WO2017094869A1 - ガラス - Google Patents

ガラス Download PDF

Info

Publication number
WO2017094869A1
WO2017094869A1 PCT/JP2016/085853 JP2016085853W WO2017094869A1 WO 2017094869 A1 WO2017094869 A1 WO 2017094869A1 JP 2016085853 W JP2016085853 W JP 2016085853W WO 2017094869 A1 WO2017094869 A1 WO 2017094869A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
terms
less
plate thickness
glass
Prior art date
Application number
PCT/JP2016/085853
Other languages
English (en)
French (fr)
Inventor
研輔 永井
中島 哲也
裕 黒岩
博之 土屋
谷田 正道
小池 章夫
学 西沢
一男 坪田
俊英 栗原
秀成 鳥居
Original Assignee
旭硝子株式会社
株式会社坪田ラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社, 株式会社坪田ラボ filed Critical 旭硝子株式会社
Priority to EP16870804.8A priority Critical patent/EP3385234B1/en
Priority to JP2017554192A priority patent/JP7175610B2/ja
Priority to PL16870804T priority patent/PL3385234T3/pl
Priority to CN201680070737.8A priority patent/CN108430941B/zh
Publication of WO2017094869A1 publication Critical patent/WO2017094869A1/ja
Priority to US15/995,379 priority patent/US10865134B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the present invention relates to glass. More specifically, the present invention relates to a wavelength-selective transmissive glass that transmits light in a specific wavelength region and has low transmittance for light other than the specific wavelength region.
  • Patent Document 1 a glass that cuts 98% or more of a wide area of ultraviolet rays is known.
  • Myopia includes refractive myopia and axial myopia, and many are axial myopia.
  • myopia progresses with the extension of the axial length, and the extension is irreversible.
  • children's outdoor activities that is, outdoor activities under the sunlight, can be a factor that suppresses the progress of myopia.
  • UVB light having a wavelength of 280 to 315 nm
  • UVB light having a wavelength of 280 to 315 nm
  • the present invention has been made in view of the above-described problems, and transmits light in a specific wavelength range that exhibits an effect of suppressing the extension of the axial length, and has low transmittance for light other than the specific wavelength range.
  • An object of the present invention is to provide a glass having wavelength selective transparency.
  • the present invention has a light transmittance T of more than 315 nm and a wavelength of not more than 400 nm represented by the following formula: T more than 315 nm and not more than 400 nm is 1% or more in terms of a plate thickness of 6 mm.
  • T more than 315 nm and not more than 400 nm is 1% or more in terms of a plate thickness of 6 mm.
  • a wavelength-selective transmissive glass having a light transmittance T of 315 nm or less at a wavelength of 315 nm or less and 60% or less in terms of a plate thickness of 6 mm.
  • a k is a weighting coefficient at the wavelength k (nm) for calculating T (light transmittance) defined by ISO-9050: 2003, and T k is at the wavelength k (nm). It is a transmittance in terms of a plate thickness of 6 mm.
  • the light transmittance T 360-400 nm at a wavelength of 360 to 400 nm represented by the following formula is preferably 1% or more in terms of a plate thickness of 6 mm.
  • a k is a weighting coefficient at the wavelength k (nm) for calculating the light transmittance T defined by ISO-9050: 2003, and T k is a plate at the wavelength k (nm)).
  • the transmittance in terms of thickness 6 mm.
  • the visible light transmittance T 400-760 nm having a wavelength of 400 to 760 nm represented by the following formula is preferably 1% or more in terms of a plate thickness of 6 mm.
  • a ′ k is a weighting coefficient at the wavelength k (nm) for calculating the visible light transmittance (D65 light source) T_D65 defined by ISO-9050: 2003, and T k is the wavelength k It is a transmittance in terms of a plate thickness of 6 mm in (nm).
  • the wavelength selective transmission glass of the present invention preferably has a total iron content expressed as Fe 2 O 3 of 0.001 to 10% by mass and a value of Fe-Redox of 5 to 80%.
  • the wavelength selective transmission glass of the present invention contains at least one element selected from the group consisting of Au, Ag, Sn, rare earth elements (excluding La and Y), Ti, W, Mn, As, Sb, and U. It is preferable to contain 0.1 mass ppm or more and 5 mass% or less by the total amount of oxide conversion.
  • the wavelength selective transmission glass of the present invention may contain at least one element selected from the group consisting of Ce, Sn, and Ti in a total amount of 0.1 ppm to 5% by mass in terms of oxide. preferable.
  • the wavelength selective transmission glass of the present invention contains at least one element selected from the group consisting of Au, Ag, Sn, rare earth elements (excluding La and Y), W, Mn, As, Sb, and U. It is preferable to contain 0.1 mass ppm or more and 5 mass% or less by the total amount of oxide conversion.
  • the wavelength selective transmission glass of the present invention preferably contains at least one colloid of a metal element selected from the group consisting of Groups 1 to 14 in order to cause surface plasmon absorption by the metal colloid.
  • the colloid contained for this purpose is preferably a colloidal particle having a particle size of 1 ⁇ m or less.
  • the metal element is preferably at least one selected from the group consisting of Ag, Au, and Cu.
  • the wavelength selective transmission glass of the present invention preferably has a main wavelength Dw measured using an A light source (standard light source A defined by CIE) of 380 to 700 nm in terms of a plate thickness of 6 mm.
  • a light source standard light source A defined by CIE
  • the main wavelength Dw measured using the A light source is preferably 380 to 480 nm in terms of a plate thickness of 6 mm.
  • the main wavelength Dw measured using the A light source is preferably 460 to 510 nm in terms of a plate thickness of 6 mm.
  • the main wavelength Dw measured using an A light source is preferably 500 to 570 nm in terms of a plate thickness of 6 mm.
  • the main wavelength Dw measured using an A light source is preferably 580 to 700 nm in terms of a plate thickness of 6 mm.
  • the wavelength selective transmission glass of the present invention is expressed in mass% based on oxide, and has a glass matrix composition of SiO 2 : 60 to 80%, Al 2 O 3 : 0 to 7%, MgO: 0 to 10 %, CaO: 4 to 20%, Na 2 O: 7 to 20%, and K 2 O: 0 to 10%.
  • the wavelength selective transmission glass of the present invention is expressed in terms of mass% based on oxide, and has a glass matrix composition of SiO 2 : 45 to 80%, Al 2 O 3 : more than 7% and 30% or less, B 2 O 3 : 0-15%, MgO: 0-15%, CaO: 0-6%, Na 2 O: 7-20%, K 2 O: 0-10%, ZrO 2 : 0-10% Is preferred.
  • the wavelength-selective transmissive glass of the present invention is expressed in terms of mass% based on oxide, and has a glass matrix composition of SiO 2 : 45 to 70%, Al 2 O 3 : 10 to 30%, B 2 O 3 : 0 to 15%, at least one selected from the group consisting of MgO, CaO, SrO and BaO: 5 to 30%, at least one selected from the group consisting of Li 2 O, Na 2 O and K 2 O: 0% It is preferable to contain 7% or less.
  • the wavelength selective transmission glass of the present invention can selectively transmit light having a wavelength of more than 315 nm and not more than 400 nm.
  • the effect of suppressing the extension of the axial length that is, the effect of preventing axial myopia is expected.
  • light in other wavelength ranges specifically, light transmittance at a wavelength of 315 nm or less can be kept low, and various damages to the eye due to light in the wavelength range can be suppressed.
  • the wavelength-selective transmissive glass of the present invention can be used for building material window glass, automotive window glass, liquid crystal display (LCD), plasma display (PDP), organic EL display (OLED), field emission display ( Front panel of flat panel display (FPD) such as FED), cover glass installed on the front of these flat panel display (FPD), cover glass for chemical strengthening, optical filter glass, for 3D video and virtual space video It is suitable for goggles and glasses for virtual reality such as glass sheets.
  • LCD liquid crystal display
  • PDP plasma display
  • OLED organic EL display
  • FPD field emission display
  • FPD field emission display
  • cover glass installed on the front of these flat panel display (FPD), cover glass for chemical strengthening, optical filter glass, for 3D video and virtual space video
  • goggles and glasses for virtual reality such as glass sheets.
  • the glass of the present invention is a wavelength selective transmission glass that transmits light in a specific wavelength range and has low transmittance for light outside the specific wavelength range.
  • the specific wavelength region in the present invention is a wavelength greater than 315 nm and not greater than 400 nm. It is required to transmit light in this wavelength range, as described above, by receiving the light transmitted through the glass, the effect of suppressing the extension of the axial length, that is, preventing axial myopia. This is because an effect is expected.
  • the light transmittance at a wavelength of 315 nm or less is low, various damages to the eye due to light in the wavelength region can be suppressed.
  • the wavelength-selective transmissive glass of the present invention has a light transmittance T of more than 315 nm and not more than 400 nm represented by the following formula : 1% or more in terms of a plate thickness of 6 to 315 nm .
  • a k is a weighting coefficient at the wavelength k (nm) for calculating T (light transmittance) defined by ISO-9050: 2003, and T k is at the wavelength k (nm). It is a transmittance in terms of a plate thickness of 6 mm.
  • the above formula uses only the weighting coefficient in the wavelength range of more than 315 nm and not more than 400 nm among the weighting coefficients for calculating T (light transmittance) defined in ISO-9050: 2003.
