WO2017094870A1 - 冷間鍛造調質品用圧延棒線 - Google Patents

冷間鍛造調質品用圧延棒線 Download PDF

Info

Publication number
WO2017094870A1
WO2017094870A1 PCT/JP2016/085854 JP2016085854W WO2017094870A1 WO 2017094870 A1 WO2017094870 A1 WO 2017094870A1 JP 2016085854 W JP2016085854 W JP 2016085854W WO 2017094870 A1 WO2017094870 A1 WO 2017094870A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
rolled bar
less
content
steel
Prior art date
Application number
PCT/JP2016/085854
Other languages
English (en)
French (fr)
Inventor
佐野 直幸
直樹 松井
根石 豊
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020187017041A priority Critical patent/KR102090196B1/ko
Priority to EP16870805.5A priority patent/EP3385400A4/en
Priority to JP2017554193A priority patent/JP6497450B2/ja
Priority to CN201680070826.2A priority patent/CN108368575B/zh
Priority to US15/781,002 priority patent/US20180347019A1/en
Publication of WO2017094870A1 publication Critical patent/WO2017094870A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a rolled bar that is a steel bar or a wire rod that has been hot-rolled (as-rolled), and more particularly, a cold-forged portion that is a cold forged and tempered part. It relates to a rolled rod for quality products.
  • parts such as shafts and bolts used as parts of various industrial machines, automobiles, and building structures are sometimes manufactured by cold forging from the viewpoint of dimensional accuracy, yield, and manufacturing cost.
  • a cold forged product may be used in the cold working state, but if further enhancement of strength is desired, tempering (quenching and tempering) is performed to increase the strength. It is done.
  • tempering quenching and tempering
  • those subjected to tempering treatment are referred to as cold forged tempered products in this specification.
  • alloy steel for machine structure As a steel material that is subjected to a tempering treatment to increase the strength, there is an alloy steel for machine structure defined in JIS G4053 (2008).
  • the alloy steel for machine structure include chrome steel, chrome molybdenum steel, and nickel chrome molybdenum steel. These steel materials contain a large amount of expensive Mo and Ni mainly for enhancing the hardenability and temper softening resistance.
  • B-containing steel steel containing boron (B) (B-containing steel) has become widespread.
  • B enhances the hardenability of steel, like alloy elements such as Mo and V.
  • the hydrogen embrittlement resistance may be low. Therefore, a B-containing steel having excellent hydrogen embrittlement resistance is required. Further, since the B-containing steel becomes a part (bolt or the like) by cold forging as described above, excellent cold workability is also required.
  • Patent Document 1 JP 2012-162798 A
  • Patent Document 2 JP 9-104945 A
  • Patent Document 3 Japanese Laid-Open Patent Publication No. 2013-227602
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2001-234277
  • Patent Document 1 proposes a steel for bolts having excellent delayed fracture resistance (hydrogen embrittlement resistance).
  • the bolt steel disclosed in this document has C: 0.20 to less than 0.40%, Si: 0.20 to 1.50%, Mn: 0.30 to 2.0%, P: 0.03 %: S: 0.03% or less, Ni: 0.05 to 1.0%, Cr: 0.01 to 1.50%, Cu: 1.0% or less, Al: 0.01 to 0.10 %, Ti: 0.01 to 0.1%, B: 0.0003 to 0.0050% and N: 0.002 to 0.010%, and further selected from the group consisting of Cu, Ni and Cr In addition, 0.10 to 3.0% in total is contained, the balance is composed of iron and inevitable impurities, and the ratio of Si content [Si] to C content [C] ([Si ] / [C]) is 1.0 or more, and it is a ferrite pearlite structure.
  • Patent Document 2 proposes a steel for bolts having excellent cold workability and delayed fracture resistance.
  • the steel for bolts disclosed in this document is C: 0.15 to 0.35%, Si: 0.1% or less, Mn: 0.3 to 1.3%, P: 0.01% or less, S : 0.01% or less, Cr: less than 0.5%, Ti: 0.01 to 0.10%, Al: 0.01 to 0.05%, B: 0.0005 to 0.003%, and the balance : Fe and inevitable impurities, and satisfying the following formula 0.50 ⁇ [C] +0.15 [Si] +0.2 [Mn] +0.11 [Cr] ⁇ 0.60.
  • Patent Document 3 proposes a machine structural steel for cold working that can be sufficiently softened by performing a spheroidizing annealing treatment.
  • the mechanical structural steel disclosed in this document is C: 0.2-0.6%, Si: 0.01-0.5%, Mn: 0.2-1.5%, P: 0.03 %: S: 0.001 to 0.05%, Al: 0.01 to 0.1%, N: 0.015% or less, and Cr: more than 0.5%, containing 2.0% or less
  • the balance is iron and inevitable impurities
  • Patent Document 4 proposes a high-strength steel excellent in fatigue characteristics.
  • the lower limit and upper limit of the total amount of C, Si, Mn, and Cr are specified, and the strength of the rolled material that can maintain cold workability, and the desired strength after tempering treatment The strength of the rolled material from which is obtained.
  • the Cr content and the Si content of the steel are low, the hardenability and the softening resistance after tempering may be low.
  • the area ratio of pro-eutectoid ferrite is estimated on the assumption of an equilibrium state, and the cold workability is improved by making it equal to or greater than a predetermined value.
  • the actual manufacturing process is continuous cooling, and the cooling rate varies depending on the manufacturing conditions. Therefore, cold workability may not be sufficiently obtained in actual operation.
  • the rolled bar for cold forged tempered product according to the present invention is in mass%, C: 0.22 to 0.40%, Si: 0.35 to 1.5%, Mn: 0.20 to 0.40. %, P: less than 0.020%, S: less than 0.015%, Cr: 0.70 to 1.45%, Al: 0.005 to 0.060%, Ti: 0.01 to 0.05% , B: 0.0003 to 0.0040%, N: 0.0020 to 0.0080%, O: 0.0020% or less, Cu: 0 to 0.50%, Ni: 0 to 0.30%, Mo : 0 to 0.05%, V: 0 to 0.05%, and Nb: 0 to 0.05%, with the balance being Fe and impurities, satisfying formula (1) and formula (2) Has a chemical composition.
  • the total area ratio of pro-eutectoid ferrite and pearlite is 90% or more, and the area ratio of pro-eutectoid ferrite is 30% or more.
  • the rolled bar for cold forged tempered products according to the present invention has a tensile strength of 700 MPa or less. 0.50 ⁇ C + Si / 10 + Mn / 5 + 5Cr / 22 ⁇ 0.85 (1) Si / Mn> 1.0 (2)
  • the content (mass%) of a corresponding element is substituted for the element symbol in the above formula.
  • the rolled bar wire for cold forged tempered product according to the present invention has excellent cold workability, and has high strength and excellent hydrogen embrittlement resistance when cold forged and tempered.
  • FIG. 1 is a side view of a test piece used in the Ono type rotating bending fatigue test of the example.
  • FIG. 2 is a side view of the annular V-notch test piece used in the hydrogen embrittlement resistance evaluation test of the example.
  • the present inventors have made various studies in order to solve the above problems. As a result, the present inventors obtained the following knowledge.
  • (B) In order to increase the hydrogen embrittlement resistance of the cold forged tempered product, it is effective to increase the tempering temperature during the manufacturing process. However, when the tempering temperature is increased, temper softening occurs. In order to increase the temper softening resistance, it is effective to increase the Si content above the component standard of the alloy steel for machine structure. Further, Mn in the steel promotes grain boundary segregation of P and promotes grain boundary fracture. Therefore, it is effective to make the Mn content lower than the component standard of the alloy steel for machine structure.
  • the rolled rod according to the present invention satisfies the formula (1) in order to maintain the cold workability while ensuring the hardenability. 0.50 ⁇ C + Si / 10 + Mn / 5 + 5Cr / 22 ⁇ 0.85 (1) Here, the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1).
  • fn1 C + Si / 10 + Mn / 5 + 5Cr / 22.
  • C, Si, Mn, and Cr are all elements that enhance the hardenability. Therefore, fn1 is an index of hardenability and cold workability.
  • fn1 If fn1 is too low, sufficient hardenability cannot be obtained. In this case, high tensile strength and high fatigue strength cannot be obtained in a cold forged tempered product. On the other hand, if fn1 is too high, the hardenability of the rolled bar becomes too high. In this case, when the billet is finish-rolled to produce a rolled bar, bainite is generated in the steel, strength and hardness are increased, and cold workability is decreased. In this case, sufficient cold workability cannot be obtained unless a long-time softening heat treatment is performed a plurality of times before the next wire drawing step and the cold forging step.
  • the cold workability of the rolled bar for cold forged tempered products depends on the matrix structure of the steel. If the matrix structure is mainly a mixed structure of pro-eutectoid ferrite and pearlite and the area ratio of pro-eutectoid ferrite is high, the cold workability is excellent. Specifically, the total area ratio of pro-eutectoid ferrite and pearlite is 90% or more of the total in the matrix structure inside the cold forged tempered rolled bar, and the area ratio of pro-eutectoid ferrite Is 30% or more, the cold workability is enhanced.
  • the rolled bar wire for cold forged tempered product according to the present invention completed based on the above knowledge is, in mass%, C: 0.22 to 0.40%, Si: 0.35 to 1.5%, Mn : 0.20 to 0.40%, P: less than 0.020%, S: less than 0.015%, Cr: 0.70 to 1.45%, Al: 0.005 to 0.060%, Ti: 0.01 to 0.05%, B: 0.0003 to 0.0040%, N: 0.0020 to 0.0080%, O: 0.0020% or less, Cu: 0 to 0.50%, Ni: 0 to 0.30%, Mo: 0 to 0.05%, V: 0 to 0.05%, and Nb: 0 to 0.05%, with the balance being Fe and impurities.
  • the total area ratio of pro-eutectoid ferrite and pearlite is 90% or more, and the area ratio of pro-eutectoid ferrite is 30% or more.
  • the rolled bar for cold forged tempered products according to the present invention has a tensile strength of 700 MPa or less. 0.50 ⁇ C + Si / 10 + Mn / 5 + 5Cr / 22 ⁇ 0.85 (1) Si / Mn> 1.0 (2)
  • the content (mass%) of a corresponding element is substituted for each element symbol in the expressions (1) and (2).
  • the cold forged tempered product means a part that has been cold forged and tempered (quenched and tempered).
  • a rolled bar means a steel bar or a wire as hot rolled (a so-called as-roll material).
  • the chemical composition is Cu: 0.02 to 0.50%, Ni: 0.01 to 0.30%, Mo: 0.005 to 0.05%, and V: 0.005 to 0.05%. You may contain 1 type, or 2 or more types selected from the group which consists of.
  • the chemical composition may contain Nb: 0.0015 to 0.05%.
  • the manufacturing method of the above-mentioned cold forged tempered rolled bar wire includes a split rolling process and a finish rolling process.
  • the material having the above chemical composition is heated to a temperature of 1200 ° C. or higher, and then the block rolling is performed to manufacture the billet.
  • the finish rolling step the billet is heated to a temperature of 1050 ° C. or lower, and then finish rolling is performed to produce a rolled bar.
  • the finish rolling step is a step of producing a rolled bar by finishing rolling the billet at a processing speed Z defined by the formula (3) of 5 to 15 / second in the range of the billet temperature of 750 to 850 ° C.
  • R in Formula (3) is a cross-sectional reduction rate (%) in finish rolling, and is defined by Formula (4).
  • t is the finish rolling time (seconds).
  • R (A 0 ⁇ A) / A 0 (4)
  • a 0 is the cross-sectional area (mm 2 ) of the billet before finish rolling
  • A is the cross-sectional area (mm 2 ) of the rolled bar after finish rolling.
  • the chemical composition of the rolled bar for cold forged tempered products of the present invention contains the following elements.
  • C 0.22 to 0.40% Carbon (C) increases the strength of the steel. If the C content is less than 0.22%, this effect cannot be obtained. On the other hand, if the C content exceeds 0.40%, the cold workability of the steel material decreases. Therefore, the C content is 0.22 to 0.40%.
  • the preferable lower limit of the C content when further improving the hardenability is 0.26%.
  • the minimum with preferable C content is 0.24%, More preferably, it is 0.26%.
  • the upper limit with preferable C content in the case of improving cold workability further is 0.35%.
  • Si 0.35-1.5% Silicon (Si) deoxidizes steel. Si further strengthens the steel material by dissolving in ferrite. Si further suppresses precipitation of cementite and increases the temper softening resistance of the steel material.
  • Si has the following effects.
  • the melting point of deoxidation product MnO—SiO 2 is as low as about 1250 ° C. Therefore, MnO—SiO 2 is a liquid in the molten metal before solidification, and becomes a vitrified soft inclusion after solidification. MnO—SiO 2 is refined by being stretched and divided during hot rolling. For this reason, the coarse inclusion which inhibits fatigue strength and hydrogen embrittlement resistance decreases, and fatigue strength and hydrogen embrittlement resistance increase.
  • the Si content (0.15 to 0.35%) specified in JIS standard chromium steel is used. It is insufficient. Specifically, the above effect cannot be obtained if the Si content is less than 0.35%. On the other hand, if the Si content exceeds 1.5%, the strength of the steel material becomes too high and the cold workability deteriorates. Accordingly, the Si content is 0.35 to 1.5%.
  • the minimum with preferable Si content is 0.36%, More preferably, it is 0.38%. When further improving the cold workability, the preferable upper limit of the Si content is less than 1.0%.
  • Mn 0.20 to 0.40%
  • Mn Manganese
  • Mn content is less than 0.20%, these effects cannot be obtained.
  • Mn content is too high, Mn may segregate at the grain boundary and promote grain boundary fracture when the tempering treatment is performed. Furthermore, it is difficult to obtain appropriate MnO—SiO 2 . For this reason, the hydrogen embrittlement resistance is reduced.
  • Mn content (0.60 to 0.85%) specified in JIS standard chromium steel, it is difficult to suppress grain boundary fracture due to segregation, and it is difficult to obtain appropriate MnO—SiO 2 . Therefore, the Mn content is 0.20 to 0.40%.
