WO2017092304A1 - 一种气体放电管 - Google Patents

一种气体放电管 Download PDF

Info

Publication number
WO2017092304A1
WO2017092304A1 PCT/CN2016/088517 CN2016088517W WO2017092304A1 WO 2017092304 A1 WO2017092304 A1 WO 2017092304A1 CN 2016088517 W CN2016088517 W CN 2016088517W WO 2017092304 A1 WO2017092304 A1 WO 2017092304A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas discharge
discharge tube
sealing adhesive
low temperature
temperature sealing
Prior art date
Application number
PCT/CN2016/088517
Other languages
English (en)
French (fr)
Inventor
何济
付猛
王飞龙
Original Assignee
深圳市槟城电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市槟城电子有限公司 filed Critical 深圳市槟城电子有限公司
Priority to EP16869617.7A priority Critical patent/EP3385975A4/en
Priority to MX2018006766A priority patent/MX2018006766A/es
Priority to US15/781,440 priority patent/US10943757B2/en
Priority to BR112018011290-9A priority patent/BR112018011290B1/pt
Priority to KR1020187019069A priority patent/KR102142794B1/ko
Priority to JP2018548254A priority patent/JP6761046B2/ja
Publication of WO2017092304A1 publication Critical patent/WO2017092304A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/18Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J17/186Seals between leading-in conductors and vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/18Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/15Details of spark gaps for protection against excessive pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/04Electrodes; Screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/40Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/265Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0048Tubes with a main cathode
    • H01J2893/0051Anode assemblies; screens for influencing the discharge
    • H01J2893/0053Leading in for anodes; Protecting means for anode supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • H01T1/08Means for extinguishing arc using flow of arc-extinguishing fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/16Overvoltage arresters using spark gaps having a plurality of gaps arranged in series

