WO2017090544A1 - 成形体の製造方法 - Google Patents

成形体の製造方法 Download PDF

Info

Publication number
WO2017090544A1
WO2017090544A1 PCT/JP2016/084362 JP2016084362W WO2017090544A1 WO 2017090544 A1 WO2017090544 A1 WO 2017090544A1 JP 2016084362 W JP2016084362 W JP 2016084362W WO 2017090544 A1 WO2017090544 A1 WO 2017090544A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
molded body
polyamide
molded
copper compound
Prior art date
Application number
PCT/JP2016/084362
Other languages
English (en)
French (fr)
Inventor
松田 猛
卓朗 北村
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US15/777,937 priority Critical patent/US11198766B2/en
Priority to JP2017552398A priority patent/JP6476314B2/ja
Priority to EP16868491.8A priority patent/EP3381973B1/en
Publication of WO2017090544A1 publication Critical patent/WO2017090544A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/08Transition metals
    • B29K2505/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a method for producing a molded body.
  • Patent Document 1 discloses a technology that is a thermoplastic resin composition including a polyamide resin and discontinuous carbon fibers, and includes copper halide or a derivative thereof as a thermal stabilizer.
  • Patent Document 2 discloses a resin composition containing a polyamide resin, a potassium halide and a copper compound, and discloses a technique of injection molding including carbon fiber or the like as an optional component.
  • Patent Document 3 discloses an invention in which a copper compound is included as a heat stabilizer in a composite material including a polyamide resin and discontinuous carbon fibers, and this is cold pressed to obtain a press-molded body.
  • Patent Document 1 the composite material is hot press-molded, and no mention is made regarding a specific problem at the time of cold press molding. For this reason, the molecular weight reduction on the surface of the molded body caused by direct contact with oxygen in a high temperature environment during preheating is an urgent issue that has not yet been solved, and is unique to cold press molding.
  • the resin composition described in Patent Document 2 has been studied for injection molding, and as in Patent Document 1, problems specific to cold press molding cannot be solved. In the injection molded article using the resin composition described in Patent Document 2, there is almost no decrease in molecular weight on the surface of the molded article, so that appearance defects do not become a problem.
  • Patent Document 3 although a copper-based stabilizer is added to improve thermal stability, the composite material is heated under more severe conditions to improve moldability, and the molecular weight of the molded article surface is reduced. It has not been studied from the viewpoint of preventing it, and what is more practically tolerated is required.
  • the object of the present invention is obtained in a cold press capable of forming with a short tact, even if the molding material is exposed to severe high temperature or oxygen atmosphere in a heating process for ensuring excellent moldability.
  • Another object of the present invention is to provide a method for producing a molded article having a small appearance and a good appearance.
  • the present invention provides the following means. ⁇ 1>.
  • the resin composition contains a black pigment. ⁇ 6>.
  • the ratio of the number average molecular weight of the polyamide resin present in the surface layer region to the number average molecular weight of the polyamide resin present in the central region of the molded body is more than 0.4 and less than 1.0, any of ⁇ 1> to ⁇ 5>
  • the surface layer region is a region less than 50 ⁇ m from the surface of the molded body
  • the central region is a region less than 50 ⁇ m from the central cross section of the molded body toward the surface.
  • the molded body obtained by the production method of the present invention has a reduced surface molecular weight and has an excellent surface appearance.
  • the carbon fiber used in the present invention is generally polyacrylonitrile (PAN) carbon fiber, petroleum / coal pitch carbon fiber, rayon carbon fiber, cellulose carbon fiber, lignin carbon fiber, phenolic carbon fiber, Vapor growth carbon fibers and the like are known, but any of these carbon fibers can be suitably used in the present invention.
  • PAN polyacrylonitrile
  • a PAN-based carbon fiber When a PAN-based carbon fiber is used as the carbon fiber, its tensile modulus is preferably in the range of 100 GPa to 600 GPa, more preferably in the range of 200 GPa to 500 GPa, and in the range of 230 to 450 GPa. Is more preferable. Further, the tensile strength is preferably in the range of 2000 MPa to 10,000 MPa, and more preferably in the range of 3000 MPa to 8000 MPa.
  • the carbon fiber used in the present invention may have a sizing agent attached to the surface.
  • the type of the sizing agent can be appropriately selected according to the types of the carbon fiber and the matrix resin, and is not particularly limited.
  • the fiber length of the carbon fiber used in the present invention is not particularly limited, and continuous fibers or discontinuous carbon fibers can be used.
  • the carbon fiber used in the present invention is preferably a discontinuous carbon fiber having a weight average fiber length Lw of 1 to 100 mm.
  • the weight average fiber length of the discontinuous carbon fibers is more preferably 3 to 80 mm, and further preferably 5 to 60 mm.
  • the weight average fiber length is 100 mm or less, the fluidity of the composite material does not decrease, and a desired molded body shape can be obtained during press molding.
  • the weight average fiber length is 1 mm or more, it is preferable because the mechanical strength of the molded product does not decrease.
  • the weight average fiber length of the carbon fibers contained in the injection molded body constituting a good appearance is less than 1 mm.
  • carbon fibers having different fiber lengths may be used in combination.
  • the carbon fiber used in the present invention may have a single peak in the weight average fiber length or may have a plurality of peaks.
  • the average fiber length of the carbon fibers can be determined based on the following formula (a) by measuring the fiber length of 100 fibers randomly extracted from the molded body to 1 mm using calipers or the like. .
  • the fiber length of each carbon fiber is Li and the number of measurement is j
  • the number average fiber length (Ln) and the weight average fiber length (Lw) are obtained by the following formulas (a) and (b). .
  • the fiber diameter of the carbon fiber used in the present invention may be appropriately determined according to the type of carbon fiber, and is not particularly limited.
  • the average fiber diameter is usually preferably in the range of 3 ⁇ m to 50 ⁇ m, more preferably in the range of 4 ⁇ m to 12 ⁇ m, and still more preferably in the range of 5 ⁇ m to 8 ⁇ m.
  • the said average fiber diameter shall point out the diameter of the single yarn of carbon fiber. Therefore, when the carbon fiber is in the form of a fiber bundle, it refers to the diameter of the carbon fiber (single yarn) constituting the fiber bundle, not the diameter of the fiber bundle.
  • the average fiber diameter of the carbon fibers can be measured, for example, by the method described in JIS R-7607: 2000.
  • the carbon fiber used in the present invention may be in the form of a single yarn consisting of a single yarn regardless of its type, or may be in the form of a fiber bundle consisting of a plurality of single yarns.
  • the carbon fiber used in the present invention may be only a single yarn, may be a fiber bundle, or a mixture of both. When a fiber bundle is used, the number of single yarns constituting each fiber bundle may be substantially uniform or different in each fiber bundle.
  • the carbon fibers are preferably dispersed two-dimensionally at random in the longitudinal direction of the fiber in the in-plane direction of the molded body.
  • the two-dimensional random dispersion means that the carbon fibers are not oriented in a specific direction such as one direction in the in-plane direction of the molded body, and have a specific directionality as a whole.
  • seat surface is shown without showing.
  • a molded body obtained by using the discontinuous fibers dispersed two-dimensionally at random is a substantially isotropic molded body having no in-plane anisotropy.
  • the in-plane direction of the molded body is a direction orthogonal to the plate thickness direction of the molded body. While the longitudinal direction or the width direction indicates a certain direction, it means an indefinite direction on the same plane (a parallel plane orthogonal to the plate thickness direction).
  • the degree of two-dimensional random orientation is evaluated by determining the ratio of tensile modulus in two directions orthogonal to each other. For an arbitrary direction of the molded body and a direction perpendicular thereto, the ratio (E ⁇ ) obtained by dividing the larger value of the measured tensile modulus by the smaller one is 2 or less, more preferably 1.5 or less, If it is preferably 1.3 or less, it can be evaluated that the carbon fibers are dispersed two-dimensionally at random.
  • the polyamide resin used in the present invention is not particularly limited.
  • polyamide resins aliphatic polyamides are preferable, polyamide 6, polyamide 66, or polyamide 610 is more preferable, polyamide 6 or polyamide 66 is more preferable, and polyamide 6 is used. Particularly preferred.
  • thermoplastic resins As long as the effects of the present invention are not impaired, the following thermoplastic resins may be separately used in the resin composition as resins other than the polyamide resin.
  • polyolefin resin such as polyethylene resin, polypropylene resin, polybutadiene resin, polymethylpentene resin
  • Vinyl resins such as vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, Styrene resins such as polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin)
  • Polyester resins such as polyethylene terephthalate resin, polyethylene naphthalate resin, boribylene terephthalate resin, polytrimethylene terephthalate resin, liquid crystal polyester, (Meth) acrylic resins such as polyacetal resin, polycarbonate resin, polyoxymethylene resin, polymethyl methacrylate, Polyarylate resin, thermoplastic
  • thermoplastic resin Only one type of thermoplastic resin may be used in combination, or two or more types may be used. Examples of modes in which two or more types of thermoplastic resins are used in combination include modes in which thermoplastic resins having different softening points or melting points are used in combination, modes in which thermoplastic resins having different average molecular weights are used in combination, and the like. However, this is not the case.