  • the minimum with preferable Mn content is 0.22%, and a preferable upper limit is 0.35%.
  • Phosphorus (P) is an impurity. P tends to segregate at austenite grain boundaries, and causes tempering cracks and grain boundary destruction after tempering treatment. Therefore, the P content is less than 0.020%. The upper limit with preferable P content is less than 0.010%. The P content is preferably as low as possible.
  • S Sulfur
  • S is an impurity. S forms sulfides and reduces cold workability. Accordingly, the S content is less than 0.015%.
  • the S content is preferably as low as possible.
  • Chromium (Cr) improves the hardenability of the steel material. If the Cr content is less than 0.70%, this effect cannot be obtained. On the other hand, if the Cr content exceeds 1.45%, the hardenability becomes too high, and bainite is generated during cooling after hot rolling. In this case, the strength of the steel becomes excessively high, and the cold workability of the rolled bar wire decreases. Therefore, the Cr content is 0.70 to 1.45%.
  • the minimum with preferable Cr content is 0.90%, and a preferable upper limit is 1.20%.
  • Al 0.005 to 0.060%
  • Aluminum (Al) deoxidizes steel. Al further binds to N to form AlN and fixes N. Al further suppresses austenite grain coarsening during heating due to the pinning effect of the AlN particles. If the Al content is less than 0.005%, these effects cannot be obtained. On the other hand, if the Al content exceeds 0.060%, Al 2 O 3 is excessively generated and cold workability is lowered. Therefore, the Al content is 0.005 to 0.060%. When improving cold workability, the upper limit with preferable Al content is 0.060%, More preferably, it is 0.050%, More preferably, it is 0.045%.
  • the Al content means the total amount of Al contained in the steel.
  • Ti 0.01 to 0.05% Titanium (Ti) combines with N to form TiN, and fixes N. Ti further suppresses austenite grain coarsening during heating due to the pinning effect of TiN particles. If the Ti content is less than 0.01%, these effects cannot be obtained. On the other hand, if the Ti content exceeds 0.05%, a large amount of Ti (C, N) precipitates and the strength of the steel material becomes excessively high. In this case, the cold workability of the steel is reduced. Therefore, the Ti content is 0.01 to 0.05%. A preferable lower limit of the Ti content is 0.05%. The upper limit with preferable Ti content is 0.045%.
  • B 0.0003 to 0.0040% Boron (B) increases the hardenability of the steel. B further suppresses the grain boundary segregation of P and enhances the hydrogen embrittlement resistance of the steel. If the B content is less than 0.0003%, these effects cannot be obtained. On the other hand, if the B content exceeds 0.0040%, the effect of improving hardenability is saturated. Furthermore, coarse BN is generated and cold workability and toughness are reduced. Therefore, the B content is 0.0003 to 0.0040%. When B is combined with solute N to form BN, the amount of solute B is reduced, and the hardenability is reduced.
  • a preferable lower limit of the B content for sufficiently securing the solid solution B amount and further improving the hardenability is 0.0005%, and more preferably 0.0010%.
  • the upper limit with preferable B content for further suppressing the fall of cold workability and toughness is 0.0030%, More preferably, it is 0.0025%.
  • N 0.0020 to 0.0080% Nitrogen (N) combines with Al and Ti in the steel to form nitrides, and suppresses coarsening of austenite grains during heating. If the N content is less than 0.0020%, this effect cannot be obtained. On the other hand, if N content exceeds 0.0080%, BN will produce
  • Oxygen (O) is an impurity. O forms an oxide and reduces cold workability. If the O content exceeds 0.0020%, a large amount of oxide is generated and MnS is coarsened, so that the cold workability is remarkably lowered. Therefore, the O content is 0.0020% or less. The upper limit with preferable O content is 0.0018%. The O content is preferably as low as possible.
  • the balance of the chemical composition of the rolled bar for cold forged tempered product according to the present invention is composed of Fe and impurities.
  • the impurities are mixed from ore as a raw material, scrap, or production environment when industrially manufacturing the rolled bar, and are allowed within a range that does not adversely affect the present invention. Means what will be done.
  • the rolled bar for cold forged tempered product described above may further contain one or more selected from the group consisting of Cu, Ni, Mo, and V instead of a part of Fe. . All of these elements are optional elements and enhance the hardenability of the steel.
  • Cu 0 to 0.50% Copper (Cu) is an optional element and may not be contained. When contained, Cu increases the hardenability of the steel. However, if the Cu content exceeds 0.50%, the hardenability becomes too high and bainite is likely to be generated. In this case, cold workability falls. Therefore, the Cu content is 0 to 0.50%.
  • the minimum with preferable Cu content for acquiring the said effect more effectively is 0.02%, More preferably, it is 0.05%.
  • the upper limit with preferable Cu content is 0.30%, More preferably, it is 0.20%.
  • Nickel (Ni) is an optional element and may not be contained. When contained, Ni increases the hardenability of the steel and further increases the grain boundary strength. However, if the Ni content exceeds 0.30%, the effect is saturated and the steel material cost is increased. Therefore, the Ni content is 0 to 0.30%.
  • the minimum with preferable Ni content for acquiring the said effect more effectively is 0.01%, More preferably, it is 0.03%.
  • the upper limit with preferable Ni content is 0.20%, More preferably, it is 0.10%.
  • Mo 0 to 0.05%
  • Molybdenum (Mo) is an optional element and may not be contained. When contained, Mo increases the hardenability of the steel. However, if the Mo content exceeds 0.05%, the hardenability becomes too high and bainite and martensite are easily generated. In this case, the cold workability of the steel is reduced. Therefore, the Mo content is 0 to 0.05%. The minimum with preferable Mo content for acquiring the said effect more effectively is 0.005%. The upper limit with preferable Mo content is 0.03%, More preferably, it is 0.02%.
  • V 0 to 0.05%
  • Vanadium (V) is an optional element and may not be contained. When contained, V increases the hardenability of the steel. V further increases the strength of the steel by forming carbides, nitrides or carbonitrides. However, if the V content exceeds 0.05%, carbides and the like are coarsened and cold workability is lowered. Therefore, the V content is 0 to 0.05%. The minimum with preferable V content for acquiring the said effect more effectively is 0.005%. When improving cold workability, the upper limit with preferable V content is 0.03%, More preferably, it is 0.02%.
  • the chemical composition of the rolled bar for cold forged tempered product according to the present invention may further contain Nb instead of a part of Fe.
  • Niobium is an optional element and may not be contained. When contained, Nb combines with C and N to form carbides, nitrides or carbonitrides and refines the crystal grains. Nb further enhances the hydrogen embrittlement resistance of the cold forged tempered product manufactured using the rolled bar of the present invention. However, if the Nb content exceeds 0.05%, coarse carbides or the like are generated and the cold workability of the rolled bar wire is lowered. Therefore, the Nb content is 0 to 0.05%. The minimum with preferable Nb content for acquiring the said effect more effectively is 0.0015%. The upper limit with preferable Nb content is 0.04%, More preferably, it is 0.03%.
  • Fn1 C + Si / 10 + Mn / 5 + 5Cr / 22 is an index of steel strength and cold workability.
  • fn1 represents the carbon equivalent of the steel material. If fn1 is too low, sufficient hardenability cannot be obtained, and tensile strength and fatigue strength cannot be obtained. On the other hand, if fn1 is too high, the hardenability becomes too high. In this case, when the rolled bar is rolled, bainite and / or martensite is generated, the strength and hardness of the steel becomes too high, and the cold workability decreases.
  • fn1 0.50 to 0.85, sufficient cold workability can be obtained without obtaining long-time softening heat treatment while obtaining excellent hardenability.
  • a preferred lower limit of fn1 is 0.55.
  • a preferable upper limit of fn1 is 0.80.
  • MnO—SiO 2 has a melting point of about 1250 ° C. Therefore, although it is liquid in the molten metal before solidification, it becomes solid in the steel piece after solidification, and becomes a vitrified soft inclusion. This inclusion is stretched and divided during hot rolling to be refined. Therefore, the fatigue strength is improved and the hydrogen embrittlement resistance is improved. In order to obtain fine MnO—SiO 2 , it is necessary to appropriately control the ratio of Si to Mn. This index is fn2.
  • fn2 As the fn2 increases, the fatigue strength and hydrogen embrittlement resistance of the cold forged tempered product manufactured using the rolled bar wire increase. When fn2 exceeds 1.0, the hydrogen embrittlement resistance is remarkably superior to that of JIS standard SCM435. Therefore, as shown in Formula (2), fn2> 1.0. A preferred lower limit of fn2 is 1.2.
  • the matrix structure of the rolled bar for cold forged tempered product according to the present invention is mainly composed of proeutectoid ferrite and pearlite.
  • “mainly the matrix structure is composed of pro-eutectoid ferrite and pearlite” means that the total area ratio of pro-eutectoid ferrite and pearlite is 90% or more in the matrix structure.
  • the balance of the matrix structure of the rolled bar for cold forged tempered product according to the present invention is, for example, bainite and martensite.
  • the tensile strength of the cold forged tempered rolled bar wire according to the present invention is 700 MPa or less.
  • Proeutectoid ferrite and pearlite are softer than bainite and have excellent cold workability.
  • pro-eutectoid ferrite has better cold workability than pearlite. If the total area ratio of pro-eutectoid ferrite and pearlite is less than 90%, or if the pro-eutectoid ferrite area ratio is less than 30%, sufficient cold workability cannot be obtained. If the total area ratio of pro-eutectoid ferrite and pearlite is 90% or more and the area ratio of pro-eutectoid ferrite is 30% or more, excellent cold workability can be obtained.
  • the total area ratio of pro-eutectoid ferrite and pearlite is preferably 92% or more, and more preferably 95% or more.
  • a preferable lower limit of the area ratio of pro-eutectoid ferrite is 35% or more, and more preferably 40% or more.
  • the rolled bar for cold forged tempered product of the present invention has excellent cold workability.
  • the lower limit of the tensile strength is not particularly limited, but is, for example, 500 MPa.
  • the matrix structure is measured by the following method.
  • a sample is taken from the R / 2 portion of the rolled bar (R is the distance from the central axis of the bar to the outer peripheral surface).
  • R is the distance from the central axis of the bar to the outer peripheral surface.
  • a surface perpendicular to the rolling direction of the rolling bar is taken as an observation surface.
  • the observation surface is polished, it is etched with 3% nitric acid alcohol (nitral etchant).
  • the etched observation surface is observed with a 500 ⁇ optical microscope to generate photographic images with arbitrary five fields of view.
  • each phase such as pro-eutectoid ferrite, pearlite, bainite, martensite has a different contrast for each phase. Therefore, each phase is specified based on the contrast.
  • the identified phase obtains the area of pro-eutectoid ferrite in each field ([mu] m 2), and area of perlite ( ⁇ m 2).
  • the ratio of the sum of the areas of pro-eutectoid ferrite and pearlite in all fields of view to the total area of all fields of view is defined as the total area ratio (%) of pro-eutectoid ferrite and pearlite.
  • the ratio of the total area of pro-eutectoid ferrite in all visual fields to the total area of all visual fields is defined as the pro-eutectoid ferrite area ratio (%).
  • the diameter Dc (critical diameter, unit: mm) of the rolled bar wire satisfies the following formula (A).
  • D C 4 ⁇ (0.70Si + 1.0) ⁇ (3.33Mn + 1.0) ⁇ (2.16Cr + 1.0) (A)
  • the content (mass%) of the corresponding element is substituted for each element symbol.
  • the C content is 0.3% and the austenite grain size number is No.
  • Reference diameter D B of 8 round bar is about 0.165 inches (about 4 mm).
  • the reference diameter D B, critical diameter obtained in C content only means (round bar central portion diameter is 50% martensite).
  • the critical diameter D C is defined using the reference diameter D B.
  • f (X) is a function of the content X of the alloy element X and is called a hardenability factor peculiar to each alloy element. In this invention, it defines with the following formula
  • the critical diameter D C of the rolled bar wire with ensured hardenability is defined by the following formula (A).
  • D C 4 ⁇ (0.70Si + 1.0) ⁇ (3.33Mn + 1.0) ⁇ (2.16Cr + 1.0) (A)
  • the diameter of the rolled bar is not more than the critical diameter D C , further sufficient hardenability can be obtained.
  • a material having the above chemical composition is prepared.
  • the material is manufactured by the following method.
  • Molten steel having the above-described chemical composition is manufactured using a converter, an electric furnace, or the like.
  • a slab is manufactured by a continuous casting method using molten steel.
  • an ingot is manufactured by an ingot-making method using molten steel.
  • Prepared materials (slabs, ingots) are heated and then rolled using a rolling mill, and if necessary, after the rolling, further rolled by a continuous rolling mill to produce billets.
  • a continuous rolling mill horizontal roll stands and vertical roll stands are alternately arranged in a row, and the material is rolled into billets using the hole molds formed in the rolling rolls of each stand.