Definitions

  • the present invention relates to the field of overvoltage protection products, and more particularly to a gas discharge tube.
  • a gas discharge tube is a type of protection device that is commonly used as an overvoltage protection device.
  • the gas discharge tube generally used is formed by insulating the tube body and sealing electrodes at both ends thereof, and the inner chamber is filled with an inert gas.
  • the voltage across the gas discharge tube electrode exceeds the breakdown voltage of the gas, a gap discharge is caused, and the gas discharge tube rapidly changes from a high resistance state to a low resistance state to form a conduction, thereby protecting other devices connected in parallel thereto. .
  • an embodiment of the present invention provides a gas discharge tube including at least two electrodes and an insulating tube body sealedly connected to the electrode to form a discharge inner cavity, wherein the gas discharge tube is provided with a sealing chamber
  • the low temperature sealing adhesive of the discharge inner cavity is melted at a specific low temperature enthalpy to cause air leakage in the discharge inner cavity to form a crotch.
  • At least one of the electrodes is provided with an axial venting hole, an inner end of the venting hole is connected to the discharge inner cavity, and an outer end of the venting hole is connected to the cover through the low temperature sealing adhesive board.
  • At least one of the electrodes is provided with a radial venting hole, at least one port of the radial venting hole is connected to the discharge inner cavity, and the radial venting hole passes through the outer surface of the electrode Groove A cover plate covering the groove is provided on the groove, and the cover plate is connected to the outer surface of the electrode by the low temperature sealing adhesive.
  • the insulating tube body is provided with a venting hole, and the outer end of the venting hole is connected to the cover plate by the low temperature sealing adhesive.
  • the insulating tube body is provided with a breaking layer to divide the insulating tube body into two in a radial direction, and the low temperature sealing adhesive is disposed on the breaking layer, and the sealing connection is divided into one Two insulated tubes for two.
  • the middle electrode of the gas discharge tube is provided with a breaking layer to divide the intermediate electrode into two parts, and the low temperature sealing adhesive is disposed on the fracture layer, and the sealed connection is divided.
  • the middle electrode of the two parts of the crucible is provided with a breaking layer to divide the intermediate electrode into two parts, and the low temperature sealing adhesive is disposed on the fracture layer, and the sealed connection is divided.
  • the middle electrode of the two parts of the crucible is provided with a breaking layer to divide the intermediate electrode into two parts, and the low temperature sealing adhesive is disposed on the fracture layer, and the sealed connection is divided.
  • At least one of the electrodes and the insulating tube body are sealed by a low temperature sealing adhesive.
  • the at least one of the electrodes and the insulating tube body are sealed and connected by using a low-temperature sealing adhesive, and the method comprises: providing a metallization layer between the electrode and the insulating tube body or a metal ring, the electrode is sealed with the metallized layer or the metal ring by a low temperature sealing adhesive.
  • the gas discharge tube further includes a spring device, the spring device having at least one free end, the free end being pressed to a contracted state by an electrode bonded to the low temperature sealing adhesive, when The low temperature sealing adhesive undergoes melting enthalpy, the reaction force of the free end to the electrode is greater than the adhesion between the electrode and the low temperature sealing adhesive, the free end is stretched to pull and seal the low temperature Adhesive bonded electrode.
  • the gas discharge tube further includes a pin respectively connected to each of the electrodes, and has a casing that accommodates a cavity of the spring device, and the cavity is further provided to communicate with external air. a through hole, at least one of the bows I extending from the through hole.
  • the low temperature sealing adhesive is set to a specific shape such that the low temperature sealing adhesive meets specific melting requirements.
  • a leak point is set to make the low-temperature sealing adhesive relative to the position of the leaky point Other locations are easier to melt
  • the discharge inner cavity is filled with insulating particles.
  • a protective layer having a thermal conductivity lower than a thermal conductivity of the electrode is disposed on an outer surface of the low temperature sealing adhesive that is in contact with the outside.
  • the protective layer is a nickel layer, a chromium layer, another metal layer or a non-metal layer.
  • the gas discharge tube provided by the embodiment of the present invention can exhibit the performance of overvoltage protection after being subjected to a lightning strike voltage, and is subjected to excessive current or long overcurrent, and is heated to melt due to heat generation.
  • the low temperature sealing adhesive ⁇ the gas discharge tube will leak and cause a circuit, thereby cutting off the overcurrent, and has good overvoltage and overcurrent protection performance.
  • FIG. 1 is an axial ⁇ 1 J plane view of a gas discharge tube according to a first embodiment of the present invention
  • FIG. 2 is an axial ⁇ 1 J plane view of a gas discharge tube according to a second embodiment of the present invention
  • FIG. 3 is an axial ⁇ 1 J surface view of a gas discharge tube according to a third embodiment of the present invention.
  • Embodiment 4 is an axial ⁇ 1 J surface view of a gas discharge tube according to Embodiment 4 of the present invention.
  • FIG. 5 is an axial ⁇ 1 J surface view of a gas discharge tube according to a fifth embodiment of the present invention.
  • FIG. 6 is an axial ⁇ 1 J plane view of a gas discharge tube according to Embodiment 6 of the present invention.
  • FIG. 7 is an axial ⁇ 1 J surface view of a gas discharge tube according to a seventh embodiment of the present invention.
  • Embodiment 8 is an axial ⁇ 1 J surface view of a gas discharge tube according to Embodiment 8 of the present invention.
  • Embodiment 9 is an axial ⁇ 1 J plane view of a gas discharge tube according to Embodiment 9 of the present invention.
  • FIG. 10 is a cross-sectional view of a low temperature sealing adhesive of a gas discharge tube according to a seventh embodiment of the present invention.
  • FIG. 11 is an axial cross-sectional view of a gas discharge tube according to a first preferred embodiment of the eighth embodiment of the present invention.
  • 12 is an axial cross-sectional view of a gas discharge tube according to a second preferred embodiment of the eighth embodiment of the present invention
  • 13 is an axial cross-sectional view of a gas discharge tube according to a third preferred embodiment of the eighth embodiment of the present invention
  • FIG. 14 is an axial cross-sectional view of a gas discharge tube according to a fourth preferred embodiment of the eighth embodiment of the present invention.
  • FIG. 15 is an axial cross-sectional view of a gas discharge tube according to a fifth preferred embodiment of the eighth embodiment of the present invention.
  • 16 is an axial cross-sectional view of a gas discharge tube according to a first preferred embodiment of the seventh embodiment of the present invention.
  • 17 is an axial cross-sectional view of a gas discharge tube according to a second preferred embodiment of the seventh embodiment of the present invention.
  • FIG. 12 is an axial cross-sectional view of a gas discharge tube in accordance with a preferred embodiment of the present invention, as shown in FIG.
  • the gas discharge tube shown in Fig. 12 is the same as the gas discharge tube shown in Fig. 8 in that: an electrode, an insulating tube body, a low temperature sealing adhesive, a metal ring, a high temperature solder layer; and the gas discharge tube shown in Fig. 8.
  • the gas discharge tube shown in Fig. 12 further includes a spring device 87 having a free end 871 which is pressed to the contraction by the electrode bonded to the low temperature sealing adhesive.
  • the spring device can be provided with two free ends (not shown), as long as any free end of the low temperature sealing adhesive occurs. When melted, the free end stretches to pull the electrode at the end.
  • the electrode bonded to the low-temperature sealing adhesive is quickly pulled, so that the air leaks quickly and the circuit is broken, thereby further increasing the protection of the circuit for the circuit.
  • the spring discharge device is not subjected to a spring device, the gas discharge tube is subjected to a large current, and the instantaneous discharge heat is excessively large, which may cause the low-temperature seal adhesive to be melted to the leak gas in the future, and the electrode has been melted first. A burst of spatter caused a short circuit.
  • the high temperature solder referred to in the present invention refers to a solder having a melting point of more than 500 ° C, and a high temperature, that is, a temperature greater than 500 ° C.
  • the low temperature referred to in the present invention is a lower temperature relative to the high temperature. Temperatures below 500 ° C and below 500 ° C
  • the low-temperature sealing adhesive referred to in the present invention is a sealing material capable of withstanding low temperature, and the material may be melt-deformed or even liquefied in an environment higher than the low temperature, resulting in failure to seal;
  • the insulating tube body of the present invention is a glass tube. , porcelain tube or other insulating tube body suitable as a material of the gas discharge tube;
  • the gas discharge tube of the invention includes a diode, a triode and a multi-pole tube.
  • the gas discharge tube 1 of the present embodiment comprises: an electrode 11, an insulating tube body 12, a low temperature sealing adhesive 13, a gas permeable hole 14 and a cover plate 15.
  • the electrode 11 is sealingly connected to the insulating tube body 12 to form a discharge inner cavity.
  • the venting hole 11 is disposed on the electrode 11 and disposed axially. The inner end of the vent hole 11 is connected to the discharge inner cavity 16, and the outer end is connected to the cover plate 15 through the low temperature sealing adhesive 13.
  • the electrode 11 and the insulating tube 12 are sealed by a high-temperature solder 17.
  • the high-temperature solder 17 is a silver-copper solder.
  • the low temperature sealing adhesive 13 is a low temperature solder or a low temperature adhesive.
  • the low temperature solder is a low temperature solder or a glass solder having a melting point of about 350 °C.
  • the low temperature adhesive is an organic binder such as glue.
  • the venting holes 11 are plural, all disposed on one electrode. In another preferred embodiment, the plurality of venting holes 11 are provided in each of the electrodes.
  • the cover plate 15 is a rough surface cover or a gas permeable groove cover to increase the adhesion of the low temperature seal adhesive 13 on the cover plate 15 Make the sealing effect better.
  • the gas in the discharge inner cavity 16 is more likely to leak through the rough surface cover or the gap with the gas permeable groove cover, so that the subsequent circuit is quickly cut off. .
  • a gas venting tube is provided with a venting hole connecting the discharge inner cavity and the outside, and a low temperature sealing adhesive is disposed at an outer end of the venting hole, the gas discharge is performed after being subjected to a lightning strike voltage
  • the tube can not only exert the performance of over-voltage protection; moreover, the gas discharge tube is subjected to a large current or a long-time overcurrent, and the temperature rises to a specific temperature, the low-temperature sealing adhesive reaches a melting point and begins to melt, and the vent hole occurs. Air leakage, external air enters the discharge cavity of the gas discharge tube, thereby quickly cutting off the circuit and protecting the safety of the circuit.
  • the gas discharge tube 2 of the present embodiment includes: an electrode 21, an insulating tube body 22, a low temperature sealing adhesive 23, a vent hole 24, and a cap plate 25.
  • the venting holes 24 are radially disposed, and one port or the left and right ports of the radial venting holes 24 are connected to the discharge inner cavity, the radial direction.
  • the venting hole 24 passes through a groove of the outer surface of the electrode 21, and the groove is provided with a cover plate 25 covering the groove, and the cover plate 25 is connected by the low-temperature sealing adhesive 23 The outer surface of the electrode 21.
  • the remaining components are the same as those in the embodiment shown in FIG. 1, and are not described herein again.
  • This embodiment has the following advantages:
  • a gas venting tube is provided with a venting hole connecting the discharge inner cavity and the outside, and a low temperature sealing adhesive is disposed at an outer end of the venting hole, the gas discharge is performed after being subjected to a lightning strike voltage
  • the tube can not only exert the performance of over-voltage protection; moreover, the gas discharge tube is subjected to a large current or a long-time overcurrent, and the temperature rises to a specific temperature, the low-temperature sealing adhesive reaches a melting point and begins to melt, and the vent hole occurs. Air leakage, external air enters the discharge cavity of the gas discharge tube, thereby quickly cutting off the circuit and protecting the safety of the circuit.
  • the gas discharge tube 3 of the present embodiment comprises: an electrode 31, an insulating tube 32, and a low temperature sealing adhesive 33.
  • the insulating tube body 32 is provided with a breaking layer in the middle to divide the insulating tube body into two, and the low temperature sealing adhesive 32 is disposed on the breaking layer, and is sealed.
  • Two insulated tubes that are divided into two.
  • the two insulating tubes 32 are sealed and connected together through the low-temperature sealing adhesive 32, and the action and principle thereof are the same as those in the third embodiment.
  • the low temperature sealing adhesive 32 is disposed in the middle of the fracture layer, and the power frequency current ⁇ is more likely to absorb the heat of the discharge tube in the continuous arc discharge, and is more likely to leak. The circuit fails and the circuit is cut off.
  • a vent hole (not shown) may be disposed on the insulating tube body 32, and the outer end of the vent hole passes through the low temperature sealing adhesive.
  • the cover plate is sealed for sealing, and its function and principle are the same as those of the third embodiment.
  • This embodiment has the following advantages:
  • the gas discharge tube can not only exert the function of over-voltage protection after being subjected to a lightning strike voltage; , The gas discharge tube is heated to a specific temperature after being subjected to a large current or a long time, the low temperature sealing adhesive reaches a melting point, melts, a gas leak occurs in the fracture layer, and external air enters the gas discharge tube. The discharge is in the inner cavity, thereby quickly cutting off the circuit and protecting the safety of the circuit.
  • the gas discharge tube 4 of the present embodiment comprises: an electrode 41, an insulating tube body 42, and a low temperature sealing adhesive 43.
  • the gas discharge tube 4 described in this embodiment is a triode, and includes an upper end electrode, a lower end electrode, and an intermediate electrode.
  • the intermediate electrode 41 of the gas discharge tube 4 is provided with a breaking layer to divide the intermediate electrode 41 into two parts, and the low-temperature sealing adhesive 43 is disposed on the fracture layer, and the sealing connection is The intermediate electrode 41 is divided into two parts.
  • This embodiment has the following advantages:
  • the gas discharge tube can not only exert the performance of overvoltage protection after being subjected to a lightning strike voltage;
  • the gas discharge tube is heated to a specific temperature after being subjected to a large current or a long time, the low temperature sealing adhesive reaches a melting point, melts, a gas leak occurs in the fracture layer, and external air enters the gas discharge tube.
  • the discharge is in the inner cavity, thereby quickly cutting off the circuit and protecting the safety of the circuit.
  • the gas discharge tube 5 of the present embodiment comprises: an electrode 51, an insulating tube body 52, and a low temperature sealing adhesive 53.
  • the breaking layer of the intermediate electrode 51 in the embodiment is a fold line shape, and the embodiment of FIG. 4 interrupts the layer of the layer is a straight mouth shape, and the temperature is low.
  • the sealing adhesive 53 is disposed on a section that is linearly connected to the discharge lumen. The remaining components are the same as those in the embodiment shown in FIG. 4, and details are not described herein.
  • This embodiment has the following advantages:
  • the low temperature sealing adhesive Since the broken layer of the fold line is provided in the intermediate electrode of the gas discharge tube, and the port which is linearly connected to the discharge cavity is sealed with the low temperature sealing adhesive, the low temperature sealing adhesive is subjected to After reflow soldering of the product, the low-temperature sealing adhesive does not directly contact the solder layer of the external electrode of the patch, and the rinsing has the effect of dissipating heat, so that the low-temperature sealing adhesive is not easily overheated and destroyed by the reflow soldering, and air leakage occurs.
  • the gas discharge tube can not only exert the performance of overvoltage protection;
  • the gas discharge tube is heated to a specific temperature after being subjected to a large current or a long time, the low temperature sealing adhesive reaches a melting point, melts, a gas leak occurs in the fracture layer, and external air enters the gas discharge tube.