  • the resin composition used in the present invention contains a copper compound and potassium halide, (1) A copper compound contains 0.1 mass part or more with respect to 100 mass parts of polyamide resins.
  • the mass ratio of (2) potassium halide / copper compound is preferably more than 0 and 3.0 or less.
  • copper compound Specific examples of the copper compound include cuprous chloride, cupric chloride, cupric bromide, cuprous iodide, cupric iodide, cupric sulfate, cupric nitrate, and phosphoric acid. Copper, cuprous acetate, cupric acetate, cupric salicylate, cupric stearate, cupric benzoate and copper such as inorganic copper halide and xylylenediamine, 2-mercaptobenzimidazole, benzimidazole, etc. Compound etc. are mentioned. Among these, preferable copper compounds include copper iodide, cuprous bromide, cupric bromide, cuprous chloride and other copper halides and copper acetate, and copper iodide is most preferable.
  • a copper compound is 0.1 mass part or more with respect to 100 mass parts of polyamide resins.
  • the addition amount of the copper compound is 0.1 parts by mass or more, the problem of molecular weight reduction (heat degradation problem) when the composite material is heated can be solved.
  • the upper limit of the content of the copper compound is preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, and still more preferably 0.2 parts by mass or less with respect to 100 parts by mass of the polyamide resin. If it is 0.5 mass part or less, the addition effect of a copper compound will not become small, but will become an effective addition amount.
  • potassium halide examples include potassium iodide, potassium bromide, potassium chloride and the like, and potassium iodide is preferable.
  • the mass ratio of (2) potassium halide / copper compound is more preferably more than 0 and not more than 3.0, and the upper limit is more preferably not more than 2.0, still more preferably not more than 1.0, It is much more preferable that it is less than 1.0.
  • the lower limit of the mass ratio of the potassium halide / copper compound is preferably 0.1 or more, more preferably more than 0.1, still more preferably 0.2 or more, and particularly preferably 0.5 or more. Within this range, a decrease in the molecular weight of the polyamide resin that occurs in the preheating step before cold pressing can be suppressed, and a decrease in the number average molecular weight can be more efficiently suppressed.
  • the copper compound forms a complex with the amide group of the polyamide resin and suppresses the decomposition of the polyamide resin. It has been found that potassium halide assists decomposition suppression by a copper compound, and that potassium halide and a copper compound are suitable as long as the mass ratio of the potassium halide / copper compound is within the above range. When the mass ratio of the potassium halide / copper compound is 3.0 or less, the decomposition of the polyamide resin by excess potassium halide can be suppressed. On the other hand, when the mass ratio of potassium halide / copper compound exceeds 0, it is possible to assist the suppression of decomposition in the copper compound as described above. Further, the appearance of the molded body is also improved.
  • the weight average fiber length of the carbon fiber in the present invention is a discontinuous carbon fiber of 1 mm or more and 100 mm or less
  • the problem of the present invention becomes more remarkable. That is, when a composite material containing discontinuous carbon fibers having a weight average fiber length of 1 mm or more and 100 mm or less is used, in order to improve the fluidity at the time of molding, in a higher temperature region, and more usually than usual. Also need to heat for a long time. For example, when heating at 275 to 330 ° C. for 5 to 20 minutes. Under such severe heating conditions, the decrease in the molecular weight of the polyamide resin present in the surface layer region becomes large, so the effect of the present invention becomes more remarkable. Therefore, the molded body in the present invention preferably contains a copper compound and potassium halide in the surface layer region of the molded body.
  • the ratio of the number average molecular weight of the polyamide resin present in at least one surface layer region to the number average molecular weight of the polyamide resin present in the central region of the molded product is 0.4. It is preferably less than 1.0.
  • the surface layer region is a region of less than 50 ⁇ m in the thickness direction from the surface of the molded body
  • the central region is a region of less than 50 ⁇ m from the central cross section of the molded body toward the surface.
  • the ratio of the number average molecular weight of the polyamide resin present in the surface layer region to the number average molecular weight of the polyamide resin present in the central region is preferably 0.5 or more and less than 1.0, preferably 0.5 or more and 0.0. More preferably, it is 9 or less.
  • the number average molecular weight of the polyamide resin present in the surface layer region is preferably 7000 or more.
  • the number average molecular weight is preferably measured by the GPC method.
  • the adhesion between the treatment agent and the molded body may be easily controlled.
  • Black pigment In the manufacturing method of the molded object in this invention, it is preferable that a black pigment is included in a resin composition. As a specific addition amount, 0.1 to 20 parts by mass of a black pigment may be included with respect to 100 parts by mass of the polyamide resin. When the black pigment is contained in the polyamide resin in an amount of 0.1 part by mass or more, weather resistance is improved, which is preferable. On the other hand, if the addition amount of the black pigment is 20 parts by mass or less, the resin is in a state of high viscosity and high thermal conductivity when molding is performed, the fluidity during molding is difficult to decrease, and the moldability is unlikely to deteriorate.
  • the black pigment in the present invention is more preferably 0.3 parts by mass or more and 10 parts by mass or less, and still more preferably 0.3 parts by mass or more and 2 parts by mass or less with respect to 100 parts by mass of the polyamide resin.
  • black pigment one or more black pigments selected from the group consisting of carbon black, titanium black, furnace black, acetylene black, lamp black, aniline black, sulfur black and the like are preferable.
  • a pigment, such as carbon black is most preferred.
  • Black pigments such as carbon black are ultraviolet absorbers. Although it has a role of improving weather resistance, there is almost no effect of suppressing the decrease in the molecular weight of the polyamide resin present in the surface layer region under severe heating conditions (heating using an IR oven or high-temperature gas).
  • the resin composition includes flame retardants, UV-resistant agents, light stabilizers, antioxidants, thermal stabilizers, pigments, mold release agents, softeners, plasticizers, and surfactants as long as the object of the present invention is not impaired. These additives and a thermosetting resin may be included.
  • composite material refers to a material including a resin composition and carbon fibers before manufacturing a molded body, and is also simply referred to as “composite material”.
  • the composite material used in the present invention can be produced by a generally known method. For example, for a two-dimensional random array mat that is a composite material precursor and a production method thereof, US Pat. No. 8,946,342, This is described in detail in the specification of JP-A-2013-49208.
  • Step A-1 A step of heating the composite material above the melting point of the polyamide resin.
  • Step A-2) A step of placing and pressurizing the composite material heated in Step A-1) in a mold whose temperature is controlled below the melting point of the polyamide resin.
  • the composite material is heated to a temperature equal to or higher than the melting point of the polyamide resin. What is necessary is just to arrange
  • a plurality of sheets may be laminated and heated in advance, or the heated composite material may be laminated and then charged into the mold, or the heated composite materials may be sequentially laminated in the mold. May be.
  • the temperature difference between the lowermost composite material and the uppermost composite material in the case of stacking is small, and from this point of view, it is preferable to stack before putting into the mold.
  • Step A-2 is a step of applying a pressure to the composite material to obtain a molded body having a desired shape.
  • the molding pressure at this time is not particularly limited, but is 20 MPa relative to the mold cavity projected area. Is preferably less than 10 MPa and more preferably 10 MPa or less.
  • various processes may be inserted between the above-mentioned processes at the time of press molding, and for example, vacuum compression molding in which press molding is performed while applying a vacuum may be used.
  • step A-1 a step of heating the composite material (step A-1) is necessarily included.
  • oxygen present in the air reacts with the polyamide resin, which causes a decrease in molecular weight.
  • the molecular weight reduction caused by preheating in advance cannot be suppressed when cold-pressing.
  • the hot press includes at least the following steps B-1) to B-3).
  • Step B-1) Step of placing the composite material in the mold Step B-2) Step of heating the mold to a temperature equal to or higher than the softening temperature of the thermoplastic resin Step B-3) Below the softening point of the thermoplastic resin
  • process B-1 the composite material is placed in the mold at room temperature without heating in advance
  • step B-2 the thermoplastic resin The temperature is raised to the softening temperature or higher and pressurized
  • thermoplastic resin rises above the softening temperature in the mold, it hardly reacts with oxygen, and there is almost no decrease in molecular weight in the surface layer region of the composite material.
  • the surface layer region of the composite material is a region less than 50 ⁇ m from the surface of the composite material, and the central region of the composite material is a region less than 50 ⁇ m from the central cross section of the composite material toward the surface.
  • the thickness of the molded product obtained by the production method of the present invention is not particularly limited, but is usually preferably in the range of 0.01 mm to 100 mm, preferably in the range of 0.01 mm to 10.0 mm, and A range of 1 to 5.0 mm is more preferable.
  • the said thickness shall not show the thickness of each layer, but shall point out the thickness of the whole molded object which added the thickness of each layer.
  • the molded body may have a single layer structure composed of a single layer, or may have a laminated structure in which a plurality of layers are laminated.