  • the preferable heating temperature of the raw material before the partial rolling is 1200 ° C. or higher. If the heating temperature is 1200 ° C. or higher, coarse carbonitrides and carbides such as Ti (C, N) and TiC generated during solidification of the material will be dissolved during heating. Since coarse carbonitride is suppressed, the cold workability of the rolled bar is enhanced.
  • Hot billeting is further performed on the billet produced by the block rolling process to produce a rolled bar for cold forging tempered products.
  • the billet is charged into a heating furnace and heated.
  • a preferable heating temperature is 1050 ° C. or less. If the heating temperature at the time of product rolling is too high, fine carbides and carbonitrides precipitated after the split rolling process will be dissolved again. In this case, carbides and carbonitrides are coherently precipitated during ferrite transformation during cooling after finish rolling. The precipitated carbonitrides and carbides increase the strength of the steel after product rolling and decrease the cold workability. If heating temperature is 1050 degrees C or less, since the excessive solid solution of a carbide
  • finish rolling in a finishing rolling mill row to obtain a rod with a predetermined diameter.
  • the finish rolling mill row includes a plurality of stands arranged in a row. Each stand includes a plurality of rolls arranged around the pass line. A billet is rolled using the hole type
  • the manufacturing conditions in finish rolling using a finish rolling mill train are as follows.
  • the finishing temperature means the surface temperature (° C.) of the billet on the exit side of the stand (hereinafter referred to as the finishing stand) that finally presses down the billet among the plurality of stands in the finishing rolling mill row.
  • the finishing temperature is obtained by measuring the surface temperature of the billet using an infrared radiation thermometer arranged on the exit side of the finishing stand.
  • the finishing temperature is less than 750 ° C.
  • ferrite transformation starts from unrecrystallized austenite grains, and the matrix structure after cooling becomes too fine.
  • the tensile strength of steel exceeds 700 MPa, and cold workability is reduced.
  • the finishing temperature exceeds 850 ° C.
  • the austenite grains after recrystallization are coarsened, and the start temperature of ferrite transformation is lowered. Therefore, the area ratio of pro-eutectoid ferrite after cooling becomes small. Furthermore, a hard structure such as bainite may be generated. As a result, the tensile strength of steel exceeds 700 MPa and cold workability is reduced.
  • the matrix structure is composed of pro-eutectoid ferrite and pearlite on condition that the cooling condition described later is satisfied. Specifically, the total area of pro-eutectoid ferrite and pearlite in the matrix structure is 90% or more.
  • Machining speed Z 5 to 15 / sec
  • the machining speed Z (/ sec) is defined by equation (3).
  • Z ⁇ ln (1-R) / t (3)
  • R in Formula (3) is a cross-sectional reduction rate (%) in finish rolling by the finish rolling mill train.
  • t is the finish rolling time (seconds).
  • the cross-sectional reduction rate R is defined by equation (4).
  • R (A 0 ⁇ A) / A 0 (4)
  • a 0 is the cross-sectional area (mm 2 ) of the billet before finish rolling
  • A is the cross-sectional area (mm 2 ) of the bar wire after finish rolling.
  • the finishing rolling time t is the time for the billet to pass through the finishing rolling mill row, and the distance (m) from the first stand (rolling mill) to the last stand (rolling mill) in the finishing rolling mill row is the average transport of the billet.
  • the processing speed Z is 5 to 15 / second, the matrix structure after cooling is unlikely to become fine, and the tensile strength of the bar wire can be set to 700 MPa or less. As a result, cold workability is enhanced. If the processing speed Z is less than 5 / sec, recrystallization does not occur sufficiently, the austenite crystal grains become coarse and the hardenability increases. As a result, the area ratio of pro-eutectoid ferrite decreases, the area ratio of hard bainite and martensite structure increases, and the tensile strength of the rolled bar exceeds 700 MPa.
  • the austenite grains are refined by recrystallization, the hardenability is reduced and the pro-eutectoid ferrite area ratio is increased, but the ferrite grains become too fine and The tensile strength exceeds 700 MPa.
  • Cooling rate to 500 ° C. after finish rolling 0.2 to 5.0 ° C./sec
  • the cooling rate until the surface temperature of the rolled bar reaches 500 ° C. is 0.2 to 5.0 ° C. / Sec.
  • the cooling rate is 0.2 to 5.0 ° C./second
  • the total area of pro-eutectoid ferrite and pearlite in the matrix structure can be 90% or more, and the area ratio of pro-eutectoid ferrite can be 30% or more.
  • the cooling rate exceeds 5.0 ° C./second hard bainite or the like is easily generated in the steel, and the tensile strength of the rolled bar exceeds 700 MPa.
  • the lower limit of the cooling rate is not particularly limited, but considering the actual production operation, the lower limit of the cooling rate is, for example, 0.2 ° C./second.
  • the rolled bar for cold forging of the present invention is manufactured. That is, the rolled bar for cold forging is a so-called rolled material (azu roll material).
  • the matrix structure of the rolled bar for cold forging is made of pro-eutectoid ferrite and pearlite, and the tensile strength is 700 MPa or less. Therefore, it is excellent in cold workability.
  • a bolt manufacturing method will be described as an example of a method for manufacturing a cold forged tempered product using the above-described rolled bar.
  • This manufacturing method includes a wire drawing step, a cold forging step, and a tempering treatment step (quenching and tempering step).
  • a tempering treatment step quenching and tempering step
  • a steel wire is manufactured by performing a wire drawing process on the above-described rolled bar.
  • the wire drawing may be performed only by primary wire drawing, or may be performed a plurality of times such as secondary wire drawing.
  • a lubricating film is formed on the surface of the wire.
  • the lubricating coating is, for example, a phosphate coating or a non-phosphorous lubricating coating.
  • Cold forging process The steel wire after drawing is cut into a predetermined length, and cold forging is performed on the cut steel wire to produce a cold forged product (here, a bolt).
  • the cold forged product is subjected to a tempering treatment (quenching and tempering) under known conditions to produce a cold forged tempered product. Since the hardenability of the above-mentioned rolled bar is high, a high-strength cold forged tempered product can be obtained by performing a tempering treatment. Specifically, a cold forged tempered product having a tensile strength of 1000 to 1300 MPa can be produced by appropriately adjusting the quenching temperature and the tempering temperature.
  • the cold forged tempered product manufactured by the above manufacturing process has high strength and excellent hydrogen embrittlement resistance.
  • steel type l had a chemical composition corresponding to SCM435 of JIS G4053 (2008).
  • Blooms were manufactured using molten steel of each steel type.
  • the bloom was heated at 1250 ° C. and then subjected to ingot rolling to produce billets having a cross section of 162 mm ⁇ 162 mm (ingot rolling process).
  • the billet was heated to 1030 to 1050 ° C. and subjected to finish rolling to produce a round bar having a diameter of 20 mm (finish rolling process).
  • finish rolling temperature was 750 to 780 ° C., and the processing speed was 5 to 15 / second.
  • the cooling rate until the surface temperature reached 500 ° C. was 0.2 to 5.0 ° C./second.
  • the following evaluation test was implemented with respect to the round bar manufactured by the above manufacturing process.
  • F + P in Table 2 means that the matrix structure is composed of pro-eutectoid ferrite and pearlite, and the total area ratio of pro-eutectoid ferrite and pearlite is 90% or more.
  • F + B means that the matrix structure is composed of pro-eutectoid ferrite and bainite.
  • F + P + B means that the matrix structure is composed of proeutectoid ferrite, pearlite, and bainite.
  • a compression test was carried out at room temperature (25 ° C.) in the atmosphere at a deformation rate of 2 mm / min (10 ⁇ 3 / sec in terms of strain rate). Compression was carried out until the compression rate calculated from the change in the height direction reached 60%, and then unloaded.
  • the surface of the cylindrical test piece after the test was visually observed using a 10-fold magnifier to check for cracks. When no crack was confirmed, it was judged that the cold workability was high (“ ⁇ ” in Table 2). On the other hand, when a crack was confirmed, it was judged that the cold workability was low (“ ⁇ ” in Table 2).
  • the conditioned tempered cylindrical specimen was cut in a direction perpendicular to the axial direction.
  • a Vickers hardness test based on JIS Z2244 (2011) was performed at any five points in the 2 / R part of the cut surface.
  • the test force was 4.9N.
  • the average value of the obtained numerical values of 5 points was defined as the Vickers hardness (HV) of the test number.
  • HV Vickers hardness
  • a fatigue test was performed using a test piece simulating a cold forged tempered product. Conditioning treatment (quenching and tempering) was performed on the round bars of each test number, and the surface was adjusted so that the Vickers hardness was 360 to 370 HV.
  • a fatigue test piece shown in FIG. 1 was prepared from the tempered round bar. Each numerical value in FIG. 1 shows the dimension (mm) of a corresponding location. “R24” in FIG. 1 indicates that the radius of curvature of the corresponding curved portion is 24 mm, and “ ⁇ 8” indicates that the diameter is 8 mm.
  • the central axis of the fatigue test piece was coaxial with the central axis of the round bar.
  • a plurality of annular V-notch test pieces shown in FIG. 2 were prepared for each round bar of each test number from the round bar after the tempering treatment.
  • the numerical value in which the unit in FIG. 2 is not shown shows the dimension (a unit is mm) of the corresponding site
  • the “ ⁇ numerical value” in the figure indicates the diameter (mm) of the designated part.
  • 60 ° indicates that the V-notch angle is 60 °.
  • “0.175R” indicates that the V-notch bottom radius is 0.175 mm.
  • the electrolytic charging method was performed as follows. The test piece was immersed in an aqueous solution of ammonium thiocyanate. With the test piece immersed, hydrogen was taken into the test piece by generating an anode potential on the surface of the test piece.
  • a galvanized film was formed on the surface of the test piece to prevent hydrogen from escaping in the test piece.
  • a constant load test was performed in which a constant load was applied so that a tensile stress having a nominal stress of 1080 MPa was applied to the V-notch cross section of the test piece.
  • the test piece that was broken during the test and the test piece that was not broken were subjected to a temperature rising analysis method using a gas chromatograph apparatus to measure the amount of hydrogen in the test piece. After the measurement, in each test number, the maximum hydrogen amount among the test pieces that did not break was defined as the limit diffusible hydrogen amount Hc.
  • the critical diffusion hydrogen amount of the steel l having a chemical composition corresponding to SCM435 of JIS G4053 (2008) was used as the standard (Href) of the critical diffusible hydrogen amount ratio HR.
  • Href the limit diffusible hydrogen amount ratio
  • HR Hc / Href (B)
  • the chemical composition of the rolling bars of test numbers 1 to 6 is appropriate, fn1 satisfies the formula (1), and fn2 satisfies the formula (2). Furthermore, the manufacturing conditions were appropriate. Therefore, in the matrix structure, the total area ratio of pro-eutectoid ferrite and pearlite was 90% or more, and the area ratio of pro-eutectoid ferrite was 30% or more. The tensile strength was 700 MPa or less. As a result, these rolled bar wires had excellent cold workability.
  • the Vickers hardness after tempering was 320 HV or higher, corresponding to a tensile strength of 1000 MPa or higher. Furthermore, the fatigue strength was 550 MPa or more, the HR exceeded 1.00, and excellent fatigue strength and hydrogen embrittlement resistance were exhibited.
  • fn1 was less than the lower limit of formula (1). Therefore, even when tempering was performed at a tempering temperature of 435 ° C., the Vickers hardness was less than 320 HV. Therefore, the fatigue strength was less than 550 MPa.
  • fn1 exceeded the upper limit of formula (1). Therefore, the matrix structure was composed of ferrite and bainite, and the tensile strength of the rolled bar exceeded 900 MPa. As a result, the cold workability of the rolled bar was low.
  • Example 1 For the manufactured round bar, a microstructure observation test, a tensile test, and a cold workability evaluation test were performed in the same manner as in Example 1.
  • Table 3 shows the evaluation results.
  • the production conditions heating temperature T1, heating temperature T2, finishing temperature T3, processing speed Z, cooling rate
  • the block rolling process and the finishing rolling process were all appropriate. Therefore, in the matrix structure, the total area ratio of pro-eutectoid ferrite and pearlite was 90% or more, and the area ratio of pro-eutectoid ferrite was 30% or more.
  • the tensile strength TS was 700 MPa or less. As a result, the cold workability was excellent.
  • test number 16 and test number 22 the machining speed Z was too slow. Therefore, the tensile strength exceeded 700 MPa and the cold workability was low.
  • test number 18 and test number 24 the cooling rate was too fast. Therefore, the matrix structure contained bainite and the tensile strength exceeded 700 MPa. As a result, cold workability was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