  • the reason why the transmittance is equivalent to a plate thickness of 6 mm is that it is a general plate thickness of window glass for building materials, which is one of the main uses of the wavelength selective transmission glass of the present invention.
  • the wavelength-selective transmissive glass of the present invention has a light transmittance T of more than 315 nm and not more than 400 nm is 1% or more in terms of a plate thickness of 6 mm, thereby preventing an increase in the axial length, ie, preventing axial myopia. Expected to be effective.
  • the light transmittance T of more than 315 nm and 400 nm or less is preferably 3% or more, more preferably 5% or more, more preferably 10% or more in terms of a plate thickness of 6 mm. Is more preferably 20% or more, more preferably 30% or more, more preferably 40% or more, more preferably 60% or more, and particularly preferably 80% or more. .
  • T 315 nm considering the balance of the optical characteristics of the super-400nm or less and T 315 nm or less and T 360-400Nm and T 400-760Nm, at T 315 nm ultra 400nm or less thickness 6mm conversion is preferably 18 to 70%, 30 ⁇ 69% is more preferable, and 50 to 68% is more preferable.
  • the light transmittance T of 315 nm or less represented by the following formula is 315 nm or less, which is 60% or less in terms of a plate thickness of 6 mm.
  • a k and T k are the same as above. Therefore, the above formula uses only the weighting coefficient in the wavelength range of 300 to 315 nm among the weighting coefficients for calculating T (light transmittance) defined in ISO-9050: 2003, and in this wavelength range, The sum of the product of the weighting coefficient (A k ) and the transmittance (T k ) in terms of the plate thickness of 6 mm divided by the sum of the weighting factors in this wavelength range.
  • the wavelength selective transmission glass of the present invention has a light transmittance T of 315 nm or less of 60% or less in terms of a plate thickness of 6 mm, so that various eye damages caused by light in the wavelength region can be suppressed.
  • the light transmittance T 315 nm or less is preferably 45% or less in terms of a plate thickness of 6 mm, more preferably 30% or less, more preferably 15% or less, and more preferably 5% or less. Is more preferably 1% or less, and particularly preferably 0.8% or less. Further, it is preferably 0.5% or less, more preferably 0.3% or less, further preferably 0.1% or less, and most preferably 0%.
  • the light transmittance T 360-400 nm at a wavelength of 360 to 400 nm represented by the following formula is preferably 1% or more in terms of a plate thickness of 6 mm.
  • the above formula uses only the weighting coefficient in the wavelength range of 360 to 400 nm among the weighting coefficients for calculating T (light transmittance) defined in ISO-9050: 2003, and in this wavelength range, The sum of the product of the weighting coefficient (A k ) and the transmittance (T k ) in terms of the plate thickness of 6 mm divided by the sum of the weighting factors in this wavelength range. It is an average value of the rate (T k ).
  • the wavelength selective transmission glass of the present invention has an optical transmittance T 360-400 nm of 1% or more in terms of a plate thickness of 6 mm, so that the effect of suppressing the extension of the axial length, ie, axial myopia is prevented.
  • the effect is further expected. This is because light in the wavelength range of 360 to 400 nm in the wavelength range of more than 315 nm and less than 400 nm is particularly expected to have an effect of suppressing the extension of the axial length, that is, an effect of preventing axial myopia.
  • the light transmittance T 360-400 nm is preferably 5% or more, more preferably 10% or more, more preferably 20% or more in terms of a plate thickness of 6 mm. More preferably, it is more preferably 30% or more, more preferably 40% or more, more preferably 60% or more, and particularly preferably 80% or more. In consideration of suppressing excessive incidence, it is preferably 92% or less.
  • T 360-400nm in thickness 6mm terms preferably from 19 to 92%, 50 -91% is more preferable, and 70-90% is more preferable.
  • the transmittance of visible light and infrared light is not particularly limited, and may be appropriately selected depending on the application.
  • the wavelength selective transmittance glass of the present invention has a visible light transmittance T 400-760 nm of a wavelength of 400 to 760 nm represented by the following formula of 1% or more in terms of a plate thickness of 6 mm. Is preferred.
  • T k is the same as above.
  • a ′ k is a weighting coefficient at the wavelength k (nm) for calculating the visible light transmittance (D65 light source) T_D65 defined in ISO-9050: 2003. Therefore, the above formula uses only the weighting coefficient in the wavelength range of 400 to 780 nm among the weighting coefficients for calculating the visible light transmittance (D65 light source) T_D65 defined by ISO-9050: 2003.
  • the sum of the product of the weighting coefficient (A k ) in the range and the transmittance (T k ) in terms of 6 mm thickness is divided by the sum of the weighting coefficients in this wavelength range, and the thickness after weighting is 6 mm. It is the average value of the transmittance
  • the visible light transmittance T 400-760 nm is 1% or more in terms of the plate thickness 6 mm in terms of the visible light transmittance T 400-760 nm. Therefore, compared with resin, metal, and wall material, it becomes easy to recognize gloss and texture peculiar to glass, and design property can be improved.
  • the more preferable range of the visible light transmittance T 400-760 nm varies depending on the use of the wavelength-selective transparent glass of the present invention. However, in the case where the visible light transmittance T is required to transmit visible light, the visible light transmittance T 400-760 nm. Is more preferably 10% or more, more preferably 20% or more, more preferably 40% or more, more preferably 60% or more, and more preferably 80% or more. It is preferably 90% or more.
  • T 400-760nm in thickness 6mm terms is preferably from 40 to 92%, at 60 to 92 % Is more preferable, and 80 to 92% is more preferable.
  • the color tone of the wavelength-selective transmissive glass of the present invention can be appropriately selected according to its use.
  • the main wavelength Dw measured using the A light source is used as an index of the color tone of the glass.
  • the main wavelength Dw measured using the A light source is 380 to 700 nm in terms of a plate thickness of 6 mm because it includes various color tones depending on the application.
  • a glass having a main wavelength Dw of 380 to 480 nm is a violet glass
  • a glass having a main wavelength Dw of 460 to 510 nm is a blue glass
  • a glass having a main wavelength Dw of 500 to 570 nm is a green glass.
  • the glass having a main wavelength Dw of 580 to 700 nm is a red glass.
  • the light transmittance in the wavelength selective transmission glass of the present invention includes the iron content of the glass, and divalent iron (Fe 2+ ) and trivalent iron (Fe 3+ ) in the iron contained in the glass.
  • the ratio of divalent iron (Fe 2+ ) to trivalent iron (Fe 3+ ) in the iron contained in the glass affects the transmittance in the wavelength region of 300 to 315 nm of light.
  • Fe-Redox is used as an index of the ratio of divalent iron (Fe 2+ ) to trivalent iron (Fe 3+ ) in iron contained in glass.
  • the Fe-Redox a ratio of Fe 2+ content in terms of Fe 2 O 3 to the total iron content in terms of Fe 2 O 3.
  • the wavelength selective transmission glass of the present invention preferably has a total iron content expressed as Fe 2 O 3 of 0.001 to 10% by mass and a value of Fe-Redox of 5 to 80%.
  • the solubility and defoaming property of the glass in the large kiln are improved. More preferably, it is 0.01 mass% or more, More preferably, it is 0.03 mass% or more, Most preferably, it is 0.04 mass% or more, Furthermore, 0.05 mass% or more.
  • the total iron content represented by Fe 2 O 3 is 10% by mass or less, there is an effect of facilitating light in the near ultraviolet wavelength region. Moreover, since it becomes easy to obtain the visibility of the back surface of the glass, it becomes easier to recognize the gloss and texture peculiar to glass as compared with resins, metals, and wall materials, and the design can be improved. More preferably, it is 7 mass% or less, More preferably, it is 5 mass% or less, Most preferably, it is 2 mass% or less. Furthermore, it is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and still more preferably 0.15% by mass or less in terms of mass% based on oxide.
  • Fe-Redox When Fe-Redox is 5% or more, the defoaming property in a large kiln is improved and the heat shielding property of the glass is improved. 7% or more is more preferable, 10% or more is more preferable, 15% or more is more preferable, 25% or more is more preferable, 30% or more is more preferable, More preferably, it is 35% or more, and most preferably 40% or more.
  • Fe-Redox of 80% or less facilitates the passage of light in the near-ultraviolet wavelength region, improves the solubility of glass raw materials during production in large kilns, and reduces the fuel used during melting. it can. More preferably, it is 75% or less, more preferably 70% or less, more preferably 65% or less, and most preferably 60% or less.
  • the wavelength selective transmission glass of the present invention preferably contains a trace component having an action of absorbing light having a wavelength of 315 nm or less.
  • a trace component having an action of absorbing light having a wavelength of 315 nm or less include Au, Ag, Sn, rare earth elements (excluding La and Y), Ti, W, Mn, As, Sb, and U.