  • the molded body has the above laminated structure
  • an aspect in which a plurality of layers having the same composition are laminated may be employed, or an aspect in which a plurality of layers having different compositions from each other may be laminated.
  • the lower limit of the thickness of the molded body is more preferably 0.1 mm or more, further preferably 0.3 mm or more, particularly preferably 0.5 mm or more, and most preferably 1.0 mm or more. preferable.
  • the raw materials used in the following production examples and examples are as follows.
  • the decomposition temperature is a measurement result by thermogravimetric analysis.
  • PAN-based carbon fiber Carbon fiber “Tenax” registered trademark
  • UTS50-24K average fiber diameter: 6.9 ⁇ m
  • Polyamide 6 Crystalline resin melting point 225 ° C
  • Vf carbon fiber volume fraction
  • the molded body was burned and removed from the thermoplastic resin in a furnace at 500 ° C. for 1 hour, and the mass of the sample before and after treatment was weighed to measure the carbon fiber content and thermoplasticity. The mass of the resin was calculated. Next, the volume ratio of the carbon fiber and the thermoplastic resin was calculated using the specific gravity of each component. Also regarding the composite material, the volume ratio of carbon fiber contained is represented by Vf.
  • Formula (c) Vf 100 ⁇ carbon fiber volume / (carbon fiber volume + thermoplastic resin volume)
  • the sample used for the measurement was obtained by cutting the surface layer region (or the central region of the molded product) of the molded product after cold pressing with a flat blade. With respect to the sampling weight, the entire test piece of 135 mm ⁇ 65 mm was shaved with a flat blade to obtain a measurement sample of about 80 to 120 mg.
  • the molecular weight was determined by gel permeation chromatography (GPC).
  • the apparatus was HLC-8220GPC manufactured by Tosoh Corporation, the detector was a differential refractometer (RI), and the solvent was hexafluoroisopropanol (HFIP) with CF 3 COONa added to 10 mM (mol / l).
  • the column As the column, one HFIP-LG made by Shodex and two HFIP-806M were used. The solvent flow rate was 0.8 ml / min, and the sample concentration was about 0.1 wt / vol%, and the sample was filtered with a filter to remove insolubles, thereby preparing a measurement sample. Based on the obtained elution curve, the number average molecular weight (Mn) was calculated in terms of polymethyl methacrylate (PMMA).
  • Mn number average molecular weight
  • Example 1 Preparation of Resin Composition Polyamide 6 resin Akulon F126 manufactured by DSM is used as a matrix resin, and the above copper iodide (trade name: cuprous iodide manufactured by Nippon Chemical Industry Co., Ltd.) and potassium iodide (made by Ise Chemical Industry Co., Ltd.) Furthermore, carbon black BP800 manufactured by Cabot was added as a black pigment, and these were kneaded with a twin screw extruder to obtain a carbon black masterbatch.
  • copper iodide trade name: cuprous iodide manufactured by Nippon Chemical Industry Co., Ltd.
  • potassium iodide made by Ise Chemical Industry Co., Ltd.
  • carbon black BP800 manufactured by Cabot was added as a black pigment, and these were kneaded with a twin screw extruder to obtain a carbon black masterbatch.
  • the obtained carbon black masterbatch was added to polyamide 6 resin Akulon F126 manufactured by DSM so as to be diluted 50 times (2% of carbon bra masterbatch), and kneaded and extruded with a twin screw extruder to obtain a resin composition. Obtained.
  • Table 1 shows parts by mass of copper iodide, potassium iodide, and black pigment (carbon black) contained in the resin composition when polyamide 6 (nylon 6) is 100 parts by mass.
  • Carbon fiber “Tenax” (registered trademark) UTS50-24K (average fiber diameter 6.9 ⁇ m, number of single fibers 24,000) manufactured by Toho Tenax Co., Ltd. cut to an average fiber length of 20 mm is used as the carbon fiber. Then, using the resin composition obtained above, based on the method described in U.S. Pat. No. 8,946,342, the carbon fiber volume fraction is designed to have a carbon fiber volume fraction of 35%, and is two-dimensionally oriented carbon fiber and polyamide A composite material of 6 resins was prepared.
  • Example 2 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1.
  • the obtained molded body had a thickness of 2.6 mm. Copper iodide and potassium iodide were present in the surface layer region of the obtained molded body. The evaluation is shown in Table 1.
  • Example 3 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1.
  • the obtained molded body had a thickness of 2.6 mm. Copper iodide and potassium iodide were present in the surface layer region of the obtained molded body. The evaluation is shown in Table 1.
  • Example 4 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1.
  • the obtained molded body had a thickness of 2.6 mm. Copper iodide and potassium iodide were present in the surface layer region of the obtained molded body. The evaluation is shown in Table 1.
  • Example 5 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1.
  • the obtained molded body had a thickness of 2.6 mm. Copper iodide and potassium iodide were present in the surface layer region of the obtained molded body. The evaluation is shown in Table 1.
  • Example 6 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1. Got. The obtained molded body had a thickness of 2.6 mm. Copper iodide and potassium iodide were present in the surface layer region of the obtained molded body. The evaluation is shown in Table 1.
  • Example 7 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1.
  • the obtained molded body had a thickness of 2.6 mm. Copper iodide and potassium iodide were present in the surface layer region of the obtained molded body. The evaluation is shown in Table 1.
  • Example 1 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1. Got. The evaluation is shown in Table 1.
  • Example 2 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1. Got. The evaluation is shown in Table 1.
  • Example 3 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1. Got. The evaluation is shown in Table 1.
  • Example 4 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1. Got. The evaluation is shown in Table 1. Since potassium iodide was not added, the appearance of the molded body was yellow and the appearance was deteriorated.
  • Example 5 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1. Got. The evaluation is shown in Table 1.
  • Example 6 A molded body in the same manner as in Example 1 except that the resin composition was prepared by adjusting the mass parts of copper iodide, potassium iodide, and black pigment (carbon black) to polyamide 6 resin as shown in Table 1. Got. The evaluation is shown in Table 1.
  • Comparative Example 7 The composite material prepared in the same manner as in Comparative Example 1 except that the black pigment was changed to 0.60 part by mass was pre-heated until the surface temperature reached 280 ° C., and immediately after reaching 280 ° C., the cold press Molded. Due to the short heating time, the moldability was poor. Moreover, although the number average molecular weight of the polyamide resin present in the surface layer region was also decreased as shown in Table 1, since the heating environment was mild, no significant decrease was observed.
  • Comparative Example 8 A molded body was obtained in the same manner as in Comparative Example 1 except that the black pigment was not used. The results are shown in Table 1.
  • Example 8 Example 1 except that the mass part of potassium iodide with respect to polyamide 6 resin was 0.60 part by mass, and the resin composition was prepared by adjusting the mass ratio of potassium iodide / copper iodide to 4.0. A molded body was obtained in the same manner. When the obtained molded product was evaluated, the color difference ( ⁇ E * ab) was 1.8, and the appearance evaluation was “Better”.
  • Example 2 A resin composition was prepared in the same manner as in Example 1, and the same carbon fiber as in Example 1 was cut into 5 mm, and dry blended so that the carbon fiber volume ratio was 5%.
  • Reference Example 3 A resin composition was prepared in the same manner as in Comparative Example 1, and injection molded in the same manner as in Reference Example 2 to obtain a molded body. The results are shown in Table 2. As can be seen from a comparison between Reference Example 2 and Reference Example 3, the molded product molded by injection molding had the same evaluation regardless of the content of the copper compound. This is because polyamide resin melt kneading in injection molding has a short molding cycle and is not a harsh heating environment, the amount of oxygen in the cylinder is limited, and only the surface portion of the molded body is not specifically heated. Is the cause.
