side surface of the same horizontal detection recess and the magnetism provided on the second inclined side surface. With the resistive element, the fixed magnetizations are opposite to each other along the substrate surface.
  • the magnetoresistive effect element provided on the first inclined side surface and the second inclined side surface of the same horizontal detection recess has a fixed magnetization direction along the substrate surface.
  • the directions of the fixed magnetization of the magnetoresistive effect elements are opposite to each other along the substrate surface.
  • the magnetoresistive effect elements provided in the first inclined side surfaces of the different horizontal detection recesses and having the fixed magnetization directions opposite to each other are connected in series to form a first element row
  • a magnetoresistive effect element provided in the second inclined side surface of the different horizontal detection recess and having the fixed magnetization directions opposite to each other is connected in series to form a second element row
  • the first element row and the second element row are connected in parallel to form the bridge circuit.
  • the horizontal detection recess at least two X detection recesses for detecting X-direction magnetic fields in the XY directions orthogonal to each other, and at least 2 for detecting a magnetic field in the Y-direction. It is possible that the Y detection recesses of the places are provided on the same substrate.
  • the length of the magnetoresistive effect element provided in the Z detection recess is in the direction along the substrate surface of the magnetoresistive effect element provided in the horizontal detection recess. , Shorter than the length in the direction along the substrate surface.
  • the length in the direction along the substrate surface of the magnetoresistive effect element provided in the Z detection recess, and the length in the direction along the substrate surface of the magnetoresistance effect element provided in the horizontal detection recess. May be the same.
  • a magnetic shield layer made of a soft magnetic material is provided on at least one of the surface of the substrate and the bottom surface of the recess.
  • the magnetic sensing device includes a magnetoresistive element provided on both the first inclined side surface and the second inclined side surface facing each other in the recess formed in the substrate, and the magnetoresistive effect element provided on the opposed inclined side surface
  • the direction of the fixed magnetization of the fixed magnetic layer is set to be inclined along the inclined side surface and toward the thickness direction of the substrate.
  • the fixed magnetization is set in the opposite direction in the thickness direction of the substrate, or the first By setting the fixed magnetization in the same direction in the thickness direction of the substrate by the magnetoresistive effect element provided on the inclined side surface and the magnetoresistive effect element provided on the second inclined side surface, the Z direction perpendicular to the substrate is set.
  • a bridge circuit that detects magnetization with high sensitivity can be configured.
  • a shield layer on at least one of the bottom surface of the recess or the surface of the substrate, it becomes easy to eliminate noise caused by a disturbance magnetic field from a direction other than the direction of magnetism to be measured.
  • FIG. 1 The perspective view which shows the whole structure of the magnetic detection apparatus of embodiment of this invention
  • FIG. 2 shows the Z detection part of 1st Embodiment of the magnetic detection apparatus shown in FIG. 1
  • B shows X detection part of 1st Embodiment
  • C is 1st
  • the Y detection part of embodiment is shown
  • (A) is a cross-sectional view taken along line IIIa-IIIa of the Z detector shown in FIG. 2
  • (B) is a cross-sectional view taken along line IIIb-IIIb of the X detector shown in FIG.
  • (B) is an expanded sectional view which shows the layer structure of the magnetoresistive effect element provided in the magnetic detection apparatus shown in FIG. 2 and FIG.
  • (A) shows the Z detection part of 2nd Embodiment of this invention
  • (B) shows X detection part of 2nd Embodiment
  • (C) is Y of 2nd Embodiment.
  • Indicates the detector (A) is a cross-sectional view taken along line VIa-VIa of the Z detector shown in FIG. 5, and (B) is a cross-sectional view taken along line VIb-VIb of the X detector shown in FIG.
  • (A) shows the modification of Z detection part of 1st Embodiment of the magnetic detection apparatus shown in FIG.
  • FIG. 5 is an enlarged sectional view showing a layer structure of a magnetoresistive effect element provided in the magnetic sensing device shown in FIG. 5 and FIG.
  • (A) is a circuit diagram showing a bridge circuit for Z axis detection
  • (B) is a circuit diagram showing a bridge circuit for X axis detection
  • (C) is a circuit diagram showing a bridge circuit for Y axis detection
  • (A), (B), and (C) are enlarged sectional views showing the recesses of the substrate by manufacturing process
  • FIG. 1 shows a magnetic detection device 1 according to an embodiment of the present invention.
  • the magnetic detection device 1 includes a substrate 2, and a Z detection unit 10, an X detection unit 20, and a Y detection unit 30 are provided on a mounting surface (substrate surface) 3 of the substrate 2.
  • the Z detection unit 10 detects magnetism in the Z direction perpendicular to the mounting surface 3 of the substrate 2.
  • at least two Z detection recesses 11 ⁇ / b> A and 11 ⁇ / b> B are formed in the Z detection unit 10.
  • the X detector 20 detects magnetism in the X direction parallel to the mounting surface 3 of the substrate 2.
  • the X detection unit 20 is formed with at least two X detection recesses 21A and 21B.
  • the Y detection unit 30 detects magnetism in the Y direction that is parallel to the mounting surface 3 of the substrate 2.
  • the Y detection unit 30 is formed with at least two Y detection recesses 31A and 31B.
  • the X detection unit 20 and the Y detection unit 30 are horizontal detection units that detect magnetism in the direction along the mounting surface 3, and the X detection recesses 21A and 21B and the Y detection recesses 31A and 31B are horizontal detection recesses.
  • the Z detection recesses 11A and 11B have a bottom surface 12, a first inclined side surface 13 located on the X1 side, and a second inclined side surface 14 located on the X2 side. Yes. Furthermore, it has the inclined side surfaces 15 and 16 which oppose a Y direction. The first inclined side surface 13 and the second inclined side surface 14 face each other in the X direction, and the distance between the opposing surfaces is determined to be the shortest on the bottom surface 12 side and gradually increase toward the mounting surface 3.
  • the substrate 2 used is a silicon (Si) substrate whose mounting surface 3 has a (100) plane orientation.
  • the mounting surface 3 of the substrate 2 is masked with a layer such as silicon oxide (SiO 2 ) except for the surface on which the Z detection recesses 11A and 11B are formed, and anisotropic etching is performed using an etchant (111).
  • a concave portion having a first inclined side surface 13, a second inclined side surface 14, and the other two inclined side surfaces 15, 16 is formed.
  • the inclination angle ⁇ of each inclined side surface 13, 14, 15, 16 with respect to the horizontal plane is about 55 degrees.
  • FIG. 11B and 11C show another processing method of the substrate 2.
  • a substrate 2 is formed by superposing a P-type silicon substrate having a (100) plane orientation on an N-type silicon substrate having a (100) plane orientation.
  • Electrochemical etching is performed.
  • the surface of the N-type silicon substrate serves as an etching stopper surface, and the thickness direction (Z direction) dimensions of the first inclined side surface 13 and the second inclined side surface 14 of the Z detection recesses 11A and 11B are measured. Can be formed uniformly and with high accuracy.
  • a substrate 2 is formed by stacking an N-type silicon substrate having a (100) plane orientation on a P-type silicon substrate having a (100) plane orientation. Etching is performed by a pulse current anodizing method. Also by this processing method, the surface of the P-type silicon substrate can be used as an etching stopper surface, and the thickness direction (Z direction) of the first inclined side surface 13 and the second inclined side surface 14 can be made uniform and highly accurate. Can be formed.
  • the X detection recesses 21A and 21B which are horizontal detection recesses, are long rectangles having a length dimension in the Y direction larger than a width dimension in the X direction.
  • the X detection recesses 21A and 21B have a first inclined side surface 23 on the X1 side and a second inclined side surface 24 on the X2 side.
  • the facing interval in the X direction between the first inclined side surface 23 and the second inclined side surface 24 is the shortest on the bottom surface 22 and is formed so as to gradually increase toward the mounting surface 3.
  • the X detection recesses 21A and 21B are formed with inclined side surfaces 25 and 26 that face each other in the Y direction.
  • the formation method of the X detection recesses 21A and 21B is the same as the formation method of the Z detection recesses 11A and 11B, and can be processed by the etching method shown in any of FIGS. 11A, 11B, and 11C.
  • the Y detection recesses 31A and 31B which are horizontal detection recesses, are long rectangles having a length dimension in the X direction larger than a width dimension in the Y direction.
  • the Y detection recesses 31A and 31B have a bottom surface 32, a first inclined side surface 33 located on the Y1 side, and a second inclined side surface 34 located on the Y2 side.
  • the facing interval in the Y direction between the first inclined side surface 33 and the second inclined side surface 34 is the shortest on the bottom surface 32, and the facing interval gradually increases toward the mounting surface 3.
  • inclined side surfaces 35 and 36 facing in the X direction are formed in the Y detection recesses 31A and 31B.
  • the formation method of the Y detection recesses 31A and 31B is the same as the formation method of the Z detection recesses 11A and 11B, and is formed by the etching method shown in any of FIGS. 11A, 11B, and 11C.
  • the first magnetoresistive element 40 (R1) is provided on the first inclined side surface 14 of the first Z detection recess 11A, and the second inclined side surface 14 is provided.
  • a second magnetoresistive element 40 (R2) is provided.
  • the fourth magnetoresistive effect element 40 (R4) is provided on the first inclined side surface 13
  • the third magnetoresistive effect element 40 (R3) is provided on the second inclined side surface 14. Yes.
  • the magnetoresistive elements 40 are all GMR elements (giant magnetoresistive elements) having the same structure.
  • 4A and 4B show the laminated structure of the magnetoresistive effect element 40.
  • a Ni—Fe—Cr seed layer 42 is formed on the surface of the substrate 2, and a Co—Fe first ferromagnetic layer 43 is formed thereon. Then, an intermediate layer 44 of Ru and Ru and a second ferromagnetic layer 45 of Co—Fe are sequentially formed to form a pinned magnetic layer having a self-pinned structure having a three-layer structure.
  • the magnetization of the first ferromagnetic layer 43 is fixed in the X2 direction
  • the magnetization of the second ferromagnetic layer 45 is fixed in the X1 direction. Is done.
  • the direction of magnetization of the second ferromagnetic layer 45 is the direction of fixed magnetization (P). 2 and 3, the direction of the fixed magnetization (P) is indicated by a solid line arrow.
  • the first ferromagnetic layer 43 is a high coercive force layer having a higher coercive force than the second ferromagnetic layer 45
  • the first ferromagnetic layer 43 is formed while applying the magnetic field Bx in the X2 direction.
  • the second ferromagnetic layer 45 is formed without a magnetic field, or the second ferromagnetic layer 45 is formed while applying a magnetic field in any direction
  • the magnetization of the first ferromagnetic layer 43 is fixed in the X2 direction
  • the magnetization of the second ferromagnetic layer 45 is fixed in the X1 direction.
  • a Cu nonmagnetic intermediate layer 46 is formed on the second ferromagnetic layer 45.
  • a free magnetic layer 47 having a two-layer structure of a Co—Fe layer and a Ni—Fe layer is formed thereon, and the uppermost portion is covered with a Ta cap layer.