  • the wavelength selective transmission glass of the present invention contains at least one element selected from the group consisting of Au, Ag, Sn, rare earth elements (excluding La and Y), Ti, W, Mn, As, Sb, and U. It is preferable to contain 0.1 mass ppm or more and 5 mass% or less by the total amount of oxide conversion.
  • the effect of absorbing light with a wavelength of 315 nm or less is exhibited by containing the above components in a total amount of 0.1 mass ppm or more. More preferably, the above components are contained in a total amount of 1 mass ppm or more, and more preferably 5 mass ppm or more. On the other hand, when the total content of the above components is 5% by mass or less, the stability of the glass represented by water resistance and chemical resistance is not deteriorated, and the raw material cost in a large kiln increases. This makes it difficult to control and stabilize the color of the glass during production. More preferably, the above components are contained in a total amount of 2% by mass or less, and more preferably 1% by mass or less.
  • the wavelength-selective transmissive glass of the present invention preferably contains at least one element selected from the group consisting of Ce, Sn, and Ti in a total amount of 0.1 mass ppm or more in terms of oxide, preferably 1 mass ppm. It is more preferable to contain above, and it is further more preferable to contain 5 mass ppm or more.
  • the above components are preferably contained in a total amount of 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less. preferable.
  • CeO 2 is 0.1 to 0.8%, TiO 2 is 0 to 0.6%, and SnO 2 is 0 to 0.6% in terms of mass% based on oxide. More preferably, CeO 2 is 0.2 to 0.6%, TiO 2 is 0 to 0.4%, SnO 2 is 0 to 0.4%, and CeO 2 is 0.35 to More preferably, it is 0.45%, TiO 2 is 0 to 0.2%, and SnO 2 is 0 to 0.2%.
  • CeO 2 / (CeO 2 + TiO 2 + Fe 2 O 3 ) is 0.2 or more, preferably 0.3 or more, more preferably 0.4 or more, and further preferably When it is 0.5 or more, it absorbs light having a wavelength of 315 nm or less while maintaining a light transmittance T 360-400 nm which is highly effective in suppressing the extension of the axial length, and visible light transmittance T 400-760 nm. It is preferable because it has an effect of maintaining the above. Further, 0.95 or less, preferably 0.90 or less, more preferably 0.85 or less, further preferably 0.8 or less, and still more preferably 0.75 or less, is preferable because coloring can be suppressed.
  • CeO 2 + 3 ⁇ TiO 2 + 6 ⁇ SnO 2 is preferably 0.1 to 2.0 for the effect of maintaining the visible light transmittance T 400-760 nm and the effect of suppressing coloring, and 0.3 Is more preferably 1.5 to 1.5, further preferably 0.41 to 1.2, more preferably 0.43 or more, further preferably 0.45 or more, and 0.9 or less, and further 0.7 or less, Further, it is preferably 0.55 or less, more preferably 0.5 or less.
  • the total iron content expressed by Fe 2 O 3 is 0.04 to 0.15% and CeO 2 is 0.35 to 0.45%, TiO 2 is 0 to 0.2%, SnO 2 is 0 to 0.2%, CeO 2 + 3 ⁇ TiO 2 + 6 ⁇ SnO 2 is 0.41 to 0.5. It is particularly preferable that Fe-Redox is 25 to 65%.
  • the wavelength selective transmission glass of the present invention is an oxide of at least one element selected from the group consisting of Au, Ag, Sn, rare earth elements (excluding La and Y), W, Mn, As, Sb, and U. It is preferable to contain 0.1 mass ppm or more, more preferably 1 mass ppm or more, and even more preferably 5 mass ppm or more. On the other hand, the total amount of the above components is preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
  • the wavelength selective transmission glass of the present invention preferably contains at least one colloid of a metal element selected from the group consisting of Groups 1 to 14 in order to cause surface plasmon absorption by the metal colloid.
  • the colloid to be contained for this purpose is preferably a colloidal particle having a particle size of 1 ⁇ m or less, more preferably 800 nm or less, more preferably 600 nm or less, more preferably 400 nm or less, and particularly preferably 300 nm or less.
  • the metal element is preferably at least one selected from the group consisting of Ag, Au, and Cu.
  • the wavelength selective transmission glass of the present invention may contain SO 3 , Cl, and F as a fining agent in a total amount of 1% or less, preferably 0.5% or less.
  • the wavelength selective transmission glass of the present invention contains Se, Co, Ti, Cr, V, other transition metal elements, etc. as a colorant in a total amount of 1% or less, preferably 0.5% or less. Also good.
  • the wavelength selective transmission glass of the present invention preferably has a moisture content in the glass of 90 to 800 ppm by mass.
  • the glass forming zone temperature is lowered and bending is facilitated.
  • the infrared absorption intensity is increased and the heat shielding performance is improved.
  • it is 800 ppm or less, the stability of the glass represented by water resistance and chemical resistance does not decrease, and the resistance to cracks and scratches does not decrease.
  • the glass mother composition of the wavelength-selective transmissive glass of the present invention can be appropriately selected according to its use.
  • the use of the wavelength selective transmission glass of the present invention is a window glass for building materials, a window glass for automobiles, a glass for optical filters, and the like, SiO 2 : 60 to 80%, Al 2 O 3 : 0 to 7%, MgO: 0 to 10%, CaO: 4 to 20%, Na 2 O: 7 to 20%, K 2 O: 0 to 10% Is preferred.
  • the phrase “not substantially contained” means that it is not contained except for inevitable impurities.
  • Inevitable impurities in the mother composition component of the present invention are, for example, preferably 0.08% or less, more preferably 0.05% or less, and even more preferably 0.03% or less.
  • SiO 2 65 to 75%, Al 2 O 3 : 0 to 5%, MgO: 0 to 6%, CaO: 5 to 12%, Na 2 O: 10 to 16%, K 2 O: 0 to 3%, It is particularly preferable to contain MgO + CaO: 5 to 15% and Na 2 O + K 2 O: 10 to 16%.
  • the glass base composition is expressed by mass% on an oxide basis, and SiO 2 : 45 to 80%, Al 2 O 3 : More than 7% and 30% or less, B 2 O 3 : 0 to 15%, MgO: 0 to 15%, CaO: 0 to 6%, Na 2 O: 7 to 20%, K 2 O: 0 to 10%, ZrO 2 : It is preferable to contain 0 to 10%.
  • the glass matrix composition is SiO 2 : 45 to 70%, Al 2 in terms of mass% based on oxide.
  • 2 O 3 10 to 30%
  • B 2 O 3 0 to 15%
  • Li 2 O, Na 2 O and K It is preferable to contain at least one selected from the group consisting of 2 O: 0% or more and 7% or less.
  • a desired molding method can be used according to the application.
  • examples of the molding method include a float method, a roll-out method, and a fusion method.
  • the wavelength selective transmission glass of the present invention may be a glass subjected to a tempering treatment such as a chemically tempered glass or a physically tempered glass, or may be a glass with a mesh.
  • the light transmittance (T 315 nm to 400 nm or less , T 360 to 400 nm , T 315 nm or less ) and the visible light transmittance (T 400 to 760 nm ) are converted to a plate thickness 6 mm transmittance.
  • the plate thickness of the wavelength-selective transmissive glass of the present invention is not limited to this, and the plate thickness can be appropriately selected according to the application.
  • the plate thickness is usually 6 mm.
  • the plate thickness is 1 to 5 mm.
  • the plate thickness is usually 0.05 to 0.7 mm.
  • the plate thickness is usually 0.01 to 4 mm.
  • the normal thickness of the FPD front plate is determined when evaluating light transmittance (T 315 nm to 400 nm or less , T 360 to 400 nm , T 315 nm or less ), and visible light transmittance (T 400 to 760 nm ). This is significantly different from the reference thickness (6 mm).
  • the light transmittance at an actual plate thickness ( T315 nm to 400 nm or less , T360 to 400 nm , T315 nm or less ) and the visible light transmittance ( T400 to 760 nm ) can also satisfy the above ranges. preferable.
  • glass materials generally used such as oxides are appropriately selected, the mixture is put into a platinum crucible, put into a 1600 ° C. resistance heating electric furnace, and melted for 3 hours. After defoaming and homogenization, it is poured into a mold material, kept at a temperature about 30 ° C. higher than the glass transition point for 1 hour or more, and then gradually cooled to room temperature at a cooling rate of 0.3 to 1 ° C. per minute.
  • the plate-shaped glass samples (plate thickness 6 mm) of Examples 1 to 29 were produced. Examples 1 to 29 are examples.
  • Fe-Redox was calculated from the spectrum curve of the glass sample measured with a spectrophotometer using the following equation (1).
  • Fe-Redox (%) -log e (T 1000 nm /91.4)/(Fe 2 O 3 amount ⁇ t ⁇ 20.79) ⁇ 100 (1).
  • T 1000 nm is the transmittance (%) at a wavelength of 1000 nm measured by a spectrophotometer (Perkin Elmer, Lambda 950), t is the thickness (cm) of the glass sample;
  • the light transmittance T 360-400Nm wavelength 360 ⁇ 400nm, wavelength 315nm or less following the light transmittance T 315nm, visible light transmittance at a wavelength of 400 ⁇ 760 nm T 400-760 nm and the dominant wavelength Dw were measured using a spectrophotometer (Perkin Elmer, Lambda 950).
  • Glasses of Examples are all wavelength 315nm ultra 400nm or less of the light transmittance T 315nm ultra 400nm or less is 1% or more, and, the light transmittance T 360-400Nm wavelength 360 ⁇ 400nm is not less than 1%, the wavelength 315nm
  • the following light transmittance T 315 nm or less was 60% or less, and the visible light transmittance T 400-760 nm at a wavelength of 400 to 760 nm was 1% or more.
  • the main wavelength Dw measured using the A light source was 380 to 700 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)