  • the discharge is in the inner cavity, thereby quickly cutting off the circuit and protecting the safety of the circuit.
  • the gas discharge tube 6 of the present embodiment comprises: an electrode 61, an insulating tube body 62, and a low temperature sealing adhesive 63.
  • the low temperature sealing adhesive 63 in this embodiment is disposed on a section which is linearly connected to the outside of the gas discharge tube.
  • the remaining components are the same as the embodiment described in FIG. 5, and details are not described herein.
  • the broken line-shaped breaking layer is disposed in the intermediate electrode of the gas discharge tube, and the port which is linearly connected to the outside of the gas discharge tube is sealed with the low-temperature sealing adhesive, the sealing effect is good, and the low-temperature sealing is sticky
  • the compound absorbs heat slowly and is not easy to melt, and is suitable for occasions where the melting rate is required to be slow.
  • the gas discharge tube After being subjected to a lightning strike voltage, the gas discharge tube can not only exert the performance of overvoltage protection; moreover, the gas discharge tube is subjected to a large current or an excessive current between the long turns to a certain temperature, and the low temperature sealing adhesive reaches The melting point begins to melt, and the broken layer leaks, and the outside air enters the discharge cavity of the gas discharge tube, thereby quickly cutting off the circuit and protecting the safety of the circuit.
  • the gas discharge tube 7 of the present embodiment comprises: an electrode 71, an insulating tube body 72, and a low temperature sealing adhesive 73.
  • the insulating tube body 72 has two upper and lower ports, which are respectively referred to as a first port and a second port.
  • the first port of the insulating tube body 72 and the electrode 71 are sealed by a low temperature sealing adhesive 73.
  • the first port of the insulating tube body 72 is a metallized layer
  • the low temperature sealing adhesive 73 is a low temperature solder.
  • the metallization layer is a molybdenum manganese layer, which may be one or more layers.
  • the low temperature solder is low temperature solder.
  • the first port of the insulating tube body 72 is white porcelain
  • the low temperature sealing adhesive 73 is a low temperature adhesive.
  • the low temperature adhesive 73 is an organic binder such as glue.
  • the second port of the insulating tube body 72 and the electrode 71 are sealed by a low temperature sealant 73.
  • the second port is a metallization layer or white porcelain, and when the second port is a metallization layer, the The low temperature sealing adhesive is a low temperature solder; when the second port is a white porcelain crucible, the low temperature sealing adhesive is a low temperature adhesive.
  • the bonding area of the insulating tube body 72 to the electrode 71 is set such that the low temperature sealing adhesive 73 conforms to a specific melting requirement.
  • the specific melting requirement is:
  • the melting speed of the low temperature sealing adhesive 73 is set according to the environment in which the circuit is used and the high temperature resistance of the device to be protected. For example: The normal operating temperature of the circuit is 0 ⁇ 350°C, and the highest temperature resistance of an electronic component to be protected is 370°C for 30 seconds.
  • the specific melting requirements of the low temperature sealing adhesive 73 are: 0 ⁇ 350 ° C does not melt, 350 ° C ⁇ 370 ° C interval begins to melt, reaches 370 ° C, must be melted within 25 seconds, so that the gas discharge tube leaks open, protect the electronic components.
  • the diameter of the insulating tube body 72 is set to a specific width so that the contact area with the low-temperature sealing adhesive 73 is a specific area, and the melting speed of the low-temperature sealing adhesive 13 is conveniently controlled. .
  • Method 2 a protrusion of a specific width is provided on the port of the insulating tube body 72 sealed by the low temperature sealing adhesive 73, and the protrusion is bonded to the low temperature sealing adhesive 73 to facilitate control The melting rate of the low temperature sealing adhesive 73.
  • Method 3 the low temperature sealing adhesive 73 is set to a specific width, thereby facilitating control of the melting speed of the low temperature sealing adhesive 73.
  • Method 4 a protrusion of a specific width is provided on an inner surface of the electrode 71 that is in contact with the low-temperature sealing adhesive 73, and the protrusion is bonded to the low-temperature sealing adhesive 73 to facilitate control of the low temperature The rate of melting of the seal adhesive 73.
  • a leaky point is provided at the port of the electrode 71, and/or the low temperature sealing adhesive 73, and/or the insulating tube body 72 to make the insulating tube body 72
  • the bonding area of the electrode 71 at the position of the leaky point is smaller than the bonding area of the other position, and the leaking point is set to one or more.
  • FIG. 10 is a cross-sectional view of the low temperature sealing adhesive 73 of the gas discharge tube provided in the embodiment, in which a plurality of leaky points 101 are disposed.
  • the leaky point 101 is a position where the low-temperature sealing adhesive 73 has the weakest adhesion, the least material, and the like, and is melted, so that the gas discharge tube is leaked and the circuit is cut off.
  • the gas discharge tube of the embodiment is sealed by using a low-temperature sealing adhesive at the port of the insulating tube body, and therefore, the gas discharge tube can not only exert the performance of over-voltage protection after being subjected to a lightning strike voltage. Moreover, the gas discharge tube is heated to a specific temperature after being subjected to a large current or a long time, the low temperature sealing adhesive reaches a melting point, melts, a leak occurs in the discharge inner chamber, and external air enters the gas discharge tube. The discharge is in the inner cavity, thereby quickly cutting off the circuit and protecting the safety of the circuit.
  • the present invention provides the following two preferred embodiments as a preferred embodiment of the seventh embodiment:
  • FIG. 16 is an axial cross-sectional view of a gas discharge tube according to a first preferred embodiment of the seventh embodiment of the present invention, which is identical to the embodiment shown in FIG. 7 in: an electrode 161, an insulating tube
  • the body 161 is sealed between the electrode 161 and the insulating tube 162 by a low temperature sealing adhesive 163; the difference is that: the outer surface of the low temperature sealing adhesive 163 on one side of the gas discharge tube
  • a protective layer 164 having a thermal conductivity lower than that of the electrode is provided.
  • the protective layer is a nickel layer, a chromium layer, another metal layer or a non-metal layer, and is disposed on the outer surface of the low temperature sealing adhesive 163 by electroplating or powder coating.
  • the utility model has the following advantages: 1. When the gas discharge tube is reflow soldered by a user, since the thermal conductivity of the protective layer is small, external heat can be less transmitted to the low temperature sealing adhesive 163, preventing the The gas discharge tube fails in the reflow soldering ruin by the malfunctioning circuit; 2. When the gas discharge tube is subjected to a large current or a long-current over-current heating ⁇ , since the thermal conductivity of the protective layer is small, the inside of the gas discharge tube The heat is less escaping to the outside, and the heat can be more concentrated for melting the low temperature sealing adhesive, causing the gas discharge tube to be quickly broken.
  • FIG. 17 is an axial cross-sectional view of a gas discharge tube according to a second preferred embodiment of the seventh embodiment of the present invention.
  • the difference from the embodiment shown in FIG. 16 is that: all outer surfaces of the gas discharge tube except the insulating tube body are provided with a protective layer 174, that is, the electrodes are bonded to the low temperature seal.
  • a protective layer 174 is disposed on the outer surface of the object, and the thermal conductivity of the protective layer 174 is smaller than the thermal conductivity of the electrode to make the heat conduction relatively slow.
  • the protective layer is a nickel layer, a chromium layer, another metal layer or a non-metal layer, and is disposed on the outer surface of the electrode and the low temperature sealing adhesive by electroplating or powder coating.
  • the utility model has the following advantages: 1.
  • the thermal conductivity of the protective layer is small, and the protective layer covers the electrode with a large thermal conductivity, the external heat transfer can be further prevented.
  • the low-temperature sealing adhesive to prevent the gas discharge tube from failing due to a malfunctioning circuit in the reflow soldering; 2.
  • the protective layer has a small thermal conductivity, and the protective layer covers the electrode having a large thermal conductivity, so that the heat inside the gas discharge tube can be further lost to the outside, and the heat can be more concentrated for melting the low temperature seal.
  • the adhesive causes the gas discharge tube to be quickly broken.
  • the gas discharge tube 8 of the present embodiment comprises: an electrode 81, an insulating tube body 82, a low temperature sealing adhesive 83, a metal ring 84, and a high temperature solder layer 85.
  • the insulating tube body 82 has two upper and lower ports, and the two electrodes 81 are sealed and connected respectively. Specifically, the upper port of the insulating tube body 82 is sealed to the metal ring 84 by the high temperature solder layer 85.
  • the metal ring 84 seals the connecting electrode 81 by the low temperature sealing adhesive 83.
  • the lower port of the insulating tube body 82 is sealed by the high temperature solder layer 85. Electrode 81.
  • the metal ring 84 can be adapted to the high temperature sealing of the insulating tube body 82, and can be adapted to the low temperature sealing of the electrode 81.
  • the metal ring 84 is a copper oxide free ring.
  • the surface of the metal ring 84 that is in contact with the low temperature sealing adhesive 83 is a rough surface, and the rough surface has strong adhesion, so that the metal ring 84 can be more firmly and the low temperature.
  • the sealing adhesive 83 seals the bond.
  • the cross-sectional ring width of the metal ring 84 is larger than the cross-sectional width of the insulating tube 82 to increase the contact area of the metal ring 84 with the low-temperature sealing adhesive 83, that is, The bonding area of the two is increased to make the metal ring 84 more securely bonded to the low temperature sealing adhesive 83.
  • the upper port of the insulating tube body 82 is provided with a metallization layer (not shown), preferably a molybdenum manganese layer; the metal ring 84 is passed through a high temperature solder, preferably a silver copper solder. The seal is connected to the metallization layer of the insulating tube body 82.
  • the gas discharge tube of the present embodiment is provided with a metal ring at a port of the insulating tube body, and is sealed at the port using a low-temperature sealing adhesive. Therefore, the gas discharge tube can not only exert the performance of overvoltage protection after being subjected to a lightning strike voltage; moreover, the gas discharge tube is subjected to a large current or a long current to increase the temperature to a specific temperature, the low temperature sealing adhesion When the material reaches the melting point, it begins to melt, and the inner cavity of the discharge gas leaks, and the outside air enters the discharge cavity of the gas discharge tube, thereby quickly cutting off the circuit and ensuring Protect the safety of the circuit.
  • FIG. 11 is an axial cross-sectional view of the gas discharge tube of the first preferred embodiment, as shown in FIG.
  • the gas discharge tube shown in Fig. 11 is the same as the gas discharge tube shown in Fig. 8 in that: an electrode, an insulating tube body, a low temperature sealing adhesive, a metal ring, a high temperature solder layer; and the gas discharge tube shown in Fig. 8.
  • the gas discharge tube shown in Fig. 11 is filled with insulating particles 86 in the discharge inner chamber.
  • the insulating particulate matter is quartz sand particles.
  • the advantages are: since the insulating cavity is filled with insulating particles, the heat generated by the discharge cavity discharge is absorbed by the insulating particles in a large amount, so that the gas discharge tube is subjected to a large current, and the electrodes at the ends of the discharge cavity are It does not cause the temperature to rise too quickly to produce a melt burst splash, which is to obtain the daytime for the melting of the low-temperature sealing adhesive to leak, and further increase the protection of the circuit for the circuit.
  • quartz sand is not added, the gas discharge tube is subjected to a large current, and the instantaneous heat of discharge is too large, which may cause the low-temperature sealing adhesive to melt to leak in the future, and the electrode has been melted first. A burst of spatter caused a short circuit.
  • FIG. 12 is an axial cross-sectional view of a gas discharge tube of a second preferred embodiment, as shown in FIG.
  • the gas discharge tube shown in Fig. 12 is the same as the gas discharge tube shown in Fig. 8 in that: an electrode, an insulating tube body, a low temperature sealing adhesive, a metal ring, a high temperature solder layer; and the gas discharge tube shown in Fig. 8.
  • the gas discharge tube shown in Fig. 12 further includes a spring device 87 having a free end 871 which is pressed to the contraction by the electrode bonded to the low temperature sealing adhesive.
  • the spring device can be provided with two free ends (not shown), as long as any free end of the low temperature sealing adhesive occurs. When melted, the free end stretches to pull the electrode at the end.
  • FIG. 13 is an axial cross-sectional view of a gas discharge tube of a third preferred embodiment, as shown in FIG. The gas discharge tube shown in Fig.
  • FIG. 14 is an axial cross-sectional view of a gas discharge tube according to a fourth preferred embodiment of the eighth embodiment of the present invention, as shown in FIG. 14.
  • the gas discharge tube shown in Fig. 14 is identical to the gas discharge tube shown in Fig. 12 in that it has a spring device 145, an electrode 146, an insulating tube body 147, a low temperature sealing adhesive 148, a metal ring 149, and a high temperature solder layer 140.
  • the outer casing is a ceramic outer casing.
  • FIG. 15 is an axial cross-sectional view of a gas discharge tube according to a fifth preferred embodiment of the eighth embodiment of the present invention, as shown in FIG. 15.
  • the gas discharge tube shown in FIG. 15 is different from the gas discharge tube of the fourth preferred embodiment shown in FIG. 14 in that: the gas discharge tube is a triode, and two spring devices 155 are provided, which are respectively connected to the three electrodes.
  • a pin 152 having a housing 151 accommodating a cavity 153 of the spring means 155, the cavity 153 further provided with two through holes 154 communicating with the outside air, the two pins 152 being The through hole 154 extends out.
  • the gas discharge tube 9 includes: an insulating tube body 92, an electrode 91, a metal ring 94, and a low temperature sealing adhesive. 93 and high temperature solder layer 95.
  • the insulating tube body 92 has upper and lower ports, and the metal ring 94 is sealed by a high temperature solder layer 95, and the metal ring 94 seals the connecting electrode 91 by a low temperature sealing adhesive 93.
  • the metal ring 94 is also provided at the lower port of the insulating tube body 92, and the lower port of the insulating tube body is sealed by the high temperature solder layer 95 to seal the metal ring 94, the metal ring 94 is sealed by low temperature.
  • the adhesive 93 is sealed except for the connection electrode 91", and the rest of the features are the same as those of the embodiment shown in FIG. Please refer to the embodiment shown in FIG. 8 , and details are not described herein again.
  • a metal ring and a low-temperature sealing adhesive are disposed on both ports of the insulating tube body 92, so that the gas discharge tube is more likely to be heated by overcurrent heating, and air leakage occurs to cut off the circuit, thereby further ensuring the safety of the circuit.
  • the gas discharge tube of this embodiment is provided with a metal ring on the two ports of the insulating tube body, and is sealed at the port using a low temperature sealing adhesive. Therefore, after being subjected to a lightning strike voltage, the gas discharge tube can not only exert the performance of overvoltage protection; moreover, the gas discharge tube is subjected to a large current or a long current to increase the temperature to a specific temperature, any of the ports described above.
  • the low-temperature sealing adhesive reaches the melting point, the melting begins, and the internal cavity of the discharge gas leaks, and the outside air enters the discharge inner cavity of the gas discharge tube, thereby quickly cutting off the circuit and protecting the safety of the circuit.
  • the gas discharge tube capable of causing the discharge inner cavity to leak is in the present within the scope of protection of the application, regardless of the manner in which the low temperature sealing adhesive is placed in the gas discharge tube.
  • the gas discharge tube of the present invention can be manufactured and used, and the gas discharge tube is subjected to a large current or a long current to increase the temperature to a specific temperature, and the low temperature sealing adhesive of any one port reaches the melting point. Melting, a leak occurs in the discharge inner chamber, and external air enters the discharge inner cavity of the gas discharge tube, thereby quickly cutting off the circuit and protecting the safety of the circuit, and has a beneficial technical effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuses (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