優れた冷間加工性と、冷間鍛造及び調質処理された場合、高い強度及び優れた耐水素脆化特性とを有する冷間鍛造調質品用圧延棒線を提供する。本発明による冷間鍛造調質品用圧延棒線は、質量%で、C:0.22~0.40%、Si:0.35~1.5%、Mn:0.20~0.40%、P:0.020%未満、S:0.015%未満、Cr:0.70~1.45%、Al:0.005~0.060%、Ti:0.01~0.05%、B:0.0003~0.0040%、N:0.0020~0.0080%、O:0.0020%以下を含有し、残部はFe及び不純物からなり、式(1)及び式(2)を満たす化学組成を有し、初析フェライト及びパーライトの総面積率は90%以上、初析フェライトの面積率は30%以上で、700MPa以下の引張強度を有する。 0.50≦C+Si/10+Mn/5+5Cr/22≦0.85 (1) Si/Mn>1.0 (2)

Description

冷間鍛造調質品用圧延棒線
 本発明は、熱間圧延されたまま(圧延まま材)の棒鋼又は線材である圧延棒線に関し、さらに詳しくは、冷間鍛造されて、かつ、調質処理された部品である冷間鍛造調質品用の圧延棒線に関する。
 近年、各種産業機械、自動車及び建築構造物の部品として用いられるシャフト及びボルト等の部品は、寸法精度や歩留まり、製造コストの観点から、冷間鍛造により製造される場合がある。このような冷間鍛造品は、冷間加工ままで使われたりもするが、より一層の高強度化が望まれる場合には、調質処理(焼入れ焼戻し処理)を行って高強度化が図られる。このような冷間鍛造品のうち、調質処理されたものを、本明細書では、冷間鍛造調質品という。
 調質処理を行って高強度化を図る鋼材として、JIS G4053(2008)に規定された機械構造用合金鋼がある。機械構造用合金鋼はたとえば、クロム鋼、クロムモリブデン鋼、及び、ニッケルクロムモリブデン鋼等である。これらの鋼材は、主に焼入れ性及び焼戻し軟化抵抗を高めるために、高価なMo、Niを多く含有する。
 近年、Mo、Ni等の合金元素の価格が高騰しており、需給環境も変動しやすくなっている。そのため、これらの合金元素を低減、又は省略して鋼材コストを抑えつつ、冷間鍛造品に求められる、疲労特性や耐水素脆化特性といった機械特性に優れる鋼材が求められている。
 そこで、Mo及びV等の合金元素に代えて、ボロン(B)を含有した鋼(B含有鋼)が普及している。Bは、MoやV等の合金元素と同様に、鋼の焼入れ性を高める。しかしながら、B含有鋼を冷間鍛造及び調質処理して、引張強さが1000MPa以上の冷間鍛造調質品(たとえばボルト)として使用した場合、耐水素脆化特性が低い場合がある。したがって、耐水素脆化特性に優れたB含有鋼が求められている。B含有鋼はさらに、上述のとおり冷間鍛造により部品(ボルト等)となるため、優れた冷間加工性も求められる。
 疲労強度、耐水素脆化特性、又は、冷間加工性に優れたB含有鋼が、特開2012-162798号公報(特許文献1)、特開平9-104945号公報(特許文献2)、特開2013-227602号公報(特許文献3)、及び、特開2001-234277号公報(特許文献4)に提案されている。
 特許文献1では、耐遅れ破壊性(耐水素脆化特性)に優れたボルト用鋼を提案する。この文献に開示されたボルト用鋼は、C:0.20~0.40%未満、Si:0.20~1.50%、Mn:0.30~2.0%、P:0.03%以下、S:0.03%以下、Ni:0.05~1.0%、Cr:0.01~1.50%、Cu:1.0%以下、Al:0.01~0.10%、Ti:0.01~0.1%、B:0.0003~0.0050%及びN:0.002~0.010%を含有し、さらに、Cu、Ni及びCrよりなる群から選ばれる1種以上を合計で0.10~3.0%含有し、残部が鉄および不可避的不純物からなり、さらに、Siの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であり、フェライト・パーライト組織であることを特徴とする。
 特許文献2では、冷間加工性及び耐遅れ破壊性に優れたボルト用鋼を提案する。この文献に開示されたボルト用鋼は、C:0.15~0.35%、Si:0.1%以下、Mn:0.3~1.3%、P:0.01%以下、S:0.01%以下、Cr:0.5%未満、Ti:0.01~0.10%、Al:0.01~0.05%、B:0.0005~0.003%、並びに残部:Feおよび不可避不純物からなると共に、次式0.50≦[C]+0.15[Si]+0.2[Mn]+0.11[Cr]≦0.60を満足することを特徴とする。
 特許文献3では、球状化焼鈍処理を施すことによって、十分な軟質化を実現できる冷間加工用機械構造用鋼を提案する。この文献に開示された機械構造用鋼は、C:0.2~0.6%、Si:0.01~0.5%、Mn:0.2~1.5%、P:0.03%以下、S:0.001~0.05%、Al:0.01~0.1%、N:0.015%以下、及びCr:0.5%超、2.0%以下を含有し、残部が鉄および不可避不純物であり、金属組織が、パーライトと初析フェライトを有し、全組織に対するパーライトと初析フェライトの合計面積率が90%以上であるとともに、初析フェライトの面積率Aが、Ae=(0.8-Ceq)×96.75(ただし、Ceq=[C]+0.1×[Si]+0.06×[Mn]+0.11×[Cr])と、A>Aeの関係を有し、初析フェライト及びパーライト中のフェライトの平均粒径が15~25μmである。
 特許文献4では、疲労特性に優れた高強度鋼を提案する。この文献に開示された高強度鋼は、C:0.2~1.3%、Si:0.01~3.0%、Mn:0.2~3.0%を含有し、残部はFeおよび不可避的不純物からなり、炭素等量Ceq(ただし、Ceq=[C]+[Si]/15+[Mn]/10+[Cr]/11+[Mo]/7+[V]/5+[Ni]/45+[Cu]/45)が0.8%以上であり、且つ室温から500℃に加熱する際に放出される水素量が0.3ppm以下である。
特開2012-162798号公報 特開平9-104945号公報 特開2013-227602号公報 特開2001-234277号公報
"Elements of Metallurgy and Engineering Alloys", ed.by F.C.Campbell,ASM International,Materials Park,2008,pp185-191.
 特許文献1に開示された鋼では、Si含有量をC含有量よりも高めて、マトリクスの強度をSiの固溶強化で確保しつつ、耐遅れ破壊性を向上する。しかしながら、高価なNiが必須元素となっているので、鋼材コストが高くなる。
 特許文献2に開示された鋼では、C、Si、Mn、及びCrの総量の下限と上限とを規定して、冷間加工性を維持できる圧延材の強度と、調質処理後に所望の強度が得られる圧延材の強度とを規定する。しかしながら、鋼のCr含有量及びSi含有量が低いため、焼入れ性や、焼戻し後の軟化抵抗が低い場合がある。
 特許文献3に開示された鋼では、平衡状態を仮定して初析フェライトの面積率を推定し、それが既定の値以上になるようにして、冷間加工性の改善を図る。しかしながら、実際の製造工程は連続冷却であり、冷却速度も製造条件によって種々変化する。したがって、実操業において、冷間加工性が十分に得られない場合がある。
 特許文献4に開示された鋼では、炭素等量Ceqの下限を規定するとともに、鋼材を室温から500℃まで加熱したときに放出される、鋼中に含まれていた水素含有量を0.3ppm以下にする。これにより、疲労特性の向上を図る。しかしながら、冷間加工性を確保する方法については開示されておらず、さらに、冷間鍛造調質品の耐水素脆化特性についても開示がない。
 本発明の目的は、優れた冷間加工性を有し、冷間鍛造及び調質処理された場合、高い強度及び優れた耐水素脆化特性を有する冷間鍛造調質品用圧延棒線を提供することである。
 本発明による冷間鍛造調質品用圧延棒線は、質量%で、C:0.22~0.40%、Si:0.35~1.5%、Mn:0.20~0.40%、P:0.020%未満、S:0.015%未満、Cr:0.70~1.45%、Al:0.005~0.060%、Ti:0.01~0.05%、B:0.0003~0.0040%、N:0.0020~0.0080%、O:0.0020%以下、Cu:0~0.50%、Ni:0~0.30%、Mo:0~0.05%、V:0~0.05%、及び、Nb:0~0.05%を含有し、残部はFe及び不純物からなり、式(1)及び式(2)を満たす化学組成を有する。マトリクス組織において、初析フェライト及びパーライトの総面積率は90%以上であり、初析フェライトの面積率は30%以上である。本発明による冷間鍛造調質品用圧延棒線は、700MPa以下の引張強度を有する。
 0.50≦C+Si/10+Mn/5+5Cr/22≦0.85 (1)
 Si/Mn>1.0 (2)
 ここで、上記式における元素記号は、それぞれ対応する元素の含有量(質量%)が代入される。
 本発明による冷間鍛造調質品用圧延棒線は、優れた冷間加工性を有し、冷間鍛造及び調質処理された場合、高い強度及び優れた耐水素脆化特性を有する。
図1は、実施例の小野式回転曲げ疲労試験で用いた、試験片の側面図である。 図2は、実施例の耐水素脆化特性評価試験で用いた、環状Vノッチ試験片の側面図である。
 本発明者らは、上記課題を解決するために種々の検討を行った。その結果、本発明者らは、次の知見を得た。
 (A)冷間加工性を保ちながら、焼入れ性を確保し、かつ鋼材コストを抑えるためには、クロム鋼(JIS G4053(2008)で規定された記号「SCr」)をベースにするのが好ましい。しかしながら、上記JIS規格で規定された機械構造用合金鋼の成分規格では、耐水素脆化特性が低い。
 (B)冷間鍛造調質品の耐水素脆化特性を高めるためには、製造工程中の焼戻し温度を高めることが有効である。しかしながら、焼戻し温度を高めると、焼戻し軟化が生じる。焼戻し軟化抵抗を高めるためには、Si含有量を上記機械構造用合金鋼の成分規格よりも高めることが有効である。また、鋼中のMnはPの粒界偏析を助長して、粒界破壊を促進する。したがって、Mn含有量を上記機械構造用合金鋼の成分規格よりも低くすることが有効である。
 (C)冷間鍛造調質品の引張強度を1000~1300MPaといった高強度とし、かつ、高い疲労強度を得るためには、十分な焼入れ性が必要である。しかしながら、焼入れ性が高すぎれば、冷間鍛造調質品の素材となる圧延棒線の冷間加工性が低下する。この場合、圧延棒線に対して伸線及び冷間鍛造等の冷間加工を実施する前に、圧延棒線の軟化を目的とした長時間の軟化熱処理を複数回実施しなければならない。そのため、Mo、V等の合金元素を多量に含有しなくても、製造コストが高くなる。したがって、長時間の軟化熱処理を複数回実施しなくても冷間加工が可能であり、かつ、上記高強度及び高い疲労強度が得られる焼入れ性を有する圧延棒線が望ましい。
 そこで、本発明による圧延棒線は、焼入れ性を確保しつつ、冷間加工性を維持するために、式(1)を満たす。
 0.50≦C+Si/10+Mn/5+5Cr/22≦0.85 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 fn1=C+Si/10+Mn/5+5Cr/22と定義する。C、Si、Mn、及びCrはいずれも、焼入れ性を高める元素である。したがって、fn1は、焼入れ性及び冷間加工性の指標となる。
 fn1が低すぎれば、十分な焼入れ性が得られない。この場合、冷間鍛造調質品において、高い引張強度及び高い疲労強度が得られない。一方、fn1が高すぎれば、圧延棒線の焼入れ性が高くなりすぎる。この場合、ビレットを仕上げ圧延して圧延棒線を製造するとき、鋼中にベイナイトが生成して、強度及び硬さが高まり、冷間加工性が低下する。この場合、次工程の伸線工程、及び、冷間鍛造工程の前に、長時間の軟化熱処理を複数回実施しなければ、十分な冷間加工性が得られない。
 fn1が式(1)を満たせば、優れた焼入れ性及び疲労強度を得つつ、長時間の軟化熱処理を複数回実施しなくても、十分な冷間加工性が得られる。
 (D)冷間鍛造調質品の疲労強度及び耐水素脆化特性を高めるためには、鋼中の介在物を少なくする、又は、介在物を微細化するのが有効である。Cr含有量が1%程度の鋼の場合、鋼中のSi含有量のMn含有量に対する比を1よりも大きくすれば、つまり、式(2)が満たされれば、介在物が軟質なMnO-SiO2となる。この介在物は、圧延中にガラス化して延伸及び分断され、微細化される。そのため、疲労強度を低下する粗大な介在物が減少し、疲労強度が高まり、かつ、耐水素脆化特性が向上する。
 Si/Mn>1.0 (2)
 ここで、式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 (E)冷間鍛造調質品用圧延棒線の冷間加工性は、上記事項に加えて、鋼のマトリクス組織にも依存する。マトリクス組織が主として初析フェライトとパーライトとの混合組織であり、かつ、初析フェライトの面積率が高ければ、冷間加工性に優れる。具体的には、冷間鍛造調質品用圧延棒線の内部のマトリクス組織中において、初析フェライトとパーライトとの総面積率が全体の90%以上であり、かつ、初析フェライトの面積率が30%以上であれば、冷間加工性が高まる。
 以上の知見に基づいて完成した本発明による冷間鍛造調質品用圧延棒線は、質量%で、C:0.22~0.40%、Si:0.35~1.5%、Mn:0.20~0.40%、P:0.020%未満、S:0.015%未満、Cr:0.70~1.45%、Al:0.005~0.060%、Ti:0.01~0.05%、B:0.0003~0.0040%、N:0.0020~0.0080%、O:0.0020%以下、Cu:0~0.50%、Ni:0~0.30%、Mo:0~0.05%、V:0~0.05%、及び、Nb:0~0.05%を含有し、残部はFe及び不純物からなり、式(1)及び式(2)を満たす化学組成を有する。マトリクス組織において、初析フェライト及びパーライトの総面積率は90%以上であり、初析フェライトの面積率は30%以上である。本発明による冷間鍛造調質品用圧延棒線は、700MPa以下の引張強度を有する。
 0.50≦C+Si/10+Mn/5+5Cr/22≦0.85 (1)
 Si/Mn>1.0 (2)
 ここで、式(1)及び式(2)における各元素記号は、対応する元素の含有量(質量%)が代入される。
 ここで、冷間鍛造調質品とは、冷間鍛造され、調質処理(焼入れ及び焼戻し)された部品を意味する。また、圧延棒線とは、熱間圧延まま(いわゆるアズロール材)の棒鋼又は線材を意味する。
 上記化学組成は、Cu:0.02~0.50%、Ni:0.01~0.30%、Mo:0.005~0.05%、及び、V:0.005~0.05%からなる群から選択される1種又は2種以上を含有してもよい。また、上記化学組成は、Nb:0.0015~0.05%を含有してもよい。
 上述の冷間鍛造調質品用圧延棒線の製造方法は、分塊圧延工程と、仕上げ圧延工程とを備える。分塊圧延工程では、上述の化学組成を有する素材を1200℃以上の温度に加熱した後、分塊圧延を実施してビレットを製造する。仕上げ圧延工程では、ビレットを1050℃以下の温度に加熱した後、仕上げ圧延を実施して圧延棒線を製造する。仕上げ圧延工程は、ビレットの温度が750~850℃の範囲において、式(3)で定義される加工速度Zを5~15/秒としてビレットを仕上げ圧延して圧延棒線を製造する工程と、圧延完了直後から500℃までの冷却速度を0.2~5.0℃/秒として、圧延棒線冷却する工程とを含む。
 Z=-ln(1-R)/t (3)
 ここで、式(3)中のRは仕上げ圧延での断面減少率(%)であり、式(4)で定義される。tは仕上げ圧延時間(秒)である。
 R=(A0-A)/A0 (4)
 式(4)中のA0は、仕上げ圧延前のビレットの断面積(mm2)であり、Aは、仕上げ圧延後の圧延棒線の断面積(mm2)である。
 以下、本発明による冷間鍛造調質品用圧延棒線について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [化学組成]
 本発明の冷間鍛造調質品用圧延棒線の化学組成は、次の元素を含有する。
 C:0.22~0.40%
 炭素(C)は、鋼の強度を高める。C含有量が0.22%未満であれば、この効果が得られない。一方、C含有量が0.40%を超えれば、鋼材の冷間加工性が低下する。したがって、C含有量は0.22~0.40%である。焼入れ性をさらに高める場合のC含有量の好ましい下限は0.26%である。C含有量の好ましい下限は0.24%であり、さらに好ましくは0.26%である。冷間加工性をさらに高める場合のC含有量の好ましい上限は0.35%である。
 Si:0.35~1.5%
 シリコン(Si)は、鋼を脱酸する。Siはさらに、フェライトに固溶して鋼材を強化する。Siはさらに、セメンタイトの析出を抑制し、鋼材の焼戻し軟化抵抗を高める。