  • a free magnetic layer 47 and a nonmagnetic intermediate layer 46 are formed on the seed layer 42, and a self-pinned structure having a three-layer structure is fixed thereon.
  • a magnetic layer is formed.
  • the second ferromagnetic layer 45, the intermediate layer 44, and the first ferromagnetic layer 43 are sequentially formed on the nonmagnetic intermediate layer 46.
  • the second ferromagnetic layer 45 has a mutual coupling (antiparallel coupling) with the intermediate layer 44 interposed therebetween.
  • the magnetization is fixed in the X1 direction, and the direction of the fixed magnetization (P) that is the sensitivity axis direction is the X1 direction.
  • the second ferromagnetic layer 45 is formed without a magnetic field or while applying a magnetic field in any direction, and after the intermediate layer 44 is formed, the first ferromagnetic layer is applied with a magnetic field in the X1 direction. 43 is formed. At this time, the first ferromagnetic layer 43 is a high coercive force layer having a higher coercive force than the second ferromagnetic layer 45.
  • the first ferromagnetic layer 43 is gradually formed on the intermediate layer 44 in a state in which the second ferromagnetic layer 45 is magnetized in the X1 direction by a magnetic field, the first strongness during the film formation is obtained.
  • the magnetic layer 43 is magnetized in the X2 direction by mutual coupling (antiparallel coupling) with the second ferromagnetic layer 45.
  • the magnetization of the first ferromagnetic layer 43 which is a high coercive force layer, is fixed in the X2 direction, and the magnetization of the second ferromagnetic layer 45 is directed in the X1 direction.
  • a fixed state is set.
  • an Ir—Mn alloy iridium-manganese alloy
  • a Pt—Mn alloy platinum-manganese alloy
  • the magnetization in the X1 direction of the second ferromagnetic layer 45 is also stably fixed.
  • the direction of the fixed magnetization (P) of the magnetoresistive element 40 is such that the first inclined side surface 13 and the second inclined side surface 14 are aligned. And in the thickness direction of the substrate 2 (the depth direction of the Z detection recesses 11A and 11B).
  • the direction of the fixed magnetization (P) of the first magnetoresistance effect element 40 (R1) is fixed upward from the bottom surface 12 toward the mounting surface 3 in the Z detection recess 11A.
  • the direction of the fixed magnetization (P) of the second magnetoresistance effect element 40 (R2) is fixed downward from the mounting surface 3 toward the bottom surface 12.
  • the direction of the fixed magnetization (P) of the fourth magnetoresistive element 40 (R4) is the same as that of the first magnetoresistive element 40 (R1), and the third magnetoresistive element
  • the direction of the fixed magnetization (P) of the effect element 40 (R3) is the same as that of the second magnetoresistive effect element 40 (R2).
  • each magnetoresistive element 20 it is preferable that the free magnetic layer 47 is made into a single magnetic domain and the magnetization direction is made uniform.
  • the magnetization of the free magnetic layer 47 is determined by shape anisotropy, or the magnetization direction is aligned by a hard bias by a magnet provided outside.
  • the magnetization (F) of the free magnetic layer 47 is directed in the Y2 direction in all the magnetoresistive elements 40 (R1, R2, R3, R4). It has been.
  • the direction of magnetization (F) of the free magnetic layer 47 is directed to the direction of the external magnetic field.
  • the resistance value is minimized, and the magnetization (F) of the free magnetic layer 47 and the fixed magnetization (P) of the fixed magnetic layer.
  • the resistance values of the first magnetoresistive effect element 40 (R1) and the fourth magnetoresistive effect element 40 (R4) change with the same polarity with respect to the external magnetic field in the Z1 direction or the Z2 direction.
  • the resistance values of the second magnetoresistive element 40 (R2) and the third magnetoresistive element 40 (R3) change with the same polarity.
  • FIG. 10A shows a bridge circuit 51 for Z detection.
  • the first magnetoresistive effect element 40 (R1) and the second magnetoresistive effect element 40 (R2) are connected in series to form a first element array, and the third magnetoresistive effect is formed.
  • the element 40 (R3) and the fourth magnetoresistive element 40 (R4) are connected to form a second element row. Two element rows are connected in parallel, the first magnetoresistive element 40 (R1) and the third magnetoresistive element 40 (R3) are connected to a DC power source, and the second magnetoresistive element 40 (R2) ) And the fourth magnetoresistive element 40 (R4) are grounded.
  • the second magnetoresistive element 40 (R2) and the third magnetoresistive element 40 (R3) can be interchanged.
  • a midpoint potential between (R3) and the fourth magnetoresistive element 40 (R4) is applied to the differential amplifier 54, and a magnetic detection output Oz in the Z direction is obtained.
  • a magnetic field in the Z1 direction is applied to the Z detector 10 and the free magnetic layer 47 of each magnetoresistive element 40 (R1, R2, R3, R4)
  • the resistance value of the magnetoresistive effect element 40 decreases, and the resistance value of the magnetoresistive effect element 40 (R2, R3) increases. Therefore, the magnetic detection output Oz increases.
  • the magnetic detection output Oz decreases.
  • the magnetoresistive effect element 40 (R1, R4) provided on the first inclined side surface 13 of the Z detection recesses 11A and 11B and the magnetoresistive effect element 40 (R2, R2) provided on the second inclined side surface 14 are provided.
  • R3 the direction of the fixed magnetization (P) of the fixed magnetic layer can be set to be opposite to each other in the Z direction along the inclined side surface.
  • the magnetoresistive effect element 40 (R1, R4) provided on the first inclined side surface 13 and the magnetoresistive effect element 40 (R2, R3) provided on the second inclined side surface 14 are connected in series.
  • the bridge circuit 51 By configuring the bridge circuit 51, the magnetic field in the Z direction can be detected with high accuracy.
  • a fifth magnetoresistive element 40 (R5) is provided on the first inclined side surface 23 of the X detection recess 21A.
  • a sixth magnetoresistive element 40 (R6) is provided on the two inclined side surfaces 24.
  • the eighth magnetoresistive element 40 (R8) is provided on the first inclined side surface 23, and the seventh magnetoresistive element 40 (R7) is provided on the second inclined side surface 24. It has been.
  • each magnetoresistive element 40 (R5, R6, R7, R8) is the same as that shown in FIG.
  • the first ferromagnetic layer 43 is formed by applying a magnetic field Bz in the Z2 direction to form a film in the magnetic field. Is fixed in a direction along the Z2 direction, and a magnetic field Bz is applied in the Z1 direction to form a film in the magnetic field, whereby the magnetization of the second ferromagnetic layer 45 is fixed upward. Therefore, the fixed magnetization (P) of the fixed magnetic layer of each magnetoresistive effect element 40 (R5, R6, R7, R8), along the inclined side surfaces 23, 24, as indicated by solid arrows, It is fixed upward with an angle with respect to the thickness direction.
  • the magnetoresistance effect element 40 (R5, R8) provided on the first inclined side surface 23 and the magnetoresistance effect provided on the second inclination side surface 24 are provided.
  • the directions of the fixed magnetization (P) of the fixed magnetic layer are opposite to each other in the X direction.
  • a bridge circuit 52 for X detection is configured by each magnetoresistive element 40 (R5, R6, R7, R8).
  • R5, R6, R7, R8 the magnetoresistive element 40
  • the magnetic detection output Ox from the differential amplifier 55 increases.
  • the magnetic detection output Ox from the differential amplifier 55 is descend.
  • the ninth magnetoresistive element 40 (R9) is provided on the first inclined side surface 33 of the Y detection recess 31A, and the tenth magnetoresistive element 40 is provided on the second inclined side surface 34.
  • a magnetoresistive effect element 40 (R10) is provided.
  • the twelfth magnetoresistive element 40 (R12) is provided on the first inclined side surface 33, and the eleventh magnetoresistive element 40 (R11) is provided on the second inclined side surface 34. It has been.
  • each magnetoresistive element 40 (R9, R10, R11, R12) is the same as that shown in FIG.
  • each magnetoresistive element is formed by forming a magnetoresistive element 40 in the magnetic field while forming the magnetoresistive element 40 while applying the magnetic field Bz.
  • the fixed magnetization (P) of the 40 (R9, R10, R11, R12) pinned magnetic layer is an angle with respect to the thickness direction of the substrate 2 along the inclined side surfaces 33, 34, as indicated by solid arrows. And is fixed upward.
  • the magnetoresistance effect element 40 (R9, R12) provided on the first inclined side surface 33 and the magnetoresistance effect provided on the second inclination side surface 34 are provided.
  • the directions of the fixed magnetization (P) of the fixed magnetic layer are opposite to each other in the Y direction.
  • a bridge circuit 53 for Y detection is constituted by each magnetoresistive element 40 (R9, R10, R11, R12).
  • the magnetic detection output Oy from the differential amplifier 56 increases.
  • the magnetic detection output Oy from the differential amplifier 56 is descend.
  • each magnetoresistive effect element 40 (R5, R6, R7, R8) of the X detector 20 and each magnetoresistive element 40 (R9, R10, R11, R12) of the Y detector 30 the free magnetic layer 47 is used. Is directed in the Y2 direction and the X1 direction as indicated by broken arrows in FIGS. 2B and 2C due to shape anisotropy and hard bias.
  • the Z detection unit 10 since the Z detection unit 10, the X detection unit 20, and the Y detection unit 30 are formed on one substrate 2, the Z direction and the X direction are used using one substrate 2. A change in the magnetic field in the Y direction and its strength can be detected.
  • the Z detection recesses 11A and 11B of the Z detection unit 10 can be simultaneously formed by an etching process.
  • the fixed magnetic layer is formed in the magnetic field while applying the magnetic field Bx.
  • the X detection is performed by forming the fixed magnetic layer in the magnetic field while simultaneously applying the magnetic field Bz in both the detection units 20 and 30.
  • the direction of the fixed magnetization (P) of the fixed magnetic layer can be set in the direction along the inclined side surface and in the thickness direction of the substrate.
  • the Z detector 10 even when the direction of the applied magnetic field is only two directions when the fixed magnetic layer of the magnetoresistive effect element 40 is formed in a magnetic field, the Z detector 10, the X detector 20, and the Y detector The portion 30 can be formed.
  • FIG. 5 shows a magnetic detection device 101 according to the second embodiment of the present invention.
  • Z detection recesses 11 ⁇ / b> A and 11 ⁇ / b> B are formed in the Z detection unit 10
  • the X detection recess is formed in the X detection unit 20
  • Y detection recesses 31A and 31B are formed in the Y detection unit 30.
  • the first magnetoresistance effect element 50 (R1) is formed on the first inclined side surface 13 of the Z detection recess 11A, and the second inclined side surface 14 is formed.
  • a second magnetoresistive element 50 (R2) is formed.
  • a fourth magnetoresistive effect element 50 (R4) is formed on the first inclined side surface 13 and a third magnetoresistive effect element 14 is formed on the second inclined side surface 14.
  • a magnetoresistive effect element 50 (R3) is formed.
  • the fifth magnetoresistive element 50 (R5) is formed on the first inclined side surface 23 of the X detection recess 21A, and the second inclined side surface 24 is formed.
  • a sixth magnetoresistance effect element 50 (R6) is formed.
  • the eighth magnetoresistive element 50 (R8) is formed on the first inclined side surface 23, and the seventh magnetoresistive element 50 (R7) is formed on the second inclined side surface 24.
  • the ninth magnetoresistance effect element 50 (R9) is formed on the first inclined side surface 33 of the Y detection recess 31A, and the tenth magnetoresistance effect element is formed on the second inclined side surface 34.