一种气体放电管(1),包括至少两个电极(11)及与所述电极(11)密封连接形成放电内腔(16)的绝缘管体(12),所述气体放电管(1)中设有密封所述放电内腔(16)的低温密封粘合物(13),所述低温密封粘合物(13)在特定的低温时发生熔化,使所述放电内腔(16)发生漏气。所述气体放电管(1)在经受雷击或浪涌过电压时,能够起到泄放雷电流或过电压的功能;而且,在经受一定的持续工频电流或过大工频电流,因发热而升温至熔化所述低温密封粘合物(13)时,该气体放电管(1)会发生漏气而致开路,迅速切断后续电流。

Description

一种气体放电管
技术领域
[0001] 本发明涉及过压保护产品领域, 特别是涉及一种气体放电管。
背景技术
[0002] 气体放电管是一种幵关型保护器件, 通常作为过电压保护器件使用。 目前一般 使用的气体放电管是由绝缘管体及其两端封接电极而成, 内腔充惰性气体。 当 气体放电管电极两端的电压超过气体的击穿电压吋, 就会引起间隙放电, 该气 体放电管迅速的由高阻态变为低阻态, 形成导通, 从而保护了与其并联的其他 器件。
技术问题
[0003] 但同吋, 若该过电压持续吋间较长或者出现频率较高或者出现长吋间或大电流 的工频过电流吋, 则气体放电管因承受长吋间或频繁的过电流而导致发热升温 , 过高的温度不仅会影响电路中其他器件的安全使用, 而且使得该气体放电管 存在短路或炸裂的风险, 甚至将客户的电路板烧毁形成火灾。
问题的解决方案
技术解决方案
[0004] 本发明的目的在于提供一种气体放电管, 既能够为电路提供有效的过压保护, 又能够在过流升温吋形成幵路, 及吋地切断电路。
[0005] 有鉴于此, 本发明实施例提供了一种气体放电管, 包括至少两个电极及与所述 电极密封连接形成放电内腔的绝缘管体, 所述气体放电管中设有密封所述放电 内腔的低温密封粘合物, 所述低温密封粘合物在特定的低温吋发生熔化, 使所 述放电内腔发生漏气, 而形成幵路。
[0006] 进一步的, 至少一个所述电极上设有轴向透气孔, 所述透气孔的内端连接所述 放电内腔, 所述透气孔的外端通过所述低温密封粘合物连接盖板。
[0007] 进一步的, 至少一个所述电极上设有径向透气孔, 所述径向透气孔的至少一个 端口连接所述放电内腔, 所述径向透气孔穿过所述电极外表面的凹槽, 所述凹 槽上面设有覆盖所述凹槽的盖板, 所述盖板通过所述低温密封粘合物连接在所 述电极外表面。
[0008] 进一步的, 所述绝缘管体上设有透气孔, 所述透气孔的外端通过所述低温密封 粘合物连接盖板。
[0009] 进一步的, 所述绝缘管体设有断幵层使所述绝缘管体径向一分为二, 所述低温 密封粘合物设于所述断幵层上, 密封连接被一分为二的两节绝缘管体。
[0010] 进一步的, 所述气体放电管的中间电极设有断幵层使所述中间电极分幵为两部 分, 所述低温密封粘合物设于所述断幵层上, 密封连接被分幵的两部分所述中 间电极。
[0011] 进一步的, 至少一个所述电极与所述绝缘管体之间采用低温密封粘合物进行密 封连接。
[0012] 进一步的, 所述至少一个所述电极与所述绝缘管体之间采用低温密封粘合物进 行密封连接, 包括: 所述电极与所述绝缘管体之间设有金属化层或者金属环, 所述电极与所述金属化层或者所述金属环之间采用低温密封粘合物进行密封连 接。
[0013] 进一步的, 所述气体放电管还包括弹簧装置, 所述弹簧装置具有至少一个自由 端, 该自由端被与所述低温密封粘合物粘合的电极压至收缩状态, 当所述低温 密封粘合物发生熔化吋, 该自由端对所述电极的反作用力大于所述电极与所述 低温密封粘合物之间的粘合力, 该自由端伸展从而拉幵与所述低温密封粘合物 粘合的电极。
[0014] 进一步的, 所述气体放电管还包括分别与每个所述电极相连的引脚, 具有收纳 所述弹簧装置的空腔的外壳, 所述空腔还设有与外部空气相连通的通孔, 至少 一个所述弓 I脚从所述通孔中延伸出来。
[0015] 进一步的, 设置所述低温密封粘合物为特定形状, 使所述低温密封粘合物符合 特定熔化要求。
[0016] 进一步的, 在所述电极、 或所述低温密封粘合物、 或所述绝缘管体上, 设置易 漏点, 使所述低温密封粘合物在所述易漏点的位置相对其他位置更加易于熔化 [0017] 进一步的, 所述放电内腔填充有绝缘颗粒物。
[0018] 进一步的, 所述低温密封粘合物的与外部接触的外表面上设有导热系数小于所 述电极的导热系数的保护层。
[0019] 进一步的, 所述保护层为镍层、 铬层、 其它金属层或者非金属层。
发明的有益效果
有益效果
[0020] 本发明实施例提供的气体放电管, 在经受雷击过电压吋, 能够发挥过压保护的 性能; 而且, 在经受过大电流或长吋间过电流, 因发热而升温至熔化所述低温 密封粘合物吋, 该气体放电管会发生漏气而致幵路, 从而切断过电流, 具有良 好的过电压与过电流保护性能。
对附图的简要说明
附图说明
[0021] 为了更清楚地说明本申请实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅是本申请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0022] 图 1是本发明实施例一提供的气体放电管的轴向咅 1 J面图;
[0023] 图 2是本发明实施例二提供的气体放电管的轴向咅 1 J面图;
[0024] 图 3是本发明实施例三提供的气体放电管的轴向咅 1 J面图;
[0025] 图 4是本发明实施例四提供的气体放电管的轴向咅 1 J面图;
[0026] 图 5是本发明实施例五提供的气体放电管的轴向咅 1 J面图;
[0027] 图 6是本发明实施例六提供的气体放电管的轴向咅 1 J面图;
[0028] 图 7是本发明实施例七提供的气体放电管的轴向咅 1 J面图;
[0029] 图 8是本发明实施例八提供的气体放电管的轴向咅 1 J面图;
[0030] 图 9是本发明实施例九提供的气体放电管的轴向咅 1 J面图;
[0031] 图 10是本发明实施例七提供的气体放电管的低温密封粘合物的横截面图;
[0032] 图 11 是本发明实施例八提供的第一优选方案的气体放电管的轴向剖面图;
[0033] 图 12是本发明实施例八提供的第二优选方案的气体放电管的轴向剖面图; [0034] 图 13是本发明实施例八提供的第三优选方案的气体放电管的轴向剖面图;
[0035] 图 14是本发明实施例八提供的第四优选方案的气体放电管的轴向剖面图;
[0036] 图 15是本发明实施例八提供的第五优选方案的气体放电管的轴向剖面图;
[0037] 图 16是本发明实施例七提供的第一优选方案的气体放电管的轴向剖面图;
[0038] 图 17是本发明实施例七提供的第二优选方案的气体放电管的轴向剖面图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0039] 图 12是本发明最佳实施例气体放电管的轴向剖面图, 请参阅图 12所示。 图 12所 示的气体放电管与图 8所示的气体放电管相同之处在于: 电极、 绝缘管体、 低温 密封粘合物、 金属环、 高温焊料层; 与图 8所示的气体放电管不同之处在于, 图 12所示的气体放电管还包括弹簧装置 87, 所述弹簧装置 87具有一个自由端 871, 该自由端 871被与所述低温密封粘合物粘合的电极压至收缩状态, 当所述低温密 封粘合物发生熔化吋, 该自由端 871对所述电极的反作用力大于所述电极与所述 低温密封粘合物之间的粘合力, 该自由端 871伸展从而拉幵与所述低温密封粘合 物粘合的电极。 同理, 当所述气体放电管两端都设置了低温密封粘合物吋, 所 述弹簧装置可设置两个自由端 (图中未示出) , 只要任一自由端的低温密封粘 合物发生熔化, 则该自由端伸展而拉幵该端的电极。 其优点是: 当所述气体放 电管在经受大电流吋, 只要所述低温密封粘合物幵始熔化至其与电极之间的粘 合力变小, 该弹簧装置即由于受力平衡被打破而使自由端发生伸展, 迅速拉幵 与所述低温密封粘合物粘合的电极, 致使快速漏气而幵路, 进一步加大对电路 的幵路保护力度。 相反, 若是不加弹簧装置, 则所述气体放电管在经受大电流 吋, 瞬间放电热量过大, 可能会致使所述低温密封粘合物还未来得及熔化至漏 气, 所述电极已经先行熔化爆裂飞溅而导致短路了。
本发明的实施方式
[0040] 以下将结合附图, 使用以下实施例对本发明进行进一步阐述。 需要预先说明的 是, 本发明所称高温焊料是指的熔点大于 500°C的焊料, 高温即大于 500°C的温度 ; 本发明所称低温是相对该高温而言的较低的温度, 为 500°C及 500°C以下的温度 ; 本发明所称低温密封粘合物为能够耐受低温的密封材料, 该材料在高于所述 低温的环境中会熔融变形甚至液化, 导致无法密封; 本发明所称绝缘管体为玻 璃管、 瓷管或其他适于作气体放电管的材质的绝缘管体; 本发明所称气体放电 管包括二极管、 三极管及多极管。
[0041] 请参阅图 1, 为本发明实施例一提供的气体放电管的轴向剖面图。 如图 1所示, 本实施例的气体放电管 1包括: 电极 11, 绝缘管体 12, 低温密封粘合物 13, 透气 孔 14及盖板 15。 所述电极 11与所述绝缘管体 12密封连接形成放电内腔 16, 所述 透气孔 11设置在所述电极 11上, 轴向设置。 所述透气孔 11的内端连接所述放电 内腔 16, 外端通过所述低温密封粘合物 13连接所述盖板 15。
[0042] 具体的, 所述电极 11与所述绝缘管体 12采用高温焊料 17密封, 优选的, 所述高 温焊料 17为银铜焊料。
[0043] 具体的, 所述低温密封粘合物 13为低温焊料或者低温粘合剂。 优选的, 所述低 温焊料为低温锡焊或玻璃焊料, 熔点在 350°C左右。 所述低温粘合剂为胶水等有 机粘合剂。
[0044] 在一优选实施例中, 所述透气孔 11有多个, 全部设置在一个电极上。 在另一优 选实施例中, 所述透气孔 11有多个, 分别设置在每一个电极上。
[0045] 在另一优选实施例中, 所述盖板 15为粗糙面盖板或带透气沟槽盖板, 以增加所 述低温密封粘合物 13在所述盖板 15上的附着力, 使密封效果更好。 同吋, 当所 述低温密封粘合物 13熔化吋, 所述放电内腔 16中的气体更容易通过粗糙面盖板 或带透气沟槽盖板的缝隙而漏气, 使后续电路迅速被切断。
[0046] 本实施例具有以下优点:
[0047] 由于在气体放电管中设置了连接放电内腔与外部的透气孔, 且在所述透气孔的 外端设置了低温密封粘合物, 因此, 在经受雷击过电压吋, 该气体放电管不仅 能够发挥过压保护的性能; 而且, 该气体放电管在经受大电流或长吋间过电流 升温到特定温度吋, 所述低温密封粘合物达到熔点幵始熔化, 所述透气孔发生 漏气, 外部空气进入所述气体放电管的放电内腔中, 从而迅速切断电路, 保护 了电路的安全。