  • the molded body and the method for producing the same of the present invention can be used for various components such as an inner plate, an outer plate, a structural member of an automobile, various electric products, a frame of a machine, a casing, and the like. Preferably, it can be used as an automobile part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本発明によれば、樹脂組成物と炭素繊維とを含む複合材料をプレスして成形体を製造する方法であって、樹脂組成物には、ポリアミド樹脂、銅化合物及びハロゲン化カリウムを含み、(1)銅化合物はポリアミド樹脂100質量部に対して、0.1質量部以上である、成形体の製造方法を提供することができる。

Description

成形体の製造方法
 本発明は、成形体の製造方法に関する。
 近年、機械分野において、炭素繊維と熱可塑性樹脂とを含む、いわゆる繊維強化樹脂成形体が注目されており、特に繊維強化樹脂複合材料にポリアミド樹脂が含まれる場合、その熱安定剤として銅系安定剤が知られている。
 例えば、特許文献1には、ポリアミド樹脂と不連続炭素繊維を含む熱可塑性樹脂組成物であって、熱安定剤としてハロゲン化銅あるいはその誘導体を含む技術が開示されている。
 特許文献2にはポリアミド樹脂、ハロゲン化カリウム及び銅化合物を含む樹脂組成物が開示されており、任意成分として炭素繊維等を含めて射出成形する技術が開示されている。
 特許文献3には、ポリアミド樹脂と不連続炭素繊維を含む複合材料に、熱安定剤として銅化合物を含め、これをコールドプレスしてプレス成形体を得る発明が開示されている。
日本国特開2015-140353号公報 日本国特開2015-30833号公報 日本国特開2014-118426号公報
 しかしながら、特許文献1では、複合材料をホットプレス成形しており、コールドプレス成形する際の特有の課題に関して、何ら言及されていない。このため、予熱時に高温環境下で酸素と直接接触することで生じる成形体表面の分子量低下は、未だ解決されていない喫緊の課題であり、コールドプレス成形特有のものである。
 特許文献2に記載の樹脂組成物は、射出成形向けに検討されたものであり、特許文献1と同様、コールドプレス成形特有の課題は解決できていない。特許文献2に記載の樹脂組成物を用いた射出成形体では、成形体表面の分子量低下がほとんど無いため、外観不良は問題にならない。
 特許文献3では、熱安定性向上のために銅系安定剤を添加しているものの、成形性向上のために、より過酷な条件で複合材料を加熱し、成形した成形体表面の分子量低下を防止するといった観点では検討されておらず、より実用上で耐えうるものが要求されている。
 そこで本発明の目的は、短いタクトで成形が可能なコールドプレスにおいて、優れた成形性を確保するための加熱工程で、成形材料を過酷な高温下や酸素雰囲気下に曝露しても、得られた成形体表面の分子量低下が少なく、外観が良好な成形体の製造方法を提供することにある。
 上記課題を解決するために、本発明は以下の手段を提供する。
<1>. 樹脂組成物と炭素繊維とを含む複合材料をプレスして成形体を製造する方法であって、樹脂組成物には、ポリアミド樹脂、銅化合物及びハロゲン化カリウムを含み、
 (1)銅化合物はポリアミド樹脂100質量部に対して、0.1質量部以上である、成形体の製造方法。
<2>. (2)ハロゲン化カリウム/銅化合物の質量比は0を超えて3.0以下である、前記<1>に記載の成形体の製造方法。
<3>. ハロゲン化カリウムがヨウ化カリウム、銅化合物がヨウ化銅である、前記<1>または<2>に記載の成形体の製造方法。
<4>. 前記プレスが、コールドプレスである、前記<1>~<3>いずれか1項に記載の成形体の製造方法。
<5>. 樹脂組成物に黒色顔料を含む、<1>~<4>いずれか1項に記載の成形体の製造方法。
<6>. 成形体の中央領域に存在するポリアミド樹脂の数平均分子量に対する、表層領域に存在するポリアミド樹脂の数平均分子量の比が、0.4超1.0未満である、<1>~<5>いずれか1項に記載の成形体の製造方法。
 ただし、表層領域とは、成形体の表面から50μm未満の領域であって、中央領域とは、成形体の中央断面から表面に向かって50μm未満の領域である。
<7>. 表層領域に存在するポリアミド樹脂の数平均分子量が7000以上である、<6>に記載の成形体の製造方法。
<8>. 成形体の表層領域に、銅化合物及びハロゲン化カリウムが存在する、<6>または<7>に記載の成形体の製造方法。
<9>. 炭素繊維の重量平均繊維長が1mm以上100mm以下の不連続炭素繊維である、<1>~<8>いずれか1項に記載の成形体の製造方法。
 本発明における製造方法で得られた成形体は、表面の分子量低下が抑制されており、優れた表面外観を有する。
本発明の成形体の断面の模式図であり、表層領域と中央領域の説明図である。
 [炭素繊維]
 本発明に用いられる炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。
 なかでも、本発明においては引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましい。炭素繊維としてPAN系炭素繊維を用いる場合、その引張弾性率は100GPa~600GPaの範囲内であることが好ましく、200GPa~500GPaの範囲内であることがより好ましく、230~450GPaの範囲内であることがさらに好ましい。また、引張強度は2000MPa~10000MPaの範囲内であることが好ましく、3000MPa~8000MPaの範囲内であることがより好ましい。
 本発明に用いられる炭素繊維は、表面にサイジング剤が付着しているものであってもよい。サイジング剤が付着している炭素繊維を用いる場合、当該サイジング剤の種類は、炭素繊維及びマトリックス樹脂の種類に応じて適宜選択することができるものであり、特に限定されるものではない。
 (繊維長)
 本発明に用いられる炭素繊維の繊維長に特に限定はなく、連続繊維や不連続炭素繊維を用いる事が出来る。
 本発明に用いられる炭素繊維は、重量平均繊維長Lwが1~100mmの不連続炭素繊維であることが好ましい。不連続炭素繊維の重量平均繊維長は、3~80mmであることがより好ましく、5~60mmであることがさらに好ましい。重量平均繊維長が100mm以下であれば、複合材料の流動性が低下せず、プレス成形の際に所望の成形体形状を得られる。一方、重量平均繊維長が1mm以上の場合、成形体の機械強度が低下せずに好ましい。
 なお、通常、良好な外観を構成する射出成形体に含まれる炭素繊維の重量平均繊維長は1mm未満である。
 本発明においては繊維長が互いに異なる炭素繊維を併用してもよい。換言すると、本発明に用いられる炭素繊維は、重量平均繊維長に単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。
 炭素繊維の平均繊維長は、例えば、成形体から無作為に抽出した100本の繊維の繊維長を、ノギス等を用いて1mm単位まで測定し、下記式(a)に基づいて求めることができる。
 なお、個々の炭素繊維の繊維長をLi、測定本数をjとすると、数平均繊維長(Ln)と重量平均繊維長(Lw)とは、以下の式(a)、(b)により求められる。
 Ln=ΣLi/j ・・・式(a)
 Lw=(ΣLi)/(ΣLi) ・・・式(b)
 繊維長が一定長の場合は数平均繊維長と重量平均繊維長は同じ値になる。
 成形体からの炭素繊維の抽出は、例えば、成形体に対し、500℃×1時間程度の加熱処理を施し、炉内にて樹脂を除去することによって行うことができる。
 (繊維径)
 本発明に用いられる炭素繊維の繊維径は、炭素繊維の種類に応じて適宜決定すればよく、特に限定されるものではない。平均繊維径は、通常、3μm~50μmの範囲内であることが好ましく、4μm~12μmの範囲内であることがより好ましく、5μm~8μmの範囲内であることがさらに好ましい。ここで、上記平均繊維径は、炭素繊維の単糸の直径を指すものとする。したがって、炭素繊維が繊維束状である場合は、繊維束の径ではなく、繊維束を構成する炭素繊維(単糸)の直径を指す。炭素繊維の平均繊維径は、例えば、JIS R-7607:2000に記載された方法によって測定することができる。
 (炭素繊維体積割合)
 本発明において、下記式(c)で定義される、成形体に含まれる炭素繊維体積割合(以下、単に「Vf」ということがある)に特に限定は無いが、成形体における炭素繊維体積割合(Vf)は、10~60Vol%であることが好ましく、20~50Vol%であることがより好ましく、25~45Vol%であればさらに好ましい。
 炭素繊維体積割合(Vf)=100×炭素繊維体積/(炭素繊維体積+熱可塑性樹脂体積) 式(c)
 成形体における炭素繊維体積割合(Vf)が10Vol%以上の場合、所望の機械特性が得られやすい。一方で、成形体における炭素繊維体積割合(Vf)が60Vol%を超えない場合、プレス成形等に使用する際の流動性が良好で、所望の成形体形状を得られやすい。
 (繊維形態)
 本発明に用いられる炭素繊維は、その種類に関わらず単糸からなる単糸状であってもよく、複数の単糸からなる繊維束状であってもよい。
 本発明に用いられる炭素繊維は、単糸状のもののみであってもよく、繊維束状のもののみであってもよく、両者が混在していてもよい。繊維束状のものを用いる場合、各繊維束を構成する単糸の数は、各繊維束においてほぼ均一であってもよく、あるいは異なっていてもよい。
 (2次元ランダム)
 炭素繊維は、繊維の長軸方向が成形体の面内方向において2次元ランダムに分散していることが好ましい。
 ここで、2次元ランダムに分散しているとは、炭素繊維が、成形体の面内方向において一方向のような特定方向ではなく無秩序に配向しており、全体的には特定の方向性を示すことなくシート面内に配置されている状態を言う。この2次元ランダムに分散している不連続繊維を用いて得られる成形体は、面内に異方性を有しない、実質的に等方性の成形体である。
 また、成形体の面内方向とは、成形体の板厚方向に直交する方向である。長手方向あるいは幅方向がそれぞれ一定の方向を指すのに対して、同一平面上(板厚方向に直交する平行な面)の不定の方向を意味している。