  • 50 (R10) is formed.
  • the twelfth magnetoresistance effect element 50 (R12) is formed on the first inclined side surface 33, and the eleventh magnetoresistance effect element 50 (R11) is formed on the second inclination side surface 34.
  • the magnetoresistive effect element 50 used in the second embodiment is formed on the seed layer 42 with Co on the same as the magnetoresistive effect element 40 shown in FIG.
  • a -Fe ferromagnetic layer 43, a Ru intermediate layer 44, and a Co-Fe second ferromagnetic layer 45 are formed to form a pinned magnetic layer having a self-pinning structure having a three-layer structure.
  • a magnetoresistive element 50 (R1) is formed by applying a magnetic field Bx to form a film in the magnetic field. , R2, R3, R4), the fixed magnetization (P) of the fixed magnetic layer is fixed in the direction indicated by the solid arrow.
  • the magnetoresistive element 50 (R5) is formed by forming the film in the magnetic field while applying the magnetic field Bz. , R6, R7, R8), the fixed magnetization (P) of the fixed magnetic layer is fixed in the direction indicated by the solid arrow.
  • the fixed magnetization (P) of the fixed magnetic layer of the magnetoresistive effect element 50 (R9, R10, R11, R12) is a solid line by forming the film in the magnetic field while applying the magnetic field Bz. It is fixed in the direction indicated by the arrow.
  • an upper layer portion of the free magnetic layer 47 is further formed thereon, and an Ir—Mn upper antiferromagnetic layer 49b is formed in the magnetic field.
  • an Ir—Mn upper antiferromagnetic layer 49b is formed in the magnetic field.
  • the magnetic field in the film formation of the upper antiferromagnetic layer 49b in the magnetic field is set to the X1 direction, so that the free state can be obtained as shown by the dashed arrows in FIGS. 5 (A) and 6 (A).
  • the magnetization (F) of the magnetic layer 47 is aligned in the same direction as the fixed magnetization (P).
  • the magnetization (F) of the free magnetic layer 47 is indicated by the Z1 direction as the magnetic field in the film formation of the upper antiferromagnetic layer 49b in the magnetic field, as indicated by the dashed arrow. ) Are aligned in the same direction as the fixed magnetization (P).
  • the configuration of the bridge circuit in which the magnetoresistive elements are connected is the same as that of FIGS. 10 (A), 10 (B), and 10 (C).
  • the magnetoresistive effect elements 50 (R1 to R12) have a pinned magnetic layer formed when no external magnetic field is applied.
  • the direction of the fixed magnetization (P) and the direction of the magnetization (F) of the free magnetic layer 47 are the same. Therefore, the resistance value of the magnetoresistive effect element 50 is a minimum value.
  • the magnetization (F) of the free magnetic layer 47 is reversed, and the resistance value of the magnetoresistive effect element 50 is a maximum value. It becomes. As a result, the magnetic detection outputs Oz, Ox, Oy change.
  • the direction of the magnetization (F) of the free magnetic layer 47 in the Z detector 10 may be opposite to the dashed arrow shown in FIG.
  • the direction of the magnetization (F) of the free magnetic layer 47 in the Z detector 10 may be opposite to the dashed arrow shown in FIG.
  • a shield layer made of a soft magnetic material layer such as NI-Fe is formed on the bottom surface 12 of each Z detection recess 11A, 11B. 61 is formed. Moreover, it is preferable that a shield layer is also formed on the mounting surface 3 of the substrate 2 so as to surround each of the Z detection recesses 11A and 11B.
  • a shield layer 62 is formed on the bottom surface 22 of the X detection recesses 21A and 21B, and a shield layer 63 is also formed on the mounting surface 3 between the X detection recesses 21A and 21B.
  • the shield layers 62 and 63 have a long shape with long sides directed in a direction orthogonal to the direction of the fixed magnetization (P) of the fixed magnetic layer of the magnetoresistive element 50 (R5, R6, R7, R8). Thereby, disturbance magnetic fields other than the X direction which is a sensitivity direction can be absorbed.
  • a shield layer 64 is formed on the bottom surface 32 of the Y detection recesses 31A and 31B, and a shield layer 65 is also formed on the mounting surface 3 between the Y detection recesses 31A and 31B.
  • the shield layers 64 and 65 have a long shape with long sides directed in a direction perpendicular to the direction of the fixed magnetization (P) of the fixed magnetic layer of the magnetoresistive element 50 (R9, R10, R11, R12). Thereby, disturbance magnetic fields other than the X direction which is a sensitivity direction can be absorbed.
  • each detection recess by providing a shield layer on the bottom surface of each detection recess, it is possible to effectively use space efficiency and form a necessary shield layer.
  • FIG. 7 shows a magnetic detection device 1a which is a modification of the first embodiment.
  • a Z detection unit 10a illustrated in FIG. 7A is a modification of the Z detection unit 10 of the magnetic detection device 1 illustrated in FIG.
  • the structures of the X detection unit 20 shown in FIG. 7B and the Y detection unit 30 shown in FIG. 7C are the same as those shown in FIG.
  • the Z detection recesses 11A and 11B have a square shape, which is different from the X detection recesses 21A and 21B and the Y detection recesses 31A and 31B. Further, the dimensions in the direction along the substrate surface of the magnetoresistive effect element 40 provided in the Z detection recesses 11A and 11B shown in FIG. 2A are the same as those of the X detection unit 20 shown in FIG. The dimension of the magnetoresistive effect element 40 provided in the Y detection unit 30 shown in FIG.
  • the shapes and dimensions of the Z detection recesses 11A and 11B are the same as the shapes and dimensions of the X detection recesses 21A and 21B and the Y detection recesses 31A and 31B.
  • the shape and dimensions of the magnetoresistive effect element 40 (R1, R2, R3, R4) provided in the Z detection recesses 11A, 11B are the same as the magnetoresistive effect element 40 (R5, R5) provided in the X detection recesses 21A, 21B. R6, R7, R8) and the magnetoresistive effect element 40 (R9, R10, R11, R12) provided in the Y detection recesses 31A, 31B.
  • the longitudinal direction of the Z detection recesses 11A and 11B can be processed in the same direction as the X detection recesses 21A and 21B, or the longitudinal direction of the Z detection recesses 11A and 11B can be processed in the Y detection recesses 31A and 31B. Can be formed in the same direction.
  • all the magnetoresistive effect elements 40 can be processed into the same size with the same pattern.
  • the magnetoresistive effect element 40 (R1, R2, R3, R4) provided in the Z detection part 10a shown in FIG. 7 is the magnetoresistive effect element 40 (R1) provided in the Z detection part 10 shown in FIG. , R2, R3, and R4), the area of the magnetoresistive effect element 40 (R1, R2, R3, and R4) can be increased, and the sensitivity of the Z detector can be increased.
  • the shape and size of the Z detectors 10 and 10a according to the present invention are not limited to the above-described embodiment, and when the detectors are arranged on the same substrate, for example, the Z detectors 10 and 10a It is also possible to form 10 a with a larger area than the X detection unit 20 or the Y detection unit 30.
  • FIG. 8 shows a magnetic detection device 201 according to the third embodiment of the present invention.
  • the shapes and dimensions of the Z detector recesses 11A and 11B are the same.
  • the Z detection part 10b shown to FIG. 8 (A) it provided in the 1st magnetoresistive effect element 40 (R1) and the 2nd inclination side surface 14 which were provided in the 1st inclination side surface 13 of 11 A of Z detection recessed parts.
  • the fourth magnetoresistive element 40 (R4) the direction of the fixed magnetization (P) is directed to the Z1 direction.
  • the bridge circuit 51 composed of the magnetoresistive elements 40 (R1, R2, R3, R4) is the same as the circuit diagram of FIG.
  • the first magnetoresistive element 40 (R1) provided on the first inclined side surface 13 of the Z detection recess 11A and the second magnetoresistance provided on the first inclined side surface 13 of the Z detection recess 11B.
  • the effect element 40 (R2) is connected in series to form a first element row.
  • a third magnetoresistive element 40 (R3) provided on the second inclined side surface 14 of the Z detecting recess 11B and a fourth magnetoresistive element 40 provided on the second inclined side surface 14 of the Z detecting recess 11A. (R4) are connected in series to form a second element row.
  • the first element row and the second element row are connected in parallel to form a bridge circuit.
  • the Z detection recess 11A and the Z detection recess 11B are formed by the same etching process. Therefore, the first inclined side surface 13 of the Z detection recess 11A formed with the same crystal plane and the first inclined side surface 13 of the Z detection recess 11B are likely to coincide with each other, and the Z detection formed with the same crystal plane. The angles of the second inclined side surface 14 of the recess 11A and the second inclined side surface 14 of the Z detection recess 11B are likely to coincide.
  • the first magnetoresistive element 40 (R1) and the second magnetoresistive element 40 (R2) provided on the first inclined side surface 13 that are easily formed at the same angle are connected in series to form the first By configuring the element row and obtaining the midpoint potential thereof, it becomes easy to suppress variations in the midpoint potential of the first element row for each product.
  • the third magnetoresistive effect element 40 (R3) and the fourth magnetoresistive effect element 40 (R4) provided on the second inclined side surface 14 that are easily formed at the same angle are connected in series to form the second By forming this element row and obtaining its midpoint potential, it becomes easy to suppress variations in the midpoint potential of the second element row for each product.
  • (P) is the same X1 direction.
  • the fixed magnetization (P) of the sixth magnetoresistive element 40 (R6) and the seventh magnetoresistive element 40 (R7) provided on the inclined side surface of the X detection recess 21B is the same X2 direction. That is, the fixed magnetization (P) of the magnetoresistive effect element 40 provided in each of the X detection recess 21A and the X detection recess 21B is opposite to each other in the X direction.
  • the effect element 40 (R6) is connected in series to form a first element row.
  • the seventh magnetoresistance effect element 40 (R7) and the eighth magnetoresistance effect element 40 are connected in series to form a second element array.
  • the Y detection unit 30b has a structure in which the X detection unit 20b is rotated by 90 degrees along the substrate surface, and the Y detection unit 30b can achieve the same effects as the X detection unit 20b.
  • the pinned magnetic layer of the magnetoresistive effect element has a self-pinned structure, and the pinned magnetic layer is formed by film formation in a magnetic field and does not require annealing in the magnetic field. Therefore, it is possible to set the direction of the fixed magnetization (P) of the magnetoresistive effect element provided on the inclined side surface of each detection recess on the same substrate in any combination.
  • the pinned magnetic layer constituting the magnetoresistive effect elements 40 and 50 is formed while applying the magnetic fields Bx and Bz to the first ferromagnetic layer 43 and the second ferromagnetic layer 45.
  • the so-called self-pinned structure is a structure in which an antiferromagnetic layer of Ir—Mn or Pt—Mn is stacked on a ferromagnetic layer as a pinned magnetic layer, annealed in a magnetic field, and exchange-coupled to fix the pinned magnetic layer.
  • the direction of magnetization (P) may be fixed.
  • the Z detection unit 10 applies a magnetic field Bx and performs an annealing process
  • the X detection unit 20 and the Y detection unit 30 perform an annealing process by applying a magnetic field Bz.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】 基板に形成された凹部の傾斜側面に磁気抵抗効果素子を形成することで、X-Y-Z方向のそれぞれの磁気を検知する磁気検知装置を提供する。 【解決手段】 Z検知部10では、Z検知凹部11A,11Bの傾斜側面13,14に磁気抵抗効果素子40(R1,R2,R3,R4)が設けられ、X検知部20では、X検知凹部21A,21Bの傾斜側面23,24に磁気抵抗効果素子40(R5,R6,R7,R8)が設けられ、Y検知部30では、Y検知凹部31A,31Bの傾斜側面33,34に磁気抵抗効果素子40(R9,R10,R11,R12)が設けられている。それぞれの磁気抵抗効果素子40の固定磁性層の固定磁化(P)は実線の矢印で示す向きに決められている。