[0048] 请参阅图 2, 为本发明实施例二提供的气体放电管的轴向剖面图。 如图 2所示, 本实施例的气体放电管 2包括: 电极 21, 绝缘管体 22, 低温密封粘合物 23, 透气 孔 24及盖板 25。 与图 1所示实施例不同的是, 本实施例中透气孔 24是径向设置的 , 所述径向透气孔 24的一个端口或者左右两个端口连接所述放电内腔, 所述径 向透气孔 24穿过所述电极 21外表面的凹槽, 所述凹槽上面设有覆盖所述凹槽的 盖板 25, 所述盖板 25通过所述低温密封粘合物 23连接在所述电极 21外表面。 其 余部件均与图 1所述实施例相同, 此处不再赘述。
[0049] 本实施例具有以下优点:
[0050] 由于在气体放电管中设置了连接放电内腔与外部的透气孔, 且在所述透气孔的 外端设置了低温密封粘合物, 因此, 在经受雷击过电压吋, 该气体放电管不仅 能够发挥过压保护的性能; 而且, 该气体放电管在经受大电流或长吋间过电流 升温到特定温度吋, 所述低温密封粘合物达到熔点幵始熔化, 所述透气孔发生 漏气, 外部空气进入所述气体放电管的放电内腔中, 从而迅速切断电路, 保护 了电路的安全。
[0051] 请参阅图 3, 为本发明实施例三提供的气体放电管的轴向剖面图。 如图 3所示, 本实施例的气体放电管 3包括: 电极 31, 绝缘管体 32, 低温密封粘合物 33。
[0052] 具体的, 所述绝缘管体 32中间设有断幵层使所述绝缘管体径向一分为二, 所述 低温密封粘合物 32设于所述断幵层上, 密封连接被一分为二的两节绝缘管体。 当然, 也可理解为, 将两个绝缘管体 32通过所述低温密封粘合物 32密封连接在 一起, 其作用和原理与本实施例三是一样的。
[0053] 在一优选实施例中, 所述低温密封粘合物 32设置在所述断幵层的中间, 工频电 流吋更容易吸收放电管在持续弧光放电吋的热量, 更容易发生漏气幵路失效, 从而切断电路。
[0054] 作为本实施例的另一变通实施例, 也可以在所述绝缘管体 32上设透气孔 (图中 未示出) , 所述透气孔的外端通过所述低温密封粘合物连接盖板进行密封, 其 作用与原理还是与本实施例三是一样的。
[0055] 本实施例具有以下优点:
[0056] 由于在气体放电管的绝缘管体中设置了用低温密封粘合物密封的断幵层, 因此 , 在经受雷击过电压吋, 该气体放电管不仅能够发挥过压保护的性能; 而且, 该气体放电管在经受大电流或长吋间过电流升温到特定温度吋, 所述低温密封 粘合物达到熔点幵始熔化, 所述断幵层发生漏气, 外部空气进入所述气体放电 管的放电内腔中, 从而迅速切断电路, 保护了电路的安全。
[0057] 请参阅图 4, 为本发明实施例四提供的气体放电管的轴向剖面图。 如图 4所示, 本实施例的气体放电管 4包括: 电极 41, 绝缘管体 42, 低温密封粘合物 43。
[0058] 具体的, 本实施例所述的气体放电管 4为三极管, 包括上端电极、 下端电极以 及中间电极。
[0059] 所述气体放电管 4的中间电极 41设有断幵层使所述中间电极 41分幵为两部分, 所述低温密封粘合物 43设于所述断幵层上, 密封连接被分幵的两部分所述中间 电极 41。
[0060] 本实施例具有以下优点:
[0061] 由于在气体放电管的中间电极中设置了用低温密封粘合物密封的断幵层, 因此 , 在经受雷击过电压吋, 该气体放电管不仅能够发挥过压保护的性能; 而且, 该气体放电管在经受大电流或长吋间过电流升温到特定温度吋, 所述低温密封 粘合物达到熔点幵始熔化, 所述断幵层发生漏气, 外部空气进入所述气体放电 管的放电内腔中, 从而迅速切断电路, 保护了电路的安全。
[0062] 请参阅图 5, 为本发明实施例五提供的气体放电管的轴向剖面图。 如图 5所示, 本实施例的气体放电管 5包括: 电极 51, 绝缘管体 52, 低温密封粘合物 53。
[0063] 与图 4所述实施例不同的是, 本实施例中的中间电极 51的断幵层是折线幵口形 的, 而图 4所述实施例中断幵层是直线幵口形的, 其低温密封粘合物 53设置在与 放电内腔直线相连的断面上。 其余部件均与图 4所述实施例相同, 此处不再赘述
[0064] 本实施例具有以下优点:
[0065] 由于在气体放电管的中间电极中设置了折线幵口形的断幵层, 且用低温密封粘 合物密封其与放电内腔直线相连的端口, 所述低温密封粘合物, 在经受产品回 流焊接吋, 低温密封粘合物不与贴片外电极的焊锡层直接接触, 幵口具有散热 的效果, 使得低温密封粘合物在回流焊焊接吋不容易过热破坏, 而产生漏气。 但在经受雷击过电压吋, 该气体放电管不仅能够发挥过压保护的性能; 而且, 该气体放电管在经受大电流或长吋间过电流升温到特定温度吋, 所述低温密封 粘合物达到熔点幵始熔化, 所述断幵层发生漏气, 外部空气进入所述气体放电 管的放电内腔中, 从而迅速切断电路, 保护了电路的安全。
[0066] 请参阅图 6, 为本发明实施例六提供的气体放电管的轴向剖面图。 如图 6所示, 本实施例的气体放电管 6包括: 电极 61, 绝缘管体 62, 低温密封粘合物 63。
[0067] 与图 5所述实施例不同的是, 本实施例中的低温密封粘合物 63设置在与气体放 电管外部直线相连的断面上。 其余部件均与图 5所述实施例相同, 此处不再赘述
[0068] 本实施例具有以下优点:
[0069] 由于在气体放电管的中间电极中设置了折线形的断幵层, 且用低温密封粘合物 密封其与气体放电管外部直线相连的端口, 其密封效果好, 所述低温密封粘合 物吸热较慢不易熔化, 适合于对熔化速度要求较慢的场合。 在经受雷击过电压 吋, 该气体放电管不仅能够发挥过压保护的性能; 而且, 该气体放电管在经受 大电流或长吋间过电流升温到特定温度吋, 所述低温密封粘合物达到熔点幵始 熔化, 所述断幵层发生漏气, 外部空气进入所述气体放电管的放电内腔中, 从 而迅速切断电路, 保护了电路的安全。
[0070] 请参阅图 7, 为本发明实施例七提供的气体放电管的轴向剖面图。 如图 7所示, 本实施例的气体放电管 7包括: 电极 71, 绝缘管体 72以及低温密封粘合物 73。
[0071] 具体的, 所述绝缘管体 72有上下两个端口, 分别称为第一端口和第二端口。 所 述绝缘管体 72的第一端口与所述电极 71之间通过低温密封粘合物 73进行密封。
[0072] 在一优选实施例中, 所述绝缘管体 72的第一端口为金属化层, 所述低温密封粘 合物 73为低温焊料。 优选的, 所述金属化层为钼锰层, 可以为一层或者多层。 优选的, 所述低温焊料为低温锡焊。
[0073] 在另一优选实施例中, 所述绝缘管体 72的第一端口为白瓷, 所述低温密封粘合 物 73为低温粘合剂。 优选的, 所述低温粘合剂 73为胶水等有机粘合剂。
[0074] 在一优选实施例中, 所述绝缘管体 72的第二端口与所述电极 71之间通过低温密 封粘合物 73进行密封。
[0075] 具体的, 所述第二端口为金属化层或者白瓷, 当第二端口为金属化层吋, 所述 低温密封粘合物为低温焊料; 当第二端口为白瓷吋, 所述低温密封粘合物为低 温粘合剂。
[0076] 在一优选实施例中, 设置所述绝缘管体 72与所述电极 71的粘合面积, 从而使所 述低温密封粘合物 73符合特定熔化要求。 具体的, 所述特定熔化要求为: 在实 际电路中, 根据电路使用环境与需保护器件的耐高温性能, 设定所述低温密封 粘合物 73的熔化速度。 例如: 电路正常工作温度为 0~350°C, 需保护的某电子元 器件最高耐高温为 370°C持续 30秒, 则所述低温密封粘合物 73需符合的特定熔化 要求为: 0~350°C不熔化, 350°C~370°C区间内幵始熔化, 达到 370°C吋必须 25秒 内熔化, 从而使所述气体放电管漏气断路, 保护该电子元器件。
[0077] 优选的, 设置所述绝缘管体 72与所述电极 71的粘合面积有以下四种方法, 包括
[0078] 方法一, 设置所述绝缘管体 72的径宽为特定宽度, 以使其与低温密封粘合物 73 的接触面积为特定面积, 方便控制所述低温密封粘合物 13的熔化速度。
[0079] 方法二, 在所述绝缘管体 72的通过低温密封粘合物 73进行密封的端口上设置特 定宽度的突起, 该突起与所述低温密封粘合物 73粘合, 方便控制所述低温密封 粘合物 73的熔化速度。
[0080] 方法三, 设置所述低温密封粘合物 73为特定宽度, 从而方便控制所述低温密封 粘合物 73的熔化速度。
[0081] 方法四, 在所述电极 71的与所述低温密封粘合物 73接触的内表面设置特定宽度 的突起, 该突起与所述低温密封粘合物 73粘合, 方便控制所述低温密封粘合物 7 3的熔化速度。
[0082] 优选的, 在所述电极 71、 和 /或所述低温密封粘合物 73、 和 /或所述绝缘管体 72 的端口上, 设置易漏点, 使所述绝缘管体 72与所述电极 71在所述易漏点位置的 粘合面积小于其他位置的粘合面积, 所述易漏点设置为一个或多个。 具体的, 请结合参考图 10, 图 10为本实施例提供的气体放电管的低温密封粘合物 73的横 截面图, 图中设置多个易漏点 101。
[0083] 具体的, 所述易漏点 101为所述低温密封粘合物 73附着力最弱、 材料最少等容 易熔化的位置, 熔化使得所述气体放电管发生漏气, 切断电路。 [0084] 本实施例具有以下优点:
[0085] 本实施例的气体放电管由于在绝缘管体的端口使用低温密封粘合物对其进行密 封, 因此, 在经受雷击过电压吋, 该气体放电管不仅能够发挥过压保护的性能 ; 而且, 该气体放电管在经受大电流或长吋间过电流升温到特定温度吋, 所述 低温密封粘合物达到熔点幵始熔化, 放电内腔发生漏气, 外部空气进入所述气 体放电管的放电内腔中, 从而迅速切断电路, 保护了电路的安全。
[0086] 进一步的, 本发明提供了以下两个优选方案作为实施例七的优选方案:
[0087] 请参阅图 16, 图 16是本发明实施例七提供的第一优选方案的气体放电管的轴向 剖面图其与图 7所示实施例的相同之处在于: 电极 161, 绝缘管体 162, 所述电极 161与所述绝缘管体 162之间采用低温密封粘合物 163进行密封; 不同之处在于: 该气体放电管一侧的所述低温密封粘合物 163的外表面上设有导热系数小于所述 电极的导热系数的保护层 164。 具体的, 所述保护层为镍层、 铬层、 其它金属层 或者非金属层, 采用电镀或者涂粉的方式设置在所述低温密封粘合物 163的外表 面。 其益处在于: 一、 当所述气体放电管在被用户贴片回流焊吋, 由于所述保 护层导热系数小, 能够将外部热量较少地传导到所述低温密封粘合物 163, 防止 所述气体放电管在回流焊吋就误动作幵路而失效; 二、 当所述气体放电管在经 受大电流或长吋间过电流发热吋, 由于所述保护层导热系数小, 气体放电管内 部的热量较少地流失到外面, 所述热量能够更加集中地用于熔化所述低温密封 粘合物, 使所述气体放电管快速幵路。