 なお、2次元ランダムの配向度は、互いに直交する二方向の引張弾性率の比を求めることで評価する。成形体の任意の方向、及びこれと直交する方向について、それぞれ測定した引張弾性率の値のうち大きいものを小さいもので割った(Eδ)比が2以下、より好ましくは1.5以下、更に好ましくは1.3以下であれば、炭素繊維が2次元ランダムに分散していると評価できる。
 [ポリアミド樹脂]
 本発明に用いられるポリアミド樹脂に特に限定はないが、例えば、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド56、ポリアミド410、ポリアミド510、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド1010、ポリアミド4T、ポリアミド5T、ポリアミド5I、ポリアミド6T、ポリアミド6I、ポリアミド4,6共重合体、ポリアミド6.12、ポリアミド9T、ポリアミドMXD6、イソフタル酸とビス(3-メチル-4アミノシクロヘキシル)メタンとを、重合してなるポリアミド(ポリアミドPACMI)などのホモポリマ-、または、これらの共重合体または混合物等のポリアミド樹脂を使用することができる。
 これらポリアミド樹脂の中でも、脂肪族ポリアミドであることが好ましく、ポリアミド6、ポリアミド66、またはポリアミド610を用いることがより好ましく、ポリアミド6、またはポリアミド66を用いることがさらに好ましく、ポリアミド6を用いることが特に好ましい。
 ポリアミド樹脂は1種類のみであってもよく、2種類以上であってもよい。2種類以上のポリアミド樹脂を併用する態様としては、例えば、相互に軟化点又は融点が異なるポリアミド樹脂を併用する態様や、相互に平均分子量が異なるポリアミド樹脂を併用する態様等を挙げることができるが、この限りではない。
 [その他の熱可塑性樹脂]
 本発明における効果を損なわない範囲で、ポリアミド樹脂以外の樹脂として、以下の熱可塑性樹脂を別途、樹脂組成物に併用しても良い。
 例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリメチルペンテン樹脂等のポリオレフィン系樹脂、
 塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂などのビニル系樹脂、
 ポリスチレン樹脂、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)等のスチレン系樹脂、
 ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、液晶ポリエステル等のポリエステル樹脂、
 ポリアセタール樹脂、ポリカーボネート樹脂、ポリオキシメチレン樹脂、ポリメチルメタクリレート等の(メタ)アクリル樹脂、
 ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルニトリル樹脂、ポリフェニレンエーテル系樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、変性ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ウレタン樹脂、
 ポリテトラフルオロエチレン等のフッ素系樹脂、ポリベンズイミダゾール樹脂などが挙げられる。
 別途併用する熱可塑性樹脂は1種類のみであってもよく、2種類以上であってもよい。2種類以上の熱可塑性樹脂を併用する態様としては、例えば、相互に軟化点又は融点が異なる熱可塑性樹脂を併用する態様や、相互に平均分子量が異なる熱可塑性樹脂を併用する態様等を挙げることができるが、この限りではない。
 [銅化合物およびハロゲン化カリウム]
 本発明に用いられる樹脂組成物には銅化合物およびハロゲン化カリウムを含み、
 (1)銅化合物はポリアミド樹脂100質量部に対して、0.1質量部以上含むものである。また、(2)ハロゲン化カリウム/銅化合物の質量比は0を超えて3.0以下であることが好ましい。
 (銅化合物)
 銅化合物の具体的な例としては、塩化第一銅、塩化第二銅、臭化第二銅、ヨウ化第一銅、ヨウ化第二銅、硫酸第二銅、硝酸第二銅、リン酸銅、酢酸第一銅、酢酸第二銅、サリチル酸第二銅、ステアリン酸第二銅、安息香酸第二銅および前記無機ハロゲン化銅とキシリレンジアミン、2-メルカプトベンズイミダゾール、ベンズイミダゾールなどの銅化合物などが挙げられる。この中でも、好ましい銅化合物としては、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅などのハロゲン化銅、酢酸銅を挙げることができ、ヨウ化銅が最も好ましい。
 ポリアミド樹脂100質量部に対して銅化合物は、0.1質量部以上である。銅化合物の添加量が0.1質量部以上では、複合材料を加熱した際の分子量低下の問題(熱劣化の問題)を解決できる。
 一方、銅化合物の含有量の上限は、ポリアミド樹脂100質量部に対して0.5質量部以下が好ましく、0.3質量部以下がより好ましく、0.2質量部以下の範囲が更に好ましい。0.5質量部以下であれば、銅化合物の添加効果が小さくならず、効果的な添加量となる。
 (ハロゲン化カリウム)
 ハロゲン化カリウムとしては、ヨウ化カリウム、臭化カリウム、塩化カリウムなどを挙げることができ、ヨウ化カリウムが好ましい。
 (ハロゲン化カリウム/銅化合物の質量比)
 本発明において、(2)ハロゲン化カリウム/銅化合物の質量比は0を超えて3.0以下であるとより好ましく、上限は2.0以下が更に好ましく、1.0以下がより更に好ましく、1.0未満であるとより一層好ましい。ハロゲン化カリウム/銅化合物の質量比の下限は、0.1以上が好ましく、0.1超えがより好ましく、0.2以上が更に好ましく、0.5以上が特に好ましい。この範囲であると、コールドプレス前の予熱工程において生じるポリアミド樹脂の分子量低下を抑制でき、数平均分子量の低下をより効率的に抑制できる。
 銅化合物は、ポリアミド樹脂のアミド基と錯体を形成し、ポリアミド樹脂の分解を抑制するものである。ハロゲン化カリウムは、銅化合物による分解抑制を補助し、上記ハロゲン化カリウム/銅化合物の質量比の範囲であれば、ハロゲン化カリウムと銅化合物が好適であることを見出した。ハロゲン化カリウム/銅化合物の質量比は3.0以下であることにより、過剰なハロゲン化カリウムによるポリアミド樹脂の分解を抑制できる。一方、ハロゲン化カリウム/銅化合物の質量比は0を超えることで、前述のように銅化合物における分解抑制を補助できる。また、成形体外観も良好になる。
 (本発明におけるより顕著な課題)
 本発明における炭素繊維の重量平均繊維長が1mm以上100mm以下の不連続炭素繊維である場合、本発明の課題はより顕著になる。
 すなわち、炭素繊維の重量平均繊維長が1mm以上100mm以下の不連続炭素繊維を含んだ複合材料を用いた場合、成形時の流動性を向上させるためには、より高温領域で、更には通常よりも長い時間加熱する必要がある。例えば275~330℃で、5~20分間加熱する場合である。
 このような過酷な加熱条件では、表層領域に存在するポリアミド樹脂の分子量低下が大きくなるため、本発明の効果はより格別なものとなる。
 したがって、本発明における成形体は、成形体の表層領域に、銅化合物及びハロゲン化カリウムが存在することが好ましい。
 特に、IRオーブンで複合材料を加熱した場合、炭素繊維が表層領域に存在すると、表層領域に存在するポリアミド樹脂は、より一層過酷な加熱条件に曝されることになる。したがって、成形体の表層領域に炭素繊維と、銅化合物及びハロゲン化カリウムとが存在すると、より一層本発明の効果を顕著に発揮できる。
 なお、前述した文献3(日本国特開2014-118426号公報)では、予備加熱温度280℃に達した直後にコールドプレスしており、過酷な環境下で加熱して成形されていない。
 また、射出成形によって成形する場合であっても、加熱時間が短く、また酸素濃度が高くならないため、やはり過酷な環境下では加熱されていない。
 (ポリアミド樹脂の数平均分子量)
 本発明における製造方法で得られた成形体は、成形体の中央領域に存在するポリアミド樹脂の数平均分子量に対する、少なくとも一方の表層領域に存在するポリアミド樹脂の数平均分子量の比が、0.4超1.0未満であることが好ましい。
 ただし、表層領域とは、成形体の表面から厚み方向に50μm未満の領域であって、中央領域とは、成形体の中央断面から表面に向かって50μm未満の領域である。
 また、中央領域に存在するポリアミド樹脂の数平均分子量に対する、表層領域に存在するポリアミド樹脂の数平均分子量の比は、0.5以上1.0未満であることが好ましく、0.5以上0.9以下であることがより好ましい。
 本発明における複合材料は、過酷な条件で加熱しても、複合材料の表層領域におけるポリアミド樹脂の分子量低下を抑制できる。これにより、コールドプレス後のプレス成形体の表層領域の分子量低下が抑えられるため、外観と耐候性にすぐれたプレス成形体を得ることができる。
 具体的には、表層領域に存在するポリアミド樹脂の数平均分子量は、7000以上であると好ましい。なお、数平均分子量はGPC法で測定するとよい。
 また、このように成形体表面の数平均分子量を制御することで、例えば表面処理、塗装をする場合、処理剤と成形体との密着性の制御が容易となる可能性がある。
 [黒色顔料]
 本発明における成形体の製造方法においては、樹脂組成物に黒色顔料を含むことが好ましい。具体的な添加量としては、ポリアミド樹脂100質量部に対して、0.1質量部以上20質量部以下の黒色顔料を含むと良い。
 黒色顔料がポリアミド樹脂に0.1質量部以上含まれている場合、耐候性が向上するため好ましい。一方、黒色顔料の添加量が20質量部以下であれば、成形を行う時に樹脂は高粘度・高熱伝導率の状態となり、成形時の流動性が低下しにくく、成形性が悪くなりにくい。本発明における黒色顔料は、ポリアミド樹脂100質量部に対して、0.3質量部以上10質量部以下がより好ましく、0.3質量部以上2質量部以下の範囲が更に好ましい。
 黒色顔料としては、カーボンブラック、チタニウムブラック、フアーネスブラック、アセチレンブラック、ランプブラック、アニリンブラック、スルフアブラック等からなる群より選ばれる1種類以上の黒色顔料が好ましく、特に、炭素粒子からなる黒色顔料、例えば、カーボンブラックが最も好ましい。
 なお、カーボンブラックなどの黒色顔料は紫外線吸収剤である。耐候性を向上させる役割を有するが、過酷な加熱条件(IRオーブンや、高温ガスなどを用いた加熱)における、表層領域に存在するポリアミド樹脂の分子量低下の抑制効果は、ほとんど無い。
 [他の剤]
 樹脂組成物には、本発明の目的を損なわない範囲で、難燃剤、耐UV剤、光安定剤、酸化防止剤、熱安定剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤の添加剤、熱硬化性樹脂を含んでいてもよい。