Description

磁気検知装置
 本発明は、基板に形成された凹部の傾斜側面に磁気抵抗効果素子を配置した磁気検知装置に関する。
 特許文献1に、基板に溝を形成し、溝の傾斜面に検知部を形成した磁気センサに関する発明が記載されている。
 この磁気センサは、(100)の結晶面を有するシリコンウエハをエッチングすることで、溝の側面に、(111)の結晶面となる傾斜面を形成している。溝の同一の傾斜面に一対の検知部を形成し、他方の傾斜面に固定抵抗を形成し、検知部と固定抵抗とでブリッジ回路が構成されている。それぞれ検知部では、磁化の感度方向が斜面の深さ方向となるように決められている。
 特許文献2にも、シリコン基板をエッチングして凹部と傾斜面を形成し、傾斜面にTMRやGMRの磁気抵抗効果素子を形成したものが記載されている。
 この磁気抵抗効果素子は、PIN層とソフト層を有している。シリコン基板に磁気抵抗効果素子を成膜した後に、シリコン基板の基板面に垂直な方向へ磁場を与えてアニールすることで、PIN層の磁化を、凹部の深さ方向に向けている。
特開2009-20092号公報 特開2007-235051号公報
 特許文献1に記載された磁気センサでは、一対の検知部を、基板の溝の同一の傾斜面に形成している。外部の磁界に対して一対の検知部が同じ極性の感度を持つことになるため、ブリッジ回路を構成するには、それぞれの検知部と固定抵抗とを直列に接続しなくてはならなくなる。固定抵抗は外部磁界に反応しないため、ブリッジ回路で検知される磁気検知出力の感度を高くすることに限界がある。
 特許文献2に記載の磁気抵抗効果素子は、シリコン基板の基板面に垂直な磁場を与えてアニール処理し、対向する傾斜面に形成された磁気抵抗効果素子のPIN層の磁化を傾斜面の深さ方向で且つ同じ上向きに揃えている。そのため、外部磁界に対して、対向する傾斜面に形成された磁気抵抗効果素子の抵抗値を互いに逆の極性とすることが可能である。
 しかしながら、特許文献2に記載の発明は、磁気抵抗効果素子をどのようにして製造するのかの記載に留まっており、それぞれの磁気抵抗効果素子を使用してどのような検知回路を構成するのか不明となっている。
 また、特許文献2に記載の磁気抵抗効果素子は、シリコン基板の基板面に対して上向きの磁場を与えてアニール処理することでPIN層の磁化を固定しているため、全ての磁気抵抗効果素子のPIN層の磁化の固定方向が上向きであり、形成できる磁気抵抗効果素子の種類が限られることになる。
 本発明は上記従来の課題を解決するものであり、基板の傾斜側面に設けられた磁気抵抗効果素子を使用して、種々の向きの磁気、特に基板表面と垂直なZ方向の磁気を高精度に検知できるようにした磁気検知装置を提供することを目的としている。
 本発明は、凹部を有する基板と、前記凹部の傾斜側面に設けられた磁気抵抗効果素子とを有する磁気検知装置において、
 少なくとも2か所のZ検知凹部が設けられ、前記Z検知凹部は、互いに対向して基板表面に向けて対向間隔が徐々に広がる第1の傾斜側面と第2の傾斜側面とを有し、前記第1の傾斜側面と前記第2の傾斜側面のそれぞれに磁気抵抗効果素子が設けられ、
 前記磁気抵抗効果素子は、固定磁性層と、自由磁性層と、前記固定磁性層と前記自由磁性層との間に形成された非磁性中間層とを有し、それぞれの前記磁気抵抗効果素子は、前記固定磁性層の固定磁化の向きが、前記傾斜側面に沿い且つ前記基板の厚さ方向に向けて斜めに設定されており、
 前記磁気抵抗効果素子のうちの、前記固定磁化の向きが前記基板の板厚方向で互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて素子列が構成され、2列の前記素子列が並列に接続されてブリッジ回路が構成されており、
 前記ブリッジ回路で、前記基板の板厚方向であるZ方向の磁気が検知されることを特徴とするものである。
 本発明の磁気検知装置は、全ての前記Z検知凹部では、同じZ検知凹部の前記第1の傾斜側面と、前記第2の傾斜側面に設けられた前記磁気抵抗効果素子とで、固定磁化の向きが前記基板の板厚方向において互いに逆向きである。
 または、本発明の磁気検知装置は、前記第1の傾斜側面と前記第2の傾斜側面に設けられた磁気抵抗効果素子の前記固定磁化が、共に前記基板の板厚方向において下向きとなっている前記Z検知凹部と、前記第1の傾斜側面と前記第2の傾斜側面に設けられた磁気抵抗効果素子の前記固定磁化が、共に前記基板の板厚方向において上向きとなっている前記Z検知凹部と、が設けられ、
 異なる前記Z検知凹部の前記第1の傾斜側面に設けられた、前記固定磁化の向きが互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて第1の素子列が構成され、
 異なる前記Z検知凹部の前記第2の傾斜側面に設けられた、前記固定磁化の向きが互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて第2の素子列が構成され、
 前記第1の素子列と、前記第2の素子列とが、並列に接続されて前記ブリッジ回路が構成されているものである。
 本発明の磁気検知装置は、前記基板に前記Z検知凹部と共に少なくとも2か所の水平検知凹部が設けられ、前記水平検知凹部は、互いに対向して基板表面に向けて対向間隔が徐々に広がる第1の傾斜側面と第2の傾斜側面とを有し、前記第1の傾斜側面と前記第2の傾斜側面に前記磁気抵抗効果素子が設けられ、
 それぞれの前記磁気抵抗効果素子は、固定磁性層の固定磁化の向きが、前記傾斜側面に沿い且つ前記基板の厚さ方向に向けて斜めに設定され、
 前記水平検知凹部に設けられた前記磁気抵抗効果素子のうちの、前記固定磁化の向きが前記基板表面に沿って互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて素子列が構成され、2列の前記素子列が並列に接続されてブリッジ回路が構成されており、
 前記ブリッジ回路で、前記基板表面と平行な方向の磁気が検知されるものとして構成できる。
 この場合の磁気検知装置は、全ての前記水平検知凹部では、同じ水平検知凹部の前記第1の傾斜側面に設けられた前記磁気抵抗効果素子と、前記第2の傾斜側面に設けられた前記磁気抵抗効果素子とで、前記固定磁化が、基板表面に沿って互いに逆向きである。
 あるいは、本発明の磁気検知装置は、同じ前記水平検知凹部の前記第1の傾斜側面と前記第2の傾斜側面に設けられた前記磁気抵抗効果素子は、固定磁化の向きが前記基板表面に沿って同じ向きで、
 異なる前記水平検知凹部の間では、前記磁気抵抗効果素子の固定磁化の向きが前記基板表面に沿って互いに逆向きであり、
 異なる前記水平検知凹部の前記第1の傾斜側面に設けられた、前記固定磁化の向きが互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて第1の素子列が構成され、
 異なる前記水平検知凹部の前記第2の傾斜側面に設けられた、前記固定磁化の向きが互いに逆向きとなる磁気抵抗効果素子が直列に接続されて第2の素子列が構成され、
 前記第1の素子列と、前記第2の素子列とが、並列に接続されて前記ブリッジ回路が構成されているものである。
 また、本発明の磁気検知装置は、前記水平検知凹部として、互いに直交するX-Y方向のX方向の磁場を検知する少なくとも2か所のX検知凹部と、Y方向の磁場を検知する少なくとも2か所のY検知凹部とが、同じ前記基板に設けられているものとすることが可能である。
 さらに、本発明の磁気検知装置は、前記Z検知凹部に設けられた前記磁気抵抗効果素子の、前記基板表面に沿う方向の長さは、前記水平検知凹部に設けられた前記磁気抵抗効果素子の、前記基板表面に沿う方向の長さよりも短い。
 ただし、前記Z検知凹部に設けられた前記磁気抵抗効果素子の、前記基板表面に沿う方向の長さと、前記水平検知凹部に設けられた前記磁気抵抗効果素子の、前記基板表面に沿う方向の長さとが同じであってもよい。
 本発明の磁気検知装置は、前記基板の表面と前記凹部の底面の少なくとも一方に、軟磁性材料による磁気シールド層が設けられていることが好ましい。
 本発明の磁気検知装置は、基板に形成された凹部において対向する第1の傾斜側面と第2の傾斜側面の双方に磁気抵抗効果素子を設け、対向する傾斜側面に設けられた磁気抵抗効果素子の固定磁性層の固定磁化の向きを、傾斜側面に沿い且つ基板の厚さ方向に向けて斜めに設定している。固定磁化の向きが相違する磁気抵抗効果素子を直列に接続して素子列を構成し、2つの素子列でブリッジ回路を構成することで、高感度な磁気検知出力を得るブリッジ回路を構成することができる。
 特に、第1の傾斜側面に設けた磁気抵抗効果素子と第2の傾斜側面に設けた磁気抵抗効果素子とで、固定磁化を前記基板の板厚方向において逆向きに設定し、あるいは第1の傾斜側面に設けた磁気抵抗効果素子と第2の傾斜側面に設けた磁気抵抗効果素子とで、固定磁化を前記基板の板厚方向において同じ向きに設定することで、基板に垂直なZ方向の磁化を高感度に検知するブリッジ回路を構成することができる。
 また、凹部の底面または基板の表面の少なくとも一方にシールド層を形成することで、測定しようとする向きの磁気以外の方向からの外乱磁場によるノイズを解消しやすくなる。
本発明の実施の形態の磁気検知装置の全体構造を示す斜視図、 (A)は、図1に示す磁気検知装置の第1の実施の形態のZ検知部を示し、(B)は第1の実施の形態のX検知部を示し、(C)は第1の実施の形態のY検知部を示す、 (A)は、図2に示すZ検知部をIIIa-IIIa線で切断した断面図、(B)は、図2に示すX検知部をIIIb-IIIb線で切断した断面図、 (A)(B)は、図2と図3に示す磁気検知装置に設けられた磁気抵抗効果素子の層構造を示す拡大断面図、 (A)は、本発明の第2の実施の形態のZ検知部を示し、(B)は第2の実施の形態のX検知部を示し、(C)は第2の実施の形態のY検知部を示す、 (A)は、図5に示すZ検知部をVIa-VIa線で切断した断面図、(B)は、図2に示すX検知部をVIb-VIb線で切断した断面図、 (A)は、図1に示す磁気検知装置の第1の実施の形態のZ検知部の変形例を示し、(B)は第1の実施の形態のX検知部を示し、(C)は第1の実施の形態のY検知部を示す、 (A)は、本発明の第3の実施の形態のZ検知部の変形例を示し、(B)は第3の実施の形態のX検知部を示し、(C)は第3の実施の形態のY検知部を示す、 図5と図6に示す磁気検知装置に設けられた磁気抵抗効果素子の層構造を示す拡大断面図、 (A)はZ軸検知用のブリッジ回路を示す回路図、(B)はX軸検知用のブリッジ回路を示す回路図、(C)はY軸検知用のブリッジ回路を示す回路図、 (A)(B)(C)は、基板の凹部を製造工程別に示す拡大断面図、
 図1は本発明の実施の形態の磁気検知装置1を示している。
 磁気検知装置1は基板2を有しており、基板2の実装表面(基板表面)3に、Z検知部10とX検知部20とY検知部30が設けられている。
 Z検知部10は、基板2の実装表面3に垂直な向きのZ方向の磁気を検知するものである。図2(A)に示す第1の実施の形態では、Z検知部10に、少なくとも2個のZ検知凹部11A,11Bが形成されている。X検知部20は、基板2の実装表面3と平行な向きのX方向の磁気を検知するものである。図2(B)に示すように、X検知部20には、少なくとも2個のX検知凹部21A,21Bが形成されている。Y検知部30は、基板2の実装表面3と平行な向きのY方向の磁気を検知するものである。図2(C)に示すように、Y検知部30には、少なくとも2個のY検知凹部31A,31Bが形成されている。
 X検知部20とY検知部30は、実装表面3に沿う方向の磁気を検知する水平検知部であり、X検知凹部21A,21Bと、Y検知凹部31A,31Bは、水平検知凹部である。
 図2(A)に示すように、Z検知凹部11A,11Bは、底面12と、X1側に位置する第1の傾斜側面13と、X2側に位置する第2の傾斜側面14を有している。さらに、Y方向に対向する傾斜側面15,16を有している。第1の傾斜側面13と第2の傾斜側面14はX方向で対向し、その対向間隔は、底面12側で最も短く、実装表面3に向かうにしたがって徐々に広くなるように決められている。
 図3(A)と図11(A)に示すように、使用している基板2は実装表面3の面方位が(100)面のシリコン(Si)基板である。基板2の実装表面3において、Z検知凹部11A,11Bを形成する面以外を酸化ケイ素(SiO)などの層でマスキングし、エッチング液を使用して異方性エッチングを行うことで、(111)面である第1の傾斜側面13と第2の傾斜側面14および他の2つの傾斜側面15,16を有する凹部が形成される。各傾斜側面13,14,15,16の水平面に対する傾き角度θは約55度である。
 図11(B)(C)に、基板2の他の加工方法が示されている。図11(B)に示す加工方法では、面方位が(100)面のN型のシリコン基板の上に面方位が(100)面のP型のシリコン基板を重ねたものを基板2として使用し、電気化学エッチングを行う。この電気化学エッチングでは、N型のシリコン基板の表面がエッチングのストッパ面となり、Z検知凹部11A,11Bの第1の傾斜側面13と第2の傾斜側面14の厚さ方向(Z方向)の寸法を均一に且つ高精度に形成することが可能である。
 図11(C)に示す加工方法では、面方位が(100)面のP型のシリコン基板の上に面方位が(100)面のN型のシリコン基板を重ねたものを基板2として使用し、パルス電流陽極酸化法でエッチングを行なう。この加工方法によっても、P型のシリコン基板の表面をエッチングのストッパ面にでき、第1の傾斜側面13と第2の傾斜側面14の厚さ方向(Z方向)の寸法を均一に且つ高精度に形成することができる。
 図2(B)に示すように、水平検知凹部であるX検知凹部21A,21Bは、X方向の幅寸法よりもY方向の長さ寸法が大きく形成された長尺の長方形である。図3(B)にも示すように、X検知凹部21A,21Bは、X1側に第1の傾斜側面23が、X2側に第2の傾斜側面24が形成されている。第1の傾斜側面23と第2の傾斜側面24のX方向での対向間隔は、底面22において最も短く、実装表面3に向けて徐々に広くなるように形成されている。また、図2(B)に示すように、X検知凹部21A,21BにはY方向で対向する傾斜側面25,26が形成されている。
 X検知凹部21A,21Bの形成方法は、Z検知凹部11A,11Bの形成方法と同じであり、図11(A)(B)(C)のいずれかに示すエッチング方法で加工することができる。