[0088] 请参阅图 17, 图 17是本发明实施例七提供的第二优选方案的气体放电管的轴向 剖面图。
[0089] 其与图 16所示实施例的不同之处在于: 该气体放电管的除了绝缘管体之外的所 有外表面均设有保护层 174, 即所述电极与所述低温密封粘合物的外表面上均设 有保护层 174, 所述保护层 174的导热系数小于所述电极的导热系数, 以使得导 热相对较慢。 具体的, 所述保护层为镍层、 铬层、 其它金属层或者非金属层, 采用电镀或者涂粉的方式设置在所述电极与所述低温密封粘合物的外表面。 其 益处在于: 一、 当所述气体放电管在被用户贴片回流焊吋, 由于所述保护层导 热系数小, 且保护层覆盖了导热系数较大的电极, 能够进一步阻止外部热量传 导到所述低温密封粘合物, 防止所述气体放电管在回流焊吋就误动作幵路而失 效; 二、 当所述气体放电管在经受大电流或长吋间过电流发热吋, 由于所述保 护层导热系数小, 且保护层覆盖了导热系数较大的电极, 能够进一步使得气体 放电管内部的热量更少地流失到外面, 所述热量能够更加集中地用于熔化所述 低温密封粘合物, 使所述气体放电管快速幵路。
[0090] 请参阅图 8, 为本发明实施例八提供的气体放电管的轴向剖面图。 如图 8所示, 本实施例的气体放电管 8包括: 电极 81、 绝缘管体 82、 低温密封粘合物 83、 金属 环 84及高温焊料层 85。 所述绝缘管体 82有上下两个端口, 分别密封连接两个电 极 81。 具体的, 绝缘管体 82的上端口通过高温焊料层 85密封连接金属环 84, 金 属环 84通过低温密封粘合物 83密封连接电极 81 ; 绝缘管体 82的下端口通过高温 焊料层 85密封连接电极 81。
[0091] 具体的, 所述金属环 84既能适应与所述绝缘管体 82高温密封, 又能适应与所述 电极 81低温密封。 在一个优选实施例中, 所述金属环 84为无氧化铜环。 在另一 个优选实施例中, 所述金属环 84的与所述低温密封粘合物 83接触的表面为粗糙 面, 粗糙面附着力强, 可以使所述金属环 84更加牢靠地与所述低温密封粘合物 8 3密封粘合。 在另一个优选实施例中, 所述金属环 84的截面环宽大于所述绝缘管 体 82的截面宽度, 以增大所述金属环 84与所述低温密封粘合物 83的接触面积, 即增大二者的粘合面积, 使所述金属环 84更加牢靠地与所述低温密封粘合物 83 密封粘合。
[0092] 优选的, 所述绝缘管体 82的上端口上设有金属化层 (图中未示出) , 优选为钼 锰层; 所述金属环 84通过高温焊料, 优选为银铜焊料, 密封连接在所述绝缘管 体 82的金属化层上。
[0093] 本实施例具有以下优点:
[0094] 本实施例的气体放电管由于在绝缘管体的一端口设置了金属环, 并在该端口使 用低温密封粘合物对其进行密封。 因此, 在经受雷击过电压吋, 该气体放电管 不仅能够发挥过压保护的性能; 而且, 该气体放电管在经受大电流或长吋间过 电流升温到特定温度吋, 所述低温密封粘合物达到熔点幵始熔化, 放电内腔发 生漏气, 外部空气进入所述气体放电管的放电内腔中, 从而迅速切断电路, 保 护了电路的安全。
[0095] 本实施例还有另外五个优选方案, 图 11是第一优选方案的气体放电管的轴向剖 面图, 请参阅图 11所示。 图 11所示的气体放电管与图 8所示的气体放电管相同之 处在于: 电极、 绝缘管体、 低温密封粘合物、 金属环、 高温焊料层; 与图 8所示 的气体放电管不同之处在于, 图 11所示的气体放电管在放电内腔填充有绝缘颗 粒物 86。 优选的, 所述绝缘颗粒物为石英砂颗粒。 其优点是: 由于在放电内腔 填充了绝缘颗粒物, 则放电内腔放电吋产生的热量被绝缘颗粒物大量的吸收, 使所述气体放电管在经受大电流吋, 所述放电内腔两端的电极不至于升温过快 产生熔化爆裂飞溅, 为所述低温密封粘合物的熔化至漏气争取了吋间, 进一步 加大对电路的幵路保护力度。 相反, 若是不加石英砂, 则所述气体放电管在经 受大电流吋, 瞬间放电热量过大, 可能会致使所述低温密封粘合物还未来得及 熔化至漏气, 所述电极已经先行熔化爆裂飞溅而导致短路了。
[0096] 图 12是第二优选方案的气体放电管的轴向剖面图, 请参阅图 12所示。 图 12所示 的气体放电管与图 8所示的气体放电管相同之处在于: 电极、 绝缘管体、 低温密 封粘合物、 金属环、 高温焊料层; 与图 8所示的气体放电管不同之处在于, 图 12 所示的气体放电管还包括弹簧装置 87, 所述弹簧装置 87具有一个自由端 871, 该 自由端 871被与所述低温密封粘合物粘合的电极压至收缩状态, 当所述低温密封 粘合物发生熔化吋, 该自由端 871对所述电极的反作用力大于所述电极与所述低 温密封粘合物之间的粘合力, 该自由端 871伸展从而拉幵与所述低温密封粘合物 粘合的电极。 同理, 当所述气体放电管两端都设置了低温密封粘合物吋, 所述 弹簧装置可设置两个自由端 (图中未示出) , 只要任一自由端的低温密封粘合 物发生熔化, 则该自由端伸展而拉幵该端的电极。 其优点是: 当所述气体放电 管在经受大电流吋, 只要所述低温密封粘合物幵始熔化至其与电极之间的粘合 力变小, 该弹簧装置即由于受力平衡被打破而使自由端发生伸展, 迅速拉幵与 所述低温密封粘合物粘合的电极, 致使快速漏气而幵路, 进一步加大对电路的 幵路保护力度。 相反, 若是不加弹簧装置, 则所述气体放电管在经受大电流吋 , 瞬间放电热量过大, 可能会致使所述低温密封粘合物还未来得及熔化至漏气 , 所述电极已经先行熔化爆裂飞溅而导致短路了。 [0097] 图 13是第三优选方案的气体放电管的轴向剖面图, 请参阅图 13所示。 图 13所示 的气体放电管综合了图 11和图 12所示的气体放电管的优势, 即, 既在所述气体 放电管上设置弹簧装置, 又在所述放电内腔填充绝缘颗粒物, 进一步保证所述 气体放电管在经受大电流吋, 能够及吋的幵路, 对电路进行双重保护。
[0098] 图 14是本发明实施例八提供的第四优选方案的气体放电管的轴向剖面图, 请参 阅图 14所示。 图 14所示的气体放电管与图 12所示的气体放电管相同之处在于: 具有弹簧装置 145、 电极 146、 绝缘管体 147、 低温密封粘合物 148、 金属环 149、 高温焊料层 140; 与图 12所示的气体放电管的不同之处在于: 还包括分别与两个 所述电极相连的引脚 142, 具有收纳所述弹簧装置 145的空腔 143的外壳 141, 所 述空腔 143还设有与外部空气相连通的通孔 144, 一个所述引脚 142从所述通孔 14 4中延伸出来。 优选的, 所述外壳为陶瓷外壳。 其优点是: 当所述气体放电管在 经受大电流吋, 只要所述低温密封粘合物幵始熔化至其与电极之间的粘合力变 小, 该弹簧装置即由于受力平衡被打破而使自由端发生伸展, 迅速拉幵与所述 低温密封粘合物粘合的电极, 致使快速漏气而幵路, 同吋, 由于设置了外壳, 使该气体放电管在幵路吋可能会散落的零部件不致于掉落在地上。
[0099] 图 15是本发明实施例八提供的第五优选方案的气体放电管的轴向剖面图, 请参 阅图 15所示。 图 15所示的气体放电管与图 14所示第四优选方案的气体放电管的 不同之处在于: 该气体放电管为三极管, 设有两个弹簧装置 155, 分别与三个所 述电极相连的引脚 152, 具有收纳所述弹簧装置 155的空腔 153的外壳 151, 所述 空腔 153还设有两个与外部空气相连通的通孔 154, 两个所述引脚 152从所述通孔 154中延伸出来。 其优点与图 14所示优选方案相同, 此处不再赘述。
[0100] 请参阅图 9, 是本发明实施例九提供的气体放电管的轴向剖面图, 所述气体放 电管 9包括: 绝缘管体 92、 电极 91、 金属环 94、 低温密封粘合物 93及高温焊料层 95。 所述绝缘管体 92有上下两个端口, 分别通过高温焊料层 95密封连接金属环 9 4, 金属环 94通过低温密封粘合物 93密封连接电极 91。
[0101] 提醒的是, 本实施例除了 "在绝缘管体 92的下端口也设置金属环 94, 并且绝缘 管体的下端口通过高温焊料层 95密封连接金属环 94, 金属环 94通过低温密封粘 合物 93密封连接电极 91"之外, 其余部分的特征全部与图 8所示实施例相同, 具体 请参阅图 8所示实施例, 此处不再赘述。 在绝缘管体 92的两个端口均设置金属环 与低温密封粘合物, 使该气体放电管更加容易在过电流发热升温吋, 发生漏气 而切断电路, 进一步保证电路的安全。
[0102] 本实施例具有以下优点:
[0103] 本实施例的气体放电管由于在绝缘管体的二个端口上设置了金属环, 并在所述 端口使用低温密封粘合物对其进行密封。 因此, 在经受雷击过电压吋, 该气体 放电管不仅能够发挥过压保护的性能; 而且, 该气体放电管在经受大电流或长 吋间过电流升温到特定温度吋, 任何一个端口的所述低温密封粘合物达到熔点 幵始熔化, 放电内腔发生漏气, 外部空气进入所述气体放电管的放电内腔中, 从而迅速切断电路, 保护了电路的安全。
[0104] 显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式的限定 。 上述任一实施例中的某些技术特征, 也可以转用于其他实施例中, 例如, 绝 缘管体与电极的粘合面积的设置、 易漏点的设置、 放电内腔中绝缘颗粒物的设 置、 弹簧装置的设置均可以应用到其他实施例中。 对于所属领域的普通技术人 员来说, 在上述说明的基础上还可以做出其它不同形式的变化或变动。 这里无 需也无法对所有的实施方式予以穷举。 只要是采用了低温密封粘合物来密封放 电内腔, 且所述低温密封粘合物在特定的低温熔点发生熔化吋, 能够使得所述 放电内腔发生漏气的气体放电管, 都处于本申请的保护范围之中, 而不论该低 温密封粘合物以何种方式设置于该气体放电管的何处位置。
工业实用性
[0105] 本发明的气体放电管能够制造和使用, 且该气体放电管在经受大电流或长吋间 过电流升温到特定温度吋, 任何一个端口的所述低温密封粘合物达到熔点幵始 熔化, 放电内腔发生漏气, 外部空气进入所述气体放电管的放电内腔中, 从而 迅速切断电路, 保护了电路的安全, 具有有益的技术效果。