 Siはさらに、次の効果を有する。脱酸生成物のMnO-SiO2の融点は1250℃程度と低い。そのため、MnO-SiO2は凝固前の溶湯中では液体であり、凝固後に、ガラス化した軟質の介在物となる。MnO-SiO2は、熱間圧延中に延伸及び分断されて微細化する。このため、疲労強度及び耐水素脆化特性を阻害する粗大介在物が低減し、疲労強度及び耐水素脆化特性が高まる。
 適正なMnO-SiO2を生成し、かつ、調質処理後の焼戻し軟化抵抗を高めるためには、JIS規格のクロム鋼で規定されているSi含有量(0.15~0.35%)では不十分である。具体的には、Si含有量が0.35%未満であれば、上記効果が得られない。一方、Si含有量が1.5%を超えれば、鋼材の強度が高くなりすぎて、冷間加工性が低下する。したがって、Si含有量は0.35~1.5%である。Si含有量の好ましい下限は0.36%であり、さらに好ましくは0.38%である。冷間加工性をさらに高める場合、Si含有量の好ましい上限は1.0%未満である。
 Mn:0.20~0.40%
 マンガン(Mn)は、鋼材の焼入れ性を高めたり、靭性を高める。Mn含有量が0.20%未満である場合、これらの効果が得られない。一方、Mn含有量が高すぎれば、調質処理を実施した場合に、Mnが粒界に偏析して粒界破壊を助長する場合がある。さらに、適正なMnO-SiO2が得られにくい。そのため、耐水素脆化特性が低下する。JIS規格のクロム鋼で規定されているMn含有量(0.60~0.85%)では、偏析による粒界破壊を抑制しにくく、適正なMnO-SiO2が得られにくい。したがって、Mn含有量は0.20~0.40%である。Mn含有量の好ましい下限は0.22%であり、好ましい上限は0.35%である。
 P:0.020%未満
 燐(P)は不純物である。Pはオーステナイト粒界に偏析しやすく、調質処理後、焼き割れや粒界破壊の原因となる。したがって、P含有量は0.020%未満である。P含有量の好ましい上限は0.010%未満である。P含有量はなるべく低い方が好ましい。
 S:0.015%未満
 硫黄(S)は不純物である。Sは硫化物を形成して冷間加工性を低下する。したがって、S含有量は0.015%未満である。S含有量はなるべく低い方が好ましい。
 Cr:0.70~1.45%
 クロム(Cr)は、鋼材の焼入れ性を高める。Cr含有量が0.70%未満であれば、この効果が得られない。一方、Cr含有量が1.45%を超えれば、焼入れ性が高くなりすぎて熱間圧延後の冷却中にベイナイトが生成する。この場合、鋼の強度が過剰に高くなり、圧延棒線の冷間加工性が低下する。したがって、Cr含有量は0.70~1.45%である。Cr含有量の好ましい下限は0.90%であり、好ましい上限は1.20%である。
 Al:0.005~0.060%
 アルミニウム(Al)は鋼を脱酸する。Alはさらに、Nと結合してAlNを形成し、Nを固定する。Alはさらに、AlN粒子のピンニング効果により、加熱時のオーステナイト粒の粗大化を抑制する。Al含有量が0.005%未満であれば、これらの効果が得られない。一方、Al含有量が0.060%を超えれば、Al23が過剰に生成して冷間加工性が低下する。したがって、Al含有量は0.005~0.060%である。冷間加工性を高める場合、Al含有量の好ましい上限は0.060%であり、さらに好ましくは0.050%であり、さらに好ましくは0.045%である。本発明による冷間鍛造調質品用圧延棒線の化学組成において、Al含有量は、鋼中に含有する全Al量を意味する。
 Ti:0.01~0.05%
 チタン(Ti)は、Nと結合してTiNを形成し、Nを固定する。Tiはさらに、TiN粒子のピンニング効果により、加熱時のオーステナイト粒の粗大化を抑制する。Ti含有量が0.01%未満であれば、これらの効果が得られない。一方、Ti含有量が0.05%を超えれば、Ti(C,N)が多く析出して、鋼材の強度が過剰に高くなる。この場合、鋼の冷間加工性が低下する。したがって、Ti含有量は0.01~0.05%である。Ti含有量の好ましい下限は0.05%である。Ti含有量の好ましい上限は0.045%である。
 B:0.0003~0.0040%
 ボロン(B)は鋼の焼入れ性を高める。Bはさらに、Pの粒界偏析を抑制して、鋼の耐水素脆化特性を高める。B含有量が0.0003%未満であれば、これらの効果が得られない。一方、B含有量が0.0040%を超えれば、焼入れ性向上の効果が飽和する。さらに、粗大なBNが生成して冷間加工性及び靭性が低下する。したがって、B含有量は0.0003~0.0040%である。Bが固溶Nと結合してBNを形成する場合、固溶B量が低下するため、焼入れ性が低下する。固溶B量を十分に確保し、焼入れ性をさらに高めるためのB含有量の好ましい下限は0.0005%であり、さらに好ましくは0.0010%である。冷間加工性及び靭性の低下をさらに抑制するためのB含有量の好ましい上限は0.0030%であり、さらに好ましくは0.0025%である。
 N:0.0020~0.0080%
 窒素(N)は、鋼中のAlやTiと結合して窒化物を生成し、加熱時のオーステナイト粒の粗大化を抑制する。N含有量が0.0020%未満であれば、この効果が得られない。一方、N含有量が0.0080%を超えれば、BNが過剰に生成し、固溶B量が低下する。この場合、鋼の焼入れ性が低下する。したがって、N含有量は0.0020~0.0080%である。N含有量の好ましい下限は0.0022%である。焼入れ性をさらに高めるためのN含有量の好ましい上限は0.0070%未満であり、さらに好ましくは0.0060%である。
 O:0.0020%以下
 酸素(O)は不純物である。Oは酸化物を形成して冷間加工性を低下する。O含有量が0.0020%を超えれば、酸化物が多量に生成するとともに、MnSが粗大化して、冷間加工性が顕著に低下する。したがって、O含有量は0.0020%以下である。O含有量の好ましい上限は0.0018%である。O含有量はなるべく低い方が好ましい。
 本発明による冷間鍛造調質品用圧延棒線の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、上記圧延棒線を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素について]
 上述の冷間鍛造調質品用圧延棒線はさらに、Feの一部に代えて、Cu、Ni、Mo、及びVからなる群から選択される1種又は2種以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼の焼入れ性を高める。
 Cu:0~0.50%
 銅(Cu)は任意元素であり、含有されなくてもよい。含有される場合、Cuは鋼の焼入れ性を高める。しかしながらCu含有量が0.50%を超えれば、焼入れ性が高くなりすぎてベイナイトが生成しやすくなる。この場合、冷間加工性が低下する。したがって、Cu含有量は0~0.50%である。上記効果をより有効に得るためのCu含有量の好ましい下限は0.02%であり、さらに好ましくは0.05%である。冷間加工性を高める場合、Cu含有量の好ましい上限は0.30%であり、さらに好ましくは0.20%である。
 Ni:0~0.30%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。含有される場合、Niは鋼の焼入れ性を高め、さらに、粒界強度も高める。しかしながら、Ni含有量が0.30%を超えれば、その効果が飽和し、鋼材コストも高くなる。したがって、Ni含有量は0~0.30%である。上記効果をより有効に得るためのNi含有量の好ましい下限は0.01%であり、さらに好ましくは0.03%である。冷間加工性を高める場合、Ni含有量の好ましい上限は0.20%であり、さらに好ましくは0.10%である。
 Mo:0~0.05%
 モリブデン(Mo)は任意元素であり、含有されなくてもよい。含有される場合、Moは鋼の焼入れ性を高める。しかしながら、Mo含有量が0.05%を超えれば、焼入れ性が高くなりすぎて、ベイナイト及びマルテンサイトが生成しやすくなる。この場合、鋼の冷間加工性が低下する。したがって、Mo含有量は0~0.05%である。上記効果をより有効に得るためのMo含有量の好ましい下限は0.005%である。Mo含有量の好ましい上限は0.03%であり、さらに好ましくは0.02%である。
 V:0~0.05%
 バナジウム(V)は任意元素であり、含有されなくてもよい。含有される場合、Vは鋼の焼入れ性を高める。Vはさらに、炭化物、窒化物又は炭窒化物を形成して鋼の強度を高める。しかしながら、V含有量が0.05%を超えれば、炭化物等が粗大化して冷間加工性を低下する。したがって、V含有量は0~0.05%である。上記効果をより有効に得るためのV含有量の好ましい下限は0.005%である。冷間加工性を高める場合、V含有量の好ましい上限は0.03%であり、さらに好ましくは0.02%である。
 本発明による冷間鍛造調質品用圧延棒線の化学組成はさらに、Feの一部に代えて、Nbを含有してもよい。
 Nb:0~0.05%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。含有される場合、NbはC及びNと結合して、炭化物、窒化物又は炭窒化物を形成し、結晶粒を微細化する。Nbはさらに、本発明の圧延棒線を用いて製造した冷間鍛造調質品の耐水素脆化特性を高める。しかしながら、Nb含有量が0.05%を超えれば、粗大な炭化物等が生成して圧延棒線の冷間加工性が低下する。したがって、Nb含有量は0~0.05%である。上記効果をより有効に得るためのNb含有量の好ましい下限は0.0015%である。Nb含有量の好ましい上限は0.04%であり、さらに好ましくは0.03%である。
 [式(1)について]
 本発明による冷間鍛造調質品用圧延棒線の化学組成はさらに、式(1)を満たす。
 0.50≦C+Si/10+Mn/5+5Cr/22≦0.85 (1)
 式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 fn1=C+Si/10+Mn/5+5Cr/22は、鋼材の強度及び冷間加工性の指標である。fn1は鋼材の炭素当量を示す。fn1が低すぎれば、十分な焼入れ性が得られず、引張強度及び疲労強度が得られない。一方、fn1が高すぎれば、焼入れ性が高くなりすぎる。この場合、圧延棒線が圧延されたとき、ベイナイト及び/又はマルテンサイトが生成され、鋼の強度及び硬さが高くなりすぎ、冷間加工性が低下する。この場合、圧延棒線を用いて次工程の伸線工程、及び、冷間鍛造工程を実施する前に、圧延棒線に対して、長時間の軟化熱処理を複数回実施しなければ、十分な冷間加工性が得られない。fn1が0.50~0.85であれば、優れた焼入れ性を得つつ、長時間の軟化熱処理を実施しなくても、十分な冷間加工性が得られる。fn1の好ましい下限は0.55である。fn1の好ましい上限は0.80である。
 [式(2)について]
 本発明による冷間鍛造調質品用圧延棒線の化学組成はさらに、式(2)を満たす。
 Si/Mn>1.0 (2)
 ここで、式(2)の各元素記号には、対応する元素の含有量(質量%)が代入される。
 fn2=Si/Mnと定義する。Si及びMnは、脱酸の過程でMnO-SiO2を生成する。MnO-SiO2は、融点が1250℃程度である。そのため、凝固前の溶湯中では液体であるが、凝固後の鋼片中では固体となり、ガラス化した軟質の介在物となる。この介在物は、熱間圧延中に延伸及び分断されて微細化される。そのため、疲労強度が向上し、耐水素脆化特性が向上する。微細なMnO-SiO2を得るためには、SiのMnに対する比率を適正に制御する必要がある。この指標がfn2である。
 fn2が増加するほど、上記圧延棒線を用いて製造された冷間鍛造調質品の疲労強度及び耐水素脆化特性が高まる。そして、fn2が1.0を超えると、JIS規格のSCM435よりも顕著に耐水素脆化特性が優れる。したがって、式(2)に示すとおり、fn2>1.0である。fn2の好ましい下限は1.2である。
 [マトリクス組織及び引張強度]
 本発明による冷間鍛造調質品用圧延棒線のマトリクス組織は、主として初析フェライトとパーライトとからなる。本明細書でいう「主としてマトリクス組織が初析フェライトとパーライトとからなる」とは、マトリクス組織において、初析フェライトとパーライトとの総面積率が90%以上であることを意味する。本発明による冷間鍛造調質品用圧延棒線のマトリクス組織の残部はたとえば、ベイナイト及びマルテンサイトである。さらに、本発明による冷間鍛造調質品用圧延棒線の引張強度は700MPa以下である。
 初析フェライト及びパーライトは、ベイナイトよりも軟質であり、冷間加工性に優れる。さらに、初析フェライトはパーライトよりも冷間加工性に優れる。初析フェライト及びパーライトの総面積率が90%未満、又は、初析フェライト面積率が30%未満であれば、十分な冷間加工性が得られない。初析フェライト及びパーライトの総面積率が90%以上であり、かつ、初析フェライトの面積率が30%以上であれば、優れた冷間加工性が得られる。
 初析フェライト及びパーライトの総面積率は、好ましくは92%以上であり、さらに好ましくは95%以上である。初析フェライトの面積率の好ましい下限は35%以上であり、さらに好ましくは40%以上である。
 上記マトリクス組織及び引張強度により、本発明の冷間鍛造調質品用圧延棒線は、優れた冷間加工性を有する。なお、引張強度の下限はとくに限定されないが、たとえば500MPaである。
 マトリクス組織は次の方法で測定される。圧延棒線のR/2部(Rは棒線の中心軸から外周面までの距離)からサンプルを採取する。採取されたサンプルの表面のうち、圧延棒線の圧延方向に垂直な面を観察面とする。観察面を研磨した後、3%硝酸アルコール(ナイタル腐食液)にてエッチングする。エッチングされた観察面を500倍の光学顕微鏡にて観察して、任意の5視野の写真画像を生成する。
 各視野において、初析フェライト、パーライト、ベイナイト、マルテンサイト等の各相は、相ごとにコントラストが異なる。したがって、コントラストに基づいて、各相を特定する。特定された相のうち、各視野での初析フェライトの面積(μm2)と、パーライトの面積(μm2)とを求める。全ての視野での初析フェライトの面積とパーライトの面積との総和の、全ての視野の総面積に対する比を、初析フェライト及びパーライトの総面積率(%)と定義する。同様に、全ての視野での初析フェライトの面積の総和の、全ての視野の総面積に対する比を、初析フェライト面積率(%)と定義する。
 [圧延棒線の好ましい外径]
 好ましくは、圧延棒線の直径Dc(臨界直径、単位はmm)は次の式(A)を満たす。
 DC=4×(0.70Si+1.0)×(3.33Mn+1.0)×(2.16Cr+1.0) (A)
 ここで、各元素記号には、対応する元素の含有量(質量%)が代入される。
 焼入れ性の予測については、たとえば非特許文献1に記載されている。本発明に整合する鋼材の一例を想定する。C含有量が0.3%、オーステナイト粒の粒度番号がNo.8の丸棒の基準直径DBは約0.165インチ(約4mm)である。ここで、基準直径DBとは、C含有量のみで得られる臨界直径(丸棒中心部が50%マルテンサイトになる直径)を意味する。基準直径DBを利用して、臨界直径DCを定義する。
 合金元素による焼入れ性の向上効果(焼入性倍数)を勘案した臨界直径DCは、DC=DB×f(Si)×f(Mn)×f(Cr)、で表わされる。ここで、f(X)は、合金元素Xの含有量Xの関数で、各合金元素に特有の焼入れ性倍数と呼ばれる。本発明では、非特許文献1に記載の数値を用いて、次の式で定義する。
 f(Si)=0.70Si+1.0
 f(Mn)=3.33Mn+1.0
 f(Cr)=2.16Cr+1.0
 したがって、本発明において、焼入れ性が確保された圧延棒線の臨界直径DCは、次の式(A)で定義される。
 DC=4×(0.70Si+1.0)×(3.33Mn+1.0)×(2.16Cr+1.0) (A)
 圧延棒線の直径が臨界直径DC以下であれば、さらに十分な焼入れ性が得られる。
 [製造方法]
 [冷間鍛造調質品用圧延棒線の製造方法]
 本発明による冷間鍛造調質品用圧延棒線の製造方法の一例について説明する。本実施形態の圧延棒線の製造方法は、ビレットを製造する工程(分塊圧延工程)と、製造されたビレットを棒線に圧延する工程(仕上圧延工程)とを含む。以下、各工程について詳述する。
 [分塊圧延工程]
 初めに、上記化学組成を有する素材を準備する。たとえば、素材は次の方法で製造される。上述の化学組成を有する溶鋼を、転炉及び電気炉等を用いて製造する。溶鋼を用いて連続鋳造法により鋳片を製造する。又は、溶鋼を用いて造塊法によりインゴットを製造する。
 準備された素材(鋳片、インゴット)を加熱後、分塊圧延機を用いて分塊圧延し、必要に応じて、分塊圧延後に連続圧延機でさらに圧延して、ビレットを製造する。連続圧延機では、水平ロールスタンド、垂直ロールスタンドが交互に一列に配列されており、各スタンドの圧延ロールに形成された孔型を用いて素材を圧延して、ビレットにする。
 分塊圧延前の素材の好ましい加熱温度は1200℃以上である。加熱温度が1200℃以上であれば、素材の凝固時に生成したTi(C,N)やTiCといった粗大炭窒化物、炭化物が加熱時に固溶する。粗大な炭窒化物が抑制されるため、圧延棒線の冷間加工性が高まる。
 [仕上げ圧延工程]
 分塊圧延工程により製造されたビレットに対してさらに熱間圧延を実施して、冷間鍛造調質品用圧延棒線を製造する。
 初めに、ビレットを加熱炉に装入して、加熱する。好ましい加熱温度は1050℃以下である。製品圧延時の加熱温度が高すぎれば、分塊圧延工程後に析出した微細な炭化物及び炭窒化物が再び固溶する。この場合、仕上げ圧延後の冷却時のフェライト変態時に、炭化物及び炭窒化物が整合析出する。析出した炭窒化物及び炭化物は製品圧延後の鋼の強度を高め、冷間加工性を低下する。加熱温度が1050℃以下であれば、加熱時に炭化物及び炭窒化物の過剰な固溶が抑制されるため、冷間加工性をさらに高めることができる。
 加熱されたビレットを用いて、仕上げ圧延機列で仕上げ圧延(熱間圧延)して所定の径の棒線にする。仕上げ圧延機列は、一列に配列された複数のスタンドを含む。各スタンドは、パスライン周りに配置された複数のロールを含む。各スタンドの圧延ロールに形成された孔型を用いてビレットを圧延して、圧延棒線を製造する。
 仕上げ圧延機列を利用した仕上げ圧延での製造条件は次のとおりである。
 仕上げ温度:750~850℃
 仕上げ温度は、仕上げ圧延機列の複数のスタンドのうち、最後にビレットを圧下するスタンド(以下、仕上げスタンドという)の出側でのビレットの表面温度(℃)を意味する。仕上げ温度は、仕上げスタンドの出側に配置された赤外線放射温度計を用いてビレットの表面温度を測定して求める。
 仕上げ温度が750℃未満である場合、未再結晶のオーステナイト粒からフェライト変態が始まり、冷却後のマトリクス組織が微細になりすぎる。この場合、鋼の引張強度が700MPaを超え、冷間加工性が低下する。一方、仕上げ温度が850℃を超える場合、再結晶後のオーステナイト粒が粗大化し、フェライト変態の開始温度が低くなる。そのため、冷却後の初析フェライトの面積率が小さくなる。さらに、ベイナイト等の硬質組織が生成する場合もある。その結果、鋼の引張強度が700MPaを超え、冷間加工性が低下する。
 仕上げ温度が750~850℃であれば、後述の冷却条件を満たすことを条件として、マトリクス組織は初析フェライト及びパーライトからなる。具体的には、マトリクス組織における初析フェライト及びパーライトの総面積が90%以上になる。
 加工速度Z:5~15/秒
 加工速度Z(/秒)は式(3)で定義される。
 Z=-ln(1-R)/t (3)
 式(3)中のRは仕上げ圧延機列による仕上げ圧延での断面減少率(%)である。tは仕上げ圧延時間(秒)である。
 断面減少率Rは式(4)で定義される。
 R=(A0-A)/A0 (4)
 式(4)中のA0は、仕上げ圧延前のビレットの断面積(mm2)であり、Aは、仕上げ圧延後の棒線の断面積(mm2)である。
 仕上げ圧延時間tは、ビレットが仕上げ圧延機列を通過する時間であり、仕上げ圧延機列の最初のスタンド(圧延機)から最後のスタンド(圧延機)までの距離(m)をビレットの平均搬送速度(m/秒)で除した値(秒)である。
 加工速度Zが5~15/秒であれば、冷却後のマトリクス組織が微細になりにくく、棒線の引張強度を700MPa以下とすることができる。その結果、冷間加工性が高まる。加工速度Zが5/秒未満であれば、再結晶が十分生じず、オーステナイト結晶粒が粗くなり焼入れ性が増加する。その結果、初析フェライトの面積率が低下し、硬質なベイナイトやマルテンサイト組織の面積率が増加し、圧延棒線の引張強度が700MPaを超える。加工速度Zが15/秒を超えれば、再結晶によってオーステナイト結晶粒が微細化し、焼き入れ性が低下して初析フェライト面積率は増加するが、フェライト結晶粒が微細になりすぎて棒線の引張強度が700MPaを超える。
 仕上げ圧延後500℃までの冷却速度:0.2~5.0℃/秒
 仕上げ圧延後、圧延棒線の表面温度が500℃になるまでの間の冷却速度は0.2~5.0℃/秒である。冷却速度が0.2~5.0℃/秒であれば、マトリクス組織における初析フェライト及びパーライトの総面積を90%以上とし、初析フェライトの面積率を30%以上とできる。冷却速度が5.0℃/秒を超えれば、鋼中に硬質のベイナイト等が生成しやすくなり、圧延棒線の引張強度が700MPaを超える。冷却速度の下限は特に限定されないが、実際の生産操業を考慮すれば、冷却速度の下限はたとえば0.2℃/秒である。
 以上の製造工程により、本発明の冷間鍛造品用圧延棒線が製造される。つまり、冷間鍛造品用圧延棒線は、いわゆる圧延まま材(アズロール材)である。冷間鍛造品用圧延棒線のマトリクス組織は初析フェライト及びパーライトからなり、引張強度は700MPa以下となる。そのため、冷間加工性に優れる。
 [冷間鍛造調質品の製造方法]
 上述の圧延棒線を用いた冷間鍛造調質品の製造方法の一例として、ボルトの製造方法を説明する。本製造方法は、伸線工程、冷間鍛造工程、及び、調質処理工程(焼入れ及び焼戻し工程)を含む。以下、それぞれの工程について説明する。
 [伸線工程]
 初めに、上述の圧延棒線に対して伸線加工を実施して鋼線を製造する。伸線加工は、一次伸線のみであってもよいし、二次伸線等、複数回の伸線加工を実施してもよい。伸線時において、線材の表面に潤滑被膜を形成する。潤滑被膜はたとえば、リン酸塩被膜や非リン系の潤滑被膜である。
 [冷間鍛造工程]
 伸線後の鋼線を所定の長さに切断して、切断された鋼線に対して冷間鍛造を実施して冷間鍛造品(ここではボルト)を製造する。
 [軟化熱処理について]
 従前の冷間鍛造品の製造方法では、引張強度が高すぎる棒線の軟化を目的として、伸線加工前及び冷間鍛造前に、軟化熱処理を複数回実施している。しかしながら、本発明による圧延棒線では、式(1)を満たすことにより、冷間加工性に優れる。そのため、軟化熱処理を省略、又は、簡素化できる。
 [調質処理工程(焼入れ及び焼戻し工程)]
 冷間鍛造品に対して、周知の条件で調質処理(焼入れ及び焼戻し)を実施して、冷間鍛造調質品を製造する。上述の圧延棒線の焼入れ性は高いため、調質処理を実施することにより、高強度の冷間鍛造調質品が得られる。具体的には、焼入れ温度及び焼戻し温度を適宜調整することにより、1000~1300MPaの引張強度を有する冷間鍛造調質品を製造できる。
 以上の製造工程により製造された冷間鍛造調質品は、高強度を有し、かつ、優れた耐水素脆化特性を有する。
 表1の化学組成を有する溶鋼を製造した。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、鋼種lはJIS G4053(2008)のSCM435に相当する化学組成を有した。
 各鋼種の溶鋼を用いてブルームを製造した。ブルームを1250℃で加熱した後、分塊圧延を実施して、横断面が162mm×162mmのビレットを製造した(分塊圧延工程)。ビレットを1030~1050℃に加熱して仕上げ圧延を実施し、直径20mmの丸棒を製造した(仕上げ圧延工程)。仕上げ圧延温度は750~780℃であり、加工速度は5~15/秒であった。仕上げ圧延後、表面温度が500℃になるまでの冷却速度は0.2~5.0℃/秒であった。以上の製造工程により製造された丸棒に対して、次の評価試験を実施した。
 [ミクロ組織観察試験]
 各試験番号の丸棒を圧延方向と垂直な方向に切断し、切断面の2/R部(丸棒の中心軸と外周面とを結ぶ線分の中心部分)からサンプルを採取した。上記切断面が観察面になるように樹脂埋めし、鏡面研磨を行った。その後、上述の方法でミクロ組織観察を実施して、初析フェライト及びパーライトの総面積率(%)及び初析フェライトの面積率を求めた。求めた結果を表2に示す。表2中の「F+P」は、マトリクス組織が初析フェライト及びパーライトからなり、初析フェライト及びパーライトの総面積率が90%以上であることを意味する。「F+B」は、マトリクス組織が初析フェライトとベイナイトからなることを意味する。「F+P+B」は、マトリクス組織が初析フェライト、パーライト、及び、ベイナイトからなることを意味する。
Figure JPOXMLDOC01-appb-T000002
 [引張試験]
 各試験番号の丸棒の中心位置から、JIS Z2241(2011)に規定される14A号試験片を採取した。試験片の長手方向は線材の圧延方向であり、平行部の直径は6mm、標点距離は30mmであった。採取した試験片に対して、室温(25℃)で引張試験を実施して、引張強度TS(MPa)を求めた。得られた引張強度TSを表2に示す。引張強度が700MPa以下であれば、優れた冷間加工性を有すると判断した。
 [冷間加工性評価試験]
 各試験番号の丸棒の中心位置から、円柱状試験片を採取した。円柱状試験片の直径は14mmであり、長さは21mmであった。円柱状試験片の長手方向は、丸棒の長手方向と平行であった。
 円柱状試験片を用いて、大気中室温(25℃)にて、変形速度2mm/分(ひずみ速度に換算すると、10-3/秒)で圧縮試験を実施した。高さ方向の変化分から計算した圧縮率が60%になるまで圧縮を実施し、その後、除荷した。試験後の円柱状試験片の表面を10倍のルーペを用いて目視で観察し、割れの有無を確認した。割れが確認されなかった場合、冷間加工性が高いと判断した(表2中で「○」)。一方、割れが確認された場合、冷間加工性が低いと判断した(表2中の「×」)。
 [調質処理された試験片を用いたビッカース硬さ試験]
 冷間鍛造調質品を模擬した試験片を作製し、ビッカース硬さを求めた。具体的には、各試験番号の丸棒から、上述の円柱状試験片を採取した。円柱状試験片を表2に示す焼入れ温度(℃)で1時間加熱し、その後、60℃の油に浸漬して焼入れした。焼入れされた円柱状試験片に対して、表2に示す焼戻し温度(℃)で焼戻しを実施した。焼戻し温度の保持時間は1時間とした。焼戻し後、円柱状試験片を放冷した。以上の工程により、調質処理された円柱状試験片を作製した。
 調質処理された円柱状試験片を、軸方向と垂直な方向に切断した。切断面の2/R部の任意の5点において、JIS Z2244(2011)に準拠したビッカース硬さ試験を実施した。試験力は4.9Nであった。得られた5点の数値の平均値を、その試験番号のビッカース硬さ(HV)と定義した。ビッカース硬さが320HV以上である場合、調質後に高強度を示すと判断した。
 [疲労強度試験]
 冷間鍛造調質品を模擬した試験片を用いて、疲労試験を実施した。各試験番号の丸棒に対して調質処理(焼入れ焼戻し)を実施して、表面のビッカース硬さが360~370HVとなるように調整した。調質処理後の丸棒から、図1に示す疲労試験片を作製した。図1中の各数値は、対応する箇所の寸法(mm)を示す。図1中の「R24」は対応する湾曲部分の曲率半径が24mmであることを示し、「φ8」は直径が8mmであることを示す。疲労試験片の中心軸は、丸棒の中心軸と同軸であった。
 上述の疲労試験片を用いて、室温、大気雰囲気中にて、JIS Z2274(1978)に準拠した小野式回転曲げ疲労試験を実施した。回転数を3400rpmとし、応力負荷繰返し回数が107サイクル後において破断しなかった最大応力を疲労強度σw(MPa)とした。疲労強度σwが550MPa以上の場合、疲労強度に優れると判断した。
 [耐水素脆化特性評価試験]
 冷間鍛造調質品を模擬した試験片を用いて、耐水素脆化特性評価試験を実施した。各試験番号の丸棒に対して調質処理(焼入れ焼戻し)を実施して、表面のビッカース硬さが360~370HVとなるように調整した。ただし、焼戻し温度が435℃で表面硬さ320HV以上を得られない場合については、強度不足と判断し、耐水素脆化特性評価は実施せず、本発明の対象外と判断した。
 調質処理後の丸棒から図2に示す環状Vノッチ試験片を、各試験番号の丸棒につき複数作製した。図2中の単位が示されていない数値は、試験片の対応する部位の寸法(単位はmm)を示す。図中の「φ数値」は、指定されている部位の直径(mm)を示す。「60°」は、Vノッチ角度が60°であることを示す。「0.175R」は、Vノッチ底半径が0.175mmであることを示す。
 電解チャージ法を用いて、各鋼種ごとに、試験片に対して種々の濃度の水素を導入した。電解チャージ法は次のとおり実施した。チオシアン酸アンモニウム水溶液中に試験片を浸漬した。試験片を浸漬した状態で、試験片の表面にアノード電位を発生させて水素を試験片内に取り込んだ。
 試験片内に水素を導入した後、試験片表面に亜鉛めっき被膜を形成し、試験片中の水素の散逸を防止した。続いて、試験片のVノッチ断面に対して公称応力1080MPaの引張応力が負荷されるように一定加重を負荷する定荷重試験を実施した。試験中に破断した試験片、及び破断しなかった試験片に対して、ガスクロマトグラフ装置を用いた昇温分析法を実施して、試験片中の水素量を測定した。測定後、各試験番号において、破断しなかった試験片のうちの最大水素量を限界拡散性水素量Hcと定義した。
 さらに、JIS G4053(2008)のSCM435に相当する化学組成を有する鋼lの限界拡散水素量を、限界拡散性水素量比HRの基準(Href)とした。限界拡散性水素量Hrefを基準として、式(B)を用いて限界拡散性水素量比HRを求めた。
 HR=Hc/Href (B)
 HRが1.00よりも高ければ、耐水素脆化特性に優れると判断した。
 [試験結果]
 表2に試験結果を示す。
 試験番号1~6の圧延棒線の化学組成は適切であり、fn1は式(1)を満たし、fn2は式(2)を満たした。さらに、製造条件が適切であった。そのため、マトリクス組織において、初析フェライト及びパーライトの総面積率が90%以上であり、初析フェライトの面積率は30%以上であった。引張強度は700MPa以下であった。その結果、これらの圧延棒線は優れた冷間加工性を有した。
 さらに、冷間鍛造調質品を模擬した、これらの圧延棒線の調質処理試験片では、焼戻し後のビッカース硬さがいずれも320HV以上であり、1000MPa以上の引張強度に相当した。さらに、疲労強度は550MPa以上、HRは1.00を超え、優れた疲労強度及び耐水素脆化特性を示した。
 一方、試験番号7のMn含有量は高すぎた。そのため、HRが1.00以下であり、耐水素脆化特性が低かった。
 試験番号8では、fn1が式(1)の下限未満であった。そのため、435℃の焼戻し温度で焼戻しを実施してもビッカース硬さが320HV未満となった。そのため、疲労強度が550MPa未満であった。
 試験番号9では、fn1が式(1)の上限を超えた。そのため、マトリクス組織がフェライト及びベイナイトからなり、圧延棒線の引張強度が900MPaを超えた。その結果、圧延棒線の冷間加工性が低かった。
 試験番号10及び11では、fn2が式(2)を満たさなかった。そのため、疲労強度が550MPa未満であった。さらに、HRが1.00以下となり、耐水素脆化特性が低かった。
 [試験方法]
 鋼種a及び鋼種dのブルームを複数製造した。ブルームを表3に示す加熱温度T1(℃)で加熱した後、分塊圧延を実施して、横断面が162mm×162mmのビレットを製造した。ビレットを表3に示す製造条件(加熱温度T2、仕上げ温度T3、加工速度Z、冷却速度)で直径20mmの丸棒を製造した。
Figure JPOXMLDOC01-appb-T000003
 製造された丸棒に対して、実施例1と同様の方法で、ミクロ組織観察試験、引張試験、及び、冷間加工性評価試験を実施した。
 [評価結果]
 表3に評価結果を示す。試験番号13及び試験番号19では、分塊圧延工程及び仕上げ圧延工程の製造条件(加熱温度T1、加熱温度T2、仕上げ温度T3、加工速度Z、冷却速度)がいずれも適切であった。そのため、マトリクス組織において、初析フェライト及びパーライトの総面積率が90%以上であり、初析フェライトの面積率は30%以上であった。引張強度TSは700MPa以下であった。その結果、冷間加工性に優れた。
 一方、試験番号14及び試験番号20では、分塊圧延時の加熱温度T1が低すぎた。その結果、冷間加工性が低かった。加熱温度T1が低すぎ、粗大な介在物が固溶しきれなかったためと考えられる。
 試験番号15及び試験番号21では、加熱温度T2が高すぎた。そのため、引張強度が700MPaを超え、冷間加工性が低かった。
 試験番号16及び試験番号22では、加工速度Zが遅すぎた。そのため、引張強度が700MPaを超え、冷間加工性が低かった。
 試験番号17及び試験番号23では、仕上げ温度T3が高すぎた。そのため、引張強度が700MPaを超え、冷間加工性が低かった。
 試験番号18及び試験番号24では、冷却速度が速すぎた。そのため、マトリクス組織がベイナイトを含み、引張強度が700MPaを超えた。その結果、冷間加工性が低かった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (4)