 [複合材料の製造方法]
 本明細書で示す「複合材料」とは、樹脂組成物と炭素繊維を含む、成形体を製造する前の材料を指し、単に「複合材料」ともいう。
 本発明に用いられる複合材料は、一般的に公知の方法を用いて製造することができ、例えば、複合材料前駆体である2次元ランダム配列マットおよびその製造法については、米国特許第8946342号、特開2013-49208号公報の明細書に詳しく記載されている。
 [成形体の製造方法(コールドプレス成形)]
 本発明のプレス成形体を製造するにあたっての好ましい成形方法としては、コールドプレスを用いたプレス成形が利用される。
 コールドプレスは、例えば、第1の所定温度に予め加熱した複合材料を第2の所定温度に設定された成形型内に投入した後、加圧・冷却を行う。
 すなわち、コールドプレスは、少なくとも以下の工程A-1)~A-2)を含んでいる。
 工程A-1)複合材料を、ポリアミド樹脂の融点以上に加熱する工程。
 工程A-2)上記工程A-1)で加熱された複合材料を、ポリアミド樹脂の融点未満に温度調節された成形型に配置し、加圧する工程。
 なお、樹脂組成物にポリアミド樹脂以外の樹脂(結晶性又は非晶性の熱可塑性樹脂など)を併用して含む場合であっても、複合材料はポリアミド樹脂の融点以上に加熱し、ポリアミド樹脂の融点未満に温度調整された成形型に配置すれば良い。
 これらの工程をへて、複合材料を成形して、成形体を製造することができる。
 なお、成形型に投入する際、複合材料は、対象の成形体の板厚に合わせて、単独(1枚で)又は複数枚用いられる。複数枚用いる場合、複数枚を予め積層して加熱してもよいし、加熱した複合材料を積層した後に成形型内に投入してもよいし、加熱した複合材料を成形型内に順次積層してもよい。なお、積層した場合の最下層の複合材料と最上層の複合材料との温度差は少ない方が良く、この観点からは、成形型に投入する前に積層した方が好ましい。
 上記の各工程は、上記の順番で行う必要があるが、各工程間に他の工程を含んでもよい。他の工程とは、例えば、工程A-2)の前に、工程A-2)で利用される成形型と別の賦形型を利用して、成形型のキャビティの形状に予め賦形する賦形工程等がある。
 また、工程A-2)は、複合材料に圧力を加えて所望形状の成形体を得る工程であるが、このときの成形圧力については特に限定はしないが、成形型キャビティ投影面積に対して20MPa未満が好ましく、10MPa以下であるとより好ましい。
 また、当然のことであるが、プレス成形時に種々の工程を上記の工程間に入れてもよく、例えば真空にしながらプレス成形する真空圧縮成形を用いてもよい。
 (コールドプレスする際の課題)
 コールドプレスしてプレス成形体を製造する場合、予め複合材料を加熱する工程(工程A-1)が必ず含まれる。複合材料を加熱すると、空気中に存在する酸素と、ポリアミド樹脂が反応してしまい、どうしても分子量低下を引き起こしてしまう。従来の樹脂組成物では、コールドプレスする際、事前に予備加熱することで生じる分子量低下を抑制できない。
 (ホットプレス)
 次に、ホットプレスに関して述べるが、ホットプレスは、少なくとも以下の工程B-1)~工程B-3)を含んでいる。
 工程B-1) 複合材料を成形型に配置する工程
 工程B-2) 成形型を熱可塑性樹脂の軟化温度以上まで昇温し、加圧する工程
 工程B-3) 熱可塑性樹脂の軟化点未満に成形型の温度を調節して成形する工程
 ホットプレスによってプレス成形体を製造した場合、予め複合材料を加熱せずに常温で、成形型に配置し(工程B-1)、ここで熱可塑性樹脂の軟化温度以上まで昇温して、加圧される(工程B-2)。すなわち、成形型内において、熱可塑性樹脂は軟化温度以上に上昇するため、酸素と反応することが限りなく少なく、複合材料の表層領域における分子量低下はほとんど生じない。
(なお、複合材料の表層領域とは、複合材料の表面から50μm未満の領域であって、複合材料の中央領域とは、複合材料の中央断面から表面に向かって50μm未満の領域である。)
 ただし、ホットプレスであっても、予め加熱した場合には、コールドプレスと同様、加熱工程において高温、かつ酸素雰囲気下に曝露されるため、本発明における課題が生じる。
 [成形体]
 (成形体の厚み)
 本発明の製造方法により得られる成形体の厚みは特に限定されるものではないが、通常、0.01mm~100mmの範囲内が好ましく、0.01mm~10.0mmの範囲内が好ましく、0.1~5.0mmの範囲内がより好ましい。
 なお、成形体が、複数の層が積層された構成を有する場合、上記厚みは各層の厚みを指すのではなく、各層の厚みを合計した成形体全体の厚みを指すものとする。
 成形体は、単一の層からなる単層構造を有するものであってもよく、又は複数層が積層された積層構造を有するものであってもよい。
 成形体が上記積層構造を有する態様としては、同一の組成を有する複数の層が積層された態様であってもよく、又は互いに異なる組成を有する複数の層が積層された態様であってもよい。
 成形体の厚みの下限は、0.1mm以上であることがより好ましく、0.3mm以上であることが更に好ましく、0.5mm以上であることが特に好ましく、1.0mm以上であることが最も好ましい。
 以下、本発明について実施例を用いて具体的に説明するが、本発明はこれらに限定されるものではない。
1.以下の製造例、実施例で用いた原料は以下の通りである。なお、分解温度は、熱重量分析による測定結果である。
 ・PAN系炭素繊維
 東邦テナックス社製の炭素繊維“テナックス”(登録商標)UTS50-24K(平均繊維径6.9μm)
 ・ポリアミド6
 結晶性樹脂、融点225℃、分解温度(空気中)300℃
 ・銅化合物
 日本化学産業株式会社製 商品名 沃化第一銅
 ・ハロゲン化カリウム
 伊勢化学工業株式会社製 商品名 ヨウ化カリウム
2.本実施例における各値は、以下の方法に従って求めた。
(1)炭素繊維体積割合(Vf)の分析
 成形体を500℃×1時間、炉内にて熱可塑性樹脂を燃焼除去し、処理前後の試料の質量を秤量することによって炭素繊維分と熱可塑性樹脂の質量を算出した。次に、各成分の比重を用いて、炭素繊維と熱可塑性樹脂の体積割合を算出した。複合材料に関しても、含有する炭素繊維体積割合をVfで表す。
 式(c) Vf=100×炭素繊維体積/(炭素繊維体積+熱可塑性樹脂体積)
(2)成形体に含まれる炭素繊維の重量平均繊維長の分析
 成形体に含まれる炭素繊維の重量平均繊維長は、500℃×1時間程度、炉内にて熱可塑性樹脂を除去した後、無作為に抽出した炭素繊維100本の長さをノギスおよびルーペで1mm単位まで測定して記録し、測定した全ての炭素繊維の長さ(Li、ここでi=1~100の整数)から、次式により重量平均繊維長(Lw)を求めた。
 Lw=(ΣLi)/(ΣLi) ・・・ 式(b)
 なお、複合材料に含まれる炭素繊維の重量平均繊維長についても上記と同様の方法で測定することができる。
(3)色差測定
 色差測定は、初期成形体とキセノン照射後の成形体を用いて、コニカミノルタ社製CM-600dで測定した。試験規格はJIS K 5600-4-4:1999(ISO7724-1:1984)に基づき、10°視野、観察光源としてD65、SCI(正反射光除く)による色差(ΔE*ab)を評価した。なお、下記外観評価と同様に、キセノン照射には、スガ試験機株式会社スーパーキセノンウェザーメーターSX75を用い、SAE J 2527(2004.02)にて行い、照射エネルギーとして2500kJ/mとなるまで照射を行った。
(4)外観評価
 成形体の試験サンプルに関して、耐候性試験後の外観評価を、耐候性試験前の外観を基準外観として、目視評価を行い、退色、強化繊維の露出などの観点から4段階の官能評価を実施した。
 なお、耐候性試験は、試験機としてスガ試験機株式会社スーパーキセノンウェザーメーターSX75を用いた。試験方法は、SAE J 2527(2004.02)にて行い、照射エネルギーとして2500kJ/mとなるまで試験を行った。
 Excellent:基準外観との差異が、ほとんど無い。
 Good:基準外観との差異は認められるが、繊維束及び単繊維には樹脂が含浸されている。
 Better:基準外観との差異が認められ、一部の単繊維では、樹脂が損なわれていることで、やや外観悪化している。ただし、実用上許容されるレベルである。
 Bad:明らかに基準外観と差異が認められ、強化繊維に含浸していた樹脂が損なわれることで、未含浸な繊維束、および単繊維が露出している状態である。実用上許容されないレベルである。
(5)数平均分子量の測定
 測定に供するサンプルは、コールドプレス後の成形体の表層領域(又は成形体の中央領域)を平刀により切削することで得た。サンプリング重量は、135mm×65mmの試験片の全域を平刀で削り、80~120mg程度の測定用サンプルを得た。
 分子量は、ゲルパーミッショクロマトグラフィー(GPC)により求めた。装置は東ソー(株)製HLC-8220GPC、検出器は示差屈折計(RI)、溶媒はヘキサフルオロイソプロパノール(HFIP)に10mM(mol/l)となるようにCFCOONaを加えた。カラムはShodex製HFIP-LGを1本とHFIP-806Mを2本使用した。溶媒流量は0.8ml/min、サンプル濃度は、約0.1wt/vol%であり、フィルターでろ過し、不溶分を除去し、測定試料とした。得られた溶出曲線をもとに、ポリメタクリル酸メチル(PMMA)換算により、数平均分子量(Mn)を算出した。
 [実施例1]
 1.樹脂組成物の作製
 DSM社製のポリアミド6樹脂Akulon F126をマトリックス樹脂とし、上記ヨウ化銅(日本化学産業株式会社製 商品名 沃化第一銅)とヨウ化カリウム(伊勢化学工業株式会社製)を添加し、さらに、黒色顔料として、カーボンブラックCabot社製BP800を添加し、これらを二軸押出機で混練して、カーボンブラックマスターバッチを得た。
 得られたカーボンブラックマスターバッチをDSM社製のポリアミド6樹脂Akulon F126に50倍希釈となるように(カーボンブラマスターバッチを2%)添加し、二軸押出機にて混練押出し、樹脂組成物を得た。
 なお、表1にはポリアミド6(ナイロン6)を100質量部としたときの樹脂組成物に含まれるヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部をそれぞれ示す。
 2.複合材料の作成
 炭素繊維として、平均繊維長20mmにカットした東邦テナックス社製の炭素繊維“テナックス”(登録商標)UTS50-24K(平均繊維径6.9μm、単繊維数24,000本)を使用し、上記得られた樹脂組成物を用いて、米国特許第8946342号に記載された方法に基づき、炭素繊維体積割合が35%となるように設計し、二次元ランダムに配向した炭素繊維およびポリアミド6樹脂の複合材料を作成した。