Abstract

本発明は、下記式で表される波長315nm超400nm以下の光透過率T315nm超400nm以下が板厚6mm換算で1%以上であり、下記式で表される波長315nm以下の光透過率T315nm以下が板厚6mm換算で60%以下である、波長選択透過性のガラスに関する。 (上記式中、Aは、ISO-9050:2003で規定されるT(光透過率)を算出するための、波長k(nm)における重み付け係数であり、Tは、波長k(nm)における板厚6mm換算の透過率である。)

Description

ガラス
 本発明は、ガラスに関する。より具体的には、特定の波長域の光を透過し、当該特定の波長域以外の光の透過率が低い、波長選択透過性のガラスに関する。
 自動車等の車輌用の窓ガラスや家屋、ビル等の建物に取り付けられる建材用の窓ガラスにおいて、紫外線の広域を98%以上カットするガラスが知られている(特許文献1)。
国際公開第2015/088026号
 近視には屈折近視と軸性近視があり、多くは軸性近視である。軸性近視においては、眼軸長の伸長に伴って近視が進行し、伸長は不可逆的である。近年、子供らが戸外活動、すなわち屋外の太陽光の下で、長い時間活動することで、近視の進行が抑制される要因となりうることが知られている。
 その一方で、眼は紫外線を受けることで様々な損傷を受けることが知られている。具体的には屋外等のUVB(波長280~315nmの光)は、角膜炎や白内障に影響を及ぼしやすいことが知られている。
 一方、特定の波長域の光を透過し、これ以外の波長域の光を透過しない、波長選択透過性のガラスはこれまでに存在していない。
 本発明は、上記課題に鑑みてなされたものであって、眼軸長の伸長を抑制する効果を奏する特定の波長域の光を透過し、当該特定の波長域以外の光の透過率が低い、波長選択透過性のガラスを提供することを目的とする。
 上記した目的を達成するため、本発明は、下記式で表される波長315nm超400nm以下の光透過率T315nm超400nm以下が板厚6mm換算で1%以上であり、下記式で表される波長315nm以下の光透過率T315nm以下が板厚6mm換算で60%以下である、波長選択透過性のガラスを提供する。
Figure JPOXMLDOC01-appb-M000006
 上記式中、Aは、ISO-9050:2003で規定されるT(光透過率)を算出するための、波長k(nm)における重み付け係数であり、Tは、波長k(nm)における板厚6mm換算の透過率である。
 本発明の波長選択透過性のガラスにおいて、下記式で表される波長360~400nmの光透過率T360-400nmが板厚6mm換算で1%以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000007
 上記式中、Aは、ISO-9050:2003で規定される光透過率Tを算出するための、波長k(nm)における重み付け係数であり、Tは、波長k(nm))における板厚6mm換算の透過率である。
 本発明の波長選択透過性のガラスにおいて、下記式で表される波長400~760nmの可視光透過率T400-760nmが板厚6mm換算で1%以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000008
 上記式中、A´は、ISO-9050:2003で規定される可視光透過率(D65光源)T_D65を算出するための、波長k(nm)における重み付け係数であり、Tは、波長k(nm)における板厚6mm換算の透過率である。
 本発明の波長選択透過性のガラスは、Feで表した全鉄含有量が0.001~10質量%であり、Fe―Redoxの値が5~80%であることが好ましい。
 本発明の波長選択透過性のガラスは、Au、Ag、Sn、希土類元素(La、Yを除く)、Ti、W、Mn、As、Sb、Uからなる群から選択される少なくとも1つの元素を酸化物換算の合量で0.1質量ppm以上5質量%以下含有することが好ましい。
 本発明の波長選択透過性のガラスは、Ce、Sn、Ti、からなる群から選択される少なくとも1つの元素を酸化物換算の合量で0.1質量ppm以上5質量%以下含有することが好ましい。
 また、本発明の波長選択透過性のガラスは、Au、Ag、Sn、希土類元素(La、Yを除く)、W、Mn、As、Sb、Uからなる群から選択される少なくとも1つの元素を酸化物換算の合量で0.1質量ppm以上5質量%以下含有することが好ましい。
 本発明の波長選択透過性のガラスは、金属コロイドによる表面プラズモン吸収を起こさせるために、1族から14族からなる群から選択される少なくとも1つの金属元素のコロイドを含有することが好ましい。この目的で含有させるコロイドは、粒径が1μm以下のコロイド粒子であると好ましい。また、金属元素は、Ag、Au、Cuからなる群から選択される少なくとも1つが好ましい。
 本発明の波長選択透過性のガラスは、A光源(CIE規定の標準光源A)を用いて測定した主波長Dwが板厚6mm換算で380~700nmであることが好ましい。
 本発明の波長選択透過性のガラスは、A光源を用いて測定した主波長Dwが板厚6mm換算で380~480nmであることが好ましい。
 また、本発明の波長選択透過性のガラスは、A光源を用いて測定した主波長Dwが板厚6mm換算で460~510nmであることが好ましい。
 また、本発明の波長選択透過性のガラスは、A光源を用いて測定した主波長Dwが板厚6mm換算で500~570nmであることが好ましい。
 また、本発明の波長選択透過性のガラスは、A光源を用いて測定した主波長Dwが板厚6mm換算で580~700nmであることが好ましい。
 また、本発明の波長選択透過性のガラスは、酸化物基準の質量%表示で、ガラス母組成として、SiO:60~80%、Al:0~7%、MgO:0~10%、CaO:4~20%、NaO:7~20%、KO:0~10%を含有することが好ましい。
 また、本発明の波長選択透過性のガラスは、酸化物基準の質量%表示で、ガラス母組成として、SiO:45~80%、Al:7%超30%以下、B:0~15%、MgO:0~15%、CaO:0~6%、NaO:7~20%、KO:0~10%、ZrO:0~10%を含有することが好ましい。
 また、本発明の波長選択透過性のガラスは、酸化物基準の質量%表示で、ガラス母組成として、SiO:45~70%、Al:10~30%、B:0~15%、MgO、CaO、SrOおよびBaOからなる群から選ばれる少なくとも1種:5~30%、LiO、NaOおよびKOからなる群から選ばれる少なくとも1種:0%以上7%以下を含有することが好ましい。
 本発明の波長選択透過性のガラスは、波長315nm超400nm以下の光を選択的に透過することができる。当該ガラスを透過した光を目が受けることにより、眼軸長の伸長を抑制する効果、すなわち、軸性近視を予防する効果が期待される。一方、それ以外の波長域の光、具体的には、波長315nm以下の光透過率を低く抑えることができるため、当該波長域の光による眼の様々な損傷を抑制することができる。
 上記の効果により、本発明の波長選択透過性のガラスは、建材用の窓ガラス、自動車用窓ガラス、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ(OLED)、フィールドエミッションディスプレイ(FED)などのフラットパネルディスプレイ(FPD)の前面板、あるいは、これらフラットパネルディスプレイ(FPD)の前面に設置するカバーガラス、化学強化用カバーガラス、光学フィルタガラス、また3次元映像や仮想空間映像用等のバーチャルリアリティー用のゴーグルやメガネや、そのガラスシートなどとして好適である。
 本発明のガラスは、特定の波長域の光を透過し、当該特定の波長域以外の光の透過率が低い、波長選択透過性のガラスである。本発明における特定の波長域とは、波長315nm超400nm以下である。この波長域の光を透過することが求められるのは、上述したように、ガラスを透過した光を目が受けることにより、眼軸長の伸長を抑制する効果、すなわち、軸性近視を予防する効果が期待されるからである。一方、波長315nm以下の光透過率が低いため、当該波長域の光による眼の様々な損傷を抑制することができる。
 本発明の波長選択透過性のガラスは、下記式で表される波長315nm超400nm以下の光透過率T315nm超400nm以下が板厚6mm換算で1%以上である。
Figure JPOXMLDOC01-appb-M000009
 上記式中、Aは、ISO-9050:2003で規定されるT(光透過率)を算出するための、波長k(nm)における重み付け係数であり、Tは、波長k(nm)における板厚6mm換算の透過率である。
 したがって、上記式は、ISO-9050:2003で規定されるT(光透過率)を算出するための重み付け係数のうち、315nm超400nm以下の波長範囲の重み付け係数のみを使用し、この波長範囲における、重み付け係数(A)と板厚6mm換算の透過率(T)と、の積の和を、この波長範囲における重み付け係数の和で割った値であり、重み付け後の板厚6mm換算の透過率(T)の平均値である。ここで、板厚6mm換算の透過率とするのは、本発明の波長選択透過性のガラスの主要な用途の一つである建材用の窓ガラスの一般的な板厚だからである。
 尚、ISO-9050:2003におけるAは波長kが5nm毎に規定されるため、上記式のシグマにおけるk=315超の際のAは、本発明においてはk=320nmの際のAとして扱うこととする。
 本発明の波長選択透過性のガラスは、光透過率T315nm超400nm以下が板厚6mm換算で1%以上であることにより、眼軸長の伸長を抑制する効果、すなわち、軸性近視を予防する効果が期待される。
 本発明の波長選択透過性のガラスは、光透過率T315nm超400nm以下が板厚6mm換算で3%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることがより好ましく、20%以上であることがより好ましく、30%以上であることがより好ましく、40%以上であることがより好ましく、60%以上がより好ましく、80%以上であることが特に好ましい。
 T315nm超400nm以下とT315nm以下とT360-400nmとT400-760nmとの光学特性のバランスと考慮すると、T315nm超400nm以下は板厚6mm換算で、18~70%が好ましく、30~69%がより好ましく、50~68%がさらに好ましい。