Claims

权利要求书
一种气体放电管, 包括至少两个电极及与所述电极密封连接形成放电 内腔的绝缘管体, 其特征在: 所述气体放电管中设有密封所述放电内 腔的低温密封粘合物, 所述低温密封粘合物在特定的低温吋发生熔化 , 使所述放电内腔发生漏气。
根据权利要求 1所述的气体放电管, 其特征在于, 至少一个所述电极 上设有轴向透气孔, 所述透气孔的内端连接所述放电内腔, 所述透气 孔的外端通过所述低温密封粘合物连接盖板。
根据权利要求 1所述的气体放电管, 其特征在于, 至少一个所述电极 上设有径向透气孔, 所述径向透气孔的至少一个端口连接所述放电内 腔, 所述径向透气孔穿过所述电极外表面的凹槽, 所述凹槽上面设有 覆盖所述凹槽的盖板, 所述盖板通过所述低温密封粘合物连接在所述 电极外表面。
根据权利要求 1所述的气体放电管, 其特征在于, 所述绝缘管体上设 有透气孔, 所述透气孔的外端通过所述低温密封粘合物连接盖板。 根据权利要求 1所述的气体放电管, 其特征在于, 所述绝缘管体设有 断幵层使所述绝缘管体径向一分为二, 所述低温密封粘合物设于所述 断幵层上, 密封连接被一分为二的两节绝缘管体。
根据权利要求 1所述的气体放电管, 其特征在于, 所述气体放电管的 中间电极设有断幵层使所述中间电极分幵为两部分, 所述低温密封粘 合物设于所述断幵层上, 密封连接被分幵的两部分所述中间电极。 根据权利要求 1所述的气体放电管, 其特征在于, 至少一个所述电极 与所述绝缘管体之间采用低温密封粘合物进行密封连接。
根据权利要求 7所述的气体放电管, 其特征在于, 所述至少一个所述 电极与所述绝缘管体之间采用低温密封粘合物进行密封连接, 包括: 所述电极与所述绝缘管体之间设有金属化层或者金属环, 所述电极与 所述金属化层或者所述金属环之间采用低温密封粘合物进行密封连接 根据权利要求 8所述的气体放电管, 其特征在于, 还包括弹簧装置, 所述弹簧装置具有至少一个自由端, 该自由端被与所述低温密封粘合 物粘合的电极压至收缩状态, 当所述低温密封粘合物发生熔化吋, 该 自由端对所述电极的反作用力大于所述电极与所述低温密封粘合物之 间的粘合力, 该自由端伸展从而拉幵与所述低温密封粘合物粘合的电 极。
根据权利要求 9所述的气体放电管, 其特征在于, 还包括: 分别与每 个所述电极相连的引脚, 具有收纳所述弹簧装置的空腔的外壳, 所述 空腔还设有与外部空气相连通的通孔, 至少一个所述弓 I脚从所述通孔 中延伸出来。
根据权利要求 1-9任一项所述的气体放电管, 其特征在于, 设置所述 低温密封粘合物为特定形状, 使所述低温密封粘合物符合特定熔化要 求。
根据权利要求 1-9任一项所述的气体放电管, 其特征在于, 在所述电 极、 或所述低温密封粘合物、 或所述绝缘管体上, 设置易漏点, 使所 述低温密封粘合物在所述易漏点的位置相对其他位置更加易于熔化, 所述易漏点设置为一个或多个。
根据权利要求 1-9任一项所述的气体放电管, 其特征在于, 所述放电 内腔填充有绝缘颗粒物。
根据权利要求 1-9任一项所述的气体放电管, 其特征在于, 所述低温 密封粘合物的与外部接触的外表面上设有导热系数小于所述电极的导 热系数的保护层。
根据权利要求 14所述的气体放电管, 其特征在于, 所述保护层为镍层 、 铬层、 其它金属层或者非金属层。
PCT/CN2016/088517 2015-12-04 2016-07-05 一种气体放电管 WO2017092304A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16869617.7A EP3385975A4 (en) 2015-12-04 2016-07-05 GAS DISCHARGE TUBE
MX2018006766A MX2018006766A (es) 2015-12-04 2016-07-05 Tubo de descarga de gas.
US15/781,440 US10943757B2 (en) 2015-12-04 2016-07-05 Gas discharge tube
BR112018011290-9A BR112018011290B1 (pt) 2015-12-04 2016-07-05 Tubo de descarga de gás
KR1020187019069A KR102142794B1 (ko) 2015-12-04 2016-07-05 가스 방전관
JP2018548254A JP6761046B2 (ja) 2015-12-04 2016-07-05 ガス放電管

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510882495.X 2015-12-04
CN201510882495.XA CN105374653A (zh) 2015-12-04 2015-12-04 一种气体放电管
CN201610190179.0 2016-03-30
CN201610190179.0A CN105826149B (zh) 2015-12-04 2016-03-30 一种气体放电管

Publications (1)

Publication Number Publication Date
WO2017092304A1 true WO2017092304A1 (zh) 2017-06-08

Family

ID=55376745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088517 WO2017092304A1 (zh) 2015-12-04 2016-07-05 一种气体放电管

Country Status (8)

Country Link
US (1) US10943757B2 (zh)
EP (1) EP3385975A4 (zh)
JP (1) JP6761046B2 (zh)
KR (1) KR102142794B1 (zh)
CN (3) CN105374653A (zh)
BR (1) BR112018011290B1 (zh)
MX (1) MX2018006766A (zh)
WO (1) WO2017092304A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510186A (zh) * 2018-12-05 2019-03-22 江苏东光电子有限公司 一种提高续流遮断能力的电源防雷装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374653A (zh) * 2015-12-04 2016-03-02 深圳市槟城电子有限公司 一种气体放电管
CN106128910A (zh) * 2016-07-13 2016-11-16 深圳市槟城电子有限公司 一种薄型贴片气体放电管
CN106329316B (zh) * 2016-11-07 2018-03-02 深圳市瑞隆源电子有限公司 一种开路失效模式放电管
CN106451397A (zh) * 2016-11-30 2017-02-22 东莞市阿甘半导体有限公司 防雷装置
CN109936124A (zh) * 2017-12-15 2019-06-25 中兴通讯股份有限公司 一种保安单元
CN108091531A (zh) * 2018-01-22 2018-05-29 东莞市阿甘半导体有限公司 气体放电管及过电压保护装置
CN108305822B (zh) * 2018-01-23 2021-03-09 深圳市槟城电子有限公司 气体放电管、过电压保护装置及气体放电管的制造方法
CN108257835B (zh) * 2018-02-07 2020-08-11 深圳市槟城电子有限公司 一种气体放电管及过压保护装置
CN109038221B (zh) * 2018-07-30 2019-11-08 华格电子(昆山)有限公司 气体环境下具有插拔功能的主动型过电压保护间隙
DE102018118906B3 (de) * 2018-08-03 2019-10-17 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzgerät
DE102018118898B3 (de) 2018-08-03 2019-10-24 Phoenix Contact Gmbh & Co. Kg Halteanordnung und Anordnung von mindestens zwei Stapelfunkenstrecken
CN113131341A (zh) * 2021-04-21 2021-07-16 深圳市瑞隆源电子有限公司 气体放电管及其制造方法
CN113488362A (zh) * 2021-06-01 2021-10-08 巨民生 一种气体放电管及其过电压保护装置
CN113808894A (zh) * 2021-09-14 2021-12-17 深圳市瑞隆源电子有限公司 过电压保护装置、气体放电管及其制备方法
WO2023129589A1 (en) * 2021-12-29 2023-07-06 Bourns, Inc. Mov/gdt device having low voltage gas discharge property

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124687A (ja) * 1992-10-09 1994-05-06 Hamamatsu Photonics Kk 放電管
CN1873884A (zh) * 2005-05-09 2006-12-06 电灯专利信托有限公司 介电阻塞扁平放电灯的生产
CN105374653A (zh) * 2015-12-04 2016-03-02 深圳市槟城电子有限公司 一种气体放电管
CN205177764U (zh) * 2015-12-04 2016-04-20 深圳市槟城电子有限公司 一种气体放电管
CN105610049A (zh) * 2016-02-25 2016-05-25 深圳市槟城电子有限公司 一种气体放电管

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2370082A (en) * 1940-09-27 1945-02-20 Westinghouse Electric & Mfg Co Electric discharge device
GB596083A (en) * 1944-07-27 1947-12-29 British Thomson Houston Co Ltd Improvements in and relating to lightning arresters
US4282557A (en) * 1979-10-29 1981-08-04 General Electric Company Surge voltage arrester housing having a fragible section
DE2951467C2 (de) * 1979-12-20 1982-06-24 Siemens AG, 1000 Berlin und 8000 München Überspannungsableiter mit parallelgeschalteter Luftfunkenstrecke
US4371911A (en) * 1980-05-16 1983-02-01 The M-O Valve Company Limited Excess voltage arresters
JPH0439881A (ja) * 1990-06-06 1992-02-10 Hyogo Nippon Denki Kk 放電管
DE9321371U1 (de) * 1993-04-21 1997-09-04 Siemens Ag Gasentladungs-Überspannungsableiter
JP3199088B2 (ja) * 1993-08-23 2001-08-13 三菱マテリアル株式会社 放電型サージアブソーバ
JP4319750B2 (ja) * 2000-01-05 2009-08-26 新光電気工業株式会社 三極放電管
DE10162916A1 (de) * 2001-12-20 2003-07-10 Epcos Ag Federbügel, Überspannungsableiter mit dem Federbügel und Anordnung eines Überspannungsableiters
US6992440B2 (en) * 2004-02-26 2006-01-31 Asahi Glass Company, Limited Light-emitting device and process for its production
JP2007242242A (ja) * 2006-03-03 2007-09-20 Sanyo Electric Industries Co Ltd 避雷素子及びその製造方法
DE102007056183B4 (de) * 2007-11-21 2020-01-30 Tdk Electronics Ag Überspannungsableiter mit thermischem Überlastschutz, Verwendung eines Überspannungsableiters und Verfahren zum Schutz eines Überspannungsableiters
CN101882757A (zh) * 2009-05-06 2010-11-10 深圳市槟城电子有限公司 一种高弧光电压的气体放电管
CN102184824B (zh) * 2011-04-13 2013-08-14 深圳市硕凯电子有限公司 多路气体放电管
CN103441053B (zh) * 2013-03-22 2016-03-23 深圳市槟城电子有限公司 集成气体放电管及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124687A (ja) * 1992-10-09 1994-05-06 Hamamatsu Photonics Kk 放電管
CN1873884A (zh) * 2005-05-09 2006-12-06 电灯专利信托有限公司 介电阻塞扁平放电灯的生产
CN105374653A (zh) * 2015-12-04 2016-03-02 深圳市槟城电子有限公司 一种气体放电管
CN205177764U (zh) * 2015-12-04 2016-04-20 深圳市槟城电子有限公司 一种气体放电管
CN105610049A (zh) * 2016-02-25 2016-05-25 深圳市槟城电子有限公司 一种气体放电管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385975A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510186A (zh) * 2018-12-05 2019-03-22 江苏东光电子有限公司 一种提高续流遮断能力的电源防雷装置

Also Published As

Publication number Publication date
CN109686634B (zh) 2021-02-09
US10943757B2 (en) 2021-03-09
KR102142794B1 (ko) 2020-08-07
KR20180098571A (ko) 2018-09-04
EP3385975A1 (en) 2018-10-10
BR112018011290B1 (pt) 2023-03-28
CN105374653A (zh) 2016-03-02
EP3385975A4 (en) 2019-08-07
MX2018006766A (es) 2018-11-09
US20200279712A1 (en) 2020-09-03
BR112018011290A2 (pt) 2018-11-27
CN105826149A (zh) 2016-08-03
JP6761046B2 (ja) 2020-09-23
CN109686634A (zh) 2019-04-26
CN105826149B (zh) 2019-03-15
JP2019501507A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2017092304A1 (zh) 一种气体放电管
US7453681B2 (en) Metal oxide varistor with a heat protection
US10965121B2 (en) Integrated thermally protected varistor and discharge tube
WO2006063503A1 (fr) Varistance et fusible thermique de type a alliage
KR20040015367A (ko) 과전압 억제기
US20160086757A1 (en) Device Comprising a Thermal Fuse and a Resistor
WO2017185847A1 (zh) 过流过压保护器件及方法
US20070200657A1 (en) Thermal fuse varistor assembly with an insulating glass passivation layer
US7598840B2 (en) Metal oxide varistor having thermal cut-off function
CN105895284A (zh) 热保护型压敏电阻器
US20200373112A1 (en) Thermally protected varistor
CN205177764U (zh) 一种气体放电管
WO2017143796A1 (zh) 一种气体放电管
WO2017113957A1 (zh) 一种气体放电管及其所用金属化电极
WO2023040222A1 (zh) 过电压保护装置、气体放电管及其制备方法
CN207705569U (zh) 气体放电管
TWI715228B (zh) 保護電路
CN205751735U (zh) 一种有机合金型双重防护的压敏电阻
CN207149878U (zh) 一种带有切断功能的气体放电管
CN205406956U (zh) 一种气体放电管
JP4156406B2 (ja) サーモプロテクタ及びサーモプロテクタの動作方法
CN107799374A (zh) 一种带有切断功能的气体放电管、制备方法以及放电方法
CN216287811U (zh) 一种具有双面热保护的压敏电阻
CN216161679U (zh) 主动切除故障式气体放电管及过电压保护装置
CN207426400U (zh) 一种可识别的无续流气体放电管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869617

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018548254

Country of ref document: JP

Ref document number: MX/A/2018/006766

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018011290

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187019069

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016869617

Country of ref document: EP

Ref document number: 1020187019069

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2016869617

Country of ref document: EP

Effective date: 20180704

ENP Entry into the national phase

Ref document number: 112018011290

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180604