WO2017086389A1 - 磁性ゴム組成物、磁性ゴム成形品、磁気エンコーダ及びそれらの製造方法 - Google Patents

磁性ゴム組成物、磁性ゴム成形品、磁気エンコーダ及びそれらの製造方法 Download PDF

Info

Publication number
WO2017086389A1
WO2017086389A1 PCT/JP2016/084113 JP2016084113W WO2017086389A1 WO 2017086389 A1 WO2017086389 A1 WO 2017086389A1 JP 2016084113 W JP2016084113 W JP 2016084113W WO 2017086389 A1 WO2017086389 A1 WO 2017086389A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
rubber composition
mass
magnetic rubber
parts
Prior art date
Application number
PCT/JP2016/084113
Other languages
English (en)
French (fr)
Inventor
和志 坂手
忠志 笠本
涼 河合
Original Assignee
内山工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内山工業株式会社 filed Critical 内山工業株式会社
Publication of WO2017086389A1 publication Critical patent/WO2017086389A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Definitions

  • the present invention relates to a magnetic rubber composition containing hydrogenated nitrile rubber, ferrite magnetic powder, a vulcanizing agent and stearic acid, and a magnetic rubber molded product obtained by vulcanizing the magnetic rubber composition.
  • the present invention also relates to a magnetic encoder provided with the magnetic rubber molded product. Furthermore, it is related with the manufacturing method of a magnetic rubber molded product and a magnetic encoder.
  • Magnetic rubber molded products obtained by vulcanizing a magnetic rubber composition containing rubber and magnetic powder are used in various applications.
  • one of the preferable uses of the magnetic rubber molded product is a magnetic encoder, which is manufactured by magnetizing the magnetic rubber molded product.
  • various rubbers are used in accordance with the required performance of the product, but nitrile rubber (NBR) and hydrogenated nitrile rubber (HNBR) are preferably used from the balance of oil resistance, heat resistance, price and the like.
  • NBR nitrile rubber
  • HNBR hydrogenated nitrile rubber
  • magnetic powder, ferrite magnetic powder, rare earth magnetic powder, and the like are properly used according to required performance, but ferrite magnetic powder is widely used from the viewpoint of cost and durability.
  • Patent Documents 1 and 2 describe magnetic rubber compositions in which a large amount of ferrite magnetic powder is blended with NBR, and it is also described that these are suitable for magnetic encoders. These documents show an example in which 1143 parts by weight (Example 3 of Patent Document 1) and 1700 parts by weight (Nos. 23 and 24 of Patent Document 2) of ferrite magnetic powder are blended with 100 parts by weight of solid NBR. In addition, moldability is ensured by using liquid NBR or process oil having a low molecular weight in combination. However, if these liquid materials are blended in place of solid NBR, mechanical properties are deteriorated, and the content of ferrite magnetic powder relative to the entire magnetic rubber composition is also reduced (Example 3 of Patent Document 1). 87.4 wt%, and No. 23 and 24 of Patent Document 2 are 90.7 wt%).
  • Patent Documents 3 and 4 describe a magnetic rubber composition in which a large amount of ferrite magnetic powder is blended with HNBR, and Patent Document 3 also describes that it is suitable for a magnetic encoder.
  • a silane coupling agent is blended in order to improve the interaction between HNBR and ferrite magnetic powder, but the content of ferrite magnetic powder relative to the entire magnetic rubber composition is 87. It was 1 to 88.0% by weight (Examples 1 to 6), and the magnetic properties were insufficient.
  • Patent Document 5 discloses a nitrile rubber-based composition containing 1000 to 1200 parts by weight of ferrite magnetic powder having a compression density of 3.4 to 3.7 g / cm 3 with respect to 100 parts by weight of nitrile rubber (including hydride). Things are listed.
  • Example 7 an example using HNBR is also described, in which 100 parts by weight of HNBR having a Mooney viscosity (ML 1 + 4 , 100 ° C.) of 29, a compression density of 3.59, and a plurality of peaks in the particle size distribution are included.
  • a magnetic rubber composition containing 1000 parts by weight of ferrite magnetic powder, 2 parts by weight of sulfur and 2 parts by weight of stearic acid is described. However, the content of ferrite magnetic powder with respect to the entire magnetic rubber composition was 89.2% by weight, and the magnetic properties were insufficient. Further, since the low-viscosity HNBR is used, the mechanical properties are not sufficient.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a magnetic rubber composition having excellent fluidity while containing an extremely high concentration of magnetic powder. Also, by vulcanizing the magnetic rubber composition, a magnetic rubber molded product having both excellent magnetic properties and good mechanical properties is provided, and a magnetic encoder provided with the magnetic rubber molded product is provided. Providing is also an object of the present invention. Furthermore, it is also an object of the present invention to provide a suitable method for manufacturing the magnetic rubber molded product and the magnetic encoder.
  • the above problem is a magnetic rubber composition containing hydrogenated nitrile rubber (A), ferrite magnetic powder (B), vulcanizing agent (C) and stearic acid (D),
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the hydrogenated nitrile rubber (A) is 45-80, Ferrite magnetic powder (B) 1250 to 1600 parts by mass, vulcanizing agent (C) 0.1 to 4 parts by mass and stearic acid (D) 2.5 to 8 parts by mass with respect to 100 parts by mass of hydrogenated nitrile rubber (A) Part
  • This can be solved by providing a magnetic rubber composition characterized in that the content of ferrite magnetic powder (B) is 91 to 93% by mass with respect to the total mass of the magnetic rubber composition.
  • the compression density of the ferrite magnetic powder (B) is preferably 3.5 g / cm 3 or more, and it is also preferable to have a plurality of peaks in the particle size distribution. It is also preferable that the minimum value ML of the torque when measuring the vulcanization curve at 180 ° C. of the entire magnetic rubber composition is 3 to 7 kgf ⁇ cm. It is also preferred that the magnetic rubber composition of the present invention is for a magnetic encoder.
  • a preferred embodiment of the present invention is a magnetic rubber molded product obtained by vulcanizing the magnetic rubber composition, and a magnetic encoder provided with the magnetic rubber molded product.
  • the object is to obtain the magnetic rubber composition by mixing the hydrogenated nitrile rubber (A), the ferrite magnetic powder (B), the vulcanizing agent (C) and the stearic acid (D), and then the magnetic rubber composition.
  • This can also be solved by providing a method for producing the magnetic rubber molded article. At this time, it is preferable to vulcanize the magnetic rubber composition in a mold to which a magnetic field is applied.
  • the above-described problem can also be solved by providing a method for manufacturing a magnetic encoder that magnetizes the magnetic rubber molded product in a predetermined pattern.
  • the magnetic rubber composition of the present invention is excellent in fluidity while containing an extremely high concentration of magnetic powder. Therefore, a magnetic rubber molded product obtained by molding the magnetic rubber composition has both excellent magnetic characteristics and good mechanical characteristics, and can provide a high-performance magnetic encoder. Moreover, according to the manufacturing method of the present invention, a high-performance magnetic rubber molded product and a magnetic encoder can be manufactured.
  • the magnetic rubber composition of the present invention is a magnetic rubber composition containing hydrogenated nitrile rubber (HNBR) (A), ferrite magnetic powder (B), vulcanizing agent (C) and stearic acid (D), HNBR (A) has a Mooney viscosity (ML 1 + 4 , 100 ° C.) of 45 to 80, Contains 1250 to 1600 parts by mass of ferrite magnetic powder (B), 0.1 to 4 parts by mass of vulcanizing agent (C) and 2.5 to 8 parts by mass of stearic acid (D) with respect to 100 parts by mass of HNBR (A). And The magnetic rubber composition is characterized in that the content of the ferrite magnetic powder (B) is 91 to 93% by mass with respect to the total mass of the magnetic rubber composition.
  • the ferrite magnetic powder (B) has a very high concentration of ferrite magnetic powder (B ), A magnetic rubber composition having good fluidity could be obtained.
  • the magnetic rubber composition contains HNBR instead of NBR, the fluidity is improved and the magnetic properties of the obtained magnetic rubber molded article are improved as shown in the following examples. I understood.
  • the magnetic rubber composition of the present invention will be described in detail.
  • the magnetic rubber composition of the present invention contains hydrogenated nitrile rubber (HNBR) (A).
  • HNBR (A) used in the present invention is not particularly limited, and a hydrogenated copolymer of acrylonitrile and 1,3-butadiene can be used. In the hydrogenation, hydrogen is added to the double bond remaining in the 1,3-butadiene unit after polymerization.
  • the iodine value of HNBR (A) is preferably 80 g / 100 g or less. If the iodine value is too large, heat aging resistance and chemical resistance may be lowered.
  • the iodine value is more preferably 60 g / 100 g or less, and further preferably 30 g / 100 g or less.
