WO2017085854A1 - 過給システムの制御装置 - Google Patents

過給システムの制御装置 Download PDF

Info

Publication number
WO2017085854A1
WO2017085854A1 PCT/JP2015/082640 JP2015082640W WO2017085854A1 WO 2017085854 A1 WO2017085854 A1 WO 2017085854A1 JP 2015082640 W JP2015082640 W JP 2015082640W WO 2017085854 A1 WO2017085854 A1 WO 2017085854A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
operating point
compressor
current position
map
Prior art date
Application number
PCT/JP2015/082640
Other languages
English (en)
French (fr)
Inventor
知大 高橋
孝 池田
貴芳 寺門
直之 森
ウィツター ジワリヤウェート
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/578,470 priority Critical patent/US10697382B2/en
Priority to PCT/JP2015/082640 priority patent/WO2017085854A1/ja
Priority to EP15908794.9A priority patent/EP3315749B1/en
Priority to CN201580078777.2A priority patent/CN107532526B/zh
Priority to JP2017551483A priority patent/JP6389572B2/ja
Publication of WO2017085854A1 publication Critical patent/WO2017085854A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B2037/122Control of rotational speed of the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B2037/125Control for avoiding pump stall or surge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a controller of a supercharging system for supplying compressed intake air to an engine.
  • a method for improving the output of an engine, a method (supercharging) is known in which intake air is compressed by a supercharger and this compressed intake air is supplied to the engine, and is widely used in various engines.
  • the supercharger may transition to an abnormal operation state called surging, for example, when the operating state of the engine suddenly changes.
  • surging an abnormal operation state
  • the turbocharger enters the surging state
  • the intake air can not be compressed.
  • frequent rushing to the surging state may lead to damage to the device. For this reason, it is necessary to appropriately control the supercharger so as to prevent the supercharger from rushing into the surging state as much as possible.
  • the control of the turbocharger is not in time, and the operating point of the turbocharger may exceed the surge line, and may temporarily enter a surging state.
  • the pressure ratio (supercharger outlet pressure / inlet pressure) is higher because the air density is lower than when the engine is at a low altitude. The risk of rushing into the surging state is higher.
  • control target value is lowered so as to avoid rushing into the surging state in order to avoid the above problem, the performance of the turbocharger will be degraded. If the turbocharger is increased in size to compensate for this performance degradation, the cost will increase.
  • the present invention has been made in view of the above-described conventional problems, and the object of the present invention is to efficiently move the operating point of the turbocharger to any position on the compressor map. It is providing a control device of a feed system.
  • One embodiment of the present invention is a control device of a supercharging system for supplying compressed intake air to an engine, including a supercharger including a compressor for compressing intake air supplied to the engine, and operation of the compressor And a controller that controls a control device that affects the The controller stores, in the compressor, a compressor map storage unit that stores a compressor map indicating the relationship between the intake volume flow rate, the pressure ratio, and the compressor rotational speed, and the current position of the compressor operating point on the compressor map every predetermined cycle.
  • the movement direction calculation unit Calculated by the current position calculation unit, the movement direction calculation unit calculating the movement direction of the operation point on the compressor map based on the current position calculation unit calculated by the current position calculation unit, and the current position calculation unit And a control unit configured to control the control device based on the current position of the operation point and the movement direction of the operation point calculated by the movement direction calculation unit.
  • a turbocharger refers to a turbocharger, described later, which rotates a compressor by a turbine rotated by exhaust gas discharged from an engine, an electric turbocharger, which rotates a compressor by power from an electric motor, and a crankshaft of an engine. And a mechanical supercharger that rotates the compressor by the power of
  • the operation of the compressor is controlled based on both the current position of the operating point on the compressor map and the moving direction of the operating point. For this reason, the movement direction of the operating point can be used for control of the compressor, as compared with the conventional one in which the operation of the compressor is controlled based only on the current position of the operating point on the compressor map. The point can be efficiently moved to any position on the compressor map.
  • the controller determines whether or not the movement direction of the operating point is directed to a target direction. Further includes a department. Then, the control unit controls the control device such that the moving direction of the operating point is directed to the target direction when the moving direction of the operating point is not directed to the target direction.
  • the control device is automatically controlled by the control unit such that the moving direction of the operating point is directed to the target direction. Therefore, the operating point of the compressor can be efficiently moved to any position on the compressor map.
  • the controller calculates a control map for calculating a control amount of a control device corresponding to the current position of the operating point. It further includes a control map storage unit to be stored. Then, the control unit corrects the control amount of the control device calculated based on the control map such that the moving direction of the operating point is directed to the target direction.
  • the control device by correcting the control amount of the control device calculated based on the control map, the control device is controlled such that the moving direction of the operating point is directed to the target direction.
  • the control map is, for example, a map for calculating the control amount of the control device during normal operation of the engine.
  • the compressor can be controlled such that the moving direction of the operating point is directed to the target direction with a simple configuration that only corrects the control amount calculated by the control map.
  • the controller determines the time of the current position of the operating point calculated by the current position calculator. It further includes a moving speed calculation unit that calculates the moving speed of the operating point based on the change amount of the hit. Then, the control unit determines the current position of the operating point calculated by the current position calculating unit, the moving direction of the operating point calculated by the moving direction calculating unit, and the moving speed of the operating point calculated by the moving speed calculating unit. Control the control device based on.
  • the compressor is controlled based on the moving speed of the operating point on the compressor map in addition to the current position of the operating point on the compressor map and the moving direction of the operating point.
  • the concept of time can be reflected in control when moving the operating point of the compressor to an arbitrary position on the compressor map.
  • the controller of the supercharging system according to (4), wherein the controller is configured to set the operating point from a current position to a defined area or a target based on the moving direction and the moving speed of the operating point. It further includes an arrival time estimation unit that estimates the arrival time to reach the position. Then, based on the moving direction and moving speed of the operating point, the control unit estimates the arrival time until the operating point reaches the defined area or the target position from the current position, and compares the arrival time with the defined time. Control the control device accordingly.
  • the arrival time until the working point reaches the defined area or the target position is estimated based on the moving direction and the moving speed of the working point, and the estimated arrival time is estimated.
  • the control device is controlled in accordance with the comparison result between the time and the specified time. Therefore, for example, as described later, the compressor is controlled in consideration of the time until the operating point rushes into the surge region from the current position, the time taken for the operating point to reach the target position from the current position, etc. I can do it.
  • the defined area is a surge defined as an area where surging may occur when the operating point is located within the defined area. It is an area. Then, the control unit controls the control device to prevent the operating point from rushing into the surge region when the arrival time until the operating point reaches the surge region from the current position is less than the first specified time. Do.
  • the operating point rushes into the surge region when the arrival time from the current position to the surge region to reach the surge region from the current position is smaller than the first prescribed time.
  • the compressor is controlled to avoid doing so.
  • This first prescribed time is, for example, the time required to prevent the operating point at the current position from rushing into the surge region (the response delay time) when normal feedback control is performed on the control device. It is. Therefore, according to such an embodiment, in the case where the normal feedback control can not prevent the operating point from entering the surge region, the control that prevents the operating point from entering the surge region is Since it works, it is possible to prevent the turbocharger from rushing into the surging state during transient operation.
  • the arrival time for the operating point to reach the surge region from the current position is greater than the first specified time, for example, if it is possible to prevent the operating point from entering the surge region by normal feedback control.
  • the above-described control does not work to prevent the turbocharger from rushing into the surging state. Therefore, the operating range of the compressor in the normal control state is not narrowed more than necessary.
  • the controller stores a control map for calculating a control amount of a control device corresponding to the current position of the operating point. Further includes a control map storage unit. Then, the control unit corrects the control amount of the control device calculated based on the control map so as to avoid that the operating point rushes into the surge region.
  • the control device controls the control device to prevent the operating point from rushing into the surge region by correcting the control amount of the control device calculated based on the control map.
  • the control map is, for example, a map for calculating the control amount of the control device during normal operation of the engine.
  • the compressor can be controlled to prevent the supercharger from entering the surging state with a simple configuration that only corrects the control amount calculated by the control map.
  • control unit in the control system for a supercharging system described in (5), is configured to determine an arrival time for the operating point to reach the target position from the current position from a second predetermined time. If smaller, the controller is controlled so that the operating point reaches the target position earlier than the second prescribed time.
  • the operating point when the arrival time for the operating point to reach the target position from the current position is less than the second specified time, the operating point reaches the target position earlier than the second specified time.
  • the compressor is controlled to reach.
  • the target position is, for example, a position where the compressor efficiency is higher than a predetermined efficiency (for example, a position where the compressor efficiency is 75% or more) on the compressor map. Therefore, according to such an embodiment, in the case where it takes too long for the operating point to reach the target position in the normal control, control is performed such that the operating point reaches the early target position. , The operating point of the compressor can reach the target position earlier than normal control.
  • the controller stores a control map for calculating a control amount of a control device corresponding to the current position of the operating point. Further includes a control map storage unit. Then, the control unit corrects the control amount of the control device calculated based on the control map so that the operating point reaches the target position earlier than the second prescribed time.
  • control is performed such that the operating point reaches the target position earlier than the second prescribed time.
  • the device is controlled.
  • the control map is, for example, a map for calculating the control amount of the control device during normal operation of the engine.
  • the compressor can be controlled so that the operating point reaches the target position earlier than the second specified time with a simple configuration that only corrects the control amount calculated by the control map.
  • the supercharger in the control system for a supercharging system according to any one of (1) to (9), includes a compressor driven by a turbine rotated by exhaust gas discharged from an engine. It consists of a turbocharger to rotate.
  • the control device includes at least one of a fuel injection device for supplying fuel to the engine, a variable nozzle mechanism for controlling the flow direction of the exhaust gas flowing into the turbine, and a waste gate valve for controlling the flow rate of the exhaust gas flowing into the turbine. Including one.
  • the present invention it is possible to provide a control system of a supercharging system capable of accurately moving the operating point of the supercharger to any position on the compressor map.
  • the performance of the supercharger can be maximized by accurately moving the operating point of the supercharger to any position on the compressor map.
  • expressions that indicate that things such as “identical”, “equal” and “homogeneous” are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
  • expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained. The shape including a part etc. shall also be expressed.
  • the expressions “comprising”, “having”, “having”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
  • symbol may be attached
  • FIG. 1 is a diagram showing an overall configuration of a supercharging system to which a control device of a supercharging system according to an embodiment of the present invention is applied.
  • the control device 1A of the supercharging system according to one embodiment of the present invention is a control device 1A of the supercharging system for supplying the compressed intake air IA to the engine 2, and as shown in FIG. It comprises a supercharger 20 including a compressor 22 that compresses an intake air IA to be supplied, and a controller 10 that controls a control device that affects the operation of the compressor 22.
  • the turbocharger 20 comprises a turbocharger 20A that rotates the compressor 22 by means of a turbine 24 rotated by exhaust gas EG discharged from the engine 2.
  • the air (intake air) introduced into the intake air passage 30 via the air cleaner 32 flows into the compressor 22 of the turbocharger 20A.
  • the turbocharger 20A includes a compressor 22 disposed in the intake passage 30, a turbine 24 disposed in the exhaust passage 40, and a rotor 23 connecting the compressor 22 and the turbine 24. Then, the turbine 24 is rotationally driven by the exhaust energy of the exhaust gas EG discharged from the engine 2, and the compressor 22 is coaxially driven accordingly, whereby the intake air IA flowing into the compressor 22 is compressed.
  • the intake air IA compressed by the compressor 22 is cooled by the intercooler 34, and after the intake flow rate is adjusted by the throttle valve 36, it is supplied to the combustion chamber 8 via the intake port 5.
  • the combustion chamber 8 is a space defined between the cylinder liner 3 and the top surface of the piston 4.
  • the engine 2 is provided with a fuel injection device 6 for injecting fuel into the combustion chamber 8. Then, the fuel supplied from the fuel injection device 6 to the combustion chamber 8 is self-ignited by compression heat (or ignited by an igniter, not shown), whereby the fuel is burned and expanded in the combustion chamber 8. Then, the exhaust gas EG generated in the combustion chamber 8 is discharged to the exhaust pipe 40 via the exhaust port 7.
  • the exhaust gas discharged to the exhaust pipeline 40 flows into the turbine 24 of the turbocharger 20A described above, and rotationally drives the turbine 24. Further, a bypass pipeline 42 bypassing the turbine 24 is connected to the exhaust pipeline 40.
  • the bypass line 42 is provided with a waste gate valve 28 for controlling the flow rate of the exhaust gas EG flowing through the bypass line 42.
  • the turbine 24 is provided with a variable nozzle mechanism 26 for controlling the flow of the exhaust gas EG acting on the turbine 24.
  • the devices such as the fuel injection device 6, the variable nozzle mechanism 26, and the waste gate valve 28 described above correspond to control devices that affect the operation of the compressor 22 described above.
  • an air flow meter 51 for measuring the flow rate of the intake air flowing through the intake pipe 30 and an air flow through the intake pipe 30 upstream of the compressor 22 in the intake pipe 30.
  • An intake air temperature sensor 52 for measuring the temperature of the intake air is provided.
  • an inlet-side pressure sensor 53 for measuring the pressure of the intake air IA flowing into the compressor 22 is installed at the inlet of the compressor 22 in the intake passage 30.
  • an outlet-side pressure sensor 54 for measuring the pressure of the intake air IA compressed by the compressor 22 is installed at the outlet of the compressor 22 in the intake passage 30.
  • a turbo rotation number sensor 55 for measuring the turbo rotation number (ie, the rotation number of the compressor 22) is installed in the turbocharger 20.
  • the controller 10 includes a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), an I / O interface, and the like, and is formed of a microcomputer separately configured.
  • CPU central processing unit
  • RAM random access memory
  • ROM read only memory
  • I / O interface I/ O interface
  • FIG. 2 is a block diagram for explaining the function of the controller.
  • the controller 10 includes a control unit 10A, a compressor map storage unit 10B, a current position calculation unit 10C, and a movement direction calculation unit 10D.
  • the compressor map storage unit 10B is a part in the controller 10 that performs a function of storing and storing a compressor map M1 described below.
  • FIG. 3 is a diagram showing a compressor map.
  • the compressor map M1 is a graph in which the horizontal axis represents the corrected flow rate Qa and the vertical axis represents the pressure ratio ⁇ .
  • the corrected flow rate Qa can be obtained, for example, by converting the intake flow rate detected by the air flow meter 51 into the intake volume flow rate at the reference temperature.
  • the compressor efficiency ⁇ is indicated by a dotted line
  • the turbo rotational speed Nt is indicated by a dashed line.
  • the turbo rotation number Nt can be grasped from, for example, the turbo rotation number detected by the turbo rotation number sensor 55.
  • the position of the operating point 61 on the compressor map M1 can be determined.
  • the means for determining the corrected flow rate Qa, the pressure ratio ⁇ , and the turbo rotational speed Nt is not limited to the method described above. Besides the method described above, other known methods capable of determining the corrected flow rate Qa, the pressure ratio ⁇ , and the turbo rotational speed Nt may be employed.
  • the current position calculation unit 10C is a part that functions in the controller 10 to calculate the current position of the operating point 61 of the compressor 22 on the compressor map M1 every predetermined cycle.
  • the operating point 61 moves on the compressor map M1 every moment according to a change in the operating state of the engine 2 or the like.
  • the current position calculation unit 10C calculates the current position of the operating point 61 moving on the compressor map M1 every moment and stores the calculated current position in a memory or the like.
  • the movement direction calculation unit 10D moves the movement direction of the operation point 61 on the compressor map M1 based on the current position of the operation point 61 calculated by the current position calculation unit 10C (in FIG. Is a part that performs the function of calculating
  • the current movement direction of the operating point 61 is calculated, for example, by the past position of the operating point 61 (indicated by “o” in FIG. 3) before the predetermined period calculated by the current position calculator 10C and the current position calculator 10C. It can be determined from the current position of the operating point 61 (indicated by “ ⁇ ” in FIG. 3).
  • the control unit 10A controls the control device 6 based on the current position of the operating point 61 calculated by the current position calculating unit 10C and the moving direction of the operating point 61 calculated by the moving direction calculating unit 10D in the controller 10. It is a part which fulfills the function of controlling 26, 28, etc.
  • the operation of the compressor 22 is controlled based on both the current position of the operating point 61 on the compressor map M1 and the moving direction of the operating point 61. Be done. Therefore, the moving direction of the operating point 61 can be used to control the compressor 22 as compared with the conventional one in which the operation of the compressor is controlled based only on the current position of the operating point 61 on the compressor map M1.
  • the operating point 61 of the compressor 22 can be efficiently moved to any position on the compressor map M1. Thereby, the performance of the turbocharger 20A can be maximized.
  • the controller 10 further includes a movement direction determination unit 10E.
  • the movement direction determination unit 10E is a part of the controller 10 that determines whether the movement direction of the operating point 61 is in the target direction.
  • the target direction is a direction (indicated by “arrow 65” in FIG. 3) from the current position of the operating point 61 to the target position (indicated by “ ⁇ ” in FIG. 3) on the compressor map M1.
  • the target position of the operating point 61 is appropriately set by the target position calculation unit 10F of the controller 10 according to the operating state of the engine 2 and the like.
  • control unit 10A performs control such that the movement direction of the operating point 61 faces the target direction when the movement direction of the operating point 61 does not face the target direction. It is configured to control the devices 6, 26, 28 and so on.
  • control devices 6, 26, 28, etc. are automatically controlled by the control unit 10A such that the moving direction of the operating point 61 is directed to the target direction. Therefore, the operating point 61 of the compressor 22 can be efficiently moved to any position (for example, a target position) on the compressor map M1.
  • controller 10 further includes a control map store 10G.
  • the control map storage unit 10G is a part having a function of storing a control map for calculating control amounts of the control devices 6, 26, 28, etc. corresponding to the current position of the operating point 61 in the controller 10.
  • the control map is, for example, a map (normal control map) for calculating control amounts of the control devices 6, 26, 28 and the like during normal operation of the engine 2.
  • control unit 10A calculates control devices 6, 26, 28, etc. calculated based on the control map so that the moving direction of the operating point 61 turns to the target direction. It is configured to correct the control amount.
  • control device 6 is controlled so that the moving direction of the operating point 61 is directed to the target direction by correcting the control amount of the control device 6, 26, 28 etc. calculated based on the control map. , 26, 28 etc. are controlled.
  • the compressor 22 can be controlled such that the moving direction of the operating point 61 is directed to the target direction with a simple configuration that only corrects the control amount calculated by the control map.
  • FIG. 4 is a diagram showing an example of a control flow according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a control flow for changing the moving direction of the operating point.
  • the corrected flow rate Qa and the turbo rotational speed Nt are calculated (S11).
  • the current position calculation unit 10C described above calculates the current position of the operating point 61 on the compressor map M1 (S12).
  • the moving direction calculating unit 10D described above calculates the moving direction of the operating point 61 on the compressor map M1 (S13).
  • the movement direction determination unit 10E determines whether or not the movement direction of the operating point 61 is directed to the target direction (S14, S15).
  • S14 the distance La between the line 63L along the movement direction of the operating point 61 and the target position (the length of the perpendicular drawn from the target position to the line 63L) is calculated (see FIG. 6).
  • step S181 the control amounts of the control devices 6, 26, 28, etc. are calculated based on the normal control map.
  • step S182 the control amount of the control device 6, 26, 28, etc. calculated in step S181 is corrected.
  • the control device is the fuel injection device 6 and the fuel injection amount injected from the fuel injection device 6 is the control amount
  • the fuel injection amount (normal fuel injection amount) calculated by the normal control map is The value A ⁇ La obtained by multiplying the arbitrary coefficient A by the distance La is added.
  • the control unit 10A controls the fuel injection device 6 to inject the calculated corrected fuel injection amount (corrected fuel injection amount) (S183).
  • Such movement direction change control is repeated until it is determined in S15 that the movement direction of the operating point 61 is directed to the target direction.
  • it is determined that the moving direction of the operating point 61 is directed to the target direction when La 0, but La ⁇ th (th is a threshold value and a value larger than 0) In this case, it may be determined that the moving direction of the operating point 61 is directed to the target position.
  • control amounts of the control devices 6, 26, 28 etc. are calculated based on the normal control map in S16. , S17, the control unit 10A controls the control devices 6, 26, 28 based on the control amount calculated in S16. That is, normal operation control is performed.
  • the controller 10 further includes a moving speed calculation unit 10H, as shown in FIG.
  • the movement speed calculation unit 10H is a part that functions to calculate the movement speed of the operating point 61 based on the amount of change per time of the current position of the operating point 61 calculated by the current position calculation unit 10C in the controller 10. is there.
  • the control unit 10A then moves the current position of the operating point 61 calculated by the current position calculation unit 10C and the movement of the operating point 61 calculated by the movement direction calculation unit 10D, as will be described later with reference to FIGS.
  • the control devices 6, 26, 28 and the like are controlled based on the direction and the movement speed of the operating point 61 calculated by the movement speed calculation unit 10H.
  • the compressor 22 is controlled based on the moving speed of the operating point 61 on the compressor map M1, in addition to the current position of the operating point 61 on the compressor map M1 and the moving direction of the operating point 61. Ru. As described above, by using the moving speed of the operating point 61 for controlling the compressor 22, the concept of time is reflected in control when moving the operating point 61 of the compressor 22 to any position on the compressor map M1. Can do.
  • the controller 10 further includes an arrival time estimator 10I, as shown in FIG.
  • the arrival time estimation unit 10I has a function of estimating, in the controller 10, the arrival time ta until the operating point 61 reaches the defined area or the target position from the current position based on the moving direction and the moving speed of the operating point 61. It is a part.
  • the defined area means a predetermined area which occupies a predetermined area on the compressor map M1.
  • the defined area is a surge area S defined as an area where surging may occur when the operating point 61 is located within the defined area (see FIG. 3).
  • the control unit 10A reaches from the current position to the defined area or the target position, as described in FIGS. It is configured to estimate the time and control the control devices 6, 26, 28, etc. according to the comparison result of the arrival time ta and the prescribed time.
  • FIG. 9 is a diagram for explaining a method of estimating the arrival time.
  • the arrival time ta until the working point 61 reaches the defined area or the target position is estimated based on the moving direction and the moving speed of the working point 61, and the estimated arrival time is estimated.
  • the control devices 6, 26, 28 and so on are controlled in accordance with the comparison result between the above and the specified time. Therefore, for example, as described later, the compressor 22 takes into consideration the time until the operating point 61 rushes into the surge region from the current position, the time taken for the operating point 61 to reach the target position from the current position, etc. Can be controlled.
  • the defined area described above is a surge area S.
  • control part 10A avoids that operation point 61 rushes into surge area S, when arrival time ta until operation point 61 reaches current region to surge area S is smaller than the 1st regulation time tc.
  • the control devices 6, 26, 28 and the like are configured to be controlled.
  • the operating point 61 is in the surge region S when the arrival time ta until the operating point 61 reaches the surge region S beyond the current position from the current position is smaller than the first prescribed time.
  • the compressor 22 is controlled to avoid rushing into.
  • this first prescribed time for example, the operating point 61 at the current position is prevented from rushing into the surge region S when the normal feedback control is performed on the control devices 6, 26, 28, etc. It is a necessary time (response delay time). Therefore, according to such an embodiment, when the operating point 61 can not be avoided from entering the surge region S in the normal feedback control, the operating point 61 is prevented from entering the surge region S. Since such control works, it is possible to prevent the turbocharger 20 from rushing into the surging state during transient operation.
  • the operating point 61 is prevented from rushing into the surge area S by normal feedback control.
  • the control to avoid the operation point 61 described above from rushing into the surge region S does not work. Therefore, the operating range of the compressor 22 in the normal control state is not narrowed more than necessary.
  • FIG. 7 is a diagram showing an example of a control flow according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing a control flow for avoiding the operating point from rushing into the surge region.
  • the corrected flow rate Qa and the turbo rotational speed Nt are calculated (S21).
  • the current position calculation unit 10C described above calculates the current position of the operating point 61 on the compressor map M1 (S22).
  • the moving direction and movement of the operating point 61 on the compressor map M1 are performed by the moving direction calculating unit 10D and the moving speed calculating unit (10H) described above based on the current position of the operating point 61 calculated in the current position calculating unit 10C.
  • the speed is calculated (S23).
  • the arrival time ta is estimated by the arrival time estimation unit 10I until the working point 61 reaches the surge region S which is the defined region (S24), and the estimated arrival time ta is compared with the first prescribed time tc. (S25). If ta> tc (“YES” in S25), the process proceeds to S26 as it is possible to prevent the operating point 61 from rushing into the surge region S even by normal feedback control. If ta ⁇ tc (“NO” in S25), the process proceeds to S28, and the surge avoidance control flow shown in FIG. 8 is executed.
  • step S281 the control amount of the control devices 6, 26, 28, etc. is calculated based on the normal control map.
  • step S282 the control amount of the control device 6, 26, 28, etc. calculated in step S281 is corrected.
  • the opening degree of the nozzle vanes calculated by the normal control map is arbitrary.
  • a value B ⁇ (tc ⁇ ta) obtained by multiplying the coefficient B of B by the difference between the first specified time tc and the estimated arrival time ta (tc ⁇ ta) is added.
  • the control unit 10A controls the variable nozzle mechanism 26 such that the opening degree of the nozzle vanes of the variable nozzle mechanism 26 becomes the opening degree of the nozzle vane after correction (correction vane opening degree) (S283).
  • Such a surge avoidance control flow is repeated until it is determined in S25 that the arrival time ta for the operating point 61 to reach the surge region S from the current position exceeds the first specified time tc.
  • the compressor 22 is controlled based on the moving speed of the operating point 61 on the compressor map M1 in addition to the current position of the operating point 61 on the compressor map M1 and the moving direction of the operating point 61. As described above, even when the normal feedback control can not prevent the operating point 61 from entering the surge region S, the turbocharger 20 can be prevented from entering the surging state.
  • control unit 10A may be configured such that the arrival time tb for the operating point 61 to reach the target position from the current position is less than the second prescribed time td.
  • the control devices 6, 26, 28 and so on are controlled such that the operating point 61 reaches the target position earlier than the second prescribed time td.
  • the target position is earlier than the second specified time td.
  • the compressor 22 is controlled to reach.
  • the target position is, for example, a position where the compressor efficiency ⁇ is higher than a predetermined efficiency (for example, a position where the compressor efficiency ⁇ is 75% or more) on the compressor map M1. Therefore, according to such an embodiment, in the case where it takes too much time for the operating point 61 to reach the target position in normal control, such control that the operating point 61 reaches the early target position is performed. In order to work, the operating point 61 of the compressor 22 can reach the target position earlier than normal control.
  • FIG. 10 is a diagram showing an example of a control flow according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing a control flow for causing the operating point to reach the target position early.
  • the corrected flow rate Qa and the turbo rotational speed Nt are calculated (S31).
  • the current position calculation unit 10C described above calculates the current position of the operating point 61 on the compressor map M1 (S32).
  • the moving direction and movement of the operating point 61 on the compressor map M1 are performed by the moving direction calculating unit 10D and the moving speed calculating unit (10H) described above based on the current position of the operating point 61 calculated in the current position calculating unit 10C.
  • the speed is calculated (S33).
  • S34 the distance La between the line 63L along the movement direction of the operating point 61 and the target position is calculated (see FIG. 6).
  • the arrival time estimation unit 10I estimates the arrival time tb until the working point 61 reaches the target position (S36), and compares the estimated arrival time tb with the second prescribed time td (S37). If tb ⁇ td ("YES" in S25), the process proceeds to S26. If tb td td ("NO" in S37), the process proceeds to S41 to execute the moving speed increase control flow shown in Fig. 11 so that the operating point 61 reaches the target position early.
  • the control amount of the control devices 6, 26, 28, etc. is calculated based on the normal control map.
  • the control amount of the control device 6, 26, 28, etc. calculated in S411 is corrected.
  • the valve opening degree of the waste gate valve 28 calculated by the normal control map (normal valve opening degree)
  • a value C ⁇ (tb ⁇ td) obtained by multiplying an arbitrary coefficient C by the difference (tb ⁇ td) between the estimated arrival time tb and the second prescribed time td.
  • the control unit 10A controls the waste gate valve 28 such that the valve opening degree of the waste gate valve 28 becomes the valve opening degree (correction valve opening degree) of the waste gate valve 28 after correction (S413).
  • Such a moving speed increase control flow is repeated until it is determined in S37 that the arrival time tb for the operating point 61 to reach the target position is less than the second specified time tc.
  • the control device 6 in S38 based on the normal control map. , 26, 28, etc., and at S39, the controller 10A controls the control devices 6, 26, 28 based on the control amount calculated at S38. That is, normal operation control is performed.
  • the compressor 22 is controlled based on the moving speed of the operating point 61 on the compressor map M1 in addition to the current position of the operating point 61 on the compressor map M1 and the moving direction of the operating point 61. As described above, in the case where it takes too long for the operating point 61 to reach the target position in the normal control, the operating point 61 can reach the target position earlier than in the normal control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

エンジンに圧縮した吸気を供給するための過給システムの制御装置であって、エンジンに供給する前記吸気を圧縮するコンプレッサを含む過給機と、コンプレッサの作動に影響を及ぼす制御機器を制御するコントローラと、を備える。コントローラは、コンプレッサにおける、吸気体積流量、圧力比、及びコンプレッサ回転数の関係を示すコンプレッサマップを格納するコンプレッサマップ格納部と、コンプレッサマップ上におけるコンプレッサの作動点の現在位置を所定周期毎に算出する現在位置算出部と、現在位置算出部で算出される作動点の現在位置に基づいて、コンプレッサマップ上における作動点の移動方向を算出する移動方向算出部と、現在位置算出部で算出された作動点の現在位置と、移動方向算出部で算出された作動点の移動方向と、に基づいて制御機器を制御する制御部と、を含む。

Description

過給システムの制御装置
 本開示は、エンジンに圧縮した吸気を供給するための過給システムの制御装置に関する。
 エンジンの出力を向上させる技術として、過給機によって吸気を圧縮し、この圧縮した吸気をエンジンに供給する方法(過給)が知られており、各種のエンジンにおいて広く用いられている。過給機は、エンジンの運転状態が急変した場合などに過渡的にサージングと呼ばれる異常運転状態となることがある。過給機がサージング状態に突入すると、吸気を圧縮することが出来なくなる。また、サージング状態への突入が頻発すると、機器の破損に繋がる虞がある。このため、過給機がサージング状態に突入するのを極力回避するように、過給機を適切に制御する必要がある。
 従来、過給機を制御する技術として、吸気流量や回転数などをセンシングし、このセンシングした情報に基づいて、コンプレッサマップ上における作動点がサージ領域に突入しないように、過給機をフィードバック制御することが一般に行われている。換言すれば、コンプレッサマップ上における作動点の現在位置に基づいて、過給機をフィードバック制御している。例えば、特許文献1には、ターボ回転数センサにより検出される実ターボ回転数が、現在の運転状態に応じた目標ターボ回転数と一致するように、ターボ回転数のフィードバック制御を行うことで、コンプレッサマップ上におけるターボ過給機の作動点がサージ領域に突入しないように制御することが開示されている。
特開2007-291961号公報
 しかしながら、センサの情報を得てからのフィードバック制御では、過給機の制御が間に合わずに、過給機の作動点がサージラインを越えてしまい、一時的にサージング状態に突入する虞がある。特に、標高の高い場所にエンジンがある場合には、標高の低い場所にエンジンがある場合と比べて、大気密度が小さいため、圧力比(過給機の出口圧力/入口圧力)が高くなり、サージング状態に突入する虞がより高くなる。
 上記問題を回避するため、サージング状態への突入を回避できるように制御の目標値を下げてしまうと、過給機の性能が低下してしまう。この性能低下を補うために過給機を大型化すると、コスト増になってしまう。
 また、コンプレッサマップ上における作動点の現在位置のみに基づく制御では、作動点がコンプレッサマップ上のどの方向に移動しているかを把握できていないため、コンプレッサマップ上における作動点を任意の目標位置に移動させるように過給機を制御しようとした場合に、過給機を効率良く制御するのが困難である。
 本発明は、上述したような従来の課題に鑑みなされたものであって、その目的とするところは、過給機の作動点をコンプレッサマップ上の任意の位置に効率良く移動させることの出来る過給システムの制御装置を提供することにある。
(1)本発明の一実施形態は、エンジンに圧縮した吸気を供給するための過給システムの制御装置であって、エンジンに供給する吸気を圧縮するコンプレッサを含む過給機と、コンプレッサの作動に影響を及ぼす制御機器を制御するコントローラと、を備える。そして、上記コントローラは、コンプレッサにおける、吸気体積流量、圧力比、及びコンプレッサ回転数の関係を示すコンプレッサマップを格納するコンプレッサマップ格納部と、コンプレッサマップ上におけるコンプレッサの作動点の現在位置を所定周期毎に算出する現在位置算出部と、現在位置算出部で算出される作動点の現在位置に基づいて、コンプレッサマップ上における作動点の移動方向を算出する移動方向算出部と、現在位置算出部で算出された作動点の現在位置と、移動方向算出部で算出された作動点の移動方向と、に基づいて制御機器を制御する制御部と、を含んでいる。
 ここで、過給機とは、エンジンから排出される排ガスによって回転するタービンによってコンプレッサを回転させる後述するターボチャージャ、電動モータからの動力によってコンプレッサを回転させる電動過給機、及びエンジンのクランクシャフトからの動力によってコンプレッサを回転させる機械式過給機を含む。
 上記(1)に記載の実施形態によれば、コンプレッサマップ上における作動点の現在位置および作動点の移動方向の両方に基づいてコンプレッサの作動が制御される。このため、コンプレッサマップ上における作動点の現在位置のみに基づいてコンプレッサの作動が制御されていた従来のものと比べて、作動点の移動方向をコンプレッサの制御に用いることが出来るため、コンプレッサの作動点をコンプレッサマップ上の任意の位置に効率良く移動させることが出来る。
 (2)幾つかの実施形態では、上記(1)に記載の過給システムの制御装置において、上記コントローラは、前記作動点の移動方向が目標方向を向いているか否かを判定する移動方向判定部をさらに含む。そして、制御部は、作動点の移動方向が目標方向を向いていない場合に、作動点の移動方向が目標方向を向くように、制御機器を制御する。
 上記(2)に記載の実施形態によれば、作動点の移動方向が目標方向を向くように、制御機器が制御部によって自動的に制御される。このため、コンプレッサの作動点をコンプレッサマップ上の任意の位置に効率良く移動させることが出来る。
 (3)幾つかの実施形態では、上記(2)に記載の過給システムの制御装置において、上記コントローラは、作動点の現在位置に対応する制御機器の制御量を算出するための制御マップを格納する制御マップ格納部をさらに含む。そして、制御部は、作動点の移動方向が目標方向を向くように、制御マップに基づいて算出された制御機器の制御量を補正する。
 上記(3)に記載の実施形態によれば、制御マップに基づいて算出された制御機器の制御量を補正することで、作動点の移動方向が目標方向を向くように制御機器が制御される。この制御マップは、例えば、エンジンの通常運転時における制御機器の制御量を算出するためのマップである。これにより、制御マップにより算出された制御量を補正するだけの簡単な構成で、作動点の移動方向が目標方向を向くようにコンプレッサを制御することが出来る。
 (4)幾つかの実施形態では、(1)~(3)の何れかに記載の過給システムの制御装置において、上記コントローラは、現在位置算出部で算出される作動点の現在位置の時間当たりの変化量に基づいて、作動点の移動速度を算出する移動速度算出部をさらに含んでいる。そして、制御部は、現在位置算出部で算出された作動点の現在位置と、移動方向算出部で算出された作動点の移動方向と、移動速度算出部で算出された作動点の移動速度と、に基づいて制御機器を制御する。
 上記(4)に記載の実施形態によれば、コンプレッサマップ上における作動点の現在位置および作動点の移動方向に加えて、コンプレッサマップ上における作動点の移動速度に基づいてコンプレッサが制御される。このように、作動点の移動速度をコンプレッサの制御に用いることで、コンプレッサの作動点をコンプレッサマップ上の任意の位置に移動させる際に、時間の概念を制御に反映させることが出来る。
 (5)幾つかの実施形態では、(4)に記載の過給システムの制御装置において、上記コントローラは、作動点の移動方向および移動速度に基づいて、作動点が現在位置から規定領域または目標位置に到達するまでの到達時間を推定する到達時間推定部をさらに含む。そして、制御部は、作動点の移動方向および移動速度に基づいて、作動点が現在位置から規定領域または目標位置に到達するまでの到達時間を推定し、到達時間と規定時間との比較結果に応じて制御機器を制御する。
 上記(5)に記載の実施形態によれば、作動点の移動方向および移動速度に基づいて作動点が現在位置から規定領域または目標位置に到達するまでの到達時間を推定し、この推定した到達時間と規定時間との比較結果に応じて制御機器を制御する。したがって、例えば、後述するように、作動点が現在位置からサージ領域に突入するまでの時間や、作動点が現在位置から目標位置まで到達するのにかかる時間などを考慮して、コンプレッサを制御することが出来る。
 (6)幾つかの実施形態では、(5)に記載の過給システムの制御装置において、上記規定領域は、作動点が規定領域内に位置する場合にサージングが起こり得る領域として定義されるサージ領域である。そして、制御部は、作動点が現在位置からサージ領域に到達するまでの到達時間が第1規定時間より小さい場合に、作動点がサージ領域に突入するのを回避するように、制御機器を制御する。
 上記(6)に記載の実施形態によれば、作動点が現在位置からサージラインを越えてサージ領域に到達するまでの到達時間が第1規定時間より小さい場合に、作動点がサージ領域に突入するのを回避するようにコンプレッサが制御される。この第1規定時間は、例えば、制御機器に対して通常のフィードバック制御がなされた場合に、現在位置にある作動点がサージ領域に突入するのを回避するのに必要な時間(応答遅れ時間)である。したがって、このような実施形態によれば、通常のフィードバック制御では作動点がサージ領域に突入するのを回避出来ないような場合に、作動点がサージ領域に突入するのを回避するような制御が働くため、過渡運転時において過給機がサージング状態に突入するのを回避することが出来る。
 また、作動点が現在位置からサージ領域に到達するまでの到達時間が第1規定時間より大きい場合、例えば、通常のフィードバック制御によって作動点がサージ領域に突入するのを回避できるような場合には、上述した過給機がサージング状態に突入するのを回避するような制御は働かない。このため、通常の制御状態におけるコンプレッサの作動範囲を必要以上に狭めることがない。
 (7)幾つかの実施形態では、(6)に記載の過給システムの制御装置において、上記コントローラは、作動点の現在位置に対応する制御機器の制御量を算出するための制御マップを格納する制御マップ格納部をさらに含む。そして、制御部は、作動点がサージ領域に突入するのを回避するように、制御マップに基づいて算出された制御機器の制御量を補正する。
 上記(7)に記載の実施形態によれば、制御マップに基づいて算出された制御機器の制御量を補正することで、作動点がサージ領域に突入するのを回避するように制御機器が制御される。この制御マップは、例えば、エンジンの通常運転時における制御機器の制御量を算出するためのマップである。これにより、制御マップにより算出された制御量を補正するだけの簡単な構成で、過給機がサージング状態に突入するのを回避するようにコンプレッサを制御することが出来る。
 (8)幾つかの実施形態では、(5)に記載の過給システムの制御装置において、上記制御部は、作動点が現在位置から目標位置に到達するまでの到達時間が第2規定時間より小さい場合に、作動点が第2規定時間よりも早く目標位置に到達するように、制御機器を制御する。
 上記(8)に記載の実施形態によれば、作動点が現在位置から目標位置に到達するまでの到達時間が第2規定時間より小さい場合に、作動点が第2規定時間よりも早く目標位置に到達するようにコンプレッサが制御される。この目標位置は、例えば、コンプレッサマップ上において、コンプレッサ効率が所定の効率よりも高い位置(例えば、コンプレッサ効率が75%以上となる位置)である。したがって、このような実施形態によれば、通常の制御では作動点が目標位置に到達するまでに時間が掛かり過ぎるような場合に、作動点が早期の目標位置に到達するような制御が働くため、コンプレッサの作動点を通常の制御よりも早期に目標位置に到達させることが出来る。
 (9)幾つかの実施形態では、(8)に記載の過給システムの制御装置において、上記コントローラは、作動点の現在位置に対応する制御機器の制御量を算出するための制御マップを格納する制御マップ格納部をさらに含む。そして、制御部は、作動点が第2規定時間よりも早く目標位置に到達するように、制御マップに基づいて算出された制御機器の制御量を補正する。
 上記(9)に記載の実施形態によれば、制御マップに基づいて算出された制御機器の制御量を補正することで、作動点が第2規定時間よりも早く目標位置に到達するように制御機器が制御される。この制御マップは、例えば、エンジンの通常運転時における制御機器の制御量を算出するためのマップである。これにより、制御マップにより算出された制御量を補正するだけの簡単な構成で、作動点が第2規定時間よりも早く目標位置に到達するようにコンプレッサを制御することが出来る。
 (10)幾つかの実施形態では、(1)~(9)の何れかに記載の過給システムの制御装置において、上記過給機は、エンジンから排出される排ガスによって回転するタービンによってコンプレッサを回転させるターボチャージャからなる。そして、制御機器は、エンジンに燃料を供給する燃料噴射装置、タービンに流入する前記排ガスの流れ方向を制御する可変ノズル機構、タービンに流入する排ガスの流量を制御するウェイストゲートバルブ、の少なくとも何れか一つを含む。
 上記(10)に記載の実施形態によれば、過給機がターボチャージャからなる過給システムの制御装置を提供することが出来る。
 本発明の少なくとも一つの実施形態によれば、過給機の作動点をコンプレッサマップ上の任意の位置に精度良く移動させることの出来る過給システムの制御装置を提供することが出来る。このように、過給機の作動点をコンプレッサマップ上の任意の位置に精度良く移動させることで、過給機の性能を最大限に発揮させることが出来る。
本発明の一実施形態にかかる過給システムの制御装置が適用される過給システムの全体構成を示した図である。 コントローラの機能を説明するためのブロック図である。 コンプレッサマップを示した図である。 本発明の一実施形態にかかる制御フローの一例を示した図である。 作動点の移動方向を変更するための制御フローを示した図である。 距離Laを説明するための図である。 本発明の一実施形態にかかる制御フローの一例を示した図である。 作動点がサージ領域に突入するのを回避するための制御フローを示した図である。 到達時間を推定する方法を説明するための図である。 本発明の一実施形態にかかる制御フローの一例を示した図である。 作動点を早期に目標位置まで到達させるための制御フローを示した図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 また、以下の説明において、同じ構成には同じ符号を付してその詳細な説明を省略する場合がある。
<第1実施形態>
 図1は、本発明の一実施形態にかかる過給システムの制御装置が適用される過給システムの全体構成を示した図である。本発明の一実施形態にかかる過給システムの制御装置1Aは、エンジン2に圧縮した吸気IAを供給するための過給システムの制御装置1Aであって、図1に示すように、エンジン2に供給する吸気IAを圧縮するコンプレッサ22を含む過給機20と、コンプレッサ22の作動に影響を及ぼす制御機器を制御するコントローラ10と、を備える。
 図示した実施形態では、過給機20は、エンジン2から排出される排ガスEGによって回転するタービン24によってコンプレッサ22を回転させるターボチャージャ20Aからなる。
 図1に示した過給システム1において、エアクリーナ32を介して吸気管路30に導入された空気(吸気)は、ターボチャージャ20Aのコンプレッサ22に流入する。ターボチャージャ20Aは、吸気管路30に配置されたコンプレッサ22と、排気管路40に配置されたタービン24と、コンプレッサ22とタービン24とを連結するロータ23と、からなる。そして、エンジン2から排出される排ガスEGの排気エネルギーによってタービン24が回転駆動し、これに伴ってコンプレッサ22が同軸駆動することで、コンプレッサ22に流入した吸気IAが圧縮される。
 コンプレッサ22で圧縮された吸気IAは、インタークーラ34で冷却され、スロットルバルブ36で吸気流量が調整された後、吸気ポート5を介して、燃焼室8に供給される。燃焼室8は、シリンダライナ3とピストン4の頂面との間に画定される空間である。また、エンジン2には、燃焼室8に燃料を噴射するための燃料噴射装置6が備えられている。そして、燃料噴射装置6から燃焼室8に供給された燃料が圧縮熱によって自着火(又は不図示の点火装置によって着火)することで、燃焼室8内で燃焼・膨張する。そして、燃焼室8内で生成された排気ガスEGが、排気ポート7を介して排気管路40へと排出される。
 排気管路40に排出された排気ガスは、上述したターボチャージャ20Aのタービン24に流入し、タービン24を回転駆動させる。また、排気管路40には、タービン24を迂回するバイパス管路42が接続している。そして、バイパス管路42には、バイパス管路42を流れる排ガスEGの流量を制御するためのウェイストゲートバルブ28が設けられている。
 また、タービン24には、タービン24に作用する排ガスEGの流れを制御するための可変ノズル機構26が設けられている。
 上述した燃料噴射装置6、可変ノズル機構26、ウェイストゲートバルブ28などの装置は、上述したコンプレッサ22の作動に影響を及ぼす制御機器に相当するものである。
 また、図1に示した過給システム1において、吸気管路30におけるコンプレッサ22の上流側には、吸気管路30を流れる吸気IAの流量を計測するエアフローメータ51と、吸気管路30を流れる吸気の温度を計測する吸気温度センサ52が夫々設置されている。また、吸気管路30におけるコンプレッサ22の入口箇所には、コンプレッサ22に流入する吸気IAの圧力を計測する入口側圧力センサ53が設置されている。また、吸気管路30におけるコンプレッサ22の出口箇所には、コンプレッサ22で圧縮された吸気IAの圧力を計測する出口側圧力センサ54が設置されている。また、ターボチャージャ20には、ターボ回転数(すなわち、コンプレッサ22の回転数)を計測するターボ回転数センサ55が設置されている。これらエアフローメータ51、吸気温度センサ52、入口側圧力センサ53、出口側圧力センサ54、及びターボ回転数センサ55により計測された各情報は、コントローラ10へ送信される。
 コントローラ10は、中央処理装置(CPU)、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、およびI/Oインターフェイスなどからなり、互いに別体として構成されたマイクロコンピュータからなる。
 図2は、コントローラの機能を説明するためのブロック図である。図2に示したように、コントローラは10、制御部10Aと、コンプレッサマップ格納部10Bと、現在位置算出部10Cと、移動方向算出部10Dと、を含んでいる。
 コンプレッサマップ格納部10Bは、コントローラ10において、以下に説明するコンプレッサマップM1を記憶して格納する機能を果たす部分である。
 図3は、コンプレッサマップを示した図である。図3に示すように、コンプレッサマップM1は、横軸が修正流量Qaを示し、縦軸が圧力比εを示すグラフである。修正流量Qaは、例えば、エアフローメータ51が検出する吸気流量を基準温度における吸気体積流量に換算することで求められる。圧力比εは、例えば、出口側圧力センサ54で検出されるコンプレッサ出口圧力P2を、入口側圧力センサ53で検出されるコンプレッサ入口圧力P1で除して求められる(ε=P2/P1)。また、図3に示すコンプレッサマップM1において、コンプレッサ効率ηを点線で示し、ターボ回転数Ntを鎖線で示している。ターボ回転数Ntは、例えば、ターボ回転数センサ55で検出されるターボ回転数から把握することが出来る。
 そして、図3に示すコンプレッサマップM1において、修正流量Qa、圧力比ε、ターボ回転数Ntの3つのうち少なくとも2つが判れば、コンプレッサマップM1上における作動点61の位置を決定することが出来る。なお、修正流量Qa、圧力比ε、ターボ回転数Ntを求める手段は、上述した方法に限定されない。上述した方法以外にも、修正流量Qa、圧力比ε、ターボ回転数Ntを求めることの出来る公知の他の方法を採用してもよい。
 現在位置算出部10Cは、コントローラ10において、コンプレッサマップM1上におけるコンプレッサ22の作動点61の現在位置を所定周期毎に算出する機能を果たす部分である。
 作動点61は、エンジン2の運転状態の変化などに応じて、時々刻々とコンプレッサマップM1上を移動する。現在位置算出部10Cは、コンプレッサマップM1上を時々刻々と移動する作動点61の現在位置を所定周期毎に算出してメモリ等に記憶する。
 移動方向算出部10Dは、コントローラ10において、現在位置算出部10Cで算出される作動点61の現在位置に基づいて、コンプレッサマップM1上における作動点61の移動方向(図3において「矢印63」で表示)を算出する機能を果たす部分である。
 作動点61の現在の移動方向は、例えば、現在位置算出部10Cで算出された所定周期前における作動点61の過去位置(図3において『○』で表示)と、現在位置算出部10Cで算出された作動点61の現在位置(図3において『●』で表示)とから求めることが出来る。
 制御部10Aは、コントローラ10において、現在位置算出部10Cで算出された作動点61の現在位置と、移動方向算出部10Dで算出された作動点61の移動方向と、に基づいて制御機器6、26、28などを制御する機能を果たす部分である。
 このように構成される本実施形態の過給システムの制御装置1Aによれば、コンプレッサマップM1上における作動点61の現在位置および作動点61の移動方向の両方に基づいてコンプレッサ22の作動が制御される。このため、コンプレッサマップM1上における作動点61の現在位置のみに基づいてコンプレッサの作動が制御されていた従来のものと比べて、作動点61の移動方向をコンプレッサ22の制御に用いることが出来るため、コンプレッサ22の作動点61をコンプレッサマップM1上の任意の位置に効率良く移動させることが出来る。これにより、ターボチャージャ20Aの性能を最大限に発揮させることが出来る。
 幾つかの実施形態では、図2に示すように、コントローラ10は、移動方向判定部10Eをさらに含む。移動方向判定部10Eは、コントローラ10において、作動点61の移動方向が目標方向を向いているか否かを判定する部分である。ここで目標方向とは、コンプレッサマップM1上において、作動点61の現在位置から目標位置(図3において『★』で表示)に向かう方向(図3において「矢印65」で表示)である。作動点61の目標位置は、エンジン2の運転状態等に応じて、コントローラ10における目標位置算出部10Fによって適宜設定される。
 そして、制御部10Aは、後述する図4、5において説明するように、作動点61の移動方向が目標方向を向いていない場合に、作動点61の移動方向が目標方向を向くように、制御機器6、26、28などを制御するように構成されている。
 このような実施形態によれば、作動点61の移動方向が目標方向を向くように、制御機器6、26、28などが制御部10Aによって自動的に制御される。このため、コンプレッサ22の作動点61をコンプレッサマップM1上の任意の位置(例えば目標位置)に効率良く移動させることが出来る。
 幾つかの実施形態では、図2に示すように、コントローラ10は、制御マップ格納部10Gをさらに含む。制御マップ格納部10Gは、コントローラ10において、作動点61の現在位置に対応する制御機器6、26、28などの制御量を算出するための制御マップを格納する機能を果たす部分である。この制御マップは、例えば、エンジン2の通常運転時における制御機器6、26、28などの制御量を算出するためのマップ(通常制御マップ)である。
 そして、制御部10Aは、後述する図4、5において説明するように、作動点61の移動方向が目標方向を向くように、制御マップに基づいて算出された制御機器6、26、28などの制御量を補正するように構成される。
 このような実施形態によれば、制御マップに基づいて算出された制御機器6、26、28などの制御量を補正することで、作動点61の移動方向が目標方向を向くように制御機器6、26、28などが制御される。これにより、制御マップにより算出された制御量を補正するだけの簡単な構成で、作動点61の移動方向が目標方向を向くようにコンプレッサ22を制御することが出来る。
 図4は、本発明の一実施形態にかかる制御フローの一例を示した図である。図5は、作動点の移動方向を変更するための制御フローを示した図である。
 図4に示す制御フローおいて、先ず、修正流量Qaおよびターボ回転数Ntを算出する(S11)。次いで、S11において算出した修正流量Qaおよびターボ回転数Ntに基づいて、上述した現在位置算出部10Cによって、コンプレッサマップM1上における作動点61の現在位置を算出する(S12)。次いで、現在位置算出部10Cにおいて算出した作動点61の現在位置に基づいて、上述した移動方向算出部10Dによって、コンプレッサマップM1上における作動点61の移動方向を算出する(S13)。
 次いで、移動方向判定部10Eによって、作動点61の移動方向が目標方向を向いているか否かを判定する(S14、S15)。S14では、作動点61の移動方向に沿ったライン63Lと目標位置との距離La(目標位置からライン63Lに対して引いた垂線の長さ)を算出する(図6参照)。次いでS15では、算出した距離Laが0か否かを判定する。算出した距離La=0の場合(S15において「YES」)は、作動点61の移動方向が目標方向を向いているものとしてS16に進む。算出した距離La≠0の場合(S15において「NO」)はS18に進み、図5に示される移動方向変更制御フローを実行する。
 図5に示される移動方向変更制御フローでは、先ず、S181において、通常制御マップに基づいて制御機器6、26、28などの制御量を算出する。次に、S182において、S181において算出された制御機器6、26、28などの制御量を補正する。例えば、制御機器が燃料噴射装置6であって燃料噴射装置6から噴射される燃料噴射量を制御量とする場合には、通常制御マップによって算出された燃料噴射量(通常燃料噴射量)に、任意の係数Aに距離Laを乗じた値A・Laを加算する。このように、距離Laに応じて補正量を変化させることで、移動方向が目標方向と大きくずれているときの補正量を大きくして移動方向を迅速に目標方向に向けさせることが出来る。そして、算出した補正後の燃料噴射量(補正燃料噴射量)を噴射するように、制御部10Aによって燃料噴射装置6を制御する(S183)。
 このような移動方向変更制御は、S15において、作動点61の移動方向が目標方向を向いていると判定されるまで繰り返し行われる。なお、上記説明では、La=0の場合に、作動点61の移動方向が目標方向を向いていると判定するものとしたが、La≦th(thは閾値であって0よりも大きい値)の場合に、作動点61の移動方向が目標位置を向いていると判定してもよい。
 図4の制御フローに戻り、作動点61の移動方向が目標方向を向いていると判定されると、S16において、通常制御マップに基づいて制御機器6、26、28などの制御量を算出し、S17において、S16において算出された制御量に基づいて、制御部10Aによって制御機器6、26、28を制御する。すなわち、通常の運転制御を実行する。
 このように、コンプレッサマップM1上における作動点61の現在位置および作動点61の移動方向の両方に基づいてコンプレッサ22の作動を制御することで、コンプレッサマップM1上における作動点61の現在位置のみに基づいてコンプレッサの作動が制御されていた従来のものと比べて、コンプレッサ22の作動点61をコンプレッサマップM1上の任意の位置に効率良く移動させることが出来る。
<第2実施形態>
 幾つかの実施形態では、コントローラ10は、図2に示したように、移動速度算出部10Hをさらに含む。移動速度算出部10Hは、コントローラ10において、現在位置算出部10Cで算出される作動点61の現在位置の時間当たりの変化量に基づいて、作動点61の移動速度を算出する機能を果たす部分である。
 そして、制御部10Aは、後述する図7、8において説明するように、現在位置算出部10Cで算出された作動点61の現在位置と、移動方向算出部10Dで算出された作動点61の移動方向と、移動速度算出部10Hで算出された作動点61の移動速度と、に基づいて制御機器6、26、28などを制御するように構成されている。
 このような実施形態によれば、コンプレッサマップM1上における作動点61の現在位置および作動点61の移動方向に加えて、コンプレッサマップM1上における作動点61の移動速度に基づいてコンプレッサ22が制御される。このように、作動点61の移動速度をコンプレッサ22の制御に用いることで、コンプレッサ22の作動点61をコンプレッサマップM1上の任意の位置に移動させる際に、時間の概念を制御に反映させることが出来る。
 幾つかの実施形態では、コントローラ10は、図2に示したように、到達時間推定部10Iをさらに含む。到達時間推定部10Iは、コントローラ10において、作動点61の移動方向および移動速度に基づいて、作動点61が現在位置から規定領域または目標位置に到達するまでの到達時間taを推定する機能を果たす部分である。ここで規定領域とは、コンプレッサマップM1上において所定の範囲を占める予め定められた領域のことを意味する。例えば、後述する実施形態において、規定領域は、作動点61が規定領域内に位置する場合にサージングが起こり得る領域として定義されるサージ領域Sである(図3参照)。
 そして、制御部10Aは、後述する図7、8において説明するように、作動点61の移動方向および移動速度に基づいて、作動点61が現在位置から規定領域または目標位置に到達するまでの到達時間を推定し、到達時間taと規定時間との比較結果に応じて制御機器6、26、28などを制御するように構成される。
 図9は、到達時間を推定する方法を説明するための図である。到達時間taは、作動点61の現在位置と、作動点61の移動方向に沿ったライン63LとサージラインSLとの交点63Pとの距離Lbを算出し、この距離Lbを作動点61の現在の移動速度Va(=√{(dQa/dt)+(dε/dt)})で除算することで推定される(ta=Lb/Va)。
 このような実施形態によれば、作動点61の移動方向および移動速度に基づいて作動点61が現在位置から規定領域または目標位置に到達するまでの到達時間taを推定し、この推定した到達時間と規定時間との比較結果に応じて制御機器6、26、28などを制御する。したがって、例えば、後述するように、作動点61が現在位置からサージ領域に突入するまでの時間や、作動点61が現在位置から目標位置まで到達するのにかかる時間などを考慮して、コンプレッサ22を制御することが出来る。
 幾つかの実施形態では、上述した規定領域がサージ領域Sである。そして、制御部10Aは、作動点61が現在位置からサージ領域Sに到達するまでの到達時間taが第1規定時間tcより小さい場合に、作動点61がサージ領域Sに突入するのを回避するように、制御機器6、26、28などを制御するように構成されている。
 このような実施形態によれば、作動点61が現在位置からサージラインSLを超えてサージ領域Sに到達するまでの到達時間taが第1規定時間より小さい場合に、作動点61がサージ領域Sに突入するのを回避するようにコンプレッサ22が制御される。この第1規定時間は、例えば、制御機器6、26、28などに対して通常のフィードバック制御がなされた場合に、現在位置にある作動点61がサージ領域Sに突入するのを回避するのに必要な時間(応答遅れ時間)である。したがって、このような実施形態によれば、通常のフィードバック制御では作動点61がサージ領域Sに突入するのを回避出来ないような場合に、作動点61がサージ領域Sに突入するのを回避するような制御が働くため、過渡運転時においてターボチャージャ20がサージング状態に突入するのを回避することが出来る。
 また、作動点61が現在位置からサージ領域Sに到達するまでの到達時間taが第1規定時間tcより大きい場合、例えば、通常のフィードバック制御によって作動点61がサージ領域Sに突入するのを回避できるような場合には、上述した作動点61がサージ領域Sに突入するのを回避するような制御は働かない。このため、通常の制御状態におけるコンプレッサ22の作動範囲を必要以上に狭めることがない。
 図7は、本発明の一実施形態にかかる制御フローの一例を示した図である。図8は、作動点がサージ領域に突入するのを回避するための制御フローを示した図である。
 図7に示す制御フローにおいて、先ず、修正流量Qaおよびターボ回転数Ntを算出する(S21)。次いで、S21において算出した修正流量Qaおよびターボ回転数Ntに基づいて、上述した現在位置算出部10Cによって、コンプレッサマップM1上における作動点61の現在位置を算出する(S22)。次いで、現在位置算出部10Cにおいて算出した作動点61の現在位置に基づいて、上述した移動方向算出部10Dおよび移動速度算出部(10H)によって、コンプレッサマップM1上における作動点61の移動方向および移動速度を算出する(S23)。
 次いで、到達時間推定部10Iによって、作動点61が規定領域であるサージ領域Sに到達するまでの到達時間taを推定し(S24)、推定した到達時間taと第1規定時間tcとを比較する(S25)。ta>tcの場合(S25において「YES」)は、通常のフィードバック制御によっても作動点61がサージ領域Sに突入するのを回避できるものとしてS26に進む。ta≦tcの場合(S25において「NO」)はS28に進み、図8に示されるサージ回避制御フローを実行する。
 図8に示されるサージ回避制御フローでは、先ず、S281において、通常制御マップに基づいて制御機器6、26、28などの制御量を算出する。次に、S282において、S281において算出された制御機器6、26、28などの制御量を補正する。例えば、制御機器が可変ノズル機構26であって可変ノズル機構26のノズルベーンの開度を制御量とする場合には、通常制御マップによって算出されたノズルベーンの開度(通常ベーン開度)に、任意の係数Bに第1規定時間tcと推定した到達時間taとの差分(tc-ta)を乗じた値B・(tc-ta)を加算する。このように、第1規定時間tcと推定した到達時間taとの差分(tc-ta)に応じて補正量を変化させることで、サージ領域Sに到達するまでの時間的な余裕がないときの補正量を大きくし、作動点61がサージ領域Sに突入するのを確実に回避することが出来る。そして、可変ノズル機構26のノズルベーンの開度が補正後のノズルベーンの開度(補正ベーン開度)となるように、制御部10Aによって可変ノズル機構26を制御する(S283)。
 このようなサージ回避制御フローは、S25において、作動点61が現在位置からサージ領域Sに到達するまでの到達時間taが第1規定時間tcを上回っていると判定されるまで繰り返し行われる。
 図7の制御フローに戻り、作動点61が現在位置からサージ領域Sに到達するまでの到達時間taが第1規定時間tcを上回っていると判定されると、S26において、通常制御マップに基づいて制御機器6、26、28などの制御量を算出し、S27において、S26において算出された制御量に基づいて、制御部10Aによって制御機器6、26、28を制御する。すなわち、通常の運転制御を実行する。
 このように、コンプレッサマップM1上における作動点61の現在位置および作動点61の移動方向に加えて、コンプレッサマップM1上における作動点61の移動速度に基づいてコンプレッサ22を制御することで、上述したように、通常のフィードバック制御では作動点61がサージ領域Sに突入するのを回避出来ないような場合にも、ターボチャージャ20がサージング状態に突入するのを回避することが出来る。
<第3実施形態>
 幾つかの実施形態では、制御部10Aは、後述する図10~11において説明するように、作動点61が現在位置から目標位置に到達するまでの到達時間tbが第2規定時間tdより小さい場合に、作動点61が第2規定時間tdよりも早く目標位置に到達するように、制御機器6、26、28などを制御する。
 このような実施形態によれば、作動点61が現在位置から目標位置に到達するまでの到達時間が第2規定時間tdより小さい場合に、作動点61が第2規定時間tdよりも早く目標位置に到達するようにコンプレッサ22が制御される。この目標位置は、例えば、コンプレッサマップM1上において、コンプレッサ効率ηが所定の効率よりも高い位置(例えば、コンプレッサ効率ηが75%以上となる位置)である。したがって、このような実施形態によれば、通常の制御では作動点61が目標位置に到達するまでに時間が掛かり過ぎるような場合に、作動点61が早期の目標位置に到達するような制御が働くため、コンプレッサ22の作動点61を通常の制御よりも早期に目標位置に到達させることが出来る。
 図10は、本発明の一実施形態にかかる制御フローの一例を示した図である。図11は、作動点を早期に目標位置まで到達させるための制御フローを示した図である。
 図10に示す制御フローにおいて、先ず、修正流量Qaおよびターボ回転数Ntを算出する(S31)。次いで、S31において算出した修正流量Qaおよびターボ回転数Ntに基づいて、上述した現在位置算出部10Cによって、コンプレッサマップM1上における作動点61の現在位置を算出する(S32)。次いで、現在位置算出部10Cにおいて算出した作動点61の現在位置に基づいて、上述した移動方向算出部10Dおよび移動速度算出部(10H)によって、コンプレッサマップM1上における作動点61の移動方向および移動速度を算出する(S33)。
 次いで、移動方向判定部10Eによって、作動点61の移動方向が目標方向を向いているか否かを判定する(S34、S35)。S34では、作動点61の移動方向に沿ったライン63Lと目標位置との距離Laを算出する(図6参照)。次いでS35では、算出した距離Laが0か否かを判定する。算出した距離La=0の場合(S35において「YES」)は、作動点61の移動方向が目標方向を向いているものとしてS16に進む。算出した距離La≠0の場合(S35において「NO」)はS40に進み、図5に示される移動方向変更制御フローを実行する(S401~S403)。なお、S401~S403は、上述した第1実施形態におけるS181~S183と同じ内容であるため、その説明を省略する。
 次いで、到達時間推定部10Iによって、作動点61が目標位置に到達するまでの到達時間tbを推定し(S36)、推定した到達時間tbと第2規定時間tdとを比較する(S37)。tb<tdの場合(S25において「YES」)はS26に進む。tb≧tdの場合(S37において「NO」)は、作動点61を早期に目標位置まで到達させるべく、S41に進み、図11に示される移動速度増大制御フローを実行する。
 図11に示される移動速度増大制御フローでは、先ず、S411において、通常制御マップに基づいて制御機器6、26、28などの制御量を算出する。次に、S412において、S411において算出された制御機器6、26、28などの制御量を補正する。例えば、制御機器がウェイストゲートバルブ28であってウェイストゲートバルブ28のバルブ開度を制御量とする場合には、通常制御マップによって算出されたウェイストゲートバルブ28のバルブ開度(通常バルブ開度)に、任意の係数Cに推定した到達時間tbと第2規定時間tdとの差分(tb-td)を乗じた値C・(tb-td)を加算する。このように、推定した到達時間tbと第2規定時間tcとの差分(tb-td)に応じて補正量を変化させることで、作動点61が目標位置に到達するのまでの時間が長いときの補正量を大きくし、作動点61をより早期に目標位置へと移動させることが出来る。そして、ウェイストゲートバルブ28のバルブ開度が補正後のウェイストゲートバルブ28のバルブ開度(補正バルブ開度)となるように、制御部10Aによってウェイストゲートバルブ28を制御する(S413)。
 このような移動速度増大制御フローは、S37において、作動点61が目標位置に到達するまでの到達時間tbが第2規定時間tcを下回っていると判定されるまで繰り返し行われる。
 図10の制御フローに戻り、作動点61が目標位置に到達するまでの到達時間tbが第2規定時間tcを下回っていると判定されると、S38において、通常制御マップに基づいて制御機器6、26、28などの制御量を算出し、S39において、S38において算出された制御量に基づいて、制御部10Aによって制御機器6、26、28を制御する。すなわち、通常の運転制御を実行する。
 このように、コンプレッサマップM1上における作動点61の現在位置および作動点61の移動方向に加えて、コンプレッサマップM1上における作動点61の移動速度に基づいてコンプレッサ22を制御することで、上述したように、通常の制御では作動点61が目標位置に到達するまでに時間が掛かり過ぎるような場合に、作動点61を通常の制御よりも早期に目標位置に到達させることが出来る。
 以上、本発明の好ましい形態について説明したが、本発明は上記の形態に限定されるものではなく、本発明の目的を逸脱しない範囲での種々の変更が可能である。
1     過給システム
1A    過給システムの制御装置
2     エンジン
3     シリンダライナ
4     ピストン
5     吸気ポート
6     燃料噴射装置(制御機器)
7     排気ポート
8     燃焼室
10    コントローラ
10A   制御部
10B   コンプレッサマップ格納部
10C   現在位置算出部
10D   移動方向算出部
10E   移動方向判定部
10F   目標位置算出部
10G   制御マップ格納部
10H   移動速度算出部
10I   到達時間推定部
20    過給機
20A   ターボチャージャ
22    コンプレッサ
23    ロータ
24    タービン
26    可変ノズル機構(制御機器)
28    ウェイストゲートバルブ(制御機器)
32    エアクリーナ
34    インタークーラ
36    スロットルバルブ
40    排気管路
42    バイパス管路
51    エアフローメータ
52    吸気温度センサ
53    入口側圧力センサ
54    出口側圧力センサ
55    ターボ回転数センサ
61    作動点
63L   作動点の移動方向に沿ったライン
63P   作動点の移動方向に沿ったラインとサージラインとの交点
 
 

Claims (10)

  1.  エンジンに圧縮した吸気を供給するための過給システムの制御装置であって、
     前記エンジンに供給する前記吸気を圧縮するコンプレッサを含む過給機と、
     前記コンプレッサの作動に影響を及ぼす制御機器を制御するコントローラと、を備え、
     前記コントローラは、
     前記コンプレッサにおける、吸気体積流量、圧力比、及びコンプレッサ回転数の関係を示すコンプレッサマップを格納するコンプレッサマップ格納部と、
     前記コンプレッサマップ上における前記コンプレッサの作動点の現在位置を所定周期毎に算出する現在位置算出部と、
     前記現在位置算出部で算出される前記作動点の現在位置に基づいて、前記コンプレッサマップ上における前記作動点の移動方向を算出する移動方向算出部と、
     前記現在位置算出部で算出された前記作動点の現在位置と、前記移動方向算出部で算出された前記作動点の移動方向と、に基づいて前記制御機器を制御する制御部と、を含む
    過給システムの制御装置。
  2.  前記コントローラは、前記作動点の移動方向が目標方向を向いているか否かを判定する移動方向判定部をさらに含み、
     前記制御部は、前記作動点の移動方向が前記目標方向に向いていない場合に、前記作動点の移動方向が前記目標方向を向くように、前記制御機器を制御する
    請求項1に記載の過給システムの制御装置。
  3.  前記コントローラは、前記作動点の現在位置に対応する前記制御機器の制御量を算出するための制御マップを格納する制御マップ格納部をさらに含み、
     前記制御部は、前記作動点の移動方向が前記目標方向を向くように、前記制御マップに基づいて算出された前記制御機器の制御量を補正する
    請求項2に記載の過給システムの制御装置。
  4.  前記コントローラは、前記現在位置算出部で算出される前記作動点の現在位置の時間当たりの変化量に基づいて、前記作動点の移動速度を算出する移動速度算出部をさらに含み、
     前記制御部は、前記現在位置算出部で算出された前記作動点の現在位置と、前記移動方向算出部で算出された前記作動点の移動方向と、前記移動速度算出部で算出された前記作動点の移動速度と、に基づいて前記制御機器を制御する
    請求項1から3の何れか一項に記載の過給システムの制御装置。
  5.  前記コントローラは、前記作動点の移動方向および移動速度に基づいて、前記作動点が現在位置から規定領域または目標位置に到達するまでの到達時間を推定する到達時間推定部をさらに含み、
     前記制御部は、前記到達時間推定部で推定された前記到達時間と規定時間との比較結果に応じて前記制御機器を制御する
    請求項4に記載の過給システムの制御装置。
  6.  前記規定領域は、前記作動点が前記規定領域内に位置する場合にサージングが起こり得る領域として定義されるサージ領域であり、
     前記制御部は、前記作動点が現在位置から前記サージ領域に到達するまでの到達時間が第1規定時間より小さい場合に、前記作動点が前記サージ領域に突入するのを回避するように、前記制御機器を制御する
    請求項5に記載の過給システムの制御装置。
  7.  前記コントローラは、前記作動点の現在位置に対応する前記制御機器の制御量を算出するための制御マップを格納する制御マップ格納部をさらに含み、
     前記制御部は、前記作動点が前記サージ領域に突入するのを回避するように、前記制御マップに基づいて算出された前記制御機器の制御量を補正する
    請求項6に記載の過給システムの制御装置。
  8.  前記制御部は、前記作動点が現在位置から前記目標位置に到達するまでの到達時間が第2規定時間より小さい場合に、前記作動点が前記第2規定時間よりも早く前記目標位置に到達するように、前記制御機器を制御する
    請求項5に記載の過給システムの制御装置。
  9.  前記コントローラは、前記作動点の現在位置に対応する前記制御機器の制御量を算出するための制御マップを格納する制御マップ格納部をさらに含み、
     前記制御部は、前記作動点が前記第2規定時間よりも早く前記目標位置に到達するように、前記制御マップに基づいて算出された前記制御機器の制御量を補正する
    請求項8に記載の過給システムの制御装置。
  10.  前記過給機は、前記エンジンから排出される排ガスによって回転するタービンによって前記コンプレッサを回転させるターボチャージャからなり、
     前記制御機器は、前記エンジンに燃料を供給する燃料噴射装置、前記タービンに流入する前記排ガスの流れ方向を制御する可変ノズル機構、前記タービンに流入する前記排ガスの流量を制御するウェイストゲートバルブ、の少なくとも何れか一つを含む
    請求項1から9のいずれか一項に記載の過給システムの制御装置。
     
     
     
     
PCT/JP2015/082640 2015-11-20 2015-11-20 過給システムの制御装置 WO2017085854A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/578,470 US10697382B2 (en) 2015-11-20 2015-11-20 Control device for supercharging system
PCT/JP2015/082640 WO2017085854A1 (ja) 2015-11-20 2015-11-20 過給システムの制御装置
EP15908794.9A EP3315749B1 (en) 2015-11-20 2015-11-20 Control device for supercharging system
CN201580078777.2A CN107532526B (zh) 2015-11-20 2015-11-20 增压系统的控制装置
JP2017551483A JP6389572B2 (ja) 2015-11-20 2015-11-20 過給システムの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082640 WO2017085854A1 (ja) 2015-11-20 2015-11-20 過給システムの制御装置

Publications (1)

Publication Number Publication Date
WO2017085854A1 true WO2017085854A1 (ja) 2017-05-26

Family

ID=58719165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082640 WO2017085854A1 (ja) 2015-11-20 2015-11-20 過給システムの制御装置

Country Status (5)

Country Link
US (1) US10697382B2 (ja)
EP (1) EP3315749B1 (ja)
JP (1) JP6389572B2 (ja)
CN (1) CN107532526B (ja)
WO (1) WO2017085854A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154106A1 (ja) 2016-03-08 2017-09-14 三菱重工業株式会社 排気タービン過給機のサージ回避制御方法、サージ回避制御装置
CN110056435B (zh) * 2018-01-18 2021-07-13 上汽通用汽车有限公司 基于无进气泄压阀的增压器降低整车油耗的控制方法和车辆
US20200063651A1 (en) * 2018-08-27 2020-02-27 Garrett Transportation I Inc. Method and system for controlling a variable-geometry compressor
SE543456C2 (en) * 2019-10-23 2021-02-23 Scania Cv Ab Four-Stroke Internal Combustion Engine and Method of Controlling Timings of an Exhaust Camshaft and an Intake Camshaft
CN113027596B (zh) * 2021-04-26 2021-11-30 品源动力科技(广州)有限公司 一种涡轮增压系统、控制方法、存储介质及汽车

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255265A (ja) * 2006-03-22 2007-10-04 Toyota Motor Corp エンジン過給システム
JP2008008241A (ja) * 2006-06-30 2008-01-17 Nissan Motor Co Ltd エンジンの制御装置
JP2008045411A (ja) * 2006-08-10 2008-02-28 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP2009007934A (ja) * 2007-06-26 2009-01-15 Hitachi Ltd 内燃機関の制御装置および方法
JP2009056909A (ja) * 2007-08-31 2009-03-19 Denso Corp ハイブリッド車の動力制御装置
JP2009167963A (ja) * 2008-01-18 2009-07-30 Toyota Motor Corp 内燃機関の異常判定装置
JP2010179861A (ja) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011126321A (ja) * 2009-12-15 2011-06-30 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2014009525A (ja) * 2012-06-29 2014-01-20 Hitachi Constr Mach Co Ltd 油圧作業機械

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401457B1 (en) * 2001-01-31 2002-06-11 Cummins, Inc. System for estimating turbocharger compressor outlet temperature
JP3873742B2 (ja) * 2001-12-28 2007-01-24 いすゞ自動車株式会社 可変容量ターボチャージャの制御装置
US6647723B1 (en) * 2002-08-20 2003-11-18 International Engine Intellectual Property Company, Llc Control strategy for counteracting incipient turbocharger surging using a variable valve actuation mechanism for through-cylinder bleed
JP2005240683A (ja) 2004-02-26 2005-09-08 Nissan Motor Co Ltd 内燃機関の排気浄化装置
US7610757B2 (en) * 2004-07-30 2009-11-03 Komatsu Ltd. Intake controller of internal combustion engine
US7076954B1 (en) * 2005-03-31 2006-07-18 Caterpillar Inc. Turbocharger system
JP2007291961A (ja) 2006-04-25 2007-11-08 Toyota Motor Corp 遠心式圧縮機を備える内燃機関の制御装置
EP2050943B1 (en) 2006-08-10 2011-11-23 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine with supercharger
US20080034753A1 (en) * 2006-08-15 2008-02-14 Anthony Holmes Furman Turbocharger Systems and Methods for Operating the Same
US7757549B2 (en) * 2008-02-21 2010-07-20 Cummins Ip, Inc Apparatus, system, and method for predictive control of a turbocharger
JP5195142B2 (ja) 2008-08-06 2013-05-08 トヨタ自動車株式会社 エアバイパスバルブの制御装置
US8397499B2 (en) 2009-08-24 2013-03-19 Ford Global Technologies, Llc Methods and systems for turbocharger control
US20110307127A1 (en) * 2010-06-15 2011-12-15 Kendall Roger Swenson Method and system for controlling engine performance
JP5482904B2 (ja) 2010-09-06 2014-05-07 トヨタ自動車株式会社 内燃機関の制御装置
US9273597B2 (en) * 2013-05-16 2016-03-01 Ford Global Technologies, Llc Method and system for operating an engine turbocharger waste gate
JP6377340B2 (ja) 2013-12-04 2018-08-22 三菱重工業株式会社 過給システムの制御装置
JP6287440B2 (ja) 2014-03-26 2018-03-07 いすゞ自動車株式会社 ハイブリッド車両とハイブリッド車両の制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255265A (ja) * 2006-03-22 2007-10-04 Toyota Motor Corp エンジン過給システム
JP2008008241A (ja) * 2006-06-30 2008-01-17 Nissan Motor Co Ltd エンジンの制御装置
JP2008045411A (ja) * 2006-08-10 2008-02-28 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP2009007934A (ja) * 2007-06-26 2009-01-15 Hitachi Ltd 内燃機関の制御装置および方法
JP2009056909A (ja) * 2007-08-31 2009-03-19 Denso Corp ハイブリッド車の動力制御装置
JP2009167963A (ja) * 2008-01-18 2009-07-30 Toyota Motor Corp 内燃機関の異常判定装置
JP2010179861A (ja) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011126321A (ja) * 2009-12-15 2011-06-30 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2014009525A (ja) * 2012-06-29 2014-01-20 Hitachi Constr Mach Co Ltd 油圧作業機械

Also Published As

Publication number Publication date
JPWO2017085854A1 (ja) 2017-12-21
CN107532526B (zh) 2020-11-10
US20180156141A1 (en) 2018-06-07
EP3315749A1 (en) 2018-05-02
CN107532526A (zh) 2018-01-02
US10697382B2 (en) 2020-06-30
EP3315749A4 (en) 2018-09-12
EP3315749B1 (en) 2020-01-01
JP6389572B2 (ja) 2018-09-12

Similar Documents

Publication Publication Date Title
WO2017085854A1 (ja) 過給システムの制御装置
KR102214409B1 (ko) 엔진 시스템의 제어 장치 및 제어 방법
JP5888709B2 (ja) 内燃機関の制御装置
JP5389238B1 (ja) 内燃機関のウェイストゲートバルブ制御装置
EP2366879A2 (en) Control method of internal combustion engine
JP2008045410A (ja) 過給機付き内燃機関の制御装置
JP5865942B2 (ja) 内燃機関のシリンダ吸入空気量推定装置および推定方法
US11002197B2 (en) Control device for internal combustion engine
JP2013194587A (ja) 内燃機関のシリンダ吸入空気量推定装置
CN104500281A (zh) 一种内燃机废气再循环闭环控制系统及控制方法
CN113404600A (zh) 发动机涡轮增压器的增压控制方法及装置
US20240141842A1 (en) Dual fuel engine system and method for controlling dual fuel engine system
JP5664774B2 (ja) 内燃機関の制御装置
Hand III et al. Model and calibration of a diesel engine air path with an asymmetric twin scroll turbine
JPH1162720A (ja) エンジンのegr制御装置
EP3376012B1 (en) Gas engine drive system
JP2020020295A (ja) 内燃機関の制御装置
JP5093408B1 (ja) 内燃機関の制御装置
JP2007205298A (ja) 空気流量検出器の故障判定装置
WO2011135730A1 (ja) 内燃機関システム制御装置
KR102243127B1 (ko) 과급기 회전속도를 이용하여 egr 유량율을 산정하는 방법
Bozza et al. Unsteady 1D simulation of a turbocharger compressor
KR101861858B1 (ko) 내연기관 작동 방법 및 그 장치
JP6453121B2 (ja) 可変容量型ターボチャージャーの制御装置
US20240084745A1 (en) Dual fuel engine system and method for controlling dual fuel engine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551483

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15578470

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2015908794

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE