WO2017088445A1 - 寿命计算方法及装置 - Google Patents

寿命计算方法及装置 Download PDF

Info

Publication number
WO2017088445A1
WO2017088445A1 PCT/CN2016/084956 CN2016084956W WO2017088445A1 WO 2017088445 A1 WO2017088445 A1 WO 2017088445A1 CN 2016084956 W CN2016084956 W CN 2016084956W WO 2017088445 A1 WO2017088445 A1 WO 2017088445A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
parameter
service life
motor
purifier
Prior art date
Application number
PCT/CN2016/084956
Other languages
English (en)
French (fr)
Inventor
余久平
刘东旭
杨诺
Original Assignee
小米科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小米科技有限责任公司 filed Critical 小米科技有限责任公司
Priority to KR1020167021375A priority Critical patent/KR20170075674A/ko
Priority to JP2016550209A priority patent/JP2018502274A/ja
Priority to RU2016131884A priority patent/RU2653113C2/ru
Publication of WO2017088445A1 publication Critical patent/WO2017088445A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • B01D35/143Filter condition indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters

Definitions

  • the present disclosure relates to the field of purification, and in particular to a life calculation method and apparatus.
  • the service life of the filter element in the purifier is limited. When the filter element is dirty, the filter element needs to be replaced in time to ensure the air purification effect.
  • the present disclosure provides a life calculation method and apparatus.
  • a life calculation method comprising:
  • sampling parameters of the motor being at least one of a sampling current and a sampling voltage
  • determining the service life of the purifier according to the sampling parameter including:
  • Reading a preset correspondence where the correspondence is used to store a relationship between different sampling parameters and different service lives
  • the method further includes:
  • the maximum sampling parameter being a sampling parameter when a brand new filter element is installed in the purifier, the minimum sampling parameter being a service life in the purifier reaching a rated life Sampling parameters for the filter element;
  • the establishing a correspondence between the value in the interval and the service life includes:
  • the interval is divided into 100 equal parts to obtain respective values
  • the correspondence is established according to the position of each value in the interval to determine the usage percentage corresponding to the value.
  • the acquiring sampling parameters of the motor includes:
  • the sampling voltage is divided by the resistance of the motor to obtain the sampling parameter.
  • a life calculation device comprising:
  • a first control module configured to control the motor in the purifier to rotate at a predetermined rotational speed
  • a parameter acquisition module configured to acquire sampling parameters of the motor, the sampling parameters being at least one of a sampling current and a sampling voltage;
  • the life determining module is configured to determine a service life of the purifier according to the sampling parameter obtained by the parameter obtaining module, and the sampling parameter has a positive correlation with the service life.
  • the life determining module includes:
  • the relationship reading submodule is configured to read a preset correspondence, where the correspondence relationship is used to store a relationship between different sampling parameters and different service lives;
  • the life search submodule is configured to search for a service life corresponding to the sampling parameter in the correspondence relationship obtained by the relationship reading submodule.
  • the device further includes:
  • a second control module configured to control a motor in the purifier to rotate at the predetermined rotational speed
  • a parameter measuring module configured to measure a maximum sampling parameter and a minimum sampling parameter of the motor, the maximum sampling parameter being a sampling parameter when a brand new filter element is installed in the purifier, the minimum sampling parameter being the purifier Sampling parameters when installing a filter element whose service life reaches the rated life;
  • the interval determining module is configured to determine an interval formed by the maximum sampling parameter and the minimum sampling parameter obtained by the parameter measuring module;
  • the relationship establishing module is configured to establish a correspondence between the value in the interval determined by the interval determining module and the service life.
  • the relationship establishing module includes:
  • An interval equal molecular module configured to divide the interval into 100 equal parts to obtain respective values
  • the relationship establishing sub-module is configured to determine a usage percentage corresponding to the value according to a position of each value obtained by the molecular module of the interval or the like in the interval, and establish the correspondence relationship.
  • the parameter obtaining module includes:
  • a voltage acquisition submodule configured to acquire a sampling voltage of the motor when the sampling parameter is a sampling current
  • a parameter acquisition submodule configured to divide the sampling voltage obtained by the voltage acquisition submodule by a resistance of the motor to obtain the sampling parameter.
  • a life calculation device comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • sampling parameters of the motor being at least one of a sampling current and a sampling voltage
  • the correlation can be based on the fact that the severity of the dirty plug of the filter element is positively correlated with the driving current of the motor. According to the sampling parameters of the motor, the serious condition of the dirty plug of the filter element is determined, thereby determining the service life of the filter element and solving the service life. Determine the problem of inaccurate service life and achieve the effect of improving the accuracy of the calculated service life.
  • each value is obtained; according to the position percentage of each value in the interval, the percentage of use corresponding to the value is determined, and the corresponding relationship is established, and the value and the percentage of use obtained by each 100 division in the interval can be obtained.
  • the correspondence relationship is established to refine the quantitative method of service life, and the effect of improving the accuracy of the calculation service life is achieved.
  • FIG. 1 is a flow chart showing a life calculation method according to an exemplary embodiment.
  • FIG. 2A is a flow chart of a life calculation method, according to another exemplary embodiment.
  • FIG. 2B is a flowchart showing establishing a correspondence relationship according to the present exemplary embodiment.
  • FIG. 2C is a flowchart showing acquisition of sampling parameters, according to the present exemplary embodiment.
  • FIG. 3 is a block diagram of a life calculation device, according to an exemplary embodiment.
  • FIG. 4 is a block diagram of a life calculation device, according to an exemplary embodiment.
  • FIG. 5 is a block diagram of an apparatus for life calculation, according to an exemplary embodiment.
  • FIG. 1 is a flow chart showing a life calculation method according to an exemplary embodiment, the life calculation method being applied to a purifier, as shown in FIG. 1, the life calculation method including the following steps.
  • step 101 the motor in the purifier is controlled to rotate at a predetermined rotational speed.
  • a sampling parameter of the motor is acquired, the sampling parameter being at least one of a sampling current and a sampling voltage.
  • step 103 the service life of the purifier is determined according to the sampling parameter, and the sampling parameter is positively correlated with the service life.
  • the life calculation method provided by the present disclosure is to rotate at a predetermined rotation speed by controlling a motor in the purifier; acquiring sampling parameters of the motor, the sampling parameter being at least one of a sampling current and a sampling voltage; determining according to sampling parameters