  • the content of acrylonitrile units in HNBR (A) is preferably 15 to 50% by mass.
  • the content of 1,3-butadiene units is preferably 50 to 85% by mass including hydrogenated ones.
  • it may contain a constitutional unit derived from another copolymerizable monomer, but its content is usually 10% by mass or less, preferably 5 It is below mass%.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of HNBR (A) is 45-80. In order to maintain good fluidity while including a large amount of magnetic powder, the Mooney viscosity needs to be 80 or less, and preferably 70 or less. On the other hand, if the Mooney viscosity is less than 45, the mechanical properties of the magnetic rubber molded product obtained by vulcanization will be insufficient.
  • the magnetic rubber composition of the present invention contains a ferrite magnetic powder (B).
  • the ferrite magnetic powder (B) used here is not particularly limited, and strontium ferrite magnetic powder and barium ferrite magnetic powder are preferably used. While compressed density of the ferrite magnetic powder (B) is not particularly limited, it is preferably 3.5 g / cm 3 or more, and more preferably 3.55 g / cm 3 or more. As a result, a magnetic rubber composition excellent in fluidity can be obtained while containing a higher concentration of magnetic powder, and by vulcanizing it, a magnetic rubber molded product having further excellent magnetic properties can be obtained. be able to.
  • the ferrite magnetic powder (B) compression density is usually 4 g / cm 3 or less.
  • the compression density (g / cm 3 ) of the ferrite magnetic powder (B) was compressed at a pressure of 1 ton / cm 2 after filling a cylindrical mold having an inner diameter of 2.54 cm with 10 g of ferrite magnetic powder. It is the density of the sample. In order to have such a compression density, it is preferable to have a plurality of peaks in the particle size distribution.
  • the particle size distribution of the ferrite magnetic powder (B) can be measured using a dry laser diffraction particle size distribution measuring apparatus.
  • the average particle size of the ferrite magnetic powder (B) is preferably 0.5 to 2 ⁇ m.
  • the ferrite magnetic powder (B) is preferably an anisotropic magnetic powder.
  • an anisotropic magnetic powder and vulcanizing in a mold to which a magnetic field is applied a magnetic rubber molded product having excellent magnetic properties can be obtained.
  • the magnetic rubber composition of the present invention contains an extremely high concentration of magnetic powder and has excellent fluidity, the ferrite magnetic powder (B) is used when vulcanized in a mold to which a magnetic field is applied. Can be sufficiently oriented, and a magnetic rubber molded article having very excellent magnetic properties can be obtained.
  • Anisotropic magnetic powder suitable for such a vulcanization method is generally marketed as “for magnetic field orientation”.
  • the magnetic powder for magnetic field orientation has a small aspect ratio ((diameter / thickness) ratio in the plate-like body) so that it can be easily rotated in the rubber composition when a magnetic field is applied.
  • a method of aligning with mechanical deformation without applying a magnetic field a method having a large aspect ratio generally marketed as “for mechanical alignment” is used.
  • the content of the ferrite magnetic powder (B) with respect to 100 parts by mass of HNBR (A) is 1250 to 1600 parts by mass.
  • the content of the ferrite magnetic powder (B) is preferably 1300 parts by mass or more, and more preferably 1320 parts by mass or more.
  • the content of the ferrite magnetic powder (B) exceeds 1600 parts by mass, the moldability deteriorates, poor filling into the mold occurs, and the strength of the obtained magnetic rubber molded product decreases.
  • the content of the ferrite magnetic powder (B) is preferably 1500 parts by mass or less.
  • the magnetic rubber composition of the present invention may contain a rubber other than HNBR (A) as long as the effects of the present invention are not impaired.
  • the content is usually 10% by mass or less of the total amount of rubber components, preferably 5% by mass or less, and more preferably substantially free of rubber other than HNBR (A).
  • the magnetic rubber composition of the present invention may contain magnetic powder other than the ferrite magnetic powder (B), for example, rare earth magnetic powder, as long as the effects of the present invention are not impaired.
  • the content is usually 10% by mass or less of the total amount of magnetic powder, preferably 5% by mass or less, and substantially free of magnetic powder other than ferrite magnetic powder (B). preferable.
  • the magnetic rubber composition of the present invention contains a vulcanizing agent (C).
  • a vulcanizing agent (C) those usually used for vulcanizing HNBR (A) such as sulfur and peroxide can be employed.
  • the content of the vulcanizing agent (C) is 0.1 to 4 parts by mass with respect to 100 parts by mass of HNBR (A).
  • the content of the vulcanizing agent (C) is preferably 0.2 parts by mass or more.
  • the content of the vulcanizing agent (C) exceeds 4 parts by mass, the mechanical properties of the obtained magnetic rubber molded product deteriorate.
  • the content of the vulcanizing agent (C) is preferably 2 parts by mass or less.
  • the magnetic rubber composition of the present invention contains stearic acid (D).
  • Stearic acid (D) is usually blended as a vulcanization aid, but by blending a larger amount of stearic acid (D) than usual, good fluidity even when blending a large amount of magnetic powder. As a result, it is possible to obtain a magnetic rubber molded product having extremely excellent magnetic properties and excellent mechanical properties.
  • the content of stearic acid (D) is 2.5 to 8 parts by mass with respect to 100 parts by mass of HNBR (A). When the content of stearic acid (D) is less than 2.5 parts by mass, the fluidity is deteriorated and the magnetic properties of the obtained magnetic rubber molded article are also deteriorated.
  • the content of stearic acid (D) is preferably 3 parts by mass or more, and more preferably 3.2 parts by mass or more. On the other hand, when the content of stearic acid (D) exceeds 8 parts by mass, the mechanical properties of the obtained magnetic rubber molded article deteriorate.
  • the content of stearic acid (D) is preferably 6 parts by mass or less, and more preferably 5 parts by mass or less.
  • the content of the ferrite magnetic powder (B) is 91 to 93% by mass with respect to the total mass of the magnetic rubber composition. While having such a high content of ferrite magnetic powder (B), the fluidity is good, which is a major feature of the magnetic rubber composition of the present invention.
  • a magnetic rubber molded product obtained by vulcanizing such a magnetic rubber composition has an extremely high residual magnetic flux density and also has good mechanical properties.
  • the content of the ferrite magnetic powder (B) is preferably 91.3% by mass or more, and more preferably 91.6% by mass or more.
  • moldability deteriorates, poor filling into the mold occurs, and the strength of the obtained magnetic rubber molded product decreases.
  • the magnetic rubber composition of the present invention contains components other than HNBR (A), ferrite magnetic powder (B), vulcanizing agent (C) and stearic acid (D) as long as the effects of the present invention are not impaired. It does not matter.
  • Various additives such as a vulcanization accelerator, a vulcanization aid, an acid acceptor, a colorant, a filler, and a plasticizer that are usually used in the magnetic rubber composition can be contained.
  • the content of the ferrite magnetic powder (B) cannot be 91% by mass or more, so the content of other components may not be too much. is important.
  • the total content of components other than HNBR (A), ferrite magnetic powder (B), vulcanizing agent (C) and stearic acid (D) is 50 parts by mass with respect to 100 parts by mass of HNBR (A).
  • the content is preferably 40 parts by mass or less, more preferably 30 parts by mass or less.
  • the magnetic rubber composition of the present invention can be obtained by vulcanizing the magnetic rubber composition obtained as described above. Specifically, HNBR (A), ferrite magnetic powder (B), vulcanizing agent (C) and stearic acid (D) are mixed to obtain the magnetic rubber composition, and then vulcanized in a mold. Thus, a magnetic rubber molded product can be obtained.
  • HNBR ferrite magnetic powder
  • C vulcanizing agent
  • D stearic acid
  • a magnetic rubber composition is produced by mixing the above-described components.
  • the mixing method is not particularly limited, and a kneading method using an open roll, a kneader, a Banbury mixer, an intermixer, an extruder, or the like is employed. Especially, it is preferable to knead
  • the temperature of the magnetic rubber composition during kneading is preferably 60 to 130 ° C.
  • the kneading time is preferably 10 to 60 minutes.
  • kneading a composition having a relatively low temperature and high viscosity for a relatively long time and then subjecting it to vulcanization is the usual method for producing a rubber molded article.
  • the minimum value ML of the torque when the vulcanization curve at 180 ° C. of the magnetic rubber composition thus obtained is measured is preferably 3 to 8 kgf ⁇ cm. If ML exceeds 8 kgf ⁇ cm, the moldability may be insufficient and filling may be insufficient. ML is more preferably 6 kgf ⁇ cm or less. In particular, when a molded product having a shape requiring fluidity is produced, it may be preferable that ML is 5.5 kgf ⁇ cm or less. On the other hand, when ML is less than 3 kgf ⁇ cm, the mechanical strength of the molded product may be lowered and air may remain in the molded product. ML is more preferably 3.5 kgf ⁇ cm or more. In particular, when a molded product for use requiring mechanical strength is produced, it may be preferable that ML is 4.2 kgf ⁇ cm or more.
  • the magnetic rubber composition is molded in a mold and vulcanized to obtain a magnetic rubber molded product.
  • the magnetic rubber composition is molded into a desired shape and vulcanized by heating.
  • the molding method of the magnetic rubber composition include extrusion molding and compression molding. Of these, compression molding is preferred.
  • the vulcanization temperature is preferably 140 to 250 ° C.
  • the vulcanization time is preferably 1 to 30 minutes.
  • secondary vulcanization may be performed by further heating.
  • a heating method for vulcanization general methods used for rubber vulcanization such as compression heating, steam heating, oven heating, hot air heating and the like are used, and compression heating is preferable.
  • the resin composition of the present invention has good fluidity despite containing a large amount of ferrite magnetic powder, and the ferrite magnetic powder is highly oriented by vulcanization in a mold to which a magnetic field is applied. Thus, a very high residual magnetic flux density can be shown.
  • the magnetic encoder of the present invention includes a magnetic body formed by magnetizing the magnetic rubber molded product obtained as described above.
  • the magnetic body may have only one set of S pole and N pole, but in many cases, it is a multipolar magnetic body in which magnetic poles are alternately arranged.
  • the magnetization mode is not limited to these.
  • the shape of the magnetic body is not particularly limited, but it is preferably an annular shape such as a disk shape or a cylindrical shape when detecting a rotational motion.
  • the S pole and the N pole are alternately arranged in the circumferential direction and the angle can be detected, which is the most important aspect in practical use.
  • a flat belt-like magnetic material may be used.
  • the magnetic encoder of the present invention includes a support member that supports the magnetic body as necessary.
  • the support member is preferably a metal member, particularly a metal plate.
  • the bonding method between the magnetic rubber molded product and the support member is not particularly limited, and both may be directly bonded when the magnetic rubber molded product is vulcanized.
  • the thermosetting adhesive may be cured, and the magnetic rubber molded product may be fixed to the support member with the thermosetting adhesive.
  • thermosetting adhesive may be cured at the same time that the product is molded and vulcanized, and the magnetic rubber molded article may be fixed to the support member with the thermosetting adhesive.
  • the thermosetting adhesive used here is not particularly limited as long as it is a type of adhesive that cures by a crosslinking reaction caused by heat.
  • a phenol resin, an epoxy resin, a urethane resin, a rubber paste in which an unvulcanized rubber is dissolved in a solvent, a silane coupling agent, or the like can be used.
  • a preferred embodiment of the magnetic encoder manufactured by the method of the present invention includes a support member that can be attached to a rotating body, and an annular magnetic rubber molded product mounted on the support member, and the magnetic rubber molded product is N
  • This is a magnetic encoder in which poles and S poles are alternately magnetized in the circumferential direction. This is useful as a magnetic encoder that detects rotational motion.
  • the application of the magnetic encoder manufactured by the method of the present invention is not particularly limited.
  • magnetic encoders one that includes an annular or disk-shaped multipolar magnetic body in which magnetic poles are alternately arranged in the circumferential direction is used for a sensor that detects rotational motion.
  • a sensor that detects rotational motion.
  • it is used for an axle rotation speed detection device, a crank angle detection device, a motor rotation angle detection device, and the like.
  • positioned in a linear direction is used for the sensor which detects a linear motion.
  • it is used for a linear guide device, a power window, a power seat, a brake depression amount detection device, office equipment, and the like.
  • the magnetic encoder used for the sensor rotor of the vehicle anti-lock brake system is the most useful application of the magnetic encoder manufactured by the method of the present invention having excellent magnetic characteristics and mechanical characteristics and extremely high residual magnetic flux density. is there.
  • Example 1 Preparation of unvulcanized rubber sheet
  • the raw materials shown below were kneaded for 35 minutes using an 8-inch diameter open roll while maintaining the temperature of the composition at 60 to 100 ° C., and unvulcanized rubber sheets having thicknesses of 1 mm, 1.5 mm and 2 mm were obtained.
  • Produced. Hydrogenated nitrile rubber (HNBR): 100 parts by mass An acrylonitrile content of 36.2% by mass, a Mooney viscosity (ML 1 + 4 , 100 ° C.) of 57.5, and an iodine value of 11 g / 100 g.
  • HNBR Hydrogenated nitrile rubber
  • Strontium ferrite magnetic powder A (for magnetic field orientation): 1350 parts by mass Average particle size: 1.2 ⁇ m (having a plurality of peaks in the particle size distribution) Compression density 3.6 g / cm 3 Residual magnetic flux density of compressed body 196mT Coercive force of compressed body 236 kA / m Plasticizer TOTM [trimellitic acid tris (2-ethylhexyl)]: 3 parts by mass Zinc white: 5 parts by mass Stearic acid: 3.5 parts by mass Anti-aging agent [4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine]: 5 parts by mass, sulfur: 0.4 parts by mass, vulcanization accelerator MBTS (2,2′-dibenzothiazolyl disulfide): 2 parts by mass, vulcanization accelerator TETD (tetraethyl) Thiuram disulfide): 1.5 parts by mass
  • the support member As the support member (slinger), an annular member having an L-shaped cross section made of SUS430 having a plate thickness of 0.6 mm was used. Regarding the dimensions of the support member, the inner diameter of the inner cylindrical portion was 55 mm, the outer diameter of the outer ring portion was 67 mm, and the axial length of the inner cylindrical portion was 4.0 mm. On the other hand, the obtained unvulcanized rubber sheet having a thickness of 1.5 mm was punched out into a donut shape having an inner diameter of 56 mm and an outer diameter of 67 mm, and placed on a support member pre-applied with an adhesive made of phenol resin as a raw material. .
  • Example 2 In Example 1, an unvulcanized rubber sheet was produced in the same manner as in Example 1 except that the amount of stearic acid was 4.5 parts by mass. Using the obtained unvulcanized rubber sheet, vulcanization characteristics, magnetic characteristics, adhesion to a support member, and mold release properties were evaluated in the same manner as in Example 1. The results are summarized in Table 1.
  • Example 1 an unvulcanized rubber sheet was prepared in the same manner as in Example 1 except that the amount of stearic acid was 1 part by mass. Using the obtained unvulcanized rubber sheet, vulcanization characteristics, magnetic characteristics, adhesion to a support member, and mold release properties were evaluated in the same manner as in Example 1. The results are summarized in Table 1.
  • Comparative Example 2 In Comparative Example 1, an unvulcanized rubber sheet was produced in the same manner as Comparative Example 1 except that the amount of strontium ferrite magnetic powder A was 1100 parts by mass. Using the obtained unvulcanized rubber sheet, vulcanization characteristics, magnetic characteristics, adhesion to a support member, and mold release properties were evaluated in the same manner as in Example 1. The results are summarized in Table 1.
  • Example 3 an unvulcanized rubber sheet was produced in the same manner as in Example 1 except that nitrile rubber (NBR) was used instead of hydrogenated nitrile rubber (HNBR).
  • NBR nitrile rubber
  • HNBR hydrogenated nitrile rubber
  • the characteristics of the NBR used here are as follows. Using the obtained unvulcanized rubber sheet, vulcanization characteristics, magnetic characteristics, adhesion to a support member, and mold release properties were evaluated in the same manner as in Example 1. The results are summarized in Table 1. Acrylonitrile content 33% by mass Mooney viscosity (ML 1 + 4 , 100 ° C.) 45
  • Comparative Example 4 In Comparative Example 2, an unvulcanized rubber sheet was produced in the same manner as in Comparative Example 2 except that nitrile rubber (NBR) was used instead of hydrogenated nitrile rubber (HNBR). Using the obtained unvulcanized rubber sheet, vulcanization characteristics, magnetic characteristics, adhesion to a support member, and mold release properties were evaluated in the same manner as in Example 1. The results are summarized in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

水素化ニトリルゴム(A)、フェライト磁性粉(B)、加硫剤(C)及びステアリン酸(D)を含有する磁性ゴム組成物であって、水素化ニトリルゴム(A)のムーニー粘度(ML1+4、100℃)が45~80であり、水素化ニトリルゴム(A)100質量部に対し、フェライト磁性粉(B)1250~1600質量部、加硫剤(C)0.1~4質量部及びステアリン酸(D)2.5~8質量部を含有し、前記磁性ゴム組成物全体の質量に対するフェライト磁性粉(B)の含有率が91~93質量%である、磁性ゴム組成物を提供する。当該磁性ゴム組成物は、極めて高濃度の磁性粉を含有しながらも流動性に優れているので、これを加硫することによって、非常に優れた磁気特性と良好な機械特性とを兼ね備えた磁性ゴム成形品が得られる。

Description

磁性ゴム組成物、磁性ゴム成形品、磁気エンコーダ及びそれらの製造方法
 本発明は、水素化ニトリルゴム、フェライト磁性粉、加硫剤及びステアリン酸を含有する磁性ゴム組成物及びそれを加硫してなる磁性ゴム成形品に関する。また、当該磁性ゴム成形品を備えた磁気エンコーダに関する。さらに、磁性ゴム成形品及び磁気エンコーダの製造方法に関する。
 ゴムと磁性粉を含む磁性ゴム組成物を加硫させて得られる磁性ゴム成形品は、様々な用途に用いられている。中でも磁性ゴム成形品の好適な用途の一つが磁気エンコーダであり、磁性ゴム成形品を着磁させることによって製造される。このとき、製品の要求性能に対応して様々なゴムが用いられるが、耐油性や耐熱性、価格などのバランスからニトリルゴム(NBR)や水素化ニトリルゴム(HNBR)が好適に用いられる。また磁性粉としては、フェライト磁性粉や希土類磁性粉などが要求性能に応じて使い分けられているが、コストや耐久性の観点からフェライト磁性粉が広く用いられている。
 磁気エンコーダを用いた各種センサの精度向上や小型化のために、磁性ゴム成形品の磁気特性の向上が強く求められている。これまで、磁性粉を大量に配合することによって磁気特性を向上させることが試されてきたが、配合量が多すぎると成形性が低下してしまうので、配合量の向上にも限界があった。そのため、成形性を確保しながら磁性粉の配合量を増加させ、成形品の磁気特性を向上させることのできる磁性ゴム成形品が求められてきた。
 例えば、特許文献1及び2には、NBRに多量のフェライト磁性粉を配合した磁性ゴム組成物が記載されていて、それらが磁気エンコーダに適していることも記載されている。これらの文献では、固形NBR100重量部に対して、1143重量部(特許文献1の実施例3)、1700重量部(特許文献2のNo.23及び24)のフェライト磁性粉を配合した例が示されていて、分子量の低い液状NBRやプロセスオイルを併用することによって成形性を確保している。しかしながら、固形NBRの代わりにこれらの液状物を配合したのでは機械特性が悪化してしまうし、磁性ゴム組成物全体に対するフェライト磁性粉の含有率も低下してしまう(特許文献1の実施例3では87.4重量%、特許文献2のNo.23及び24では90.7重量%)。
 磁性ゴム成形品の耐熱老化性や耐薬品性などを向上させたい場合には、水素添加されていないNBRではなく、水素添加されたHNBRが用いられる。例えば、特許文献3及び4には、HNBRに多量のフェライト磁性粉を配合した磁性ゴム組成物が記載されていて、特許文献3には磁気エンコーダに適していることも記載されている。特許文献3の磁性ゴム組成物では、HNBRとフェライト磁性粉との相互作用を改善するためにシランカップリング剤が配合されているが、磁性ゴム組成物全体に対するフェライト磁性粉の含有率は87.1~88.0重量%であり(実施例1~6)、磁気特性が不十分であった。また、特許文献4の磁性ゴム組成物では、アルコキシシランを配合することによって粘度を低下させるとともに磁気特性を向上させたことが記載されているが、磁性ゴム組成物全体に対するフェライト磁性粉の含有率は90.1重量%であり(実施例1)、やはり磁気特性が不十分であった。
 特許文献5には、ニトリルゴム(水素化物を含む)100重量部に対して、圧縮密度が3.4~3.7g/cmのフェライト磁性粉を1000~1200重量部含有するニトリルゴム系組成物が記載されている。その実施例7には、HNBRを用いた例も記載されていて、ムーニー粘度(ML1+4、100℃)が29のHNBR100重量部に、圧縮密度が3.59で粒度分布において複数のピークを有するフェライト磁性粉1000重量部、硫黄2重量部及びステアリン酸2重量部を配合した磁性ゴム組成物が記載されている。しかしながら、磁性ゴム組成物全体に対するフェライト磁性粉の含有率は89.2重量%であり、磁気特性が不十分であった。また、低粘度のHNBRを用いているために機械特性も十分ではなかった。
 以上のように、HNBR(あるいはNBR)を含む磁性ゴム組成物の磁気特性を向上させるために、フェライト磁性粉の含有率を向上させる努力がこれまで長期間にわたって継続されてきた。しかしながら、磁性ゴム組成物全体に対するフェライト磁性粉の含有率が91質量%以上であって、しかも成形性の良好な磁性ゴム組成物はこれまで知られていない。
特開2003-183443号公報 特開2009-145067号公報 WO01/41162 A1 特開2006-225601号公報 WO2014/129309 A1
 本発明は、上記課題を解決するためになされたものであり、極めて高濃度の磁性粉を含有しながらも流動性に優れた磁性ゴム組成物を提供することを目的とするものである。また、当該磁性ゴム組成物を加硫することによって、非常に優れた磁気特性と良好な機械特性とを兼ね備えた磁性ゴム成形品を提供すること、及び該磁性ゴム成形品を備えた磁気エンコーダを提供することも本発明の目的である。さらに、前記磁性ゴム成形品及び磁気エンコーダの好適な製造方法を提供することも本発明の目的である。
 上記課題は、水素化ニトリルゴム(A)、フェライト磁性粉(B)、加硫剤(C)及びステアリン酸(D)を含有する磁性ゴム組成物であって、
 水素化ニトリルゴム(A)のムーニー粘度(ML1+4、100℃)が45~80であり、
 水素化ニトリルゴム(A)100質量部に対し、フェライト磁性粉(B)1250~1600質量部、加硫剤(C)0.1~4質量部及びステアリン酸(D)2.5~8質量部を含有し、
 前記磁性ゴム組成物全体の質量に対するフェライト磁性粉(B)の含有率が91~93質量%であることを特徴とする磁性ゴム組成物を提供することによって解決される。
 このとき、フェライト磁性粉(B)の圧縮密度が3.5g/cm以上であることが好ましく、その粒度分布において複数のピークを有することも好ましい。前記磁性ゴム組成物全体の、180℃における加硫曲線を測定した際のトルクの最小値MLが、3~7kgf・cmであることも好ましい。また、本発明の磁性ゴム組成物が、磁気エンコーダ用であることも好ましい。
 本発明の好適な実施態様は、前記磁性ゴム組成物を加硫してなる磁性ゴム成形品であり、当該磁性ゴム成形品を備えた磁気エンコーダである。
 上記課題は、水素化ニトリルゴム(A)、フェライト磁性粉(B)、加硫剤(C)及びステアリン酸(D)を混合して前記磁性ゴム組成物を得てから、該磁性ゴム組成物を加硫する、前記磁性ゴム成形品の製造方法を提供することによっても解決される。このとき、前記磁性ゴム組成物を磁場の印加された金型中で加硫することが好適である。また上記課題は、前記磁性ゴム成形品を所定のパターンに着磁させる磁気エンコーダの製造方法を提供することによっても解決される。