 図2(C)に示すように、水平検知凹部であるY検知凹部31A,31Bは、Y方向の幅寸法よりもX方向の長さ寸法が大きい長尺の長方形である。Y検知凹部31A,31Bは底面32と、Y1側に位置する第1の傾斜側面33とY2側に位置する第2の傾斜側面34を有している。第1の傾斜側面33と第2の傾斜側面34のY方向の対向間隔は、底面32において最短であり、実装表面3に向けて対向間隔が徐々に広くなっている。またY検知凹部31A,31Bには、X方向で対向する傾斜側面35,36が形成されている。
 Y検知凹部31A,31Bの形成方法は、Z検知凹部11A,11Bの形成方法と同じであり、図11(A)(B)(C)のいずれかに示すエッチング方法で形成される。
 図2(A)と図3(A)に示すように、一方のZ検知凹部11Aの第1の傾斜側面13に第1の磁気抵抗効果素子40(R1)が、第2の傾斜側面14に第2の磁気抵抗効果素子40(R2)が設けられている。他方のZ検知凹部11Bでは、第1の傾斜側面13に第4の磁気抵抗効果素子40(R4)が、第2の傾斜側面14に第3の磁気抵抗効果素子40(R3)が設けられている。
 磁気抵抗効果素子40(R1,R2,R3,R4)は、いずれも同じ構造のGMR素子(巨大磁気抵抗効果素子)である。図4(A)(B)に磁気抵抗効果素子40の積層構造が示されている。
 図4(A)に示す磁気抵抗効果素子40の製造工程では、基板2の表面にNi-Fe-Crのシード層42を形成し、その上に、Co-Feの第1の強磁性層43とRuの中間層44とCo-Feの第2の強磁性層45を順に成膜して、3層構造のセルフピン止め構造の固定磁性層を形成する。
 図3(A)に示すように、Z検知部10に磁気抵抗効果素子40(R1,R2,R3,R4)を形成するときは、X軸方向(X2方向)の磁場Bxを印加しながら、第1の強磁性層43を成膜し、中間層44を成膜した後に、第1の強磁性層43の成膜時とはX軸方向で逆向き方向(X1方向)の磁場Bxを印加しながら第2の強磁性層45を成膜する。
 Ruの中間層44の厚さを適正に設定することで、第1の強磁性層43の磁化がX2方向に向けて固定され、第2の強磁性層45の磁化がX1方向に向けて固定される。第2の強磁性層45の磁化の向きが固定磁化(P)の方向となる。図2と図3では固定磁化(P)の向きが実線の矢印で示されている。
 なお、第1の強磁性層43を第2の強磁性層45より保磁力の高い高保磁力層にしておくと、X2方向の磁場Bxを印加しながら、第1の強磁性層43を成膜すれば、その後は、無磁場で第2の強磁性層45を成膜しても、あるいは、どの方向への磁場を与えながら第2の強磁性層45を成膜したとしても、成膜後は、第1の強磁性層43の磁化がX2方向に向けて固定され、第2の強磁性層45の磁化がX1方向に向けて固定される。
 第1の強磁性層43と中間層44と第2の強磁性層45の3層の固定磁性層が形成された後に、第2の強磁性層45の上にCuの非磁性中間層46を形成し、その上にCo-Fe層とNi-Fe層の2層構造の自由磁性層47を形成し、最上部をTaのキャップ層で覆う。
 図4に示す各層が積層された後に、エッチング処理で磁気抵抗効果素子40(R1,R2,R3,R4)のみを残し、他の積層体を除去する。
 図4(B)に示す磁気抵抗効果素子40の製造工程では、シード層42の上に、自由磁性層47と非磁性中間層46を形成し、その上に3層構造のセルフピン止め構造の固定磁性層を形成する。
 図4(B)での固定磁性層は、非磁性中間層46の上に、第2の強磁性層45と中間層44と第1の強磁性層43を順番に成膜する。ここで、磁場中成膜により、第1の強磁性層43の磁化の向きをX2方向に設定すると、中間層44を挟んだ相互結合(反平行結合)により、第2の強磁性層45の磁化がX1方向に固定され、感度軸方向である固定磁化(P)の方向がX1方向となる。
 例えば、第2の強磁性層45を無磁場であるいはいずれかの方向の磁場を与えながら成膜し、さらに中間層44を成膜した後に、X1方向の磁場を与えながら第1の強磁性層43を成膜する。このとき、第1の強磁性層43を第2の強磁性層45より保磁力の高い高保磁力層とする。磁場で第2の強磁性層45をX1方向へ磁化させた状態で、中間層44の上に第1の強磁性層43を徐々に成膜していくと、成膜中の第1の強磁性層43が第2の強磁性層45との相互結合(反平行結合)によりX2方向に磁化される。第1の強磁性層43の成膜が完了すると、高保磁力層である第1の強磁性層43の磁化がX2方向に固定され、第2の強磁性層45の磁化がX1方向に向けて固定された状態が設定される。
 図4(B)に示す磁気抵抗効果素子40の製造過程では、第1の強磁性層43の上にIr-Mn合金(イリジウムーマンガン合金)やPt-Mn合金(白金-マンガン合金)などの反強磁性層49aを積層し、積層後に無磁場でアニール処理する。これによると、X2方向に磁化されている第1の強磁性層43と反強磁性層49aとの間に交換結合が形成され、第1の強磁性層43の磁化が強固に固定される。その結果、第2の強磁性層45のX1方向の磁化も安定して固定されるようになる。
 図2(A)と図3(A)に示すように、Z検知部10では、磁気抵抗効果素子40の固定磁化(P)の向きが、第1の傾斜側面13と第2の傾斜側面14に沿う向きで、且つ基板2の厚さ方向(Z検知凹部11A,11Bの深さ方向)に向けられている。磁場Bxを印加しながらの成膜により、Z検知凹部11Aでは、第1の磁気抵抗効果素子40(R1)の固定磁化(P)の向きが、底面12から実装表面3に向けて上向きに固定され、第2の磁気抵抗効果素子40(R2)の固定磁化(P)の向きが、実装表面3から底面12に向けて下向きに固定される。
 他方のZ検知凹部11Bでは、第4の磁気抵抗効果素子40(R4)の固定磁化(P)の向きが、第1の磁気抵抗効果素子40(R1)と同じであり、第3の磁気抵抗効果素子40(R3)の固定磁化(P)の向きが、第2の磁気抵抗効果素子40(R2)と同じである。
 それぞれの磁気抵抗効果素子20は、自由磁性層47を単磁区化し磁化方向を揃えることが好ましい。自由磁性層47は、形状異方性によって磁化が決められ、あるいは外部に設けられた磁石によるハードバイアスによって磁化の向きが揃えられている。図2に示すZ検知部10では、破線の矢印で示すように、全ての磁気抵抗効果素子40(R1,R2,R3,R4)において、自由磁性層47の磁化(F)がY2方向に向けられている。
 Z検知部10では、Z1方向またはZ2方向の外部磁界が与えられると、自由磁性層47の磁化(F)の向きが外部磁界の方向へ向けられる。自由磁性層47の磁化(F)と固定磁性層の固定磁化(P)とが同じ向きになると抵抗値が極小となり、自由磁性層47の磁化(F)と固定磁性層の固定磁化(P)とが逆向きになると抵抗値が極大となる。
 Z検知部10では、Z1方向またはZ2方向の外部磁界に対し、第1の磁気抵抗効果素子40(R1)と第4の磁気抵抗効果素子40(R4)とで抵抗値が同じ極性で変化し、第2の磁気抵抗効果素子40(R2)と第3の磁気抵抗効果素子40(R3)とで抵抗値が同じ極性で変化する。
 図10(A)に、Z検知用のブリッジ回路51が示されている。ブリッジ回路51では、第1の磁気抵抗効果素子40(R1)と第2の磁気抵抗効果素子40(R2)とが直列に接続されて第1の素子列が構成され、第3の磁気抵抗効果素子40(R3)と第4の磁気抵抗効果素子40(R4)とが接続されて第2の素子列が構成されている。2つの素子列が並列に接続され、第1の磁気抵抗効果素子40(R1)と第3の磁気抵抗効果素子40(R3)が直流電源に接続され、第2の磁気抵抗効果素子40(R2)と第4の磁気抵抗効果素子40(R4)が接地されている。
 なお、図10(A)に示すブリッジ回路51において、第2の磁気抵抗効果素子40(R2)と第3の磁気抵抗効果素子40(R3)を互いに入れ替えることも可能である。
 図10(A)に示すように、第1の磁気抵抗効果素子40(R1)と第2の磁気抵抗効果素子40(R2)との間の中点電位と、第3の磁気抵抗効果素子40(R3)と第4の磁気抵抗効果素子40(R4)との間の中点電位が、差動増幅器54に与えられてZ方向の磁気検知出力Ozが得られる。
 図2(A)と図3(A)に示す例では、Z検知部10にZ1方向の磁界が与えられて各磁気抵抗効果素子40(R1,R2,R3,R4)の自由磁性層47の磁化がZ1方向へ向けられると、磁気抵抗効果素子40(R1,R4)の抵抗値が低下し、磁気抵抗効果素子40(R2,R3)の抵抗値が上昇する。よって、磁気検知出力Ozが増大する。逆に、Z2方向の磁界が与えられて、各磁気抵抗効果素子40(R1,R2,R3,R4)の自由磁性層47の磁化がZ2方向へ向けられると、磁気検知出力Ozが低下する。
 Z検知部10では、図3(A)に示すように、磁気抵抗効果素子40を成膜するときに、X軸方向に沿う磁場Bxを与えながらの磁場中成膜で固定磁性層を形成することで、Z検知凹部11A,11Bの第1の傾斜側面13に設けられた磁気抵抗効果素子40(R1,R4)と、第2の傾斜側面14に設けられた磁気抵抗効果素子40(R2,R3)とで、固定磁性層の固定磁化(P)の向きを傾斜側面に沿って、Z方向に互いに逆向きに設定することができる。
 そのため、第1の傾斜側面13に設けられた磁気抵抗効果素子40(R1,R4)と、第2の傾斜側面14に設けられた磁気抵抗効果素子40(R2,R3)とを直列に接続してブリッジ回路51を構成することで、Z方向の磁界を高精度に検知することが可能になる。
 図2(B)と図3(B)に示すように、X検知部20では、X検知凹部21Aの第1の傾斜側面23に第5の磁気抵抗効果素子40(R5)が設けられ、第2の傾斜側面24に第6の磁気抵抗効果素子40(R6)が設けられている。他方のX検知凹部21Bでは、第1の傾斜側面23に第8の磁気抵抗効果素子40(R8)が設けられ、第2の傾斜側面24に第7の磁気抵抗効果素子40(R7)が設けられている。
 各磁気抵抗効果素子40(R5,R6,R7,R8)の膜構成は図4に示したものと同じである。X検知部20では、図3(B)に示すように、磁気抵抗効果素子40を形成する際に、Z2方向に磁場Bzを与えて磁場中成膜することで、第1の強磁性層43の磁化をZ2方向に沿う向きに固定し、Z1方向に磁場Bzを与えて磁場中成膜することで、第2の強磁性層45の磁化を上向きに固定している。よって、各磁気抵抗効果素子40(R5,R6,R7,R8)の固定磁性層の固定磁化(P)は、実線の矢印で示すように、各傾斜側面23,24に沿って、基板2の板厚方向に対して角度を有して上向きに固定される。
 また、X検知凹部21AとX検知凹部21Bの双方において、第1の傾斜側面23に設けられた磁気抵抗効果素子40(R5,R8)と、第2の傾斜側面24に設けられた磁気抵抗効果素子40(R6,R7)とで、固定磁性層の固定磁化(P)の向きがX方向において互いに逆向きである。
 したがって、X方向の外部磁界に対して、第5の磁気抵抗効果素子40(R5)および第8の磁気抵抗効果素子40(R8)の抵抗変化と、第6の磁気抵抗効果素子40(R6)および第7の磁気抵抗効果素子40(R7)との抵抗変化が逆極性となる。
 図10(B)に示すように、X検知部20では、各磁気抵抗効果素子40(R5,R6,R7,R8)によって、X検知用のブリッジ回路52が構成されている。X検知部20にX1方向の外部磁界が与えられると、差動増幅器55からの磁気検知出力Oxが増大し、X2方向の外部磁界が与えられると、差動増幅器55からの磁気検知出力Oxが低下する。
 図2(C)に示すY検知部30では、Y検知凹部31Aの第1の傾斜側面33に第9の磁気抵抗効果素子40(R9)が設けられ、第2の傾斜側面34に第10の磁気抵抗効果素子40(R10)が設けられている。他方のY検知凹部31Bでは、第1の傾斜側面33に第12の磁気抵抗効果素子40(R12)が設けられ、第2の傾斜側面34に第11の磁気抵抗効果素子40(R11)が設けられている。
 各磁気抵抗効果素子40(R9,R10,R11,R12)の膜構成は図4に示したものと同じである。Y検知部30では、X検知部20と同様に、磁気抵抗効果素子40を形成する際に、磁場Bzを与えながら磁場中成膜して固定磁性層を形成することで、各磁気抵抗効果素子40(R9,R10,R11,R12)の固定磁性層の固定磁化(P)が、実線の矢印で示すように、各傾斜側面33,34に沿って、基板2の板厚方向に対して角度を有して上向きに固定される。
 また、Y検知凹部31AとY検知凹部31Bの双方において、第1の傾斜側面33に設けられた磁気抵抗効果素子40(R9,R12)と、第2の傾斜側面34に設けられた磁気抵抗効果素子40(R10,R11)とで、固定磁性層の固定磁化(P)の向きがY方向において互いに逆向きである。
 したがって、Y方向の外部磁界に対して、第9の磁気抵抗効果素子40(R9)および第12の磁気抵抗効果素子40(R12)の抵抗変化と、第10の磁気抵抗効果素子40(R10)および第11の磁気抵抗効果素子40(R11)との抵抗変化が逆極性となる。
 図10(C)に示すように、Y検知部30では、各磁気抵抗効果素子40(R9,R10,R11,R12)によって、Y検知用のブリッジ回路53が構成されている。Y検知部30にY1方向の外部磁界が与えられると、差動増幅器56からの磁気検知出力Oyが増大し、Y2方向の外部磁界が与えられると、差動増幅器56からの磁気検知出力Oyが低下する。
 なお、X検知部20の各磁気抵抗効果素子40(R5,R6,R7,R8)と、Y検知部30の各磁気抵抗効果素子40(R9,R10,R11,R12)では、自由磁性層47の磁化は、形状異方性やハードバイアスなどによって図2(B)(C)で破線の矢印で示すように、Y2方向とX1方向に向けられている。
 図1に示す磁気検知装置1では、1つの基板2にZ検知部10とX検知部20およびY検知部30が形成されているため、1つの基板2を使用してZ方向およびX方向とY方向の磁界およびその強度の変化を検知することができる。
 また、Z検知部10のZ検知凹部11A,11Bと、X検知部20のX検知凹部21A,21BおよびY検知部30のY検知凹部31A,31Bは、同時にエッチング処理で形成することができる。
 Z検知部10に磁気抵抗効果素子40を形成するときは、磁場Bxを印加しながら固定磁性層を磁場中成膜する。X検知部20とY検知部30に磁気抵抗効果素子40を形成する際には、両検知部20,30において、同時に磁場Bzを与えながら固定磁性層を磁場中成膜することで、X検知部20とY検知部30の双方において、固定磁性層の固定磁化(P)の向きを傾斜側面に沿う向きで且つ基板の厚さ方向に向けて設定することができる。
 第1の実施の形態では、磁気抵抗効果素子40の固定磁性層を磁場中成膜するときの印加磁場の向きが2方向のみであっても、Z検知部10とX検知部20およびY検知部30を形成することができる。
 図5に、本発明の第2の実施の形態の磁気検知装置101が示されている。
 この磁気検知装置101は、図2に示した第1の実施の形態の磁気検知装置1と同様に、Z検知部10にZ検知凹部11A,11Bが形成され、X検知部20にX検知凹部21A,21Bが形成され、Y検知部30にY検知凹部31A,31Bが形成されている。
 図5(A)と図6(A)に示すように、Z検知凹部11Aの第1の傾斜側面13に第1の磁気抵抗効果素子50(R1)が形成され、第2の傾斜側面14に第2の磁気抵抗効果素子50(R2)が形成されている。図5(A)に示すように、他方のZ検知凹部11Bでは、第1の傾斜側面13に第4の磁気抵抗効果素子50(R4)が形成され、第2の傾斜側面14に第3の磁気抵抗効果素子50(R3)が形成されている。
 図5(B)と図6(B)に示すように、X検知凹部21Aの第1の傾斜側面23に第5の磁気抵抗効果素子50(R5)が形成され、第2の傾斜側面24に第6の磁気抵抗効果素子50(R6)が形成されている。他方のX検知凹部21Bでは、第1の傾斜側面23に第8の磁気抵抗効果素子50(R8)が形成され、第2の傾斜側面24に第7の磁気抵抗効果素子50(R7)が形成されている。
 図5(C)示すように、Y検知凹部31Aの第1の傾斜側面33に第9の磁気抵抗効果素子50(R9)が形成され、第2の傾斜側面34に第10の磁気抵抗効果素子50(R10)が形成されている。他方のY検知凹部31Bでは、第1の傾斜側面33に第12の磁気抵抗効果素子50(R12)が形成され、第2の傾斜側面34に第11の磁気抵抗効果素子50(R11)が形成されている。
 図9に示すように、第2の実施の形態で使用されている磁気抵抗効果素子50は、図4(A)に示した磁気抵抗効果素子40と同様に、シード層42の上に、Co-Feの強磁性層43と、Ruの中間層44と、Co-Feの第2の強磁性層45が成膜されて、3層構造のセルフピン止め構造の固定磁性層が形成されている。
 図6(A)に示すように、Z検知部10では、3層構造の固定磁性層を形成する際に、磁場Bxを与えて磁場中で成膜することで、磁気抵抗効果素子50(R1,R2,R3,R4)の固定磁性層の固定磁化(P)が実線の矢印で示す向きに固定される。図6(B)に示すように、X検知部20では、3層構造の固定磁性層を形成する際に、磁場Bzを与えながら磁場中で成膜することで、磁気抵抗効果素子50(R5,R6,R7,R8)の固定磁性層の固定磁化(P)が実線の矢印で示す向きに固定される。同様に、Y検知部30でも、磁場Bzを与えながら磁場中で成膜することで、磁気抵抗効果素子50(R9,R10,R11,R12)の固定磁性層の固定磁化(P)が実線の矢印で示す向きに固定される。
 図9に示すように、各磁気抵抗効果素子50の固定磁性層の固定磁化(P)の向きが固定された後に、固定磁性層の上に非磁性中間層46を形成し、さらに自由磁性層47の一部を形成しておく。
 その後に、さらに自由磁性層47の上層部分を形成し、その上に磁場中でIr-Mnの上部反強磁性層49bが磁場中で成膜される。磁場中成膜により、上部反強磁性層49bと自由磁性層47との交換結合が生成されて、自由磁性層47が単磁区化されて磁化の向きが揃えられる。
 Z検知部10では、上部反強磁性層49bの磁場中成膜での磁場を、X1方向とすることで、図5(A)と図6(A)に破線の矢印で示すように、自由磁性層47の磁化(F)が固定磁化(P)と同じ向きに揃えられる。X検知部20とY検知部30では、上部反強磁性層49bの磁場中成膜での磁場を、Z1方向とすることで、破線の矢印で示すように、自由磁性層47の磁化(F)が固定磁化(P)と同じ向きに揃えられる。
 第2の実施の形態の磁気検知装置101においても、各磁気抵抗効果素子を接続したブリッジ回路の構成は図10(A)(B)(C)と同じである。
 第2の実施の形態の磁気検知装置101では、図5と図6に示すように、各磁気抵抗効果素子50(R1~R12)において、外部磁界が与えられていないときに、固定磁性層の固定磁化(P)の向きと自由磁性層47の磁化(F)の向きが同じである。よって、磁気抵抗効果素子50の抵抗値は極小値である。自由磁性層47の磁化(F)の向きと逆方向の外部磁界が徐々に大きくなっていくと、自由磁性層47の磁化(F)が反転し、磁気抵抗効果素子50の抵抗値が極大値となる。これにより、磁気検知出力Oz,Ox,Oyが変化するようになる。
 ただし、Z検知部10での自由磁性層47の磁化(F)の向きが、図6(A)に示す破線矢印と逆向きであってもよい。同様に、X検知部20とY検知部30において、自由磁性層47の磁化(F)の向きが、図6(B)に示す破線矢印と逆向きであってもよい。
 図5に示すように、第2の実施の形態の磁気検知装置101では、Z検知部10において、各Z検知凹部11A,11Bの底面12に、NI-Feなどの軟磁性材料層によるシールド層61が形成されている。また各Z検知凹部11A,11Bの周囲を囲むように、基板2の実装表面3にもシールド層が形成されていることが好ましい。このシールド層61を設けることで、感度方向であるZ方向以外の磁界を吸収でき、外乱磁界により磁気検知出力Ozにノイズが重畳するのを防止できるようになる。
 同様に、X検知部20では、X検知凹部21A,21Bの底面22にシールド層62が形成され、X検知凹部21Aと21Bの間の実装表面3にもシールド層63が形成されている。シールド層62,63は、磁気抵抗効果素子50(R5,R6,R7,R8)の固定磁性層の固定磁化(P)の方向と直交する方向に長辺が向けられた長尺形状である。これにより感度方向であるX方向以外の外乱磁界を吸収できるようになっている。
 Y検知部30では、Y検知凹部31A,31Bの底面32にシールド層64が形成され、Y検知凹部31Aと31Bの間の実装表面3にもシールド層65が形成されている。シールド層64,65は、磁気抵抗効果素子50(R9,R10,R11,R12)の固定磁性層の固定磁化(P)の方向と直交する方向に長辺が向けられた長尺形状である。これにより感度方向であるX方向以外の外乱磁界を吸収できるようになっている。
 また、各検知凹部の底面にシールド層を設けることでスペース効率を有効に利用して、必要なシールド層を形成することが可能となる。
 図7に、第1の実施の形態の変形例となる磁気検知装置1aが示されている。図7(A)に示すZ検知部10aは、図2に示した磁気検知装置1のZ検知部10の変形例である。また、図7(B)に示すX検知部20と図7(C)に示すY検知部30の構造は、図2に示したものと同じである。
 図2(A)に示したZ検知部10では、Z検知凹部11A,11Bの形状が正方形であり、X検知凹部21A,21BおよびY検知凹部31A,31Bの長方形と相違している。また、図2(A)に示すZ検知凹部11A,11Bに設けられた磁気抵抗効果素子40の基板表面に沿う方向の寸法は、図2(B)に示すX検知部20と図2(C)に示すY検知部30に設けられた磁気抵抗効果素子40の基板表面に沿う寸法よりも短くなっている。
 これに対し、図7(A)に示すZ検知部10aでは、Z検知凹部11A,11Bの形状と寸法が、X検知凹部21A,21BおよびY検知凹部31A,31Bの形状および寸法と同じである。また、Z検知凹部11A,11Bに設けられた磁気抵抗効果素子40(R1,R2,R3,R4)の形状と寸法が、X検知凹部21A,21Bに設けられた磁気抵抗効果素子40(R5,R6,R7,R8)およびY検知凹部31A,31Bに設けられた磁気抵抗効果素子40(R9,R10,R11,R12)と同じである。
 図7に示すZ検知部10aでは、Z検知凹部11A,11Bの長手方向をX検知凹部21A,21Bと同じ向きで加工でき、あるいはZ検知凹部11A,11Bの長手方向をY検知凹部31A,31Bと同じ向きで形成できる。さらに、全ての磁気抵抗効果素子40を同じパターンで同じ大きさに加工できる。また、図7に示すZ検知部10aに設けられた磁気抵抗効果素子40(R1,R2,R3,R4)は、図2に示したZ検知部10に設けられた磁気抵抗効果素子40(R1,R2,R3,R4)よりも面積が大きくなるため、磁気抵抗効果素子40(R1,R2,R3,R4)の抵抗変化率を大きくでき、Z検知部の感度を高めることができる。
 なお、本発明でのZ感知部10,10aの形状や大きさは、前記実施の形態に限定されるものではなく、同じ基板上に各検知部を配置する場合に、例えばZ検知部10,10aを、X検知部20またはY検知部30よりも面積が大きいものとして形成することも可能である。
  図8に本発明の第3の実施の形態の磁気検知装置201が示されている。
 図8(A)に示すZ検知部10bと図2(A)に示すZ検知部10では、Z検知凹部11A,11Bの形状と寸法が同じである。図8(A)に示すZ検知部10bでは、Z検知凹部11Aの第1の傾斜側面13に設けられた第1の磁気抵抗効果素子40(R1)と第2の傾斜側面14に設けられた第4の磁気抵抗効果素子40(R4)とで、共に固定磁化(P)の向きがZ1方向に向けられている。また、Z検知凹部11Bの第1の傾斜側面13に設けられた第2の磁気抵抗効果素子40(R2)と第2の傾斜側面14に設けられた第3の磁気抵抗効果素子40(R3)とで、共に固定磁化(P)の向きがZ2方向に向けられている。
 図8(A)に示すZ検知部10bでは、各磁気抵抗効果素子40(R1,R2,R3,R4)で構成されるブリッジ回路51が、図10(A)の回路図と同じである。ここでは、Z検知凹部11Aの第1の傾斜側面13に設けられた第1の磁気抵抗効果素子40(R1)とZ検知凹部11Bの第1の傾斜側面13に設けられた第2の磁気抵抗効果素子40(R2)とが直列に接続されて第1の素子列が形成される。Z検知凹部11Bの第2の傾斜側面14に設けられた第3の磁気抵抗効果素子40(R3)とZ検知凹部11Aの第2の傾斜側面14に設けられた第4の磁気抵抗効果素子40(R4)とが直列に接続されて第2の素子列が形成される。そして、第1の素子列と第2の素子列が並列に接続されブリッジ回路が構成されている。
 Z検知凹部11AとZ検知凹部11Bは同じエッチング処理で形成される。そのため、同じ結晶面で形成されるZ検知凹部11Aの第1の傾斜側面13とZ検知凹部11Bの第1の傾斜側面13とは、角度が一致しやすく、同じ結晶面で形成されるZ検知凹部11Aの第2の傾斜側面14とZ検知凹部11Bの第2の傾斜側面14とで、角度が一致しやすい。そこで、同じ角度で形成されやすい第1の傾斜側面13に設けられた第1の磁気抵抗効果素子40(R1)と第2の磁気抵抗効果素子40(R2)を直列に接続して第1の素子列を構成し、その中点電位を得ることで、製品ごとの第1の素子列の中点電位のばらつきを抑制しやすくなる。同様に、同じ角度で形成されやすい第2の傾斜側面14に設けられた第3の磁気抵抗効果素子40(R3)と第4の磁気抵抗効果素子40(R4)を直列に接続して第2の素子列を形成し、その中点電位を得ることで、製品ごとの第2の素子列の中点電位のばらつきを抑制しやすくなる。
 図8(B)に示すX検知部20bでは、X検知凹部21Aの傾斜側面に設けられた第5の磁気抵抗効果素子40(R5)と第8の磁気抵抗効果素子40(R8)の固定磁化(P)が同じX1方向である。また、X検知凹部21Bの傾斜側面に設けられた第6の磁気抵抗効果素子40(R6)と第7の磁気抵抗効果素子40(R7)の固定磁化(P)が同じX2方向である。すなわち、X検知凹部21AとX検知凹部21Bとで、それぞれに設けられた磁気抵抗効果素子40の固定磁化(P)がX方向において互いに逆向きである。
 X検知部20でも、X検知凹部21AとX検知凹部21Bにおいて、同じ角度に形成されやすい第1の傾斜側面23に設けられた第5の磁気抵抗効果素子40(R5)と第6の磁気抵抗効果素子40(R6)とが直列に接続されて第1の素子列が構成されている。また、X検知凹部21AとX検知凹部21Bにおいて、同じ角度に形成されやすい第2の傾斜側面24に設けられた第7の磁気抵抗効果素子40(R7)と第8の磁気抵抗効果素子40(R8)とが直列に接続されて第2の素子列が構成されている。同じ角度に形成されやすい傾斜側面に設けられた磁気抵抗効果素子を直列に接続することで、第1の素子列と第2の素子列の中点電位のばらつきを抑制しやすくなる。
 なお、Y検知部30bは、X検知部20bを基板表面に沿って90度回転させた構造であり、Y検知部30bにおいても、X検知部20bと同じ効果を奏することができる。
 前記各実施の形態では、磁気抵抗効果素子の固定磁性層が、セルフピン止め構造であり、固定磁性層が磁場中成膜で形成され、磁場中アニールを必要としていない。そのため、同じ基板の各検知凹部の傾斜側面に設けられる磁気抵抗効果素子の固定磁化(P)の向きを自由に組み合わせて設定することが可能である。
 なお、前記各実施の形態では、磁気抵抗効果素子40,50を構成する固定磁性層が、第1の強磁性層43と第2の強磁性層45を磁場Bx,Bzを印加させながら成膜したいわゆるセルフピン止め構造であるが、固定磁性層としての強磁性層に、Ir-MnやPt-Mnの反強磁性層を重ね、磁場中のアニール処理を行い交換結合によって、固定磁性層の固定磁化(P)の向きを固定してもよい。この場合、Z検知部10では、磁場Bxを与えてアニール処理し、X検知部20とY検知部30では、磁場Bzを与えてアニール処理する。
F  自由磁性層の磁化
P  固定磁化
Oz,Ox,Oz 磁気検知出力
1,1a,101,201 磁気検知装置
2 基板
3 実装表面
10,10a,10b Z検知部
11A,11B Z検知凹部
12 底面
13 第1の傾斜側面
14 第2の傾斜側面
20,20b X検知部(水平検知部)
21A,21B X検知凹部(水平検知凹部)
22 底面
23 第1の傾斜側面
24 第2の傾斜側面
30,30b Y検知部(水平検知部)
31A,31B Y検知凹部(水平検知凹部)
32 底面
33 第1の傾斜側面
34 第2の傾斜側面
40 磁気抵抗効果素子
43 第1の強磁性層
44 中間層
45 第2の強磁性層
46 非磁性中間層
47 自由磁性層
49a 反強磁性層
49b 上部反強磁性層
50 磁気抵抗効果素子

Claims (10)

  1.  凹部を有する基板と、前記凹部の傾斜側面に設けられた磁気抵抗効果素子とを有する磁気検知装置において、
     少なくとも2か所のZ検知凹部が設けられ、前記Z検知凹部は、互いに対向して基板表面に向けて対向間隔が徐々に広がる第1の傾斜側面と第2の傾斜側面とを有し、前記第1の傾斜側面と前記第2の傾斜側面のそれぞれに磁気抵抗効果素子が設けられ、
     前記磁気抵抗効果素子は、固定磁性層と、自由磁性層と、前記固定磁性層と前記自由磁性層との間に形成された非磁性中間層とを有し、それぞれの前記磁気抵抗効果素子は、前記固定磁性層の固定磁化の向きが、前記傾斜側面に沿い且つ前記基板の厚さ方向に向けて斜めに設定されており、
     前記磁気抵抗効果素子のうちの、前記固定磁化の向きが前記基板の板厚方向で互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて素子列が構成され、2列の前記素子列が並列に接続されてブリッジ回路が構成されており、
     前記ブリッジ回路で、前記基板の板厚方向であるZ方向の磁気が検知されることを特徴とする磁気検知装置。
  2.  全ての前記Z検知凹部では、同じZ検知凹部の前記第1の傾斜側面と、前記第2の傾斜側面に設けられた前記磁気抵抗効果素子とで、固定磁化の向きが前記基板の板厚方向において互いに逆向きである請求項1記載の磁気検知装置。
  3.  前記第1の傾斜側面と前記第2の傾斜側面に設けられた磁気抵抗効果素子の前記固定磁化が、共に前記基板の板厚方向において下向きとなっている前記Z検知凹部と、前記第1の傾斜側面と前記第2の傾斜側面に設けられた磁気抵抗効果素子の前記固定磁化が、共に前記基板の板厚方向において上向きとなっている前記Z検知凹部と、が設けられ、
     異なる前記Z検知凹部の前記第1の傾斜側面に設けられた、前記固定磁化の向きが互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて第1の素子列が構成され、
     異なる前記Z検知凹部の前記第2の傾斜側面に設けられた、前記固定磁化の向きが互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて第2の素子列が構成され、
     前記第1の素子列と、前記第2の素子列とが、並列に接続されて前記ブリッジ回路が構成されている請求項1記載の磁気検知装置。
  4.  前記基板に前記Z検知凹部と共に少なくとも2か所の水平検知凹部が設けられ、前記水平検知凹部は、互いに対向して基板表面に向けて対向間隔が徐々に広がる第1の傾斜側面と第2の傾斜側面とを有し、前記第1の傾斜側面と前記第2の傾斜側面に前記磁気抵抗効果素子が設けられ、
     それぞれの前記磁気抵抗効果素子は、固定磁性層の固定磁化の向きが、前記傾斜側面に沿い且つ前記基板の厚さ方向に向けて斜めに設定され、
     前記水平検知凹部に設けられた前記磁気抵抗効果素子のうちの、前記固定磁化の向きが前記基板表面に沿って互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて素子列が構成され、2列の前記素子列が並列に接続されてブリッジ回路が構成されており、
     前記ブリッジ回路で、前記基板表面と平行な方向の磁気が検知される請求項1ないし3のいずれかに記載の磁気検知装置。
  5.  全ての前記水平検知凹部では、同じ水平検知凹部の前記第1の傾斜側面に設けられた前記磁気抵抗効果素子と、前記第2の傾斜側面に設けられた前記磁気抵抗効果素子とで、前記固定磁化が、基板表面に沿って互いに逆向きである請求項4記載の磁気検知装置。
  6.  同じ前記水平検知凹部の前記第1の傾斜側面と前記第2の傾斜側面に設けられた前記磁気抵抗効果素子は、固定磁化の向きが前記基板表面に沿って同じ向きで、
     異なる前記水平検知凹部の間では、前記磁気抵抗効果素子の固定磁化の向きが前記基板表面に沿って互いに逆向きであり、
     異なる前記水平検知凹部の前記第1の傾斜側面に設けられた、前記固定磁化の向きが互いに逆向きとなる前記磁気抵抗効果素子が直列に接続されて第1の素子列が構成され、
     異なる前記水平検知凹部の前記第2の傾斜側面に設けられた、前記固定磁化の向きが互いに逆向きとなる磁気抵抗効果素子が直列に接続されて第2の素子列が構成され、
     前記第1の素子列と、前記第2の素子列とが、並列に接続されて前記ブリッジ回路が構成されている請求項4記載の磁気検知装置。
  7.  前記水平検知凹部として、互いに直交するX-Y方向のX方向の磁場を検知する少なくとも2か所のX検知凹部と、Y方向の磁場を検知する少なくとも2か所のY検知凹部とが、同じ前記基板に設けられている請求項4ないし6のいずれかに記載の磁気検知装置。
  8.  前記Z検知凹部に設けられた前記磁気抵抗効果素子の、前記基板表面に沿う方向の長さは、前記水平検知凹部に設けられた前記磁気抵抗効果素子の、前記基板表面に沿う方向の長さよりも短い請求項4ないし7のいずれかに記載の磁気検知装置。
  9.  前記Z検知凹部に設けられた前記磁気抵抗効果素子の、前記基板表面に沿う方向の長さと、前記水平検知凹部に設けられた前記磁気抵抗効果素子の、前記基板表面に沿う方向の長さとが同じである請求項4ないし7のいずれかに記載の磁気検知装置。
  10.  前記基板の表面と前記凹部の底面の少なくとも一方に、軟磁性材料による磁気シールド層が設けられている請求項1ないし9のいずれかに記載の磁気検知装置。
PCT/JP2016/085920 2015-12-03 2016-12-02 磁気検知装置 WO2017094888A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16870823.8A EP3385739B1 (en) 2015-12-03 2016-12-02 Magnetic detection device
CN201680070678.4A CN108369260B (zh) 2015-12-03 2016-12-02 磁检测装置
JP2017554203A JP6554553B2 (ja) 2015-12-03 2016-12-02 磁気検知装置
US15/996,199 US10466315B2 (en) 2015-12-03 2018-06-01 Magnetic detection device including a bridge circuit and magnetoresistive elements provided on inclined surfaces of substrate recesses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-236855 2015-12-03
JP2015236855 2015-12-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/996,199 Continuation US10466315B2 (en) 2015-12-03 2018-06-01 Magnetic detection device including a bridge circuit and magnetoresistive elements provided on inclined surfaces of substrate recesses