  • the service life of the purifier is positively correlated with the service life. It can be based on the positive correlation between the severity of the filter plug and the driving current of the motor.
  • the serious condition of the filter plug is determined according to the sampling parameters of the motor. In order to determine the service life of the filter element, the problem of inaccurate service life determined by the use time is solved, and the effect of improving the accuracy of the calculation service life is achieved.
  • FIG. 2A is a flowchart illustrating a life calculation method applied to a purifier according to another exemplary embodiment, as shown in FIG. 2A, the life calculation method includes the following steps.
  • step 201 the motor in the purifier is controlled to rotate at a predetermined rotational speed.
  • the purifier can be controlled to purify the air by driving the motor in the purifier to rotate.
  • the motor has different speeds, and the higher the motor speed, the larger the drive current of the motor.
  • the user can manually adjust the rotational speed of the motor to any value, and the purifier determines the value as the predetermined rotational speed.
  • step 202 the maximum sampling parameter and the minimum sampling parameter of the motor are measured, and the maximum sampling parameter is a sampling parameter when a new filter element is installed in the purifier, and the minimum sampling parameter is a filter element in which the installation life of the purifier reaches the rated life. Sampling parameters.
  • the life of the purifier can also be determined by the voltage of the motor.
  • the voltage at this time is the sampling voltage of the motor and is not the rated voltage of the motor.
  • the drive current and drive voltage are collectively referred to as sampling parameters below.
  • the sampling parameters when the new filter element is installed in the purifier can be measured first, and the sampling parameter is determined as the minimum sampling parameter; then the installation life in the purifier is up to the rated value.
  • the sampling parameter of the life filter element is determined as the maximum sampling parameter.
  • step 203 an interval consisting of a maximum sampling parameter and a minimum sampling parameter is determined.
  • the determined interval is [2, 3].
  • step 204 a correspondence between the value in the interval and the service life is established.
  • the calculation formula can be generated for the value and the service life; the correspondence between the value and the service life can also be established, and the corresponding relationship can be established by other methods, which is not limited in this embodiment.
  • FIG. 2B shows a flow chart for establishing a correspondence.
  • the service life is the percentage of use, establish the correspondence between the value in the interval and the service life, including:
  • step 2041 the interval is divided into 100 equal parts to obtain respective values.
  • step 2042 a correspondence is established according to the usage percentage corresponding to the value of each value in the interval.
  • the 100 values obtained by dividing the interval into 100 equal parts are 2, 2.01, 2.02, ..., 2.98, 2.99, 3, respectively, and 2 corresponds to the use percentage of 0%.
  • 2.01 corresponds to the use percentage of 1%
  • 2.02 corresponds to the use percentage of 2%
  • ..., 2.98 corresponds to the use percentage of 98%
  • 2.99 corresponds to the use percentage of 99%
  • 3 corresponds to the use percentage of 100%.
  • the process of the steps 201-204 is used to create a correspondence between the sampling parameters and the service life, and only needs to be performed before the step 207. This embodiment does not limit the sequential execution between the steps 201-204 and the steps 205 and 206. order.
  • step 205 the motor in the purifier is controlled to rotate at a predetermined rotational speed.
  • the predetermined rotational speed in this step is the same as the rotational speed manually adjusted by the user in step 201.
  • a sampling parameter of the motor is acquired, the sampling parameter being at least one of a sampling current and a sampling voltage.
  • sampling parameter is the sampling voltage
  • the sampling voltage can be directly obtained according to the related technology
  • sampling parameter is When sampling current
  • FIG. 2C shows a flow chart for acquiring sampling parameters.
  • the sampling parameters of the motor are obtained, including:
  • step 2061 when the sampling parameter is a sampling current, the sampling voltage of the motor is acquired.
  • step 2062 the sampling voltage is divided by the resistance of the motor to obtain sampling parameters.
  • the sampling voltage can be directly obtained according to the related technology, and the sampling voltage is divided by the resistance to obtain the sampling current, that is, the sampling parameter is obtained.
  • step 207 a preset correspondence is read, and the correspondence is used to store a relationship between different sampling parameters and different service lives.
  • step 208 the service life corresponding to the sampling parameter is searched for in the corresponding relationship, and the sampling parameter has a positive correlation with the service life.
  • the filter use percentage is 54%.
  • the life calculation method provided by the present disclosure rotates at a predetermined rotation speed by controlling a motor in the purifier; acquires sampling parameters of the motor, the sampling parameter is at least one of a sampling current and a sampling voltage; and the purifier is determined according to the sampling parameter.
  • the service life, the sampling parameter has a positive correlation with the service life, and can be based on the positive correlation between the severity of the dirty filter plug and the driving current of the motor, and the serious condition of the dirty plug of the filter element is determined according to the sampling parameters of the motor, thereby
  • the service life of the filter element is determined, and the problem of inaccurate service life determined by the use time is solved, and the effect of improving the accuracy of the calculation service life is achieved.
  • each value is obtained; according to the position percentage of each value in the interval, the percentage of use corresponding to the value is determined, and the corresponding relationship is established, and the value and the percentage of use obtained by each 100 division in the interval can be obtained.
  • the correspondence relationship is established to refine the quantitative method of service life, and the effect of improving the accuracy of the calculation service life is achieved.
  • FIG. 3 is a block diagram of a life calculation device according to an exemplary embodiment, the life calculation device is applied to a purifier, as shown in FIG. 3, the life calculation device includes: a first control module 310, a parameter acquisition module 320 and life determination module 330.
  • the first control module 310 is configured to control the motor in the purifier to rotate at a predetermined rotational speed
  • the parameter obtaining module 320 is configured to acquire a sampling parameter of the motor, where the sampling parameter is at least one of a sampling current and a sampling voltage;
  • the life determination module 330 is configured to determine the service life of the purifier according to the sampling parameters obtained by the parameter acquisition module 320, and the sampling parameter has a positive correlation with the service life.
  • the life calculation device rotates at a predetermined rotation speed by controlling a motor in the purifier;
  • the sampling parameter of the motor is at least one of a sampling current and a sampling voltage; determining the service life of the purifier according to the sampling parameter, the sampling parameter is positively correlated with the service life, and may be based on the severity of the dirty filter plug and the motor
  • the magnitude of the driving current is positively correlated.