 本発明の波長選択透過性のガラスは、下記式で表される波長315nm以下の光透過率T315nm以下が板厚6mm換算で60%以下である、
Figure JPOXMLDOC01-appb-M000010
 上記式中、AおよびTは、上記と同様である。したがって、上記式は、ISO-9050:2003で規定されるT(光透過率)を算出するための重み付け係数のうち、300~315nmの波長範囲の重み付け係数のみを使用し、この波長範囲における、重み付け係数(A)と板厚6mm換算の透過率(T)と、の積の和を、この波長範囲における重み付け係数の和で割った値であり、重み付け後の板厚6mm換算の透過率(T)の平均値である。なお、300~315nmの波長範囲の重み付け係数のみを使用するのは、ISO-9050:2003で規定される重み付け係数(A)の値が波長300nm未満については0で設定されているからである。
 本発明の波長選択透過性のガラスは、光透過率T315nm以下が板厚6mm換算で60%以下であることにより、当該波長域の光による眼の様々な損傷を抑制することができる。
 本発明のガラスは、光透過率T315nm以下が板厚6mm換算で45%以下であることが好ましく、30%以下であることがより好ましく、15%以下であることがより好ましく、5%以下であることがより好ましく、1%以下であることがより好ましく、0.8%以下であることが特に好ましい。さらに0.5%以下が好ましく、0.3%以下がより好ましく、0.1%以下がさらに好ましく、0%が最も好ましい。
 本発明の波長選択透過性のガラスは、下記式で表される波長360~400nmの光透過率T360-400nmが板厚6mm換算で1%以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000011
 上記式中、AおよびTは、上記と同様である。したがって、上記式は、ISO-9050:2003で規定されるT(光透過率)を算出するための重み付け係数のうち、360~400nmの波長範囲の重み付け係数のみを使用し、この波長範囲における、重み付け係数(A)と板厚6mm換算の透過率(T)と、の積の和を、この波長範囲における重み付け係数の和で割った値であり、重み付け後の板厚6mm換算の透過率(T)の平均値である。
 本発明の波長選択透過性のガラスは、光透過率T360-400nmが板厚6mm換算で1%以上であることにより、眼軸長の伸長を抑制する効果、すなわち、軸性近視を予防する効果がさらに期待される。315nm超400nm以下の波長域の中でも、360~400nmの波長域の光が、眼軸長の伸長を抑制する効果、すなわち、軸性近視を予防する効果を特に期待されているからである。
 本発明の波長選択透過性のガラスは、光透過率T360-400nmが板厚6mm換算で5%以上であることが好ましく、10%以上であることがより好ましく、20%以上であることがより好ましく、30%以上であることがより好ましく、40%以上であることがより好ましく、60%以上であることがより好ましく、80%以上であることが特に好ましい。過度の入射を抑えることを考慮すると、92%以下であることが好ましい。
 また、T315nm超400nm以下とT315nm以下とT360-400nmとT400-760nmとの光学特性のバランスと考慮すると、T360-400nmは板厚6mm換算で、19~92%が好ましく、50~91%がより好ましく、70~90%がさらに好ましい。
 本発明の波長選択透過性のガラスは、可視光線、赤外線の透過率は特に限定されず、用途に応じて適宜選択すればよい。
 可視光線透過率に着目すると、本発明の波長選択透過性のガラスは、下記式で表される波長400~760nmの可視光透過率T400-760nmが板厚6mm換算で1%以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000012
 上記式中、Tは、上記と同様である。A´は、ISO-9050:2003で規定される可視光透過率(D65光源)T_D65を算出するための、波長k(nm)における重み付け係数である。したがって、上記式は、ISO-9050:2003で規定される可視光透過率(D65光源)T_D65を算出するための重み付け係数のうち、400~780nmの波長範囲の重み付け係数のみを使用し、この波長範囲における、重み付け係数(A)と板厚6mm換算の透過率(T)と、の積の和を、この波長範囲における重み付け係数の和で割った値であり、重み付け後の板厚6mm換算の透過率(T)の平均値である。
 本発明の波長選択透過性のガラスは、可視光透過率T400-760nmが可視光透過率T400-760nmが板厚6mm換算で1%以上であることにより、ガラス背面の視認性を得やすくなるため、樹脂、金属、壁材と比較して、ガラス特有の光沢、質感を認知することが容易になり、意匠性を高められる。
 可視光透過率T400-760nmのより好ましい範囲は、本発明の波長選択透過性のガラスの用途により異なるが、可視光を透過することが求められる用途の場合、可視光透過率T400-760nmが、10%以上であることがより好ましく、20%以上であることがより好ましく、40%以上であることがより好ましく、60%以上であることがより好ましく、80%以上であることがより好ましく、90%以上であることが特に好ましい。
 T315nm超400nm以下とT315nm以下とT360-400nmとT400-760nmとの光学特性のバランスと考慮すると、T400-760nmは板厚6mm換算で、40~92%が好ましく、60~92%がより好ましく、80~92%がさらに好ましい。
 本発明の波長選択透過性のガラスの色調は、その用途に応じて適宜選択することができる。本発明では、ガラスの色調の指標として、A光源を用いて測定した主波長Dwを用いる。
 本発明の波長選択透過性のガラスは、A光源を用いて測定した主波長Dwが板厚6mm換算で380~700nmであることが、用途に応じた様々な色調のガラスを包含するため好ましい。
 例えば、主波長Dwが380~480nmのガラスは紫色系のガラスであり、主波長Dwが460~510nmのガラスは青色系のガラスであり、主波長Dwが500~570nmのガラスは緑色系のガラスであり、主波長Dwが580~700nmのガラスは赤色系のガラスである。
 本発明の波長選択透過性のガラスにおける光透過率には、当該ガラスの鉄含有量、および、ガラス中に含まれる鉄における二価の鉄(Fe2+)と、三価の鉄(Fe3+)との割合が影響する。すなわち、当該ガラスの鉄含有量は、300~400nmの光全波長域の透過率に影響する。
 一方、ガラス中に含まれる鉄における二価の鉄(Fe2+)と、三価の鉄(Fe3+)との割合は、光のうち、300~315nmの波長域の透過率に影響する。本明細書では、ガラス中に含まれる鉄における二価の鉄(Fe2+)と、三価の鉄(Fe3+)との割合の指標として、Fe-Redoxを用いる。Fe-Redoxとは、Fe換算の全鉄含有量に対するFe換算のFe2+含有量の割合である。
 本発明の波長選択透過性のガラスは、Feで表した全鉄含有量が0.001~10質量%であり、Fe―Redoxの値が5~80%であることが好ましい。
 Feで表した全鉄含有量が0.001質量%以上であることにより、大型窯でのガラスの溶解性、脱泡性が向上する。0.01質量%以上であることがより好ましく、0.03質量%以上であることがさらに好ましく、0.04質量%以上さらに0.05質量%以上であることが最も好ましい。
 一方、Feで表した全鉄含有量が10質量%以下であることにより、近紫外波長領域の光を通しやすくする効果がある。また、ガラス背面の視認性を得やすくなるため、樹脂、金属、壁材と比較して、ガラス特有の光沢、質感を認知することが容易になり、意匠性を高められる。7質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、2質量%以下であることが最も好ましい。さらに酸化物基準の質量%表示で、0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.15質量%以下がさらに好ましい。
 Fe-Redoxが5%以上であることにより、大型窯での脱泡性が向上し、ガラスの遮熱性が向上する。7%以上であることがより好ましく、10%以上であることがより好ましく、15%以上であることがより好ましく、25%以上であることがより好ましく、30%以上であることがより好ましく、35%以上であることがより好ましく、40%以上であることが最も好ましい。
 一方、Fe-Redoxが80%以下であることにより、近紫外波長領域の光を通しやすくし、大型窯での生産時におけるガラス原料の溶解性が向上し、溶解時に使用する燃料を減らすことができる。75%以下であることがより好ましく、70%以下であることがより好ましく、65%以下であることがより好ましく、60%以下であることが最も好ましい。
 本発明の波長選択透過性のガラスは、波長315nm以下の光を吸収する作用を有する微量成分を含有することが好ましい。波長315nm以下の光を吸収する作用を有する微量成分の具体例としては、Au、Ag、Sn、希土類元素(La、Yを除く)、Ti、W、Mn、As、Sb、Uが挙げられる。
 本発明の波長選択透過性のガラスは、Au、Ag、Sn、希土類元素(La、Yを除く)、Ti、W、Mn、As、Sb、Uからなる群から選択される少なくとも1つの元素を酸化物換算の合量で0.1質量ppm以上5質量%以下含有することが好ましい。
 上記の成分を合量で0.1質量ppm以上含有することにより、波長315nm以下の光を吸収する作用が発揮される。上記の成分を合量で1質量ppm以上含有することがより好ましく、5質量ppm以上含有することがさらに好ましい。一方、上記の成分の含有量が合量で5質量%以下であることにより、耐水性や耐薬品性に代表されるガラスの安定性が劣化することがなく、大型窯での原料コストが増大することがなく、生産時のガラスの色制御、安定化が困難になることがない。上記の成分を合量で2質量%以下含有することがより好ましく、1質量%以下含有することがさらに好ましい。