 本発明の磁性ゴム組成物は、極めて高濃度の磁性粉を含有しながらも流動性に優れている。したがって、その磁性ゴム組成物を成形してなる磁性ゴム成形品は、非常に優れた磁気特性と良好な機械特性とを兼ね備えていて、高性能の磁気エンコーダーを提供することができる。また、本発明の製造方法によれば、高性能の磁性ゴム成形品及び磁気エンコーダを製造することができる。
 本発明の磁性ゴム組成物は、水素化ニトリルゴム(HNBR)(A)、フェライト磁性粉(B)、加硫剤(C)及びステアリン酸(D)を含有する磁性ゴム組成物であって、
 HNBR(A)のムーニー粘度(ML1+4、100℃)が45~80であり、
 HNBR(A)100質量部に対し、フェライト磁性粉(B)1250~1600質量部、加硫剤(C)0.1~4質量部及びステアリン酸(D)2.5~8質量部を含有し、
 前記磁性ゴム組成物全体の質量に対するフェライト磁性粉(B)の含有率が91~93質量%であることを特徴とする磁性ゴム組成物である。
 このような構成の磁性ゴム組成物とすることによって、磁性ゴム組成物全体の質量に対するフェライト磁性粉(B)の含有率が91~93質量%であるという、極めて高濃度のフェライト磁性粉(B)を含みながらも、流動性の良好な磁性ゴム組成物を得ることができた。この磁性ゴム組成物を加硫することによって、非常に優れた磁気特性と良好な機械特性とを兼ね備えた磁性ゴム成形品を成形性良く製造することができる。ここで、磁性ゴム組成物がNBRではなくHNBRを含むことによって、後の実施例にも示されているように、その流動性が向上し、得られる磁性ゴム成形品の磁気特性が向上することがわかった。以下、本発明の磁性ゴム組成物について詳細に説明する。
 本発明の磁性ゴム組成物は、水素化ニトリルゴム(HNBR)(A)を含有する。本発明で用いられるHNBR(A)は特に限定されず、アクリロニトリルと1,3-ブタジエンの共重合体を水素添加したものを用いることができる。水素添加に際しては、重合後の1,3-ブタジエン単位に残存する二重結合に対して水素が付加する。HNBR(A)のヨウ素価は80g/100g以下であることが好ましい。ヨウ素価が大きすぎると、耐熱老化性や耐薬品性が低下することがある。ヨウ素価は、より好適には60g/100g以下であり、さらに好適には30g/100g以下である。
 HNBR(A)中のアクリロニトリル単位の含有量は、15~50質量%であることが好ましい。また、1,3-ブタジエン単位の含有量は水添されたものも含めて、50~85質量%であることが好ましい。本発明の効果を阻害しない範囲であれば、他の共重合可能な単量体由来の構成単位を含んでいても構わないが、通常その含有量は10質量%以下であり、好適には5質量%以下である。
 HNBR(A)のムーニー粘度(ML1+4、100℃)は45~80である。多量の磁性粉を含みながらも良好な流動性を維持するためには、ムーニー粘度が80以下であることが必要であり、70以下であることが好ましい。一方、ムーニー粘度が45未満であると、加硫して得られる磁性ゴム成形品の機械特性が不十分となる。
 本発明の磁性ゴム組成物は、フェライト磁性粉(B)を含有する。ここで用いられるフェライト磁性粉(B)は特に限定されず、ストロンチウムフェライト磁性粉やバリウムフェライト磁性粉が好適に用いられる。フェライト磁性粉(B)の圧縮密度は特に限定されないが、3.5g/cm以上であることが好ましく、3.55g/cm以上であることがより好ましい。これによって、より高濃度の磁性粉を含有しながらも流動性に優れた磁性ゴム組成物を得ることができ、それを加硫することで、さらに優れた磁気特性を有する磁性ゴム成形品を得ることができる。フェライト磁性粉(B)圧縮密度は、通常4g/cm以下である。
 ここで、フェライト磁性粉(B)の圧縮密度(g/cm)は、内径2.54cmの円筒形の金型に、フェライト磁性粉10gを充填した後に、1ton/cmの圧力で圧縮した試料の密度である。このような圧縮密度を有するためには、粒度分布において複数のピークを有するものであることが好ましい。フェライト磁性粉(B)の粒度分布は、乾式レーザー回折式粒度分布測定装置を用いて測定することができる。フェライト磁性粉(B)の平均粒径は0.5~2μmであることが好ましい。
 また、フェライト磁性粉(B)は異方性磁性粉であることが好ましい。異方性磁性粉を用いて、磁場の印加された金型中で加硫することによって、磁気特性に優れた磁性ゴム成形品を得ることができる。本発明の磁性ゴム組成物は、極めて高濃度の磁性粉を含有しながらも流動性に優れているので、磁場の印加された金型中で加硫される際に、フェライト磁性粉(B)が十分に配向することができ、非常に優れた磁気特性を有する磁性ゴム成形品を得ることができる。このような加硫方法に適した異方性磁性粉は、一般に「磁場配向用」として市販されている。磁場配向用の磁性粉は、磁場を印加した際にゴム組成物中で容易に回転できるように、そのアスペクト比(板状体における(直径/厚み)比)が小さいものである。一方、磁場を印加せずに機械的変形に伴って配向させる方法に対しては、一般に「機械配向用」として市販されているアスペクト比の大きいものが用いられる。本発明では、上記「磁場配向用」のフェライト磁性粉を用いることが好ましい。
 本発明の磁性ゴム組成物における、HNBR(A)100質量部に対するフェライト磁性粉(B)の含有量は1250~1600質量部である。フェライト磁性粉(B)の含有量が1250質量部以上であることによって、優れた磁気特性を有する磁性ゴム成形品を得ることができる。フェライト磁性粉(B)の含有量は、好適には1300質量部以上であり、より好適には1320質量部以上である。一方、フェライト磁性粉(B)の含有量が1600質量部を超えると、成形性が悪化し、金型への充填不良が発生したり、得られる磁性ゴム成形品の強度が低下する。フェライト磁性粉(B)の含有量は、好適には1500質量部以下である。
 本発明の磁性ゴム組成物は、本発明の効果を阻害しない範囲であれば、HNBR(A)以外のゴムを含んでも構わない。しかしながらその含有量は、通常ゴム成分全量のうちの10質量%以下であり、5質量%以下であることが好ましく、HNBR(A)以外のゴムを実質的に含まないことがより好ましい。また、本発明の磁性ゴム組成物は、本発明の効果を阻害しない範囲であれば、フェライト磁性粉(B)以外の磁性粉、例えば希土類磁性粉を含んでいても構わない。しかしながらその含有量は、通常、磁性粉全量のうちの10質量%以下であり、5質量%以下であることが好ましく、フェライト磁性粉(B)以外の磁性粉を実質的に含まないことがより好ましい。
 本発明の磁性ゴム組成物は、加硫剤(C)を含む。加硫剤(C)としては、硫黄、過酸化物など、HNBR(A)の加硫に通常用いられるものを採用することができる。加硫剤(C)の含有量は、HNBR(A)100質量部に対して、0.1~4質量部である。加硫剤(C)の含有量が0.1質量部未満の場合、加硫時間が長くなるとともに、得られる磁性ゴム成形品の機械特性が悪化する。加硫剤(C)の含有量は、好適には0.2質量部以上である。一方、加硫剤(C)の含有量が4質量部を超える場合、得られる磁性ゴム成形品の機械特性が悪化する。加硫剤(C)の含有量は、好適には2質量部以下である。