  • the serious condition of the dirty plug of the filter element is determined, thereby determining the service life of the filter element, solving the problem of inaccurate service life determined by the use time, and improving the calculation use. The effect of the accuracy of life.
  • FIG. 4 is a block diagram of a life calculation device according to an exemplary embodiment, the life calculation device is applied to a purifier, as shown in FIG. 4, the life calculation device includes: a first control module 410, a parameter acquisition module 420 and life determination module 430.
  • the first control module 410 is configured to control the motor in the purifier to rotate at a predetermined rotational speed
  • the parameter obtaining module 420 is configured to acquire a sampling parameter of the motor, where the sampling parameter is at least one of a sampling current and a sampling voltage;
  • the life determination module 430 is configured to determine the service life of the purifier according to the sampling parameters obtained by the parameter acquisition module 420, and the sampling parameter has a positive correlation with the service life.
  • the life determination module 430 includes: a relationship reading submodule 431 and a life search submodule 432;
  • the relationship reading sub-module 431 is configured to read a preset correspondence, and the correspondence relationship is used to store a relationship between different sampling parameters and different service lives;
  • the life search sub-module 432 is configured to look up the service life corresponding to the sampling parameter in the correspondence obtained by the relationship reading sub-module 431.
  • the life calculation device further includes: a second control module 440, a parameter measurement module 450, an interval determination module 460, and a relationship establishment module 470;
  • the second control module 440 is configured to control the motor in the purifier to rotate at a predetermined rotational speed
  • the parameter measuring module 450 is configured to measure a maximum sampling parameter and a minimum sampling parameter of the motor.
  • the maximum sampling parameter is a sampling parameter when a new filter element is installed in the purifier, and the minimum sampling parameter is a installation life of the purifier reaches a rated life. Sampling parameters for the filter element;
  • the interval determining module 460 is configured to determine an interval formed by the maximum sampling parameter and the minimum sampling parameter obtained by the parameter measuring module 450;
  • the relationship establishing module 470 is configured to establish a correspondence between the value in the interval determined by the interval determining module 460 and the service life.
  • the relationship establishing module 470 includes: a section molecular module 471 and a relationship establishing sub-module 472;
  • the molecular module 471 such as the interval is configured to divide the interval into 100 equal parts to obtain respective values;
  • the relationship establishing sub-module 472 is configured to establish a correspondence relationship according to the usage percentage corresponding to the value of each value obtained by the molecular module 471 of the interval or the like in the interval.
  • the parameter obtaining module 420 includes: a voltage acquiring submodule 421 and a parameter obtaining submodule 422;
  • the voltage acquisition sub-module 421 is configured to acquire a sampling voltage of the motor when the sampling parameter is a sampling current
  • the parameter acquisition sub-module 422 is configured to divide the sampling voltage obtained by the voltage acquisition sub-module 421 by the resistance of the motor to obtain sampling parameters.
  • the life calculation device rotates at a predetermined rotation speed by controlling a motor in the purifier; acquires sampling parameters of the motor, the sampling parameter is at least one of a sampling current and a sampling voltage; and determining a purifier according to the sampling parameter.
  • the service life, the sampling parameter has a positive correlation with the service life, and can be based on the positive correlation between the severity of the dirty filter plug and the driving current of the motor, and the serious condition of the dirty plug of the filter element is determined according to the sampling parameters of the motor, thereby
  • the service life of the filter element is determined, and the problem of inaccurate service life determined by the use time is solved, and the effect of improving the accuracy of the calculation service life is achieved.
  • each value is obtained; according to the position percentage of each value in the interval, the percentage of use corresponding to the value is determined, and the corresponding relationship is established, and the value and the percentage of use obtained by each 100 division in the interval can be obtained.
  • the correspondence relationship is established to refine the quantitative method of service life, and the effect of improving the accuracy of the calculation service life is achieved.
  • An exemplary embodiment of the present disclosure provides a life calculation device capable of implementing the life calculation method provided by the present disclosure, the life calculation device comprising: a processor, a memory for storing processor executable instructions;
  • processor is configured to:
  • sampling parameter of the motor being at least one of a sampling current and a sampling voltage
  • the service life of the purifier is determined according to the sampling parameters, and the sampling parameter is positively correlated with the service life.
  • FIG. 5 is a block diagram of an apparatus 500 for air purification, according to an exemplary embodiment.
  • device 500 can be a purifier.
  • apparatus 500 can include one or more of the following components: processing component 502, memory 504, power component 506, purification component 508, sensor component 510, and communication component 512.
  • Processing component 502 typically controls the overall operation of device 500.
  • Processing component 502 can include one or more processors 518 to execute instructions to perform all or part of the steps of the above-described embodiments.
  • processing component 502 can include one or more modules to facilitate interaction between component 502 and other components.
  • processing component 502 can interact with sensor component 510, with communication component 512, and the like.
  • Memory 504 is configured to store various types of data to support operation at device 500. Examples of these data Instructions are included for any application or method operating on device 500.
  • the memory 504 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable. Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 506 provides power to various components of device 500.
  • Power component 506 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 500.
  • the purification assembly 508 includes a motor for purifying the inhaled air and then releasing the purified air.
  • the purification assembly 508 purifies the air by adsorbing harmful substances in the air; in another possible implementation, the purification assembly 508 purifies the air by releasing negative oxygen ions.
  • the purification component 508 can also purify the air by other means, which will not be described herein.
  • Sensor assembly 510 includes one or more sensors for providing device 500 with various aspects of status assessment.
  • sensor assembly 510 can detect the concentration of dust in the air.
  • Communication component 512 is configured to facilitate wired or wireless communication between device 500 and other devices.
  • the device 500 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 512 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 512 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 500 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 504 comprising instructions executable by processor 518 of apparatus 500 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Control Of Electric Motors In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Ventilation (AREA)