 上記の成分の中でも、Ce、Sn、Tiが波長315nm以下の光を吸収する作用が高いため好ましい。本発明の波長選択透過性のガラスは、Ce、Sn、Tiからなる群から選択される少なくとも1つの元素を酸化物換算の合量で0.1質量ppm以上含有することが好ましく、1質量ppm以上含有することがより好ましく、5質量ppm以上含有することがさらに好ましい。一方、ガラスの着色等を抑えることを考慮すると、上記の成分を合量で5質量%以下含有することが好ましく、2質量%以下含有することがより好ましく、1質量%以下含有することがさらに好ましい。
 また酸化物基準の質量%表示で、CeOが0.1~0.8%であり、TiOが0~0.6%であり、SnOが0~0.6%であることが好ましく、CeOが0.2~0.6%であり、TiOが0~0.4%であり、SnOが0~0.4%であることがより好ましく、CeOが0.35~0.45%であり、TiOが0~0.2%であり、SnOが0~0.2%であることがさらに好ましい。
 また、本発明の波長選択透過性のガラスにおいて、CeO/(CeO+TiO+Fe)が0.2以上、好ましくは0.3以上、より好ましくは0.4以上、さらに好ましくは0.5以上であると、眼軸長の伸長を抑制する効果の高い光透過率T360-400nmを保持したまま、波長315nm以下の光を吸収し、かつ、可視光透過率T400-760nmを維持する効果を有するため、好ましい。また、0.95以下、好ましくは0.90以下、より好ましくは0.85以下、さらに好ましくは0.8以下、よりさらに好ましくは0.75以下であると、着色が抑えられるため好ましい。
 また、所定の光透過率T315nm超400nm以下を保持し、眼軸長の伸長を抑制する効果の高い光透過率T360-400nmを保持したまま、波長315nm以下の光を吸収し、かつ、可視光透過率T400-760nmを維持する効果、並びに、着色を抑える効果のために、CeO+3×TiO+6×SnOが、0.1~2.0であると好ましく、0.3~1.5であるとより好ましく、0.41~1.2であるとさらに好ましく、0.43以上、さらに0.45以上であると好ましく、また0.9以下、さらに0.7以下、さらに0.55以下、さらに0.5以下であると好ましい。
 したがって、本発明の波長選択透過性のガラスにおいて、酸化物基準の質量%表示で、Feで表した全鉄含有量が0.04~0.15%、CeOが0.35~0.45%であり、TiOが0~0.2%であり、SnOが0~0.2%であり、CeO+3×TiO+6×SnOが0.41~0.5であり、Fe―Redoxが25~65%であることが、特に好ましい。
 また、上記の成分の中でも、Au、Ag、Sn、希土類元素(La、Yを除く)、W、Mn、As、Sb、Uは、波長315nm以下の光を吸収して、可視光に変換する作用を有する。本発明の波長選択透過性のガラスは、Au、Ag、Sn、希土類元素(La、Yを除く)、W、Mn、As、Sb、Uからなる群から選択される少なくとも1つの元素を酸化物換算の質量%の合量で0.1質量ppm以上含有することが好ましく、1質量ppm以上含有することがより好ましく、5質量ppm以上含有することがさらに好ましい。一方、上記の成分を合量で5質量%以下含有することが好ましく、2質量%以下含有することがより好ましく、1質量%以下含有することがさらに好ましい。
 本発明の波長選択透過性のガラスは、金属コロイドによる表面プラズモン吸収を起こさせるために、1族から14族からなる群から選択される少なくとも1つの金属元素のコロイドを含有することが好ましい。この目的で含有させるコロイドは、粒径が1μm以下のコロイド粒子であると好ましく、より好ましくは800nm以下、より好ましくは600nm以下、より好ましくは400nm以下、特に好ましくは300nm以下である。また、金属元素は、Ag、Au、Cuからなる群から選択される少なくとも1つが好ましい。
 また、本発明の波長選択透過性のガラスは、清澄剤としてSO、Cl、Fを合量で1%以下、好ましくは0.5%以下含有してもよい。また、本発明の波長選択透過性のガラスは、着色剤としてSe、Co、Ti、Cr、V、その他の遷移金属元素などを合量で1%以下、好ましくは0.5%以下含有してもよい。
 また、本発明の波長選択透過性のガラスは、ガラス中の水分量が90~800質量ppmであることが好ましい。90質量ppm以上であることにより、ガラスの成形域温度が下がり、曲げ加工が容易になる。また、赤外線吸収強度が上がり、遮熱性能が向上する。一方で800ppm以下であることにより、耐水性、耐薬品性に代表されるガラスの安定性が低下することがなく、また、クラックやキズに対する耐性が低下することがない。
 本発明の波長選択透過性のガラスのガラス母組成は、その用途に応じて適宜選択することができる。
 本発明の波長選択透過性のガラスの用途が、建材用の窓ガラスや自動車用窓ガラスや光学フィルター用ガラス等である場合、酸化物基準の質量%表示で、ガラス母組成として、SiO:60~80%、Al:0~7%、MgO:0~10%、CaO:4~20%、NaO:7~20%、KO:0~10%を含有することが好ましい。
 Bを含有する場合には、0.5%以下が好ましく、0.2%以下がより好ましく、実質的に含有しないことが好ましい。本発明において実質的に含有しないとは、不可避的不純物を除き含有しないことをいう。本発明の母組成成分において不可避的不純物は、例えば0.08%以下が好ましく、0.05%以下がより好ましく、0.03%以下がさらに好ましい。
 SiO:65~75%、Al:0~5%、MgO:0~6%、CaO:5~12%、NaO:10~16%、KO:0~3%、MgO+CaO:5~15%、NaO+KO:10~16%を含有することが、特に好ましい。
 また、本発明の波長選択透過性のガラスの用途が、FPDの前面板である場合、酸化物基準の質量%表示で、ガラス母組成として、SiO:45~80%、Al:7%超30%以下、B:0~15%、MgO:0~15%、CaO:0~6%、NaO:7~20%、KO:0~10%、ZrO:0~10%を含有することが好ましい。
 また、本発明の波長選択透過性のガラスの用途が、FPDの前面に設置するカバーガラスである場合、酸化物基準の質量%表示で、ガラス母組成として、SiO:45~70%、Al:10~30%、B:0~15%、MgO、CaO、SrOおよびBaOからなる群から選ばれる少なくとも1種:5~30%、LiO、NaOおよびKOからなる群から選ばれる少なくとも1種:0%以上7%以下を含有することが好ましい。
 本発明の波長選択透過性のガラスの製造時には、その用途に応じた所望の成形法を用いることができる。例えば、成形方法としては、フロート法、ロールアウト法、フュージョン法などが挙げられる。
 また、本発明の波長選択透過性のガラスは、化学強化ガラス、物理強化ガラスといった強化処理が施されたガラスであってもよく、網入りガラスであってもよい。
 上述したように、本明細書では、光透過率(T315nm超400nm以下、T360-400nm、T315nm以下)、および、可視光透過率(T400-760nm)を板厚6mm換算の透過率として評価しているが、本発明の波長選択透過性のガラスの板厚はこれに限定されず、その用途に応じて、板厚を適宜選択することができる。
 本発明の波長選択透過性のガラスの用途が、建材用の窓ガラスである場合、その板厚は通常6mmである。一般的には、20mm以下、15mm以下、10mm以下、8mm以下であり、2mm以上、3mm以上、4mm以上である。自動車用の窓ガラスの場合、その板厚は1~5mmである。
 一方、本発明の波長選択透過性のガラスの用途が、FPDの前面板である場合、その板厚は通常0.05~0.7mmである。
 また、本発明の波長選択透過性のガラスの用途が、FPDの前面に設置するカバーガラスである場合、その板厚は通常0.01~4mmである。
 上述したように、FPDの前面板の通常の板厚は、光透過率(T315nm超400nm以下、T360-400nm、T315nm以下)、可視光透過率(T400-760nm)を評価する際の基準板厚(6mm)とは大きく異なる。このような場合、実際の板厚での光透過率(T315nm超400nm以下、T360-400nm、T315nm以下)、および、可視光透過率(T400-760nm)も上記範囲を満たすことが好ましい。
 以下、実施例を用いて本発明をさらに説明する。
 下記表に示すガラス組成となるように、酸化物等の一般的に使用されるガラス原料を適宜選択し、混合物を白金るつぼに入れ、1600℃の抵抗加熱式電気炉に投入し、3時間溶融し、脱泡、均質化した後、型材に流し込み、ガラス転移点から約30℃高い温度にて1時間以上保持した後、毎分0.3~1℃の冷却速度にて室温まで徐冷し、例1~29の板状のガラスサンプル(板厚6mm)を作製した。例1~29は実施例である。
 得られたガラスサンプルについて、分光光度計により測定したガラスサンプルのスペクトル曲線から下式(1)を用いてFe-Redoxを算出した。
 Fe-Redox(%)=-log(T1000nm/91.4)/(Fe量×t×20.79)×100 ・・・(1)。
 ただし、
 T1000nmは、分光光度計(Perkin Elmer社製、Lambda950)により測定した波長1000nmの透過率(%)であり、
 tは、ガラスサンプルの厚さ(cm)であり、
 Fe量は、蛍光X線測定によって求めた、Fe換算の全鉄含有量(%=質量百分率)である。
 また、波長315nm超400nm以下の光透過率T315nm超400nm以下、波長360~400nmの光透過率T360-400nm、波長315nm以下の光透過率T315nm以下、波長400~760nmの可視光透過率T400-760nm、主波長Dwについては分光光度計(Perkin Elmer社製、Lambda950)を用いて測定した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 実施例のガラスは、いずれも波長315nm超400nm以下の光透過率T315nm超400nm以下が1%以上、および、波長360~400nmの光透過率T360-400nmが1%以上であり、波長315nm以下の光透過率T315nm以下が60%以下であり、波長400~760nmの可視光透過率T400-760nmが1%以上であった。また、A光源を用いて測定した主波長Dwが380~700nmであった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2015年12月2日付けで出願された日本特許出願(特願2015-235799)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (16)

  1.  下記式で表される波長315nm超400nm以下の光透過率T315nm超400nm以下が板厚6mm換算で1%以上であり、下記式で表される波長315nm以下の光透過率T315nm以下が板厚6mm換算で60%以下である、波長選択透過性のガラス。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    (上記式中、Aは、ISO-9050:2003で規定されるT(光透過率)を算出するための、波長k(nm)における重み付け係数であり、Tは、波長k(nm))における板厚6mm換算の透過率である。)
  2.  前記T315nm超400nm以下が板厚6mm換算で18~70%であり、前記T315nm以下が板厚6mm換算で1%以下である、請求項1に記載の波長選択透過性のガラス。
  3.  前記T315nm超400nm以下が板厚6mm換算で50~68%であり、前記T315nm以下が板厚6mm換算で0.1%以下である、請求項2に記載の波長選択透過性のガラス。
  4.  下記式で表される波長360~400nmの光透過率T360-400nmが板厚6mm換算で1%以上である、請求項1~3のいずれか1項に記載の波長選択透過性のガラス。
    Figure JPOXMLDOC01-appb-M000003
    (上記式中、Aは、ISO-9050:2003で規定される光透過率Tを算出するための、波長k(nm)における重み付け係数であり、Tは、波長k(nm))における板厚6mm換算の透過率である。)
  5.  前記T360-400nmが板厚6mm換算で19~92%である、請求項4に記載の波長選択透過性のガラス。
  6.  前記T360-400nmが板厚6mm換算で70~90%である、請求項5に記載の波長選択透過性のガラス。
  7.  下記式で表される波長400~760nmの可視光透過率T400-760nmが板厚6mm換算で1%以上である、請求項1~6のいずれか1項に記載の波長選択透過性のガラス。
    Figure JPOXMLDOC01-appb-M000004
    (上記式中、A´は、ISO-9050:2003で規定される可視光透過率(D65光源)T_D65を算出するための、波長k(nm)における重み付け係数であり、Tは、波長k(nm))における板厚6mm換算の透過率である。)
  8.  前記T400-760nmが板厚6mm換算で40~92%である、請求項7に記載の波長選択透過性のガラス。
  9.  前記T400-760nmが板厚6mm換算で80~92%である、請求項8に記載の波長選択透過性のガラス。
  10.  酸化物基準の質量%表示で、Feで表した全鉄含有量が0.001~10%であり、Fe―Redoxの値が5~80%である、請求項1~9のいずれか1項に記載の波長選択透過性のガラス。
  11.  Ce、Sn、Ti、からなる群から選択される少なくとも1つの元素を酸化物換算の合量で0.1質量ppm以上5質量%以下含有する、請求項1~10のいずれか1項に記載の波長選択透過性のガラス。
  12.   酸化物基準の質量%表示で、Feで表した全鉄含有量が0.04~0.15%、CeOが0.35~0.45%であり、TiOが0~0.2%であり、SnOが0~0.2%であり、CeO+3×TiO+6×SnOが0.41~0.5であり、Fe―Redoxが25~65%である、請求項10または11に記載の波長選択透過性のガラス。
  13.  A光源を用いて測定した主波長Dwが板厚6mm換算で380~700nmである、請求項1~12のいずれか1項に記載の波長選択透過性のガラス。
  14.  A光源を用いて測定した主波長Dwが板厚6mm換算で460~510nmである、請求項13に記載の波長選択透過性のガラス。
  15.  酸化物基準の質量%表示で、ガラス母組成として、SiO:60~80%、Al:0~7%、MgO:0~10%、CaO:4~20%、NaO:7~20%、KO:0~10%を含有する、請求項1~14のいずれか1項に記載の波長選択透過性のガラス。
  16.  酸化物基準の質量%表示で、ガラス母組成として、
    SiO:65~75%、Al:0~5%、MgO:0~6%、CaO:5~12%、NaO:10~16%、KO:0~3%、MgO+CaO:5~15%、NaO+KO:10~16%を含有する、請求項15に記載の波長選択透過性のガラス。
PCT/JP2016/085853 2015-12-02 2016-12-02 ガラス WO2017094869A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16870804.8A EP3385234B1 (en) 2015-12-02 2016-12-02 Glass
JP2017554192A JP7175610B2 (ja) 2015-12-02 2016-12-02 ガラス
PL16870804T PL3385234T3 (pl) 2015-12-02 2016-12-02 Szkło
CN201680070737.8A CN108430941B (zh) 2015-12-02 2016-12-02 玻璃
US15/995,379 US10865134B2 (en) 2015-12-02 2018-06-01 Glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015235799 2015-12-02
JP2015-235799 2015-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/995,379 Continuation US10865134B2 (en) 2015-12-02 2018-06-01 Glass

Publications (1)

Publication Number Publication Date
WO2017094869A1 true WO2017094869A1 (ja) 2017-06-08

Family

ID=58796995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085853 WO2017094869A1 (ja) 2015-12-02 2016-12-02 ガラス

Country Status (7)

Country Link
US (1) US10865134B2 (ja)
EP (1) EP3385234B1 (ja)
JP (1) JP7175610B2 (ja)
CN (1) CN108430941B (ja)
PL (1) PL3385234T3 (ja)
TW (1) TWI729041B (ja)
WO (1) WO2017094869A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017094867A1 (ja) * 2015-12-02 2018-10-04 Agc株式会社 波長選択透過性ガラス物品
US20200399164A1 (en) * 2018-02-28 2020-12-24 Agc Glass Europe Glass composition with nickel to reduce energy consumption during its melting step

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202304826A (zh) 2016-02-22 2023-02-01 美商康寧公司 無鹼硼鋁矽酸鹽玻璃
JP7257100B2 (ja) * 2017-09-11 2023-04-13 東洋製罐グループホールディングス株式会社 透明基板、薄膜支持基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238339A (ja) * 1988-07-27 1990-02-07 Ishizuka Glass Co Ltd 紫外線を遮断するガラス容器
JPH06345483A (ja) * 1993-06-11 1994-12-20 Asahi Glass Co Ltd 紫外線吸収着色ガラス
WO2000012441A1 (fr) * 1998-08-26 2000-03-09 Nihon Yamamura Glass Co., Ltd. Verre sodo-calcique transparent incolore absorbant les ultraviolets
JP2001048576A (ja) * 1999-08-10 2001-02-20 Koa Glass Kk 紫外線遮蔽用ガラス、紫外線遮蔽ガラス容器、および紫外線遮蔽用ガラスの製造方法
WO2001068545A1 (fr) * 2000-03-14 2001-09-20 Nihon Yamamura Glass Co., Ltd. Verre de silice sodo-calcique incolore, transparent, absorbant les rayons ultraviolets
WO2015088026A1 (ja) 2013-12-13 2015-06-18 旭硝子株式会社 紫外線吸収性ガラス物品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316128A (ja) 2000-03-02 2001-11-13 Nippon Sheet Glass Co Ltd 淡色着色高透過ガラスおよびその製造方法
US7435696B2 (en) * 2005-07-15 2008-10-14 Vidrio Plano De Mexico, S.A. De C.V. Glass composition with high visible light transmission and low ultraviolet light transmission
DE102008043317B4 (de) * 2008-10-30 2013-08-08 Schott Ag Verwendung eines solarisationsbeständigen Glases mit einer definierten Steigung der UV-Kante für einen Strahler für Bewitterungsanlagen
EP3287424B1 (en) * 2015-04-23 2021-03-17 AGC Inc. Heat-ray- and ultraviolet-absorbent glass sheet, and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238339A (ja) * 1988-07-27 1990-02-07 Ishizuka Glass Co Ltd 紫外線を遮断するガラス容器
JPH06345483A (ja) * 1993-06-11 1994-12-20 Asahi Glass Co Ltd 紫外線吸収着色ガラス
WO2000012441A1 (fr) * 1998-08-26 2000-03-09 Nihon Yamamura Glass Co., Ltd. Verre sodo-calcique transparent incolore absorbant les ultraviolets
JP2001048576A (ja) * 1999-08-10 2001-02-20 Koa Glass Kk 紫外線遮蔽用ガラス、紫外線遮蔽ガラス容器、および紫外線遮蔽用ガラスの製造方法
WO2001068545A1 (fr) * 2000-03-14 2001-09-20 Nihon Yamamura Glass Co., Ltd. Verre de silice sodo-calcique incolore, transparent, absorbant les rayons ultraviolets
WO2015088026A1 (ja) 2013-12-13 2015-06-18 旭硝子株式会社 紫外線吸収性ガラス物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385234A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017094867A1 (ja) * 2015-12-02 2018-10-04 Agc株式会社 波長選択透過性ガラス物品
US20200399164A1 (en) * 2018-02-28 2020-12-24 Agc Glass Europe Glass composition with nickel to reduce energy consumption during its melting step
EP3759058B1 (en) * 2018-02-28 2024-03-27 AGC Glass Europe Glass composition with nickel to reduce energy consumption during its melting step

Also Published As

Publication number Publication date
CN108430941B (zh) 2021-09-24
JPWO2017094869A1 (ja) 2018-09-20
TWI729041B (zh) 2021-06-01
EP3385234B1 (en) 2021-06-16
JP7175610B2 (ja) 2022-11-21
US20180297888A1 (en) 2018-10-18
EP3385234A4 (en) 2019-07-31
PL3385234T3 (pl) 2021-11-22
CN108430941A (zh) 2018-08-21
TW201720776A (zh) 2017-06-16
US10865134B2 (en) 2020-12-15
EP3385234A1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
KR101517257B1 (ko) 실리카-소다-석회 유리 시트
JP6318288B2 (ja) 濃緑灰色低透過ガラス組成物
JP5867415B2 (ja) 熱線吸収ガラス板およびその製造方法
JP5935445B2 (ja) 紫外線赤外線吸収ガラス
JP5853700B2 (ja) 熱線吸収ガラス板およびその製造方法
US10865134B2 (en) Glass
JP6806050B2 (ja) 熱線および紫外線吸収ガラス板、ならびにその製造方法
JP6566024B2 (ja) ガラス物品及び導光体
JPWO2016159362A1 (ja) ガラス物品
WO2017209148A1 (ja) 紫外線遮蔽ガラス板及び該ガラス板を用いた車両用ガラス窓
JP2020502026A (ja) ホルミウム系のコントラスト向上uv遮断ガラス組成物
JP7120021B2 (ja) ソーダライムガラス板
JP6561983B2 (ja) 熱線吸収ガラス板およびその製造方法
WO2017030110A1 (ja) 高透過ガラス
JP6631512B2 (ja) 熱線吸収ガラス板およびその製造方法
JP6589860B2 (ja) 熱線吸収ガラス板およびその製造方法
KR101062872B1 (ko) 회색 소다라임 유리 조성물
JP7127654B2 (ja) ガラス板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870804

Country of ref document: EP