Publications (1)

Publication Number Publication Date
WO2017094888A1 true WO2017094888A1 (ja) 2017-06-08

Family

ID=58797453

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/085920 WO2017094888A1 (ja) 2015-12-03 2016-12-02 磁気検知装置
PCT/JP2016/085921 WO2017094889A1 (ja) 2015-12-03 2016-12-02 磁気検知装置およびその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085921 WO2017094889A1 (ja) 2015-12-03 2016-12-02 磁気検知装置およびその製造方法

Country Status (5)

Country Link
US (2) US10908233B2 (ja)
EP (2) EP3385739B1 (ja)
JP (2) JP6554553B2 (ja)
CN (2) CN108369260B (ja)
WO (2) WO2017094888A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959883A (zh) * 2017-12-26 2019-07-02 Tdk株式会社 磁传感器
CN110297196A (zh) * 2018-03-23 2019-10-01 Tdk株式会社 磁传感器
JP7023428B1 (ja) * 2021-03-31 2022-02-21 三菱電機株式会社 磁気センサ素子、磁気センサおよび磁気センサ装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094888A1 (ja) * 2015-12-03 2017-06-08 アルプス電気株式会社 磁気検知装置
JP6330896B1 (ja) * 2016-12-20 2018-05-30 Tdk株式会社 3軸磁気センサ及びその製造方法
JP6620834B2 (ja) * 2018-03-27 2019-12-18 Tdk株式会社 磁気センサおよび磁気センサシステム
US11467229B2 (en) * 2019-05-23 2022-10-11 Stmicroelectronics S.R.L. Triaxial magnetic sensor for measuring magnetic fields, and manufacturing process thereof
JP6954326B2 (ja) 2019-06-05 2021-10-27 Tdk株式会社 位置検出装置
JP7063307B2 (ja) 2019-06-05 2022-05-09 Tdk株式会社 磁気センサおよび磁気センサシステム
JP6954327B2 (ja) 2019-06-10 2021-10-27 Tdk株式会社 位置検出装置
JP7024810B2 (ja) * 2019-12-11 2022-02-24 Tdk株式会社 磁場検出装置および電流検出装置
JP7024811B2 (ja) * 2019-12-11 2022-02-24 Tdk株式会社 磁場検出装置および電流検出装置
US11720170B2 (en) 2019-12-26 2023-08-08 Stmicroelectronics, Inc. Method, device, and system of measuring eye convergence angle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007235051A (ja) 2006-03-03 2007-09-13 Ricoh Co Ltd 磁気抵抗効果素子、磁気抵抗効果素子の基板および磁気抵抗効果素子の製造方法
US20090027048A1 (en) * 2005-03-17 2009-01-29 Hideki Sato Three-Axis Magnetic Sensor and Method for Manufacturing the Same
JP2009020092A (ja) 2007-06-13 2009-01-29 Ricoh Co Ltd 磁気センサ及びその製造方法
WO2010010872A1 (ja) * 2008-07-22 2010-01-28 アルプス電気株式会社 磁気センサ及び磁気センサモジュール
US20140266187A1 (en) * 2013-03-15 2014-09-18 Phil Mather Magnetic sensor utilizing magnetization reset for sense axis selection
JP2015532429A (ja) * 2012-10-12 2015-11-09 メムシック, インコーポレイテッドMemsic, Inc. モノリシック3軸磁場センサ
JP2016072554A (ja) * 2014-10-01 2016-05-09 ヤマハ株式会社 磁気センサ及び磁気センサの製造方法
JP2016072555A (ja) * 2014-10-01 2016-05-09 ヤマハ株式会社 磁気センサ及び磁気センサの製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557134B2 (ja) * 2004-03-12 2010-10-06 ヤマハ株式会社 磁気センサの製造方法、同磁気センサの製造方法に使用されるマグネットアレイ及び同マグネットアレイの製造方法
JP4984408B2 (ja) * 2005-03-17 2012-07-25 ヤマハ株式会社 磁気センサおよびその製法
US7425824B2 (en) * 2005-05-20 2008-09-16 Honeywell International Inc. Magnetoresistive sensor
DE602007010852D1 (de) * 2006-03-03 2011-01-13 Ricoh Co Ltd Element mit magnetoresistivem Effekt und Herstellungsverfahren dafür
CN100557840C (zh) * 2006-09-21 2009-11-04 阿尔卑斯电气株式会社 CoFeB层构成固定层至少一部分的隧道型磁检测元件及其制法
JP2008123587A (ja) * 2006-11-10 2008-05-29 Tdk Corp 薄膜磁気ヘッド
JP2008270471A (ja) * 2007-04-19 2008-11-06 Yamaha Corp 磁気センサ及びその製造方法
US8134361B2 (en) 2007-06-13 2012-03-13 Ricoh Company, Ltd. Magnetic sensor including magnetic field detectors and field resistors arranged on inclined surfaces
US7639005B2 (en) * 2007-06-15 2009-12-29 Advanced Microsensors, Inc. Giant magnetoresistive resistor and sensor apparatus and method
US7948621B2 (en) * 2007-06-28 2011-05-24 Perry Equipment Corporation Systems and methods for remote monitoring of contaminants in fluids
ATE505735T1 (de) * 2007-10-18 2011-04-15 Nxp Bv Magnetfeldsensor
IT1395964B1 (it) * 2009-06-30 2012-11-02 St Microelectronics Rousset Sensore magnetoresistivo e suo procedimento di fabbricazione
US8779764B2 (en) * 2009-07-13 2014-07-15 Hitachi Metals, Ltd. Method for producing magnetoresistive effect element, magnetic sensor, rotation-angle detection device
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
FR2955942B1 (fr) * 2010-01-29 2013-01-04 Centre Nat Rech Scient Magnetometre integre et son procede de fabrication
US9645204B2 (en) * 2010-09-17 2017-05-09 Industrial Technology Research Institute Magnetic field sensors and sensng circuits
US20120068698A1 (en) * 2010-09-17 2012-03-22 Industrial Technology Research Institute Structure of tmr and fabrication method of integrated 3-axis magnetic field sensor and sensing circuit
CN102426344B (zh) * 2011-08-30 2013-08-21 江苏多维科技有限公司 三轴磁场传感器
JP5899012B2 (ja) * 2012-03-14 2016-04-06 アルプス電気株式会社 磁気センサ
DE102012204835A1 (de) * 2012-03-27 2013-10-02 Robert Bosch Gmbh Sensor, Verfahren zum Herstellen eines Sensors und Verfahren zum Montieren eines Sensors
ITTO20120614A1 (it) * 2012-07-11 2014-01-12 St Microelectronics Srl Sensore magnetoresistivo integrato multistrato e relativo metodo di fabbricazione
TWI513993B (zh) * 2013-03-26 2015-12-21 Ind Tech Res Inst 三軸磁場感測器、製作磁場感測結構的方法與磁場感測電路
CN104103753B (zh) * 2013-04-09 2017-09-08 昇佳电子股份有限公司 磁阻膜层结构以及使用此磁阻膜层结构的磁场传感器
JP6308784B2 (ja) * 2014-01-08 2018-04-11 アルプス電気株式会社 磁気センサ
JP2015175620A (ja) * 2014-03-13 2015-10-05 アルプス電気株式会社 磁気センサ
CN103954920B (zh) * 2014-04-17 2016-09-14 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
WO2017094888A1 (ja) * 2015-12-03 2017-06-08 アルプス電気株式会社 磁気検知装置
US10145907B2 (en) * 2016-04-07 2018-12-04 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US9933496B2 (en) * 2016-04-21 2018-04-03 Nxp Usa, Inc. Magnetic field sensor with multiple axis sense capability

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090027048A1 (en) * 2005-03-17 2009-01-29 Hideki Sato Three-Axis Magnetic Sensor and Method for Manufacturing the Same
JP2007235051A (ja) 2006-03-03 2007-09-13 Ricoh Co Ltd 磁気抵抗効果素子、磁気抵抗効果素子の基板および磁気抵抗効果素子の製造方法
JP2009020092A (ja) 2007-06-13 2009-01-29 Ricoh Co Ltd 磁気センサ及びその製造方法
WO2010010872A1 (ja) * 2008-07-22 2010-01-28 アルプス電気株式会社 磁気センサ及び磁気センサモジュール
JP2015532429A (ja) * 2012-10-12 2015-11-09 メムシック, インコーポレイテッドMemsic, Inc. モノリシック3軸磁場センサ
US20140266187A1 (en) * 2013-03-15 2014-09-18 Phil Mather Magnetic sensor utilizing magnetization reset for sense axis selection
JP2016072554A (ja) * 2014-10-01 2016-05-09 ヤマハ株式会社 磁気センサ及び磁気センサの製造方法
JP2016072555A (ja) * 2014-10-01 2016-05-09 ヤマハ株式会社 磁気センサ及び磁気センサの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959883A (zh) * 2017-12-26 2019-07-02 Tdk株式会社 磁传感器
CN109959883B (zh) * 2017-12-26 2021-06-04 Tdk株式会社 磁传感器
US11035914B2 (en) * 2017-12-26 2021-06-15 Tdk Corporation Magnetic sensor
CN110297196A (zh) * 2018-03-23 2019-10-01 Tdk株式会社 磁传感器
CN110297196B (zh) * 2018-03-23 2021-07-13 Tdk株式会社 磁传感器
JP7023428B1 (ja) * 2021-03-31 2022-02-21 三菱電機株式会社 磁気センサ素子、磁気センサおよび磁気センサ装置

Also Published As

Publication number Publication date
JP6554553B2 (ja) 2019-07-31
EP3385740A4 (en) 2019-08-14
EP3385739A1 (en) 2018-10-10
US20180275218A1 (en) 2018-09-27
CN108291948B (zh) 2021-04-13
EP3385740B1 (en) 2023-09-20
US20180275219A1 (en) 2018-09-27
EP3385739A4 (en) 2019-08-14
CN108369260A (zh) 2018-08-03
US10466315B2 (en) 2019-11-05
US10908233B2 (en) 2021-02-02
EP3385740A1 (en) 2018-10-10
JPWO2017094888A1 (ja) 2018-07-19
EP3385739B1 (en) 2021-10-06
JPWO2017094889A1 (ja) 2018-08-09
CN108369260B (zh) 2020-07-28
WO2017094889A1 (ja) 2017-06-08
JP6503089B2 (ja) 2019-04-17
CN108291948A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
JP6554553B2 (ja) 磁気検知装置
JP6193212B2 (ja) シングルチップ2軸ブリッジ型磁界センサ
JP2020115404A (ja) 磁気抵抗センサ
EP2664940B1 (en) Magnetic sensor
JP5686635B2 (ja) 磁気センサ及びその製造方法
JP7136340B2 (ja) 磁気抵抗素子および磁気センサ
JP2008286739A (ja) 磁界検出器及び回転角度検出装置
JP2015219227A (ja) 磁気センサ
TWI518330B (zh) 慣性感應器
JP2017103378A (ja) 磁気抵抗効果素子及び磁気センサ、並びに磁気抵抗効果素子の製造方法及び磁気センサの製造方法
JP2014089088A (ja) 磁気抵抗効果素子
JP4940565B2 (ja) 磁気センサの製造方法
JP2010286237A (ja) 原点検出装置
JP2012063232A (ja) 磁界検出装置の製造方法および磁界検出装置
JP2003215222A (ja) 磁気抵抗効果素子センサ
JP2007235051A (ja) 磁気抵抗効果素子、磁気抵抗効果素子の基板および磁気抵抗効果素子の製造方法
JP3835445B2 (ja) 磁気センサ
WO2022208771A1 (ja) 磁気センサ素子、磁気センサおよび磁気センサ装置
JP2019056685A (ja) 磁気センサ
JP4954317B2 (ja) 磁気検知素子及びこの素子を用いた方位検知システム
JP6210596B2 (ja) 回転検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870823

Country of ref document: EP