Abstract

一种寿命计算方法及装置,属于净化领域。所述方法包括:控制净化器中的电机以预定转速转动(101);获取所述电机的采样参数,所述采样参数为采样电流和采样电压中的至少一种(102);根据所述采样参数确定所述净化器的使用寿命,所述采样参数与所述使用寿命呈正相关关系(103)。上述方法及装置基于滤芯脏堵的严重程度与电机的驱动电流的大小呈正相关关系的特点,根据电机的采样参数确定滤芯的脏堵的严重情况,从而确定滤芯的使用寿命,解决了通过使用时长确定使用寿命不准确的问题,达到了提高计算使用寿命的准确性的效果。

Description

寿命计算方法及装置
本申请基于申请号为201510846555.2、申请日为2015年11月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及净化领域,特别涉及一种寿命计算方法及装置。
背景技术
净化器中滤芯的使用寿命有限,在滤芯脏堵时需要及时更换滤芯,以保证空气净化效果。
相关技术中,在通过不同的档位运行净化器时,可以对每个档位的运行时长进行记录,将各个运行时长乘以对应的系数所得到的乘积相加,得到当前的使用寿命。
发明内容
为解决相关技术中的问题,本公开提供了一种寿命计算方法及装置。
根据本公开实施例的第一方面,提供一种寿命计算方法,所述方法包括:
控制净化器中的电机以预定转速转动;
获取所述电机的采样参数,所述采样参数为采样电流和采样电压中的至少一种;
根据所述采样参数确定所述净化器的使用寿命,所述采样参数与所述使用寿命呈正相关关系。
可选的,所述根据所述采样参数确定所述净化器的使用寿命,包括:
读取预设的对应关系,所述对应关系用于存储不同的采样参数与不同的使用寿命之间的关系;
在所述对应关系中查找与所述采样参数对应的使用寿命。
可选的,所述方法,还包括:
控制所述净化器中的电机以所述预定转速转动;
测量所述电机的最大采样参数和最小采样参数,所述最大采样参数是所述净化器中安装全新的滤芯时的采样参数,所述最小采样参数是所述净化器中安装使用寿命达到额定寿命的滤芯时的采样参数;
确定所述最大采样参数和所述最小采样参数组成的区间;
建立所述区间中的数值与使用寿命之间的对应关系。
可选的,当所述使用寿命是使用百分比时,所述建立所述区间中的数值与使用寿命之间的对应关系,包括:
将所述区间进行100等分,得到各个数值;
根据每个数值在所述区间中的位置确定所述数值所对应的使用百分比,建立所述对应关系。
可选的,所述获取所述电机的采样参数,包括:
当所述采样参数是采样电流时,获取所述电机的采样电压;
将所述采样电压除以所述电机的电阻,得到所述采样参数。
根据本公开实施例的第二方面,提供一种寿命计算装置,所述装置包括:
第一控制模块,被配置为控制净化器中的电机以预定转速转动;
参数获取模块,被配置为获取所述电机的采样参数,所述采样参数为采样电流和采样电压中的至少一种;
寿命确定模块,被配置为根据所述参数获取模块得到的所述采样参数确定所述净化器的使用寿命,所述采样参数与所述使用寿命呈正相关关系。
可选的,所述寿命确定模块,包括:
关系读取子模块,被配置为读取预设的对应关系,所述对应关系用于存储不同的采样参数与不同的使用寿命之间的关系;
寿命查找子模块,被配置为在所述关系读取子模块得到的所述对应关系中查找与所述采样参数对应的使用寿命。
可选的,所述装置,还包括:
第二控制模块,被配置为控制所述净化器中的电机以所述预定转速转动;
参数测量模块,被配置为测量所述电机的最大采样参数和最小采样参数,所述最大采样参数是所述净化器中安装全新的滤芯时的采样参数,所述最小采样参数是所述净化器中安装使用寿命达到额定寿命的滤芯时的采样参数;
区间确定模块,被配置为确定所述参数测量模块得到的所述最大采样参数和所述最小采样参数组成的区间;
关系建立模块,被配置为建立所述区间确定模块确定的所述区间中的数值与使用寿命之间的对应关系。
可选的,当所述使用寿命是使用百分比时,所述关系建立模块,包括:
区间等分子模块,被配置为将所述区间进行100等分,得到各个数值;
关系建立子模块,被配置为根据所述区间等分子模块得到的每个数值在所述区间中的位置确定所述数值所对应的使用百分比,建立所述对应关系。
可选的,所述参数获取模块,包括:
电压获取子模块,被配置为当所述采样参数是采样电流时,获取所述电机的采样电压;
参数获取子模块,被配置为将所述电压获取子模块得到的所述采样电压除以所述电机的电阻,得到所述采样参数。
根据本公开实施例的第三方面,提供一种寿命计算装置,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
控制净化器中的电机以预定转速转动;
获取所述电机的采样参数,所述采样参数为采样电流和采样电压中的至少一种;
根据所述采样参数确定所述净化器的使用寿命,所述采样参数与所述使用寿命呈正相关关系。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过控制净化器中的电机以预定转速转动;获取电机的采样参数,该采样参数为采样电流和采样电压中的至少一种;根据采样参数确定净化器的使用寿命,该采样参数与使用寿命呈正相关关系,可以基于滤芯脏堵的严重程度与电机的驱动电流的大小呈正相关关系的特点,根据电机的采样参数确定滤芯的脏堵的严重情况,从而确定滤芯的使用寿命,解决了通过使用时长确定使用寿命不准确的问题,达到了提高计算使用寿命的准确性的效果。
另外,通过保持在计算使用寿命时的转速与建立对应关系时的转速一致,避免了转速对电机的采样参数的影响,使得滤芯脏堵的严重程度只与电机的驱动电流的大小呈正相关关系,提高了计算使用寿命的准确性的效果。
另外,通过将区间进行100等分,得到各个数值;根据每个数值在区间中的位置确定数值所对应的使用百分比,建立对应关系,可以将区间中每个100等分得到的数值与使用百分比建立对应关系,以细化使用寿命的量化方式,达到了提高计算使用寿命的精度的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本公开说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种寿命计算方法的流程图。
图2A是根据另一示例性实施例示出的一种寿命计算方法的流程图。
图2B是根据本示例性实施例示出的建立对应关系的流程图。
图2C是根据本示例性实施例示出的获取采样参数的流程图。
图3是根据一示例性实施例示出的一种寿命计算装置的框图。
图4是根据一示例性实施例示出的一种寿命计算装置的框图。