  1.  質量%で、
     C:0.22~0.40%、
     Si:0.35~1.5%、
     Mn:0.20~0.40%、
     P:0.020%未満、
     S:0.015%未満、
     Cr:0.70~1.45%、
     Al:0.005~0.060%、
     Ti:0.01~0.05%、
     B:0.0003~0.0040%、
     N:0.0020~0.0080%、
     O:0.0020%以下、
     Cu:0~0.50%、
     Ni:0~0.30%、
     Mo:0~0.05%、
     V:0~0.05%、及び、
     Nb:0~0.05を含有し、残部はFe及び不純物からなり、式(1)及び式(2)を満たす化学組成を有し、
     マトリクス組織において、初析フェライト及びパーライトの総面積率は90%以上であり、前記初析フェライトの面積率は30%以上であり、
     700MPa以下の引張強度を有する、冷間鍛造調質品用圧延棒線。
     0.50≦C+Si/10+Mn/5+5Cr/22≦0.85 (1)
     Si/Mn>1.0 (2)
     ここで、上記式における元素記号は、それぞれ対応する元素の含有量(質量%)が代入される。
  2.  請求項1に記載の冷間鍛造調質品用圧延棒線であって、
     前記化学組成は、
     Cu:0.02~0.50%、
     Ni:0.01~0.30%、
     Mo:0.005~0.05%、及び、
     V:0.005~0.05%からなる群から選択される1種又は2種以上を含有する、冷間鍛造調質品用圧延棒線。
  3.  請求項1又は請求項2に記載の冷間鍛造調質品用圧延棒線であって、
     前記化学組成は、
     Nb:0.0015~0.05%を含有する、冷間鍛造調質品用圧延棒線。
  4.  請求項1~請求項3のいずれか1項に記載の化学組成を有する素材を1200℃以上の温度に加熱した後、分塊圧延を実施してビレットを製造する分塊圧延工程と、
     前記ビレットを1050℃以下の温度に加熱した後、仕上げ圧延を実施して圧延棒線を製造する仕上げ圧延工程とを備え、
     前記仕上げ圧延工程は、
     前記ビレットの表面温度が750~850℃の範囲において、式(3)で定義される加工速度Zを5~15/秒として前記ビレットを仕上げ圧延して前記圧延棒線を製造する工程と、
     前記圧延完了直後から500℃までの冷却速度を0.2~5.0℃/秒として、前記圧延棒線を冷却する工程とを含む、冷間鍛造調質品用圧延棒線の製造方法。
     Z=-ln(1-R)/t (3)
     ここで、式(3)中のRは仕上げ圧延での断面減少率(%)であり、式(4)で定義される。tは仕上げ圧延時間(秒)である。
     R=(A0-A)/A0 (4)
     式(4)中のA0は、仕上げ圧延前の前記ビレットの断面積(mm2)であり、Aは、仕上げ圧延後の前記圧延棒線の断面積(mm2)である。
     
PCT/JP2016/085854 2015-12-04 2016-12-02 冷間鍛造調質品用圧延棒線 WO2017094870A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187017041A KR102090196B1 (ko) 2015-12-04 2016-12-02 냉간 단조 조질품용 압연 봉선
EP16870805.5A EP3385400A4 (en) 2015-12-04 2016-12-02 ROLLED WIRE FOR COLD-FORGED, THERMALLY-FINISHED ARTICLES
JP2017554193A JP6497450B2 (ja) 2015-12-04 2016-12-02 冷間鍛造調質品用圧延棒線
CN201680070826.2A CN108368575B (zh) 2015-12-04 2016-12-02 冷锻调质品用轧制线棒
US15/781,002 US20180347019A1 (en) 2015-12-04 2016-12-02 Rolled Rod for Cold-Forged Thermally Refined Article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-237721 2015-12-04
JP2015237721 2015-12-04
JP2016-021984 2016-02-08
JP2016021984 2016-02-08

Publications (1)

Publication Number Publication Date
WO2017094870A1 true WO2017094870A1 (ja) 2017-06-08

Family

ID=58797450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085854 WO2017094870A1 (ja) 2015-12-04 2016-12-02 冷間鍛造調質品用圧延棒線

Country Status (6)

Country Link
US (1) US20180347019A1 (ja)
EP (1) EP3385400A4 (ja)
JP (1) JP6497450B2 (ja)
KR (1) KR102090196B1 (ja)
CN (1) CN108368575B (ja)
WO (1) WO2017094870A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819198B2 (ja) * 2016-02-08 2021-01-27 日本製鉄株式会社 冷間鍛造調質品用圧延棒線
KR102314433B1 (ko) * 2019-12-17 2021-10-19 주식회사 포스코 우수한 수소취성 저항성을 가지는 고강도 냉간압조용 선재 및 그 제조방법
JP2023507640A (ja) * 2019-12-20 2023-02-24 ポスコホールディングス インコーポレーティッド 球状化熱処理性に優れた線材及びその製造方法
WO2021125407A1 (ko) * 2019-12-20 2021-06-24 주식회사 포스코 구상화 열처리성이 우수한 선재 및 그 제조방법
KR102437909B1 (ko) * 2020-11-06 2022-08-30 주식회사 삼원강재 냉간 압조용 강재 및 그 제조 방법
CN113481427B (zh) * 2021-04-13 2022-06-03 江阴兴澄特种钢铁有限公司 一种连铸坯生产冷镦模块用中碳低合金CrMnSiB系钢锻、轧制棒材及其制造方法
CN113462956B (zh) * 2021-05-25 2022-06-14 上海大学 一种大截面高淬透性高强度中锰锻钢及其制备方法
CN113621866A (zh) * 2021-06-30 2021-11-09 中钢集团邢台机械轧辊有限公司 一种用于轧制电池极片的支承辊制造方法
CN114951573B (zh) * 2022-04-26 2024-04-02 江苏省沙钢钢铁研究院有限公司 12.9级紧固件用盘条及其生产方法
CN114790532B (zh) * 2022-06-22 2022-09-02 江苏省沙钢钢铁研究院有限公司 一种合金耐蚀钢筋及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194999A (ja) * 1996-01-19 1997-07-29 Sumitomo Metal Ind Ltd フェライト・パーライト型非調質鋼
JPH1129842A (ja) * 1997-07-15 1999-02-02 Sumitomo Metal Ind Ltd フェライト・パーライト型非調質鋼
JP2006307272A (ja) * 2005-04-27 2006-11-09 Kobe Steel Ltd 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼およびその製法
JP2007277705A (ja) * 2006-03-15 2007-10-25 Kobe Steel Ltd 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド
JP2009527638A (ja) * 2005-12-27 2009-07-30 ポスコ 冷間加工性及び焼入れ性に優れた鋼線材、及びその製造方法
JP2010196094A (ja) * 2009-02-24 2010-09-09 Aichi Steel Works Ltd 浸炭用鋼
JP2012237052A (ja) * 2011-04-28 2012-12-06 Jfe Steel Corp 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼とその製造方法
JP2013227602A (ja) * 2012-04-24 2013-11-07 Kobe Steel Ltd 冷間加工用機械構造用鋼及びその製造方法
JP2014148739A (ja) * 2013-01-10 2014-08-21 Kobe Steel Ltd 冷間加工性と加工後の表面硬さに優れる熱延鋼板
JP2015189987A (ja) * 2014-03-27 2015-11-02 株式会社神戸製鋼所 優れた冷間鍛造性を有し、浸炭処理時の異常粒発生が抑制可能な肌焼鋼
WO2016080308A1 (ja) * 2014-11-18 2016-05-26 新日鐵住金株式会社 冷間鍛造部品用圧延棒鋼または圧延線材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104945A (ja) 1995-10-05 1997-04-22 Kobe Steel Ltd 冷間加工性および耐遅れ破壊性に優れた高強度ボルト用鋼、高強度ボルトの製造方法および高強度ボルト
JP3817105B2 (ja) 2000-02-23 2006-08-30 新日本製鐵株式会社 疲労特性の優れた高強度鋼およびその製造方法
JP4441434B2 (ja) * 2005-04-11 2010-03-31 新日本製鐵株式会社 耐遅れ破壊特性に優れた高強度ボルトの製造方法
CN101405418B (zh) * 2006-03-15 2012-07-11 株式会社神户制钢所 断裂分离性优异的断裂分离型连杆用轧制材,断裂分离性优异的断裂分离型连杆用热锻零件及断裂分离型连杆
JP5608145B2 (ja) 2011-01-18 2014-10-15 株式会社神戸製鋼所 耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼および高強度ボルト
JP5674620B2 (ja) * 2011-10-07 2015-02-25 株式会社神戸製鋼所 ボルト用鋼線及びボルト、並びにその製造方法
JP6031022B2 (ja) * 2013-12-02 2016-11-24 株式会社神戸製鋼所 耐遅れ破壊性に優れたボルト用鋼線および高強度ボルト並びにそれらの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194999A (ja) * 1996-01-19 1997-07-29 Sumitomo Metal Ind Ltd フェライト・パーライト型非調質鋼
JPH1129842A (ja) * 1997-07-15 1999-02-02 Sumitomo Metal Ind Ltd フェライト・パーライト型非調質鋼
JP2006307272A (ja) * 2005-04-27 2006-11-09 Kobe Steel Ltd 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼およびその製法
JP2009527638A (ja) * 2005-12-27 2009-07-30 ポスコ 冷間加工性及び焼入れ性に優れた鋼線材、及びその製造方法
JP2007277705A (ja) * 2006-03-15 2007-10-25 Kobe Steel Ltd 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド
JP2010196094A (ja) * 2009-02-24 2010-09-09 Aichi Steel Works Ltd 浸炭用鋼
JP2012237052A (ja) * 2011-04-28 2012-12-06 Jfe Steel Corp 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼とその製造方法
JP2013227602A (ja) * 2012-04-24 2013-11-07 Kobe Steel Ltd 冷間加工用機械構造用鋼及びその製造方法
JP2014148739A (ja) * 2013-01-10 2014-08-21 Kobe Steel Ltd 冷間加工性と加工後の表面硬さに優れる熱延鋼板
JP2015189987A (ja) * 2014-03-27 2015-11-02 株式会社神戸製鋼所 優れた冷間鍛造性を有し、浸炭処理時の異常粒発生が抑制可能な肌焼鋼
WO2016080308A1 (ja) * 2014-11-18 2016-05-26 新日鐵住金株式会社 冷間鍛造部品用圧延棒鋼または圧延線材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385400A4 *

Also Published As

Publication number Publication date
JPWO2017094870A1 (ja) 2018-08-16
EP3385400A1 (en) 2018-10-10
KR20180082581A (ko) 2018-07-18
CN108368575B (zh) 2020-07-28
US20180347019A1 (en) 2018-12-06
CN108368575A (zh) 2018-08-03
EP3385400A4 (en) 2019-05-15
JP6497450B2 (ja) 2019-04-10
KR102090196B1 (ko) 2020-03-17

Similar Documents

Publication Publication Date Title
JP6497450B2 (ja) 冷間鍛造調質品用圧延棒線
JP6819198B2 (ja) 冷間鍛造調質品用圧延棒線
KR101965520B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
JP5811282B2 (ja) 冷間鍛造用丸鋼材
KR101965521B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
WO2015012357A1 (ja) 高強度油井用鋼材および油井管
JP6103156B2 (ja) 低合金油井用鋼管
JP5005543B2 (ja) 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法
JP6384626B2 (ja) 高周波焼入れ用鋼
JP2010168624A (ja) 高周波焼入れ用圧延鋼材およびその製造方法
KR20190028757A (ko) 고주파 담금질용 강
JP6679935B2 (ja) 冷間加工部品用鋼
EP3330398B1 (en) Steel pipe for line pipe and method for manufacturing same
JP2012193404A (ja) 継目無鋼管およびその製造方法
JP5482342B2 (ja) 直接切削用熱間圧延鋼材およびその製造方法
JP5459062B2 (ja) 高周波焼入れ用圧延鋼材およびその製造方法
JP6614349B2 (ja) 圧延線材
JP6477917B2 (ja) 高強度ボルト
JP2019218584A (ja) ボルト
JP5459065B2 (ja) 高周波焼入れ用圧延鋼材およびその製造方法
JP6459704B2 (ja) 冷間鍛造部品用鋼
JP2019218585A (ja) 浸炭用鋼及び部品
JP7368723B2 (ja) 浸炭鋼部品用鋼材
JP2024001480A (ja) 鋼材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187017041

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017041

Country of ref document: KR