 3.コールドプレス 
 得られた複合材料を390mm×390mmに切り出し、赤外線加熱機(日本ガイシ株式会社製3連IR加熱機)により複合材料の表面温度が300℃になるまで昇温し、その後500秒間加熱を維持した(この加熱条件は、従来の加熱条件よりは、極めて過酷な条件であるが、成形性は抜群である)。
 成形型としては、400mm×400mmの平板状の成形キャビティを有するものを用いて、この成形型を150℃に設定し、加熱した複合材料を成形型内に導入し、プレス圧力20MPaで1分間加圧し、成形体を得た。得られた成形体の厚みは2.6mmであった。得られた成形体の表層領域に、ヨウ化銅及びヨウ化カリウムが存在していた。得られた成形体の表層領域には、炭素繊維が存在しているのが確認できた。評価を表1に示す。
 [実施例2]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。得られた成形体の厚みは2.6mmであった。得られた成形体の表層領域に、ヨウ化銅及びヨウ化カリウムが存在していた。評価を表1に示す。
 [実施例3]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。得られた成形体の厚みは2.6mmであった。得られた成形体の表層領域に、ヨウ化銅及びヨウ化カリウムが存在していた。評価を表1に示す。
 [実施例4]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。得られた成形体の厚みは2.6mmであった。得られた成形体の表層領域に、ヨウ化銅及びヨウ化カリウムが存在していた。評価を表1に示す。
 [実施例5]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。得られた成形体の厚みは2.6mmであった。得られた成形体の表層領域に、ヨウ化銅及びヨウ化カリウムが存在していた。評価を表1に示す。
 [実施例6]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。得られた成形体の厚みは2.6mmであった。得られた成形体の表層領域に、ヨウ化銅及びヨウ化カリウムが存在していた。評価を表1に示す。
 [実施例7]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。得られた成形体の厚みは2.6mmであった。得られた成形体の表層領域に、ヨウ化銅及びヨウ化カリウムが存在していた。評価を表1に示す。
 [比較例1]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。評価を表1に示す。
 [比較例2]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。評価を表1に示す。
 [比較例3]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。評価を表1に示す。
 [比較例4]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。評価を表1に示す。ヨウ化カリウムを添加しなかったため、成形体外観が黄色し、外観が悪化した。
 [比較例5]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。評価を表1に示す。
 [比較例6]
 ポリアミド6樹脂に対するヨウ化銅、ヨウ化カリウム、黒色顔料(カーボンブラック)の質量部を表1に示すように調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。評価を表1に示す。
 [比較例7]
 黒色顔料0.60質量部としたこと以外は比較例1と同様に作成した複合材料を複合材料を、表面温度が280℃に到達するまで予備加熱して、280℃に達した直後にコールドプレス成形した。加熱時間が短いために成形性に劣るものであった。また、表層領域に存在するポリアミド樹脂の数平均分子量も表1のように低下していたものの、加熱環境が穏やかであったため、著しい低下は見られなかった。
 [比較例8]
 黒色顔料を用いなかったこと以外は、比較例1と同様にして成形体を得た。結果を表1に示す。
 [実施例8]
 ポリアミド6樹脂に対するヨウ化カリウムの質量部を0.60質量部とし、ヨウ化カリウム/ヨウ化銅の質量比を4.0に調整して樹脂組成物を準備したこと以外は、実施例1と同様にして成形体を得た。得られた成形体を評価したところ、色差(ΔE*ab)は1.8であり、外観評価は「Better」であった。
 [参考例1]
 実施例1と同様の複合材料を用いて、95mm×195mmに切り出し、赤外線加熱機では加熱せずに、300mm×300mmの平板状の成形キャビティを有する成形型に投入した。この際、予備加熱は行わなかった。その後、成形型を260℃に加熱し、1MPaにて10分間加熱し、ホットプレスして成形体を得た。結果を表2に示す。
 [参考例2]
 樹脂組成物を実施例1と同様にして準備し、実施例1と同様の炭素繊維を5mmにカットしたものを、炭素繊維体積割合が5%となるようにドライブレンドし、これを、日本製鋼所製110ton電動射出成形機(J110AD)を用い、シリンダー温度C1/C2/C3/C4/N=230℃/240℃/250℃/260℃/250℃(C1~C4はキャビティ、Nはノズル)にて成形サイクル35秒で射出成形し、肉厚4mmの引張試験用ダンベル(成形体)を得た。得られた射出成形体の評価を表2に示す。
 [参考例3]
 樹脂組成物を比較例1と同様にして準備し、参考例2と同様に射出成形して成形体を得た。結果を表2に示す。
 参考例2と参考例3とを比較するとわかるように、射出成形によって成形した成形体では、銅化合物の含有量に関係無く、評価は同じであった。これは、射出成形におけるポリアミド樹脂の溶融混練では、成形サイクルが短く過酷な加熱環境ではないこと、シリンダー内の酸素量が限定されていること、成形体の表面部分のみが特異的に加熱されないこと、が原因である。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 本発明の成形体及びその製造方法は、各種構成部材、例えば自動車の内板、外板、構造部材、また各種電気製品、機械のフレームや筐体等に用いることができる。好ましくは、自動車部品として利用できる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年11月24日出願の日本特許出願(特願2015-228808)に基づくものであり、その内容はここに参照として取り込まれる。
 101 成形体
 102 成形体の表面
 103 成形体の中央断面
 104 表層領域
 105 中央領域
 

Claims (9)

  1.  樹脂組成物と炭素繊維とを含む複合材料をプレスして成形体を製造する方法であって、
     樹脂組成物には、ポリアミド樹脂、銅化合物及びハロゲン化カリウムを含み、
     (1)銅化合物はポリアミド樹脂100質量部に対して、0.1質量部以上である、成形体の製造方法。
  2.  (2)ハロゲン化カリウム/銅化合物の質量比は0を超えて3.0以下である、請求項1に記載の成形体の製造方法。
  3.  ハロゲン化カリウムがヨウ化カリウム、銅化合物がヨウ化銅である、請求項1または2に記載の成形体の製造方法。
  4.  前記プレスが、コールドプレスである、請求項1~3いずれか1項に記載の成形体の製造方法。
  5.  樹脂組成物に黒色顔料を含む、請求項1~4いずれか1項に記載の成形体の製造方法。
  6.  成形体の中央領域に存在するポリアミド樹脂の数平均分子量に対する、表層領域に存在するポリアミド樹脂の数平均分子量の比が、0.4超1.0未満である、
    請求項1~5いずれか1項に記載の成形体の製造方法。
     ただし、表層領域とは、成形体の表面から50μm未満の領域であって、中央領域とは、成形体の中央断面から表面に向かって50μm未満の領域である。
  7.  表層領域に存在するポリアミド樹脂の数平均分子量が7000以上である、請求項6に記載の成形体の製造方法。
  8. 成形体の表層領域に、銅化合物及びハロゲン化カリウムが存在する、請求項6または7に記載の成形体の製造方法。
  9.  炭素繊維の重量平均繊維長が1mm以上100mm以下の不連続炭素繊維である、請求項1~8いずれか1項に記載の成形体の製造方法。
PCT/JP2016/084362 2015-11-24 2016-11-18 成形体の製造方法 WO2017090544A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/777,937 US11198766B2 (en) 2015-11-24 2016-11-18 Method for producing molded article
JP2017552398A JP6476314B2 (ja) 2015-11-24 2016-11-18 成形体の製造方法
EP16868491.8A EP3381973B1 (en) 2015-11-24 2016-11-18 Method for producing molded articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-228808 2015-11-24
JP2015228808 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090544A1 true WO2017090544A1 (ja) 2017-06-01

Family

ID=58763209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084362 WO2017090544A1 (ja) 2015-11-24 2016-11-18 成形体の製造方法

Country Status (4)

Country Link
US (1) US11198766B2 (ja)
EP (1) EP3381973B1 (ja)
JP (1) JP6476314B2 (ja)
WO (1) WO2017090544A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021062A (ja) * 2010-07-13 2012-02-02 Mitsubishi Gas Chemical Co Inc 複合材の製造方法および成形品
WO2012140785A1 (ja) * 2011-04-12 2012-10-18 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
JP2012255063A (ja) * 2011-06-08 2012-12-27 Toray Ind Inc 炭素繊維強化樹脂組成物およびその成形品
JP2013064106A (ja) * 2011-08-31 2013-04-11 Toray Ind Inc 炭素繊維強化樹脂組成物およびその成形品
WO2013080820A1 (ja) * 2011-11-29 2013-06-06 東レ株式会社 炭素繊維強化熱可塑性樹脂組成物、そのペレットおよび成形品
JP2014118426A (ja) * 2012-12-13 2014-06-30 Teijin Ltd 炭素繊維複合材料の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922265A (en) * 1997-04-04 1999-07-13 Lear Corporation Method of forming a motor vehicle dash insulator
US20060183841A1 (en) * 2005-02-11 2006-08-17 Ashish Aneja Thermally stable thermoplastic resin compositions, methods of manufacture thereof and articles comprising the same
FR2922553B1 (fr) * 2007-10-19 2009-12-18 Rhodia Operations Composition polymere thermoplastique a base de polyamide
US20090142585A1 (en) * 2007-11-08 2009-06-04 Toshikazu Kobayashi Nanocomposite compositions of polyamides, sepiolite-type clays and copper species and articles thereof
US20110039470A1 (en) * 2009-07-30 2011-02-17 E.I. Du Pont De Nemours And Company Overmolded heat resistant polyamide composite structures and processes for their preparation
US20120108136A1 (en) * 2010-10-29 2012-05-03 E.I. Du Pont De Nemours And Company Overmolded polyamide composite structures and processes for their preparation
US10316166B2 (en) * 2012-09-19 2019-06-11 Basf Se Flame-retardant polyamides with pale color
JP6194687B2 (ja) 2013-08-06 2017-09-13 宇部興産株式会社 ポリアミド樹脂、銅化合物及びハロゲン化カリウムを含む組成物並びにそれからなる成形品
DE102013217241A1 (de) * 2013-08-29 2015-03-05 Ems-Patent Ag Polyamid-Formmassen und hieraus hergestellte Formkörper
EP3068820B1 (en) 2013-11-13 2020-04-29 Performance Polyamides S.A.S. Polyamide composition
KR102206305B1 (ko) * 2013-11-14 2021-01-22 이엠에스-패턴트 에이지 큰 성형 부품용 폴리아미드 몰딩 컴파운드
JP2015140353A (ja) 2014-01-27 2015-08-03 東レ株式会社 繊維強化熱可塑性樹脂組成物およびその製造方法ならびに繊維強化熱可塑性樹脂成形体の製造方法
PL2910597T4 (pl) * 2014-02-21 2019-07-31 Lanxess Deutschland Gmbh Kompozycje termoplastyczne
EP2927272B1 (de) * 2014-03-31 2017-08-16 Ems-Patent Ag Polyamid-Formmassen, Verfahren zu deren Herstellung und Verwendungen dieser Polyamid-Formmassen
US20160122487A1 (en) * 2014-11-05 2016-05-05 E I Du Pont De Nemours And Company Thermoplastic composites
EP3093312A1 (de) 2015-05-12 2016-11-16 LANXESS Deutschland GmbH Thermoplastische formmassen
CN106995619A (zh) * 2017-04-17 2017-08-01 东北大学 一种聚合物基复合材料磁力泵隔离套及其制备方法
US11401394B2 (en) * 2019-09-06 2022-08-02 Arris Composites Inc. Method for altering polymer properties for molding of parts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021062A (ja) * 2010-07-13 2012-02-02 Mitsubishi Gas Chemical Co Inc 複合材の製造方法および成形品
WO2012140785A1 (ja) * 2011-04-12 2012-10-18 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
JP2012255063A (ja) * 2011-06-08 2012-12-27 Toray Ind Inc 炭素繊維強化樹脂組成物およびその成形品
JP2013064106A (ja) * 2011-08-31 2013-04-11 Toray Ind Inc 炭素繊維強化樹脂組成物およびその成形品
WO2013080820A1 (ja) * 2011-11-29 2013-06-06 東レ株式会社 炭素繊維強化熱可塑性樹脂組成物、そのペレットおよび成形品
JP2014118426A (ja) * 2012-12-13 2014-06-30 Teijin Ltd 炭素繊維複合材料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3381973A4 *

Also Published As

Publication number Publication date
EP3381973A1 (en) 2018-10-03
US20180346663A1 (en) 2018-12-06
JPWO2017090544A1 (ja) 2018-04-12
EP3381973B1 (en) 2021-02-17
US11198766B2 (en) 2021-12-14
EP3381973A4 (en) 2018-12-05
JP6476314B2 (ja) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6027012B2 (ja) 改善された熱老化および中間層結合強度を有する複合材構造
EP3029089B1 (en) Fiber-reinforced composite material and method for producing same
KR101851952B1 (ko) 전기전도성 수지 조성물 및 그 제조방법
JP5551386B2 (ja) 繊維・樹脂複合化シート及びfrp成形体
JPWO2019168009A1 (ja) 繊維強化熱可塑性樹脂プリプレグおよび成形体
CN107531914A (zh) 压制成型制品和复合材料
EP3348602A1 (en) Glass fiber-reinforced polypropylene resin composition
KR102454005B1 (ko) 개선된 유동성을 가진 폴리아미드 혼합물
JP7095308B2 (ja) 繊維強化熱可塑性樹脂プリプレグおよび成形体
JP6778698B2 (ja) 成形体の製造方法
JP6476314B2 (ja) 成形体の製造方法
JP5617245B2 (ja) ガラス繊維織物強化ポリカーボネート樹脂成形体の製造方法、樹脂含浸シート及びガラス繊維織物強化ポリカーボネート樹脂成形体
EP3293296A1 (en) Spun yarn comprising carbon staple fibers and method of preparing the same
JP7025273B2 (ja) 成形体の製造方法
JP2013010255A (ja) 熱可塑性樹脂複合材材料
JP6445389B2 (ja) 連続繊維強化ポリカーボネート樹脂製プリプレグ
WO2018143283A1 (ja) 炭素繊維と熱可塑性樹脂を含む複合材料、並びにこれを用いた成形体の製造方法及び成形体
EP4180405A1 (en) High temperature composites and methods for preparing high temperature composites
CN110483948B (zh) 一种3d打印用碳纤维/聚醚醚酮复合线材
JP2014118426A (ja) 炭素繊維複合材料の製造方法
JP2014113713A (ja) 繊維強化熱可塑性樹脂ランダムシート及びその製造方法
EP4371962A1 (en) High temperature composites and methods for preparing high temperature composites
JP2023514405A (ja) 非反応性熱可塑性ポリマーと反応性熱可塑性ポリマーの混合物および複合材料を調製するためのその使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016868491

Country of ref document: EP