图5是根据一示例性实施例示出的一种用于寿命计算的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种寿命计算方法的流程图,该寿命计算方法应用于净化器中,如图1所示,该寿命计算方法包括以下步骤。
在步骤101中,控制净化器中的电机以预定转速转动。
在步骤102中,获取电机的采样参数,该采样参数为采样电流和采样电压中的至少一种。
在步骤103中,根据采样参数确定净化器的使用寿命,该采样参数与使用寿命呈正相关关系。
综上所述,本公开提供的寿命计算方法,通过控制净化器中的电机以预定转速转动;获取电机的采样参数,该采样参数为采样电流和采样电压中的至少一种;根据采样参数确定净化器的使用寿命,该采样参数与使用寿命呈正相关关系,可以基于滤芯脏堵的严重程度与电机的驱动电流的大小呈正相关关系的特点,根据电机的采样参数确定滤芯的脏堵的严重情况,从而确定滤芯的使用寿命,解决了通过使用时长确定使用寿命不准确的问题,达到了提高计算使用寿命的准确性的效果。
图2A是根据另一示例性实施例示出的一种寿命计算方法的流程图,该寿命计算方法应用于净化器中,如图2A所示,该寿命计算方法包括如下步骤。
在步骤201中,控制净化器中的电机以预定转速转动。
通过驱动净化器中的电机转动,可以控制净化器净化空气。其中,电机具有不同的转速,且电机的转速越大,电机的驱动电流越大。
本实施例中,用户可以手动将电机的转速调整到任一数值,净化器将该数值确定为预定转速。
在步骤202中,测量电机的最大采样参数和最小采样参数,该最大采样参数是净化器中安装全新的滤芯时的采样参数,该最小采样参数是净化器中安装使用寿命达到额定寿命的滤芯时的采样参数。
当净化器中安装了全新的滤芯时,空气经过该滤芯的风路是畅通的,此时,电机所需的驱动电流较小;对该全新的滤芯使用一段时间后,由于之前净化的空气中的杂质会吸附在滤芯中,导致滤芯产生脏堵的现象,空气经过该滤芯的风路会不如原先通畅,此时,电机所需的驱动电流较大。可见,滤芯脏堵的严重程度与驱动电流的大小呈正相关关系。即,净化器的使用寿命越长,滤芯脏堵越严重,驱动电流越大。根据上述结论,可以预先设置净化器的使用寿命与驱动电流之间的对应关系。
由于电压等于电流乘以电阻,因此,还可以通过电机的电压来确定净化器的使用寿命。此时的电压是电机的采样电压,并不是电机的额定电压。下文将驱动电流和驱动电压统称为采样参数。
在设置使用寿命与采样参数之间的对应关系时,可以先测量净化器中安装有全新的滤芯时的采样参数,将该采样参数确定为最小采样参数;再测量净化器中安装使用寿命达到额定寿命的滤芯时的采样参数,将该采样参数确定为最大采样参数。其中,测量电机的采样参数的技术已经非常成熟,本实施例不作赘述。
在步骤203中,确定最大采样参数和最小采样参数组成的区间。
例如,当采样参数是电流时,假设最大采样参数是3A,最小采样参数是2A,则确定的区间是[2,3]。
在步骤204中,建立区间中的数值与使用寿命之间的对应关系。
本实施例中,可以对数值和使用寿命生成计算公式;也可以建立数值与使用寿命之间的对应关系,还可以通过其他方式建立对应关系,本实施例不作限定。
请参考图2B,其示出了建立对应关系的流程图。当使用寿命是使用百分比时,建立区间中的数值与使用寿命之间的对应关系,包括:
在步骤2041中,将区间进行100等分,得到各个数值。
在步骤2042中,根据每个数值在区间中的位置确定数值所对应的使用百分比,建立对应关系。
仍然以上述区间[2,3]为例进行说明,则对区间进行100等分得到的100个数值分别是2、2.01、2.02、……、2.98、2.99、3,则2对应使用百分比0%,2.01对应使用百分比1%,2.02对应使用百分比2%,……、2.98对应使用百分比98%,2.99对应使用百分比99%,3对应使用百分比100%。
通过将区间中每个100等分得到的数值与使用百分比建立对应关系,以细化使用寿命的量化方式,达到了提高计算使用寿命的精度的效果。
其中,步骤201-204的流程用于创建采样参数与使用寿命之间的对应关系,只需要在步骤207之前执行,本实施例不限定步骤201-204与步骤205、步骤206之间的先后执行顺序。
在步骤205中,控制净化器中的电机以预定转速转动。
本步骤中的预定转速与步骤201中用户手动调整的转速相同。
通过保持在计算使用寿命时的转速与建立对应关系时的转速一致,避免了转速对电机的采样参数的影响,使得滤芯脏堵的严重程度只与电机的驱动电流的大小呈正相关关系,提高了计算使用寿命的准确性的效果。
在步骤206中,获取电机的采样参数,该采样参数为采样电流和采样电压中的至少一种。
当采样参数是采样电压时,可以直接根据相关技术直接得到采样电压;当采样参数是 采样电流时,请参考图2C,其示出了获取采样参数的流程图。其中,获取电机的采样参数,包括:
在步骤2061中,当采样参数是采样电流时,获取电机的采样电压。
在步骤2062中,将采样电压除以电机的电阻,得到采样参数。
由于电机的电阻为已知参数,因此,可以直接根据相关技术直接得到采样电压,再将采样电压除以该电阻,得到采样电流,即得到采样参数。
在步骤207中,读取预设的对应关系,该对应关系用于存储不同的采样参数与不同的使用寿命之间的关系。
在步骤208中,在对应关系中查找与采样参数对应的使用寿命,该采样参数与使用寿命呈正相关关系。
例如,采样参数是2.54A,且对应关系中2.54对应的使用百分比是54%,则可以确定此时滤芯的使用百分比是54%。
综上,本公开提供的寿命计算方法,通过控制净化器中的电机以预定转速转动;获取电机的采样参数,该采样参数为采样电流和采样电压中的至少一种;根据采样参数确定净化器的使用寿命,该采样参数与使用寿命呈正相关关系,可以基于滤芯脏堵的严重程度与电机的驱动电流的大小呈正相关关系的特点,根据电机的采样参数确定滤芯的脏堵的严重情况,从而确定滤芯的使用寿命,解决了通过使用时长确定使用寿命不准确的问题,达到了提高计算使用寿命的准确性的效果。
另外,通过保持在计算使用寿命时的转速与建立对应关系时的转速一致,避免了转速对电机的采样参数的影响,使得滤芯脏堵的严重程度只与电机的驱动电流的大小呈正相关关系,提高了计算使用寿命的准确性的效果。
另外,通过将区间进行100等分,得到各个数值;根据每个数值在区间中的位置确定数值所对应的使用百分比,建立对应关系,可以将区间中每个100等分得到的数值与使用百分比建立对应关系,以细化使用寿命的量化方式,达到了提高计算使用寿命的精度的效果。
图3是根据一示例性实施例示出的一种寿命计算装置的框图,该寿命计算装置应用于净化器中,如图3所示,该寿命计算装置包括:第一控制模块310、参数获取模块320和寿命确定模块330。
该第一控制模块310,被配置为控制净化器中的电机以预定转速转动;
该参数获取模块320,被配置为获取电机的采样参数,该采样参数为采样电流和采样电压中的至少一种;
该寿命确定模块330,被配置为根据参数获取模块320得到的采样参数确定净化器的使用寿命,该采样参数与使用寿命呈正相关关系。
综上,本公开提供的寿命计算装置,通过控制净化器中的电机以预定转速转动;获取 电机的采样参数,该采样参数为采样电流和采样电压中的至少一种;根据采样参数确定净化器的使用寿命,该采样参数与使用寿命呈正相关关系,可以基于滤芯脏堵的严重程度与电机的驱动电流的大小呈正相关关系的特点,根据电机的采样参数确定滤芯的脏堵的严重情况,从而确定滤芯的使用寿命,解决了通过使用时长确定使用寿命不准确的问题,达到了提高计算使用寿命的准确性的效果。
图4是根据一示例性实施例示出的一种寿命计算装置的框图,该寿命计算装置应用于净化器中,如图4所示,该寿命计算装置包括:第一控制模块410、参数获取模块420和寿命确定模块430。
该第一控制模块410,被配置为控制净化器中的电机以预定转速转动;
该参数获取模块420,被配置为获取电机的采样参数,该采样参数为采样电流和采样电压中的至少一种;
该寿命确定模块430,被配置为根据参数获取模块420得到的采样参数确定净化器的使用寿命,该采样参数与使用寿命呈正相关关系。
可选的,寿命确定模块430,包括:关系读取子模块431和寿命查找子模块432;
该关系读取子模块431,被配置为读取预设的对应关系,对应关系用于存储不同的采样参数与不同的使用寿命之间的关系;
该寿命查找子模块432,被配置为在关系读取子模块431得到的对应关系中查找与采样参数对应的使用寿命。
可选的,本实施例提供的寿命计算装置,还包括:第二控制模块440、参数测量模块450、区间确定模块460和关系建立模块470;
该第二控制模块440,被配置为控制净化器中的电机以预定转速转动;
该参数测量模块450,被配置为测量电机的最大采样参数和最小采样参数,最大采样参数是净化器中安装全新的滤芯时的采样参数,最小采样参数是净化器中安装使用寿命达到额定寿命的滤芯时的采样参数;
该区间确定模块460,被配置为确定参数测量模块450得到的最大采样参数和最小采样参数组成的区间;
该关系建立模块470,被配置为建立区间确定模块460确定的区间中的数值与使用寿命之间的对应关系。
可选的,当使用寿命是使用百分比时,关系建立模块470,包括:区间等分子模块471和关系建立子模块472;
该区间等分子模块471,被配置为将区间进行100等分,得到各个数值;
该关系建立子模块472,被配置为根据区间等分子模块471得到的每个数值在区间中的位置确定数值所对应的使用百分比,建立对应关系。
可选的,参数获取模块420,包括:电压获取子模块421和参数获取子模块422;
该电压获取子模块421,被配置为当采样参数是采样电流时,获取电机的采样电压;
该参数获取子模块422,被配置为将电压获取子模块421得到的采样电压除以电机的电阻,得到采样参数。
综上,本公开提供的寿命计算装置,通过控制净化器中的电机以预定转速转动;获取电机的采样参数,该采样参数为采样电流和采样电压中的至少一种;根据采样参数确定净化器的使用寿命,该采样参数与使用寿命呈正相关关系,可以基于滤芯脏堵的严重程度与电机的驱动电流的大小呈正相关关系的特点,根据电机的采样参数确定滤芯的脏堵的严重情况,从而确定滤芯的使用寿命,解决了通过使用时长确定使用寿命不准确的问题,达到了提高计算使用寿命的准确性的效果。
另外,通过保持在计算使用寿命时的转速与建立对应关系时的转速一致,避免了转速对电机的采样参数的影响,使得滤芯脏堵的严重程度只与电机的驱动电流的大小呈正相关关系,提高了计算使用寿命的准确性的效果。
另外,通过将区间进行100等分,得到各个数值;根据每个数值在区间中的位置确定数值所对应的使用百分比,建立对应关系,可以将区间中每个100等分得到的数值与使用百分比建立对应关系,以细化使用寿命的量化方式,达到了提高计算使用寿命的精度的效果。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种寿命计算装置,能够实现本公开提供的寿命计算方法,该寿命计算装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
控制净化器中的电机以预定转速转动;
获取电机的采样参数,该采样参数为采样电流和采样电压中的至少一种;
根据采样参数确定净化器的使用寿命,该采样参数与使用寿命呈正相关关系。
图5是根据一示例性实施例示出的一种用于空气净化的装置500的框图。例如,装置500可以是净化器。
参照图5,装置500可以包括以下一个或多个组件:处理组件502,存储器504,电源组件506,净化组件508、传感器组件510,以及通信组件512。
处理组件502通常控制装置500的整体操作。处理组件502可以包括一个或多个处理器518来执行指令,以完成上述的实施例方法的全部或部分步骤。此外,处理组件502可以包括一个或多个模块,便于处理组件502和其他组件之间的交互。例如,处理组件502可以与传感器组件510、与通信组件512交互等等。
存储器504被配置为存储各种类型的数据以支持在装置500的操作。这些数据的示例 包括用于在装置500上操作的任何应用程序或方法的指令。存储器504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件506为装置500的各种组件提供电力。电源组件506可以包括电源管理系统,一个或多个电源,及其他与为装置500生成、管理和分配电力相关联的组件。
净化组件508包括电机,用于对吸入的空气进行净化,再释放净化后的空气。在一种可能的实现方式中,净化组件508通过吸附空气中的有害物质来净化空气;在另一种可能的实现方式中,净化组件508通过释放负氧离子来净化空气。当然,净化组件508还可以通过其他方式来净化空气,此处不作赘述。
传感器组件510包括一个或多个传感器,用于为装置500提供各个方面的状态评估。例如,传感器组件510可以检测空气中的粉尘浓度。
通信组件512被配置为便于装置500和其他设备之间有线或无线方式的通信。装置500可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件512经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件512还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器504,上述指令可由装置500的处理器518执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (11)

  1. 一种寿命计算方法,其特征在于,所述方法包括:
    控制净化器中的电机以预定转速转动;
    获取所述电机的采样参数,所述采样参数为采样电流和采样电压中的至少一种;
    根据所述采样参数确定所述净化器的使用寿命,所述采样参数与所述使用寿命呈正相关关系。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述采样参数确定所述净化器的使用寿命,包括:
    读取预设的对应关系,所述对应关系用于存储不同的采样参数与不同的使用寿命之间的关系;
    在所述对应关系中查找与所述采样参数对应的使用寿命。
  3. 根据权利要求2所述的方法,其特征在于,所述方法,还包括:
    控制所述净化器中的电机以所述预定转速转动;
    测量所述电机的最大采样参数和最小采样参数,所述最大采样参数是所述净化器中安装全新的滤芯时的采样参数,所述最小采样参数是所述净化器中安装使用寿命达到额定寿命的滤芯时的采样参数;
    确定所述最大采样参数和所述最小采样参数组成的区间;
    建立所述区间中的数值与使用寿命之间的对应关系。
  4. 根据权利要求3所述的方法,其特征在于,当所述使用寿命是使用百分比时,所述建立所述区间中的数值与使用寿命之间的对应关系,包括:
    将所述区间进行100等分,得到各个数值;
    根据每个数值在所述区间中的位置确定所述数值所对应的使用百分比,建立所述对应关系。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述获取所述电机的采样参数,包括:
    当所述采样参数是采样电流时,获取所述电机的采样电压;
    将所述采样电压除以所述电机的电阻,得到所述采样参数。
  6. 一种寿命计算装置,其特征在于,所述装置包括:
    第一控制模块,被配置为控制净化器中的电机以预定转速转动;
    参数获取模块,被配置为获取所述电机的采样参数,所述采样参数为采样电流和采样 电压中的至少一种;
    寿命确定模块,被配置为根据所述参数获取模块得到的所述采样参数确定所述净化器的使用寿命,所述采样参数与所述使用寿命呈正相关关系。
  7. 根据权利要求6所述的装置,其特征在于,所述寿命确定模块,包括:
    关系读取子模块,被配置为读取预设的对应关系,所述对应关系用于存储不同的采样参数与不同的使用寿命之间的关系;
    寿命查找子模块,被配置为在所述关系读取子模块得到的所述对应关系中查找与所述采样参数对应的使用寿命。
  8. 根据权利要求7所述的装置,其特征在于,所述装置,还包括:
    第二控制模块,被配置为控制所述净化器中的电机以所述预定转速转动;
    参数测量模块,被配置为测量所述电机的最大采样参数和最小采样参数,所述最大采样参数是所述净化器中安装全新的滤芯时的采样参数,所述最小采样参数是所述净化器中安装使用寿命达到额定寿命的滤芯时的采样参数;
    区间确定模块,被配置为确定所述参数测量模块得到的所述最大采样参数和所述最小采样参数组成的区间;
    关系建立模块,被配置为建立所述区间确定模块确定的所述区间中的数值与使用寿命之间的对应关系。
  9. 根据权利要求8所述的装置,其特征在于,当所述使用寿命是使用百分比时,所述关系建立模块,包括:
    区间等分子模块,被配置为将所述区间进行100等分,得到各个数值;
    关系建立子模块,被配置为根据所述区间等分子模块得到的每个数值在所述区间中的位置确定所述数值所对应的使用百分比,建立所述对应关系。
  10. 根据权利要求6至9任一所述的装置,其特征在于,所述参数获取模块,包括:
    电压获取子模块,被配置为当所述采样参数是采样电流时,获取所述电机的采样电压;
    参数获取子模块,被配置为将所述电压获取子模块得到的所述采样电压除以所述电机的电阻,得到所述采样参数。
  11. 一种寿命计算装置,其特征在于,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    控制净化器中的电机以预定转速转动;
    获取所述电机的采样参数,所述采样参数为采样电流和采样电压中的至少一种;
    根据所述采样参数确定所述净化器的使用寿命,所述采样参数与所述使用寿命呈正相关关系。
PCT/CN2016/084956 2015-11-27 2016-06-06 寿命计算方法及装置 WO2017088445A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167021375A KR20170075674A (ko) 2015-11-27 2016-06-06 수명 계산 방법, 장치, 프로그램 및 기록 매체
JP2016550209A JP2018502274A (ja) 2015-11-27 2016-06-06 寿命の計算方法、装置、プログラム、及び記録媒体
RU2016131884A RU2653113C2 (ru) 2015-11-27 2016-06-06 Способ и устройство для вычисления израсходованного технического ресурса

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510846555.2A CN105487459A (zh) 2015-11-27 2015-11-27 寿命计算方法及装置
CN201510846555.2 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017088445A1 true WO2017088445A1 (zh) 2017-06-01

Family

ID=55674505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084956 WO2017088445A1 (zh) 2015-11-27 2016-06-06 寿命计算方法及装置

Country Status (7)

Country Link
US (1) US10247654B2 (zh)
EP (1) EP3187241B1 (zh)
JP (1) JP2018502274A (zh)
KR (1) KR20170075674A (zh)
CN (1) CN105487459A (zh)
RU (1) RU2653113C2 (zh)
WO (1) WO2017088445A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375032A (zh) * 2018-09-15 2019-02-22 宁波高云电气有限公司 一种高功率大容量电容器的管理系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487459A (zh) 2015-11-27 2016-04-13 小米科技有限责任公司 寿命计算方法及装置
CN107013980A (zh) * 2017-04-18 2017-08-04 珠海格力电器股份有限公司 空调内机、空调及空调用的控制方法
CN109682016B (zh) * 2017-10-19 2021-04-06 深圳市美好创亿医疗科技股份有限公司 空气净化设备过滤单元有效性检测方法
CN107894060A (zh) * 2017-11-07 2018-04-10 青岛海尔空调电子有限公司 用于空调的脏堵检测控制方法和空调
CN108421337B (zh) * 2018-02-11 2021-07-20 广东美的环境电器制造有限公司 一种滤网寿命确定方法、空气净化器和计算机存储介质
CN109078416B (zh) * 2018-09-12 2020-12-01 中枢国控(北京)医疗科技有限公司 强制式耗材管理系统与空气净化设备
KR102187432B1 (ko) * 2019-01-08 2020-12-07 고려대학교 산학협력단 정화통 잔여수명 측정 시스템 및 방법
EP3785786A1 (de) * 2019-08-29 2021-03-03 Carl Freudenberg KG Verfahren zur vorhersage der standzeit eines filters
CN111751724A (zh) * 2020-06-24 2020-10-09 湖北文理学院 电机应用的工况信息监控方法、装置及可读存储介质
CN113513823B (zh) * 2021-03-22 2023-03-24 珠海格力电器股份有限公司 一种新风过滤机组的控制装置、方法和新风过滤机组
CN114701322B (zh) * 2021-08-09 2024-02-13 长城汽车股份有限公司 空调滤芯寿命检测方法、装置、控制器、系统及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040091821A (ko) * 2003-04-22 2004-11-02 주식회사 위닉스 공기청정기용 인공지능 제어시스템
CN1994522A (zh) * 2006-01-02 2007-07-11 三星电子株式会社 空气净化器用过滤器更换时机提示装置及其方法
CN101876669A (zh) * 2009-04-29 2010-11-03 技嘉科技股份有限公司 装置及流道受阻侦测方法
CN104165903A (zh) * 2014-08-14 2014-11-26 致果环境科技(天津)有限公司 空气净化器滤网检测电路及检测方法
CN104990202A (zh) * 2015-05-29 2015-10-21 广东美的制冷设备有限公司 空调器的脏堵控制方法、装置及室内机
CN105487459A (zh) * 2015-11-27 2016-04-13 小米科技有限责任公司 寿命计算方法及装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341985A (en) * 1980-01-18 1982-07-27 Bell & Howell Company Proportional speed control arrangement
JPS61259043A (ja) * 1985-05-13 1986-11-17 Mitsubishi Electric Corp 空気調和機の制御装置
JPS63156967A (ja) * 1986-12-22 1988-06-30 Hitachi Ltd 空気調和機のフイルタ−目詰り検出装置
US5142238A (en) * 1991-07-18 1992-08-25 Silicon Systems, Inc. Switched-capacitor differential amplifier
JPH0576713A (ja) * 1991-09-26 1993-03-30 Matsushita Electric Ind Co Ltd 空気清浄器
JPH08103618A (ja) * 1994-09-30 1996-04-23 Sanyo Electric Co Ltd 空気清浄機
JP2985754B2 (ja) * 1995-12-29 1999-12-06 ダイキン工業株式会社 空気調和機
GB2323310B (en) * 1997-03-20 2001-04-18 Pall Corp Filter life measurement
JP2000179910A (ja) * 1998-12-18 2000-06-30 Matsushita Seiko Co Ltd 空気清浄装置
JP2000246000A (ja) * 1999-03-02 2000-09-12 Toshiba Corp 衣類乾燥機
FR2795685B1 (fr) * 1999-06-30 2001-08-31 Valeo Climatisation Procede de detection de colmatage d'un filtre a air et systeme de ventilation mettant en oeuvre un tel procede
US20030070544A1 (en) * 2001-10-15 2003-04-17 Hamilton Beach/Proctor-Silex, Inc. System and method for determining filter condition
RU2244158C1 (ru) * 2003-05-23 2005-01-10 Федеральное государственное унитарное предприятие Российского космического агентства "Опытное конструкторское бюро "Факел" Способ прогнозирования параметров стационарного плазменного двигателя в процессе выработки ресурса
US6993414B2 (en) * 2003-12-18 2006-01-31 Carrier Corporation Detection of clogged filter in an HVAC system
TWI273919B (en) * 2004-02-26 2007-02-21 Benq Corp Method for detecting the cleanliness of a filter
US8021469B2 (en) * 2005-07-14 2011-09-20 Access Business Group International Llc Control methods for an air treatment system
JP2007168706A (ja) * 2005-12-26 2007-07-05 Sanden Corp 空気流のフィルタ装置及び同装置を用いた車両用空調システム
RU2006119726A (ru) * 2006-06-05 2007-12-27 Общество с ограниченной ответственностью "СпектроСиб" (RU) Способ диагностики состояния двигателей
KR100962072B1 (ko) * 2008-05-28 2010-06-09 강남필터 주식회사 환기시스템의 필터교환시기 알림장치 및 그 방법
BRPI0913284A2 (pt) * 2008-05-30 2016-01-26 Scott Tech Inc determinação de perfis de concentração de efluentes e vidas úteis de cartuchos para respirador purificador de ar
CN202507897U (zh) * 2011-11-07 2012-10-31 中国科学院理化技术研究所 车用空气净化器装置
KR20130074486A (ko) * 2011-12-26 2013-07-04 코웨이 주식회사 공기청정기 및 그의 필터 수명 표시 방법
CN102938023B (zh) * 2012-11-15 2016-03-02 创天昱科技(深圳)有限公司 空气净化器中过滤网有效使用时间的积算方法及装置
US10670488B2 (en) * 2014-05-15 2020-06-02 Emerson Climate Technologies, Inc. Current based air filter diagnostics and monitoring
CN104482602B (zh) * 2014-12-16 2017-10-24 广州广冷华旭制冷空调实业有限公司 智能空气净化器及其滤网寿命监测方法
US10088185B2 (en) * 2015-03-30 2018-10-02 Gridpoint, Inc. Thermostat with integrated submetering and control
CN104841214A (zh) * 2015-06-02 2015-08-19 江苏新安电器有限公司 一种净化器滤网寿命的监测装置及其监测方法
CN104949293A (zh) * 2015-07-23 2015-09-30 珠海市威士茂工业产品设计有限公司 带滤网寿命自动判断的空气净化器及其判断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040091821A (ko) * 2003-04-22 2004-11-02 주식회사 위닉스 공기청정기용 인공지능 제어시스템
CN1994522A (zh) * 2006-01-02 2007-07-11 三星电子株式会社 空气净化器用过滤器更换时机提示装置及其方法
CN101876669A (zh) * 2009-04-29 2010-11-03 技嘉科技股份有限公司 装置及流道受阻侦测方法
CN104165903A (zh) * 2014-08-14 2014-11-26 致果环境科技(天津)有限公司 空气净化器滤网检测电路及检测方法
CN104990202A (zh) * 2015-05-29 2015-10-21 广东美的制冷设备有限公司 空调器的脏堵控制方法、装置及室内机
CN105487459A (zh) * 2015-11-27 2016-04-13 小米科技有限责任公司 寿命计算方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375032A (zh) * 2018-09-15 2019-02-22 宁波高云电气有限公司 一种高功率大容量电容器的管理系统

Also Published As

Publication number Publication date
RU2653113C2 (ru) 2018-05-07
RU2016131884A (ru) 2018-02-08
JP2018502274A (ja) 2018-01-25
CN105487459A (zh) 2016-04-13
EP3187241B1 (en) 2020-02-19
KR20170075674A (ko) 2017-07-03
EP3187241A1 (en) 2017-07-05
US10247654B2 (en) 2019-04-02
US20170153173A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2017088445A1 (zh) 寿命计算方法及装置
CN104819545B (zh) 一种空气净化器及其滤网更换提醒方法和装置
RU2628950C2 (ru) Способ и устройство для получения данных о качестве воздуха
WO2016107077A1 (zh) 空气净化器滤芯剩余使用时长的确定方法及装置
JP2016183856A (ja) エアセンサを較正する方法及びエア処理デバイス
RU2012142020A (ru) Устройство детектирования электрического тока электродвигателя, контроллер электродвигателя и электрический приводной инструмент
MX351652B (es) Método de medición de volumen de aire para motor de ventilador.
JP5425027B2 (ja) ランダムノイズ信号の検出及びフィルタリング方法
CN113865003B (zh) 一种空气净化器及其滤网寿命检测方法、装置、存储介质
JP2013545068A5 (zh)
US20160245784A1 (en) Air quality sensing module and algorithm
TW201314438A (zh) 風扇測試系統及方法
JP2016218659A5 (zh)
DE602009000372D1 (de) System und Verfahren zur Bestimmung des Zeitpunkts zum Wechseln eines Luftfilters mittels Messung der Motorgeschwindigkeit
CN102045020A (zh) 永磁电机转子位置检测方法
JP2011257347A (ja) ガス分析装置
JP2007248075A (ja) ガス濃度測定装置及びガス濃度測定方法
JP2011232300A (ja) モニタリングシステムおよびモニタリング方法
KR100812270B1 (ko) 타이어의 원주길이 측정장치
JP6452930B2 (ja) 電池制御装置
CN107219404B (zh) 一种频率调节的方法及装置
JP2009532964A5 (zh)
KR102187497B1 (ko) 릴레이 스위치 모듈 어레이와 저 잡음 프리-앰플리파이어를 통한 다중채널 센서 측정 시스템 및 방법
EP3355052A1 (en) Sensor
JP2004226114A (ja) センサ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016131884

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167021375

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016550209

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867673

Country of ref document: EP

Kind code of ref document: A1