 本発明の磁性ゴム組成物は、ステアリン酸(D)を含む。ステアリン酸(D)は、通常加硫助剤として配合されるものであるが、通常よりも多量のステアリン酸(D)を配合することで、大量の磁性粉を配合しても良好な流動性を維持することができ、その結果、極めて優れた磁気特性を有するとともに機械特性にも優れた磁性ゴム成形品を得ることができる。ステアリン酸(D)の含有量は、HNBR(A)100質量部に対して、2.5~8質量部である。ステアリン酸(D)の含有量が2.5質量部未満の場合、流動性が悪化するとともに、得られる磁性ゴム成形品の磁気特性も悪化する。ステアリン酸(D)の含有量は、好適には3質量部以上、より好適には3.2質量部以上である。一方、ステアリン酸(D)の含有量が8質量部を超える場合、得られる磁性ゴム成形品の機械特性が悪化する。ステアリン酸(D)の含有量は、好適には6質量部以下であり、より好適には5質量部以下である。
 本発明の磁性ゴム組成物においては、磁性ゴム組成物全体の質量に対するフェライト磁性粉(B)の含有率が91~93質量%である。このような高いフェライト磁性粉(B)の含有率を有しながらも、流動性が良好であるところが、本発明の磁性ゴム組成物の大きな特徴である。そして、このような磁性ゴム組成物を加硫してなる磁性ゴム成形品は、極めて高い残留磁束密度を有するとともに良好な機械特性も有している。フェライト磁性粉(B)の含有率が91質量%未満である場合、残留磁束密度が低下する。フェライト磁性粉(B)の含有率は、好適には91.3質量%以上であり、より好適には91.6質量%以上である。一方、フェライト磁性粉(B)の含有率が93質量%を超える場合、成形性が悪化し、金型への充填不良が発生したり、得られる磁性ゴム成形品の強度が低下する。
 本発明の磁性ゴム組成物は、本発明の効果を阻害しない範囲であれば、HNBR(A)、フェライト磁性粉(B)、加硫剤(C)及びステアリン酸(D)以外の成分を含んでいても構わない。磁性ゴム組成物において通常使用される、加硫促進剤、加硫助剤、受酸剤、着色剤、フィラー、可塑剤など、各種の添加剤を含むことができる。ただし、このような他の成分を多量に含んでいたのでは、フェライト磁性粉(B)の含有率を91質量%以上にすることができないので、他の成分の含有量が多すぎないことが重要である。したがって、HNBR(A)、フェライト磁性粉(B)、加硫剤(C)及びステアリン酸(D)以外の成分の合計の含有量は、HNBR(A)100質量部に対して、50質量部以下であることが好ましく、40質量部以下であることがより好ましく、30質量部以下であることがさらに好ましい。
 以上のようにして得られた磁性ゴム組成物を加硫することで本発明の磁性ゴム成形品を得ることができる。具体的には、HNBR(A)、フェライト磁性粉(B)、加硫剤(C)及びステアリン酸(D)を混合して前記磁性ゴム組成物を得てから、金型中で加硫することによって、磁性ゴム成形品を得ることができる。
 まず、上記各成分を混合することによって磁性ゴム組成物が製造される。混合する方法は特に限定されず、オープンロール、ニーダ、バンバリーミキサ、インターミキサ、押出機などを用いて混練する方法が採用される。なかでも、オープンロール又はニーダを用いて混練することが好ましい。混練時の磁性ゴム組成物の温度は60~130℃とすることが好ましい。混練時間は、10~60分であることが好ましい。このように、比較的低温で高粘度の組成物を比較的長時間混練してから加硫に供するのが、ゴム成形品を製造する際の通常の方法である。しかしながら、フェライト磁性粉を大量に含む場合には、流動性を確保することが特に重要である。
 こうして得られた磁性ゴム組成物の180℃における加硫曲線を測定した際のトルクの最小値MLが、3~8kgf・cmであることが好ましい。MLが8kgf・cmを超える場合には、成形性が不十分になって充填不足となるおそれがある。MLは、より好適には6kgf・cm以下である。特に流動性が要求される形状の成形品を製造する場合には、MLが5.5kgf・cm以下であることが好ましい場合もある。一方、MLが3kgf・cm未満の場合には、成形品の機械強度が低下するおそれがあるとともに、成形品にエアが残るおそれもある。MLは、より好適には3.5kgf・cm以上である。特に機械強度が要求される用途の成形品を製造する場合には、MLが4.2kgf・cm以上であることが好ましい場合もある。
 引き続き、磁性ゴム組成物を金型中で成形するとともに加硫して磁性ゴム成形品を得る。通常、上記磁性ゴム組成物を所望の形状に成形し、加熱することにより加硫する。磁性ゴム組成物の成形方法としては、押出成形、圧縮成形などが挙げられる。中でも圧縮成形が好適である。加硫温度は、140~250℃であることが好ましい。加硫時間は、1~30分であることが好ましい。また、磁性ゴム成形品の形状や寸法などによっては、表面が加硫されていても内部まで十分に加硫されていない場合があるので、さらに加熱して二次加硫を行ってもよい。加硫するための加熱方法としては、圧縮加熱、スチーム加熱、オーブン加熱、熱風加熱などの、ゴムの加硫に用いられる一般的な方法が用いられるが、圧縮加熱が好適である。
 本発明の製造方法では、磁場の印加された金型中で加硫することが好ましい。これにより、磁性ゴム成形品の残留磁束密度を高めることができる。このとき、圧縮成形する際に、成形品の表面に垂直な方向の磁場を印加することが好適である。本発明の樹脂組成物は、多量のフェライト磁性粉を含んでいるにもかかわらず流動性が良好であり、磁場の印加された金型中で加硫することによってフェライト磁性粉が高度に配向して、極めて高い残留磁束密度を示すことができる。
 本発明の磁気エンコーダは、以上のようにして得られた磁性ゴム成形品が着磁されてなる磁性体を備えたものである。当該磁性体は、S極及びN極を1組だけ有するものであっても構わないが、多くの場合、交互に磁極が配置された多極磁性体である。ただし、着磁態様はこれらに限られるものではない。当該磁性体の形状は特に限定されないが、回転運動を検出する際には、円盤状あるいは円筒状など、環状であることが好ましい。この場合には、S極とN極が円周方向に交互に配置されて角度を検出することができ、実用上最も重要な態様である。一方、直線運動を検出する用途などでは、平坦な帯状の磁性体であっても構わない。S極とN極が接近して形成され、各極の寸法が小さい場合に、高い残留磁束密度が要求されるので、本発明の方法で製造される磁気エンコーダを採用する利益が大きい。
 本発明の磁気エンコーダは、必要に応じて当該磁性体を支持する支持部材を備える。当該支持部材は、金属部材、特に金属板であることが好ましい。磁性ゴム成形品と支持部材との接着方法は特に限定されず、磁性ゴム成形品を加硫する際に直接そのまま両者を接着しても構わない。しかしながら、本発明の磁性ゴム組成物を支持部材により強固に接着するためには、磁性ゴム成形品と前記支持部材とを、熱硬化性接着剤で接着することが好ましい。この場合、磁性ゴム組成物を成形して加硫させた後に熱硬化性接着剤を硬化させて、磁性ゴム成形品を熱硬化性接着剤で支持部材に固着させてもよいし、磁性ゴム組成物を成形して加硫させるのと同時に熱硬化性接着剤を硬化させて、磁性ゴム成形品を熱硬化性接着剤で支持部材に固着させてもよい。ここで用いられる熱硬化性接着剤は、熱によって架橋反応が進行して硬化するタイプの接着剤であれば特に限定されない。フェノール樹脂、エポキシ樹脂、ウレタン樹脂、未加硫ゴムを溶剤に溶かしたゴム糊、シランカップリング剤などを用いることができる。
 本発明の方法で製造される磁気エンコーダの好適な実施態様は、回転体に取り付け可能な支持部材と、該支持部材に装着された環状の磁性ゴム成形品を備え、該磁性ゴム成形品がN極とS極とが円周方向に交互に着磁された磁気エンコーダである。これは、回転運動を検出する磁気エンコーダとして有用である。細かい角度を精度よく測定する場合などに、高い残留磁束密度を有する磁性ゴム成形品を備えた磁気エンコーダを採用する利益が大きい。
 本発明の方法で製造される磁気エンコーダの用途は特に限定されない。磁気エンコーダのうち、周方向に交互に磁極が配置された環状又は円盤状の多極磁性体を含むものは、回転運動を検出するセンサに用いられる。例えば、車軸の回転速度検出装置、クランク角検出装置、モーターの回転角度検出装置などに用いられる。また、直線方向に交互に磁極が配置された多極磁性体を含むものは、直線運動を検出するセンサに用いられる。例えば、リニアガイド装置、パワーウインドウ、パワーシート、ブレーキ踏み込み量検出装置、事務機器などに用いられる。中でも、車両用アンチロックブレーキシステムのセンサーローター用の磁気エンコーダとして用いることが、磁気特性と機械特性に優れ、残留磁束密度が極めて高い本発明の方法で製造される磁気エンコーダの最も有用な用途である。
実施例1
[未加硫ゴムシートの作製]
 以下に示す原料を、8インチ径のオープンロールを用いて、組成物の温度を60~100℃に維持して35分間混練し、厚さ1mm、1.5mm及び2mmの未加硫ゴムシートを作製した。
・水素添加ニトリルゴム(HNBR):100質量部
 アクリロニトリル含有量36.2質量%、ムーニー粘度(ML1+4、100℃)57.5、ヨウ素価11g/100g。
・ストロンチウムフェライト磁性粉A(磁場配向用):1350質量部
 平均粒子径1.2μm(粒度分布において複数のピークを有する。)
 圧縮密度3.6g/cm
 圧縮体の残留磁束密度196mT
 圧縮体の保磁力236kA/m
・可塑剤TOTM[トリメリット酸トリス(2-エチルへキシル)]:3質量部
・亜鉛華:5質量部
・ステアリン酸:3.5質量部
・老化防止剤[4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン]:5質量部
・硫黄:0.4質量部
・加硫促進剤MBTS(2,2’-ジベンゾチアゾリルジスルフィド):2質量部
・加硫促進剤TETD(テトラエチルチウラムジスルフィド):1.5質量部
[加硫特性]
 得られた未加硫ゴムシートを試料とし、JIS K6300-2に準拠し、株式会社エー・アンド・デイ製の「キュラストメーター7」を用いて測定した。測定温度180℃で5分間の加硫曲線を測定し、縦軸をトルク、横軸を時間としたグラフのトルクの最小値ML(kgf・cm)、最大値MH(kgf・cm)、MHの10%のトルクになるまでの時間T10(分)及びMHの90%のトルクになるまでの時間T90(分)を求めた。その結果、T10が1.55分、T90が2.98分、MLが5.52kgf・cm及びMHが46.92kgf・cmであった。
[機械特性]
 JIS K6251に準拠して引張試験を行った。得られた未加硫ゴムシートを用い170℃で10分間プレス加硫して厚さ1mmの加硫ゴムシートを得た。得られた加硫ゴムシートを打ち抜いて得られた、ダンベル状3号形の試験片を用い、23℃、相対湿度50%において、引張速度500mm/分の引張速度で、引張強さ(MPa)と伸び(%)を測定した。その結果、引張強さは9.0MPaであり、伸びは16%であった。
[硬度]
 JIS K6253に準拠して測定した。引張試験と同様に作製した厚さ2mmの加硫ゴムシートを3枚重ね、タイプAデュロメータを用いて、23℃、相対湿度50%において測定を行い、ピーク値を読み取った。その結果、A硬度は98であった。
[磁気特性]
 得られた未加硫ゴムシートを用い、直径18mm、厚さ6mmの円盤状試験片を作成し、試験片の厚み方向に磁場をかけながら、170℃で10分間プレス加硫して加硫ゴム試験片を得た。得られた成形品の残留磁束密度及び保磁力を、メトロン技研株式会社製の直流磁化特性試験装置「BHカーブトレーサー」によって測定した。その結果、残留磁束密度は338mTであった。
[支持部材への接着性]
 支持部材(スリンガ)として、板厚0.6mmのSUS430からなる、断面L字型で円環状のものを用いた。当該支持部材の寸法は、内径側円筒部の内径が55mm、外側円輪部の外径が67mm、内径円筒部の軸方向長さが4.0mmであった。一方、得られた厚さ1.5mmの未加硫ゴムシートを、内径56mm、外径67mmのドーナツ状に打ち抜いて、フェノール樹脂を原料とする接着剤を予め塗布した支持部材上に載置した。引き続き、180℃で3分間プレス加硫して、内径56mm、外径67mm、厚さ1.0mmの磁性体を形成した。当該磁性体は支持部材に強固に接着しており、接着性は良好であった。また、金型からの離型性も良好であった。以上の結果を表1にまとめて示す。
実施例2
 実施例1において、ステアリン酸の配合量を4.5質量部にした以外は実施例1と同様にして、未加硫ゴムシートを作製した。得られた未加硫ゴムシートを用いて実施例1と同様にして、加硫特性、磁気特性、支持部材への接着性、及び離型性を評価した。結果を表1にまとめて示す。
比較例1
 実施例1において、ステアリン酸の配合量を1質量部にした以外は実施例1と同様にして、未加硫ゴムシートを作製した。得られた未加硫ゴムシートを用いて実施例1と同様にして、加硫特性、磁気特性、支持部材への接着性、及び離型性を評価した。結果を表1にまとめて示す。
比較例2
 比較例1において、ストロンチウムフェライト磁性粉Aの配合量を1100質量部にした以外は比較例1と同様にして、未加硫ゴムシートを作製した。得られた未加硫ゴムシートを用いて実施例1と同様にして、加硫特性、磁気特性、支持部材への接着性、及び離型性を評価した。結果を表1にまとめて示す。
比較例3
 実施例1において、水素添加ニトリルゴム(HNBR)の代わりにニトリルゴム(NBR)を用いた以外は実施例1と同様にして、未加硫ゴムシートを作製した。ここで用いたNBRの特性は下記の通りである。得られた未加硫ゴムシートを用いて実施例1と同様にして、加硫特性、磁気特性、支持部材への接着性、及び離型性を評価した。結果を表1にまとめて示す。
 アクリロニトリル含有量33質量%
 ムーニー粘度(ML1+4、100℃)45
比較例4
 比較例2において、水素添加ニトリルゴム(HNBR)の代わりにニトリルゴム(NBR)を用いた以外は比較例2と同様にして、未加硫ゴムシートを作製した。得られた未加硫ゴムシートを用いて実施例1と同様にして、加硫特性、磁気特性、支持部材への接着性、及び離型性を評価した。結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1、2及び比較例1の対比から、ステアリン酸の配合量が増加すると、MLが低下して流動性が良好になるとともに、加硫時に印加する磁場によってフェライト粒子が配向しやすくなり、残留磁束密度が大きくなることがわかった。ただし、ステアリン酸が多すぎると、強度が低下する傾向が認められた。また、実施例1と比較例3の対比から、HNBRをNBRに変更することによって、MLが増大し流動性が低下することがわかった。その結果成形性が悪化したのみならず、磁場配向性も悪化して残留磁束密度が低下した。
 
 

Claims (10)

  1.  水素化ニトリルゴム(A)、フェライト磁性粉(B)、加硫剤(C)及びステアリン酸(D)を含有する磁性ゴム組成物であって、
     水素化ニトリルゴム(A)のムーニー粘度(ML1+4、100℃)が45~80であり、
     水素化ニトリルゴム(A)100質量部に対し、フェライト磁性粉(B)1250~1600質量部、加硫剤(C)0.1~4質量部及びステアリン酸(D)2.5~8質量部を含有し、
     前記磁性ゴム組成物全体の質量に対するフェライト磁性粉(B)の含有率が91~93質量%であることを特徴とする磁性ゴム組成物。
  2.  フェライト磁性粉(B)の圧縮密度が3.5g/cm以上である請求項1に記載の磁性ゴム組成物。
  3.  フェライト磁性粉(B)が、その粒度分布において複数のピークを有する請求項1又は2に記載の磁性ゴム組成物。
  4.  180℃における加硫曲線を測定した際のトルクの最小値MLが、3~7kgf・cmである請求項1~3のいずれかに記載の磁性ゴム組成物。
  5.  磁気エンコーダ用である請求項1~4のいずれかに記載の磁性ゴム組成物。
  6.  請求項1~5のいずれかに記載の磁性ゴム組成物を加硫してなる磁性ゴム成形品。
  7.  請求項6に記載の磁性ゴム成形品を備えた磁気エンコーダ。
  8.  水素化ニトリルゴム(A)、フェライト磁性粉(B)、加硫剤(C)及びステアリン酸(D)を混合して前記磁性ゴム組成物を得てから、該磁性ゴム組成物を加硫する、請求項6に記載の磁性ゴム成形品の製造方法。
  9.  前記磁性ゴム組成物を磁場の印加された金型中で加硫する、請求項8に記載の磁性ゴム成形品の製造方法。
  10.  請求項8又は9に記載の方法で得られた磁性ゴム成形品を所定のパターンに着磁させる磁気エンコーダの製造方法。
     
     
PCT/JP2016/084113 2015-11-18 2016-11-17 磁性ゴム組成物、磁性ゴム成形品、磁気エンコーダ及びそれらの製造方法 WO2017086389A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015226082A JP6682113B2 (ja) 2015-11-18 2015-11-18 磁性ゴム組成物、磁性ゴム成形品、磁気エンコーダ及びそれらの製造方法
JP2015-226082 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017086389A1 true WO2017086389A1 (ja) 2017-05-26

Family

ID=58717415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084113 WO2017086389A1 (ja) 2015-11-18 2016-11-17 磁性ゴム組成物、磁性ゴム成形品、磁気エンコーダ及びそれらの製造方法

Country Status (2)

Country Link
JP (1) JP6682113B2 (ja)
WO (1) WO2017086389A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634712A (zh) * 2020-12-15 2022-06-17 洛阳尖端技术研究院 吸波橡胶、其制备方法及吸波装置
CN116419946A (zh) * 2020-11-16 2023-07-11 Nok株式会社 丁腈橡胶系组合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426716B (zh) * 2020-10-12 2023-05-30 中国石油化工股份有限公司 一种制备复合氢化丁腈橡胶的组合物及其应用和复合氢化丁腈橡胶及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284804A (ja) * 1987-05-18 1988-11-22 Tdk Corp ゴム磁石の製造方法
WO2001041162A1 (fr) * 1999-11-30 2001-06-07 Uchiyama Manufacturing Corp. Composition de caoutchouc magnetique pour codeur
WO2002103296A1 (fr) * 2001-06-19 2002-12-27 Koyo Seiko Co., Ltd. Element magnetique pour detecteur de revolutions
CN1429858A (zh) * 2002-12-27 2003-07-16 北矿磁材科技股份有限公司 一种高性能磁性橡胶及其制备方法
JP2003282315A (ja) * 2002-03-22 2003-10-03 Tokyo Ferrite Seizo Kk フェライト系ゴム磁石
JP2006066828A (ja) * 2004-08-30 2006-03-09 Tdk Corp ゴム磁石の製造方法及びゴム磁石
JP2011079886A (ja) * 2009-10-02 2011-04-21 Nakanishi Metal Works Co Ltd ゴム組成物
CN103821941A (zh) * 2014-03-10 2014-05-28 董波 具有传感功能的总成油封
WO2014129309A1 (ja) * 2013-02-21 2014-08-28 Nok株式会社 ニトリルゴム系組成物
CN104200952A (zh) * 2014-08-05 2014-12-10 广州金南磁性材料有限公司 一种无卤耐油耐高温的柔性铁氧体橡胶磁体及其制备方法
WO2015174546A1 (ja) * 2014-05-16 2015-11-19 内山工業株式会社 磁気エンコーダの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284804A (ja) * 1987-05-18 1988-11-22 Tdk Corp ゴム磁石の製造方法
WO2001041162A1 (fr) * 1999-11-30 2001-06-07 Uchiyama Manufacturing Corp. Composition de caoutchouc magnetique pour codeur
WO2002103296A1 (fr) * 2001-06-19 2002-12-27 Koyo Seiko Co., Ltd. Element magnetique pour detecteur de revolutions
JP2003282315A (ja) * 2002-03-22 2003-10-03 Tokyo Ferrite Seizo Kk フェライト系ゴム磁石
CN1429858A (zh) * 2002-12-27 2003-07-16 北矿磁材科技股份有限公司 一种高性能磁性橡胶及其制备方法
JP2006066828A (ja) * 2004-08-30 2006-03-09 Tdk Corp ゴム磁石の製造方法及びゴム磁石
JP2011079886A (ja) * 2009-10-02 2011-04-21 Nakanishi Metal Works Co Ltd ゴム組成物
WO2014129309A1 (ja) * 2013-02-21 2014-08-28 Nok株式会社 ニトリルゴム系組成物
CN103821941A (zh) * 2014-03-10 2014-05-28 董波 具有传感功能的总成油封
WO2015174546A1 (ja) * 2014-05-16 2015-11-19 内山工業株式会社 磁気エンコーダの製造方法
CN104200952A (zh) * 2014-08-05 2014-12-10 广州金南磁性材料有限公司 一种无卤耐油耐高温的柔性铁氧体橡胶磁体及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116419946A (zh) * 2020-11-16 2023-07-11 Nok株式会社 丁腈橡胶系组合物
CN116419946B (zh) * 2020-11-16 2024-03-12 Nok株式会社 丁腈橡胶系组合物
CN114634712A (zh) * 2020-12-15 2022-06-17 洛阳尖端技术研究院 吸波橡胶、其制备方法及吸波装置

Also Published As

Publication number Publication date
JP2017095539A (ja) 2017-06-01
JP6682113B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6677388B2 (ja) 磁気エンコーダ及びその製造方法
JP6197226B2 (ja) 磁性ゴム組成物、それを架橋させてなる磁性ゴム成形品、及び磁気エンコーダ
JP4947535B2 (ja) 磁気エンコーダ用ゴム組成物およびそれを用いた磁気エンコーダ
WO2006121052A1 (ja) 磁気エンコーダ及び磁気エンコーダを備える転がり軸受ユニット
WO2017086389A1 (ja) 磁性ゴム組成物、磁性ゴム成形品、磁気エンコーダ及びそれらの製造方法
WO2001041162A1 (fr) Composition de caoutchouc magnetique pour codeur
JP6521320B2 (ja) 磁気エンコーダ
JP2006225601A (ja) 磁性ゴム組成物およびそれを用いた成形方法
EP2960290B1 (en) Nitrile rubber composition
JP2015076515A (ja) 磁性ゴム層が支持部材に接着されている成形品及びその製造方法
JP2014189704A (ja) タイヤ用ゴム組成物
JP7329152B2 (ja) ニトリルゴム系組成物
JP7020603B1 (ja) ボンド磁石用コンパウンド、成形体、及びボンド磁石
JP6864880B2 (ja) 磁気エンコーダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866390

Country of ref document: EP

Kind code of ref document: A1