WO2017085838A1 - 電池管理装置および電圧制御方法 - Google Patents
電池管理装置および電圧制御方法 Download PDFInfo
- Publication number
- WO2017085838A1 WO2017085838A1 PCT/JP2015/082572 JP2015082572W WO2017085838A1 WO 2017085838 A1 WO2017085838 A1 WO 2017085838A1 JP 2015082572 W JP2015082572 W JP 2015082572W WO 2017085838 A1 WO2017085838 A1 WO 2017085838A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- battery
- unit
- main circuit
- battery cells
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- Embodiments described herein relate generally to a battery management device and a voltage control method.
- the battery When a battery needs to be replaced due to deterioration or failure of a battery in an apparatus using a battery system, the battery is replaced in units of assembled batteries in which battery cells are combined in series and / or in parallel. In this case, if the voltage difference between the voltage applied to the device using the battery system and the voltage of the assembled battery used for replacement is large, an excessive current is generated, which may cause failure of the device. For this reason, it is necessary to start the battery system after manually adjusting the voltage difference to less than the specified value, which may reduce the operability of the battery system.
- the problem to be solved by the present invention is to provide a battery management device and a voltage control method capable of improving the operability of the battery system at the time of battery replacement.
- the battery management device of the embodiment has a main circuit voltage measurement unit, a switch unit, and a control unit.
- the main circuit voltage measurement unit measures the voltage of the main circuit that is a connection target of a battery unit including a plurality of battery cells.
- the switch unit connects or disconnects the plurality of battery cells and the main circuit.
- the control unit calculates a target voltage for the plurality of battery cells based on the voltage of the main circuit measured by the main circuit voltage measurement unit and the configuration of the battery unit.
- the switch unit is brought into a connected state in a state where the voltages of the plurality of battery cells are controlled based on the target voltage thus set.
- the flowchart which shows an example of the flow of the process of the voltage control by a battery management apparatus in 3rd Embodiment.
- the flowchart which shows an example of the flow of the process of the voltage control by a battery management apparatus in 4th Embodiment.
- the flowchart which shows an example of the flow of the process of the voltage control by a battery management apparatus in 5th Embodiment.
- the figure which shows an example of a structure of the battery module in 6th Embodiment.
- FIG. 1 is a diagram illustrating an example of a configuration of a battery system 1 according to the first embodiment.
- the battery system 1 includes, for example, a plurality of battery panels 10-1, a battery panel 10-2,..., And a battery panel 10-1 (l is an arbitrary natural number) connected in parallel to each other.
- Each battery panel 10 has the same configuration, but there may be some differences.
- the battery system 1 is connected in parallel with, for example, a PCS (Power Conditioning System) 20. That is, the plurality of battery panels 10 are arranged in parallel to each other with respect to the PCS 20.
- the PCS 20 converts electric power between direct current and alternating current.
- the PCS 20 is connected to the power system 30 and the load 40, for example. When the battery system 1 is charged, power is supplied from the power system 30 to the battery system 1 via the PCS 20. On the other hand, when the battery system 1 is discharged, power is supplied from the battery system 1 to the load 40 via the PCS 20. Since each battery panel 10 has the same configuration, only the configuration of the battery panel 10-1 will be described in detail below as a representative of the plurality of battery panels 10.
- FIG. 2 is a diagram showing an example of the configuration of the battery panel 10-1.
- the battery panel 10-1 includes, for example, assembled batteries (hereinafter referred to as “battery units”) 50-1, 50-2,..., 50-m (m is a combination of a plurality of battery cells in series and / or in parallel. Any natural number). Since each battery unit 50 has the same configuration (there may be some differences), in FIG. 2, only the configuration of the battery unit 50-1 is representative of a plurality of battery units 50. It is described in detail.
- the battery unit 50-1 includes, for example, a plurality of battery modules (MDL: Modules) 54-1, 54-2,..., 54-n (n is an arbitrary natural number) connected in series, and a battery management device (BMU : Battery Management Unit) 52 and a contactor 56 (switch unit) that connects a plurality of battery modules 54 to a device (hereinafter referred to as a “main circuit”) that is an object of battery replacement.
- Each component in the battery unit 50-1 is connected by an intra-unit communication line CL1.
- CL1 for example, communication based on CAN (Controller Area Network) is performed.
- unit voltage Vu the voltage output from the battery unit 50-1 (hereinafter referred to as “unit voltage Vu”) is the sum of the voltages of the plurality of battery modules 54.
- the BMUs 52 included in each of the plurality of battery units 50 are connected to each other via an inter-unit communication line CL2.
- the BMU 52 controls the operation of the plurality of battery modules 54 connected via the intra-unit communication line CL1.
- the BMU 52 includes a processor such as a CPU (Central Processing Unit), various storage devices, a CAN controller, a communication interface corresponding to the communication line CL1, and the like.
- a processor such as a CPU (Central Processing Unit), various storage devices, a CAN controller, a communication interface corresponding to the communication line CL1, and the like.
- battery replacement is performed in units of battery panels.
- the connection processing of the plurality of battery units (plural battery modules) included in the battery panel to the main circuit is performed for each battery unit under the control of the BMU provided in each battery unit.
- FIG. 3 is a diagram illustrating an example of the configuration of the BMU 52.
- the BMU 52 includes, for example, a control unit 60 (control unit), a voltage control unit 62 (control unit), a measurement unit 64, and a communication unit 66.
- the control unit 60 controls the operations of the voltage control unit 62, the measurement unit 64, and the communication unit 66 in an integrated manner. Further, the control unit 60 controls the open / closed state of the contactor 56.
- the voltage controller 62 controls the voltages of the plurality of battery modules 54 connected via the intra-unit communication line CL1.
- the voltage control unit 62 acquires voltages of a plurality of battery cells included in each of the plurality of battery modules 54, and further controls the voltages of the battery cells.
- the measuring unit 64 (main circuit voltage measuring unit) measures a voltage applied to the main circuit (hereinafter referred to as “main circuit voltage”).
- the measurement unit 64 (in-unit voltage measurement unit) measures the voltages of a plurality of battery cells included in each of the battery modules 54.
- the communication unit 66 communicates with the BMU 52 included in each of the other battery units 50-2 to 50-m. For example, the communication unit 66 acquires the unit voltage of the battery unit 50-2 from the other battery unit 50-2.
- FIG. 4 is a diagram showing an example of the configuration of the battery module 54-1. Since each battery module 54 has the same configuration (there may be some differences), in FIG. 4, only the configuration of the battery module 54-1 is representative of the plurality of battery modules 54. It is described in detail.
- the battery module 54-1 is an assembled battery in which a plurality of battery cells 72 are connected. In the battery module 54-1, for example, a set of two battery cells 72 connected in parallel is connected in series. Not limited to this, the connection mode of the battery cells in the battery module 54-1 may be arbitrarily determined.
- Battery cell 72 is a rechargeable secondary battery such as a lithium ion battery, a lead storage battery, a sodium sulfur battery, a redox flow battery, or a nickel metal hydride battery.
- the battery cell 72 may be one using lithium titanate as a negative electrode material.
- the battery module 54-1 further includes a CMU (Cell Monitoring Unit) 70 and a plurality of voltage sensors 74.
- the CMU 70 controls the operation of the plurality of battery cells 72.
- the CMU 70 includes a processor such as a CPU, various storage devices, a CAN controller, and other communication interfaces.
- the voltage sensor 74 measures the voltage of a set of battery cells 72 connected in parallel, for example.
- the detection result of the voltage sensor 74 is output to the CMU 70.
- the CMU 70 outputs the detection result input from the voltage sensor 74 to the BMU 52.
- the battery module 54-1 further includes a balance resistor 76 for discharging the battery cell 72, and a switch 78 connected in series with the balance resistor 76.
- the balance resistor 76 and the switch 78 are connected in parallel with the battery cell 72.
- the battery module 54-1 may include a configuration for charging the battery cell 72 in addition to (or instead of) the balance resistor 76 and the switch 78. Examples of the configuration for charging the battery cell 72 include a constant voltage power source 80 including a DC / DC converter.
- FIG. 5 is a flowchart in the case of performing voltage control in the BMU 52 by setting the minimum voltage among the voltages of the plurality of battery cells 72 connected to the BMU 52 (hereinafter referred to as “cell voltage”) as the target voltage. Show.
- the processing of this flowchart is executed when, for example, battery replacement is performed in an apparatus that uses a battery system.
- the BMU 52 included in the battery unit 50-1 When connecting the replacement battery unit 50-1 to the main circuit, first, the BMU 52 included in the battery unit 50-1 performs control. Here, the contactors 56 that connect the plurality of battery modules 54 included in the battery unit 50-1 and the main circuit are not closed, and the plurality of battery modules 54 and the main circuit are not electrically connected. Under this condition, the measurement unit 64 included in the BMU 52 measures a voltage applied to the main circuit (hereinafter referred to as “main circuit voltage Vm”) (step S101).
- main circuit voltage Vm main circuit voltage
- the measurement unit 64 included in the BMU 52 measures each cell voltage of the plurality of battery cells 72 included in each battery module 54 connected to the BMU 52 and inputs the cell voltage to the voltage control unit 62.
- the voltage control unit 62 adds up the cell voltages to measure the unit voltage Vu of the battery unit 50-1 (step S103).
- the CMU 70 included in each battery module 54 measures the voltage of a set of battery cells 72 connected in parallel using the voltage sensor 74, and the CMU 70 displays the measurement result in the measurement unit of the BMU 52. 64.
- the BMU 52 measures the voltage of each of the plurality of battery cells 72 and calculates the unit voltage Vu of the battery unit 50-1.
- the voltage control unit 62 calculates a voltage difference between the main circuit voltage Vm measured in step S101 and the unit voltage Vu measured in step S103, and whether or not the calculated voltage difference exceeds a predetermined threshold Th1. Is determined (step S105).
- the threshold value Th1 is set in advance based on the configuration of the battery unit (the number of battery cells connected in series).
- the minimum cell voltage among the cell voltages of the plurality of battery cells 72 measured in step S103 is set as the target voltage (step S107).
- the voltage control unit 62 controls the voltage of each battery cell 72 so that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are aligned with the target voltage (step S109).
- the voltage control unit 62 controls the CMU 70, closes the switch 78 provided for each battery cell 72, and performs a discharge process by electrically connecting the battery cell 72 and the balance resistor 76. Thereby, the voltage of each battery cell 72 can be reduced.
- the maximum cell voltage among the cell voltages of the plurality of battery cells 72 measured in step S103 is set as the target voltage (step S107).
- the voltage control unit 62 controls the voltage of each battery cell 72 so that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are aligned with the target voltage (step S109). For example, the voltage control unit 62 performs the charging process by controlling the CMU 70 and electrically connecting the battery cell 72 and the constant voltage power supply 80 provided for the battery cell 72. Thereby, the voltage of each battery cell 72 can be raised.
- Step S111 the control unit 60 included in the BMU 52 closes the contactor 56 that connects the plurality of battery modules 54 and the main circuit, and sets the battery unit 50-1 in a state where the cell voltage of the battery cell 72 is controlled to the main circuit.
- Step S111 the process of this flowchart is terminated.
- step S105 if the voltage difference between the main circuit voltage Vm and the unit voltage Vu does not exceed the predetermined threshold Th1, the battery unit 50-1 is connected to the main circuit without controlling the cell voltage. (Step S111), and the process of this flowchart ends.
- the BMU 52 of the first embodiment described above before connecting the plurality of battery modules 54 to the main circuit, it is confirmed whether or not the voltage difference between the unit voltage Vu and the main circuit voltage Vm exceeds a threshold value.
- a threshold value By controlling the cell voltage of each of the plurality of battery cells 72, it is possible to avoid an excessive current when connecting the plurality of battery modules 54 to the main circuit.
- manual voltage difference adjustment work is omitted, and cell voltage adjustment and connection to the main circuit are automatically performed under the control of the BMU 52, so that the operability of the battery system 1 at the time of battery replacement can be improved.
- the battery system configuration can be simplified.
- the measurement unit 64 measures the main circuit voltage Vm.
- the unit voltage of another battery unit already connected to the main circuit is acquired. You may make it do. Since the unit voltage of another battery unit already connected to the main circuit is the same as the main circuit voltage Vm, voltage control can also be performed using the unit voltage of this other battery unit.
- the battery system according to the second embodiment differs in the processing of the BMU 52 at the time of battery replacement. For this reason, about the structure etc., the figure and related description which were demonstrated in 1st Embodiment are used, the same code
- FIG. 6 shows a flowchart when the BMU 52 performs voltage control by calculating an allowable voltage (target voltage) based on the main circuit voltage Vm and the configuration of the battery unit 50-1.
- the processing of this flowchart is executed when, for example, battery replacement is performed in an apparatus that uses the battery system 1.
- the BMU 52 included in the battery unit 50-1 When connecting the replacement battery unit 50-1 to the main circuit, first, the BMU 52 included in the battery unit 50-1 performs control. Here, the contactors 56 that connect the plurality of battery modules 54 included in the battery unit 50-1 and the main circuit are not closed, and the plurality of battery modules 54 and the main circuit are not electrically connected. Under this condition, the measurement unit 64 included in the BMU 52 measures the main circuit voltage Vm applied to the main circuit (step S201).
- the measurement unit 64 included in the BMU 52 measures each cell voltage of the plurality of battery cells 72 included in each battery module 54 connected to the BMU 52 and inputs the cell voltage to the voltage control unit 62.
- the voltage control unit 62 adds up the cell voltages to measure the unit voltage Vu of the battery unit 50-1 (step S203).
- the voltage control unit 62 calculates a voltage difference between the main circuit voltage Vm measured in step S201 and the unit voltage Vu measured in step S203, and whether or not the calculated voltage difference exceeds a predetermined threshold Th1. Is determined (step S205).
- the voltage control unit 62 divides the value obtained by adding a predetermined margin voltage to the main circuit voltage Vm measured in step S201 by the total number of battery cells connected in series in the battery unit 50-1.
- the maximum allowable voltage (target voltage) is calculated (step S207).
- the margin voltage is determined in advance based on the configuration (number of battery cells connected in series) of the battery unit 50-1. The margin voltage may be zero.
- the voltage control unit 62 controls the voltage of each battery cell 72 such that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are equal to or lower than the maximum allowable voltage (step S209).
- the voltage control unit 62 controls the CMU 70, closes the switch 78 provided corresponding to each battery cell 72, and performs the discharge process by electrically connecting the battery cell 72 and the balance resistor 76. Thereby, the voltage of each battery cell 72 can be reduced.
- the voltage control unit 62 divides the value obtained by subtracting a predetermined margin voltage from the main circuit voltage Vm measured in step S201 by the total number of battery cells connected in series in the battery unit 50-1. Thus, the minimum allowable voltage (target voltage) is calculated (step S207).
- the voltage control unit 62 controls the voltage of each battery cell 72 so that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are equal to or higher than the minimum allowable voltage (step S209).
- the voltage control unit 62 controls the CMU 70 and performs a charging process by electrically connecting the battery cell 72 and a constant voltage power supply 80 provided corresponding to the battery cell 72. Thereby, the voltage of each battery cell 72 can be raised.
- Step S211 the control unit 60 included in the BMU 52 closes the contactor 56 that connects the plurality of battery modules 54 and the main circuit, and sets the battery unit 50-1 in a state where the cell voltage of the battery cell 72 is controlled to the main circuit.
- Step S211 the process of this flowchart is terminated.
- step 205 if the voltage difference between the main circuit voltage Vm and the unit voltage Vu does not exceed the predetermined threshold Th1, the battery unit 50-1 is connected to the main circuit without controlling the cell voltage. (Step S211), and the process of this flowchart ends.
- the BMU 52 of the second embodiment described above before connecting the plurality of battery modules 54 to the main circuit, it is confirmed whether or not the voltage difference between the unit voltage Vu and the main circuit voltage Vm exceeds a threshold value.
- the cell voltage of each of the plurality of battery cells 72 By controlling the cell voltage of each of the plurality of battery cells 72, it is possible to avoid an excessive current when connecting the plurality of battery modules 54 to the main circuit.
- manual voltage difference adjustment work is omitted, and cell voltage adjustment and connection to the main circuit are automatically performed under the control of the BMU 52, so that the operability of the battery system 1 at the time of battery replacement can be improved.
- voltage control can be performed without lowering energy efficiency by using the allowable voltage calculated according to the main circuit voltage Vm and the configuration of the battery unit 50-1.
- the battery system according to the third embodiment differs in the processing of the BMU 52 at the time of battery replacement. For this reason, about the structure etc., the figure and related description which were demonstrated in 1st Embodiment are used, the same code
- FIG. 7 shows a flowchart when the BMU 52 acquires an allowable voltage (target voltage) by communicating with the BMU of another battery unit.
- the processing of this flowchart is executed when, for example, battery replacement is performed in an apparatus that uses a battery system.
- the BMU 52 included in the battery unit 50-1 When connecting the replacement battery unit 50-1 to the main circuit, first, the BMU 52 included in the battery unit 50-1 performs control. Here, the contactors 56 that connect the plurality of battery modules 54 included in the battery unit 50-1 and the main circuit are not closed, and the plurality of battery modules 54 and the main circuit are not electrically connected. Under this condition, the measurement unit 64 included in the BMU 52 measures the main circuit voltage Vm applied to the main circuit (step S301).
- the measurement unit 64 included in the BMU 52 measures each cell voltage of the plurality of battery cells 72 included in each battery module 54 connected to the BMU 52 and inputs the cell voltage to the voltage control unit 62.
- the voltage control unit 62 adds up the cell voltages to measure the unit voltage Vu of the battery unit 50-1 (step S303).
- the voltage control unit 62 calculates a voltage difference between the main circuit voltage Vm measured in step S301 and the unit voltage Vu measured in step S303, and whether or not the calculated voltage difference exceeds a predetermined threshold Th1. Is determined (step S305).
- the communication unit 66 included in the BMU 52 receives the maximum allowable voltage (target voltage) that has already been set for the battery cells included in the other battery unit from the other battery units already connected to the main circuit. Is acquired (step S307).
- the voltage control unit 62 controls the voltage of each battery cell 72 such that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are equal to or lower than the maximum allowable voltage (step S309).
- the communication unit 66 acquires the minimum allowable voltage (target voltage) already set for the battery cells included in the other battery unit from the other battery units already connected to the main circuit ( Step S307).
- the voltage control unit 62 controls the voltage of each battery cell 72 so that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are equal to or higher than the minimum allowable voltage (step S309).
- Step S311 the control unit 60 included in the BMU 52 closes the contactor 56 that connects the plurality of battery modules 54 and the main circuit, and sets the battery unit 50-1 in a state where the cell voltage of the battery cell 72 is controlled to the main circuit.
- Step S311 the process of this flowchart ends.
- step 305 if the voltage difference between the main circuit voltage Vm and the unit voltage Vu does not exceed the predetermined threshold Th1, the battery unit 50-1 is connected to the main circuit without controlling the cell voltage. (Step S311), and the process of this flowchart ends.
- the BMU 52 of the third embodiment described above before connecting the plurality of battery modules 54 to the main circuit, it is confirmed whether or not the voltage difference between the unit voltage Vu and the main circuit voltage Vm exceeds a threshold value.
- the cell voltage of each of the plurality of battery cells 72 By controlling the cell voltage of each of the plurality of battery cells 72, it is possible to avoid an excessive current when connecting the plurality of battery modules 54 to the main circuit. As a result, manual voltage difference adjustment work is omitted, and cell voltage adjustment and connection to the main circuit are automatically performed under the control of the BMU 52, so that the operability of the battery system 1 at the time of battery replacement can be improved.
- voltage control can be performed without performing target voltage calculation processing by acquiring and using the target voltage from another battery unit already connected to the main circuit. .
- the battery system according to the fourth embodiment differs in the processing of the BMU 52 at the time of battery replacement. For this reason, about the structure etc., the figure and related description which were demonstrated in 1st Embodiment are used, the same code
- FIG. 8 shows a flowchart in the case where the BMU 52 performs voltage control by calculating an allowable voltage (target voltage) based on the main circuit voltage Vm and the configuration of the battery panel 10-1.
- the processing of this flowchart is executed when, for example, battery replacement is performed in an apparatus that uses a battery system.
- the BMU 52 included in the battery unit 50-1 When connecting the replacement battery unit 50-1 to the main circuit, first, the BMU 52 included in the battery unit 50-1 performs control. Here, the contactors 56 that connect the plurality of battery modules 54 included in the battery unit 50-1 and the main circuit are not closed, and the plurality of battery modules 54 are not electrically connected to the main circuit. Under this condition, the measurement unit 64 included in the BMU 52 measures the main circuit voltage Vm applied to the main circuit (step S401).
- the measurement unit 64 included in the BMU 52 measures the voltage of the battery panel 10-1 provided with the battery unit 50-1 (hereinafter referred to as “battery panel voltage Vb”) (step S403).
- the voltage control unit 62 calculates a voltage difference between the main circuit voltage Vm measured in step S401 and the battery panel voltage Vb measured in step S403, and whether the calculated voltage difference exceeds a predetermined threshold Th2. It is determined whether or not (step S405).
- the threshold value Th2 is set in advance based on the configuration of the battery panel (the number of battery cells connected in series in the battery panel) and the like.
- the voltage control unit 62 divides the value obtained by adding a predetermined margin voltage to the main circuit voltage Vm measured in step S401 by the total number of battery cells connected in series in the battery panel 10-1.
- the maximum allowable voltage (target voltage) is calculated (step S407).
- the margin voltage is determined in advance based on the configuration of battery panel 10-1 (the number of battery cells connected in series in the battery panel) and the like. The margin voltage may be zero.
- the voltage control unit 62 controls the voltage of each battery cell 72 such that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are equal to or lower than the maximum allowable voltage (step S409).
- the voltage control unit 62 divides the value obtained by subtracting a predetermined margin voltage from the main circuit voltage Vm measured in step S401 by the total number of battery cells connected in series in the battery panel 10-1. Thus, the minimum allowable voltage (target voltage) is calculated (step S407).
- the voltage control unit 62 controls the voltage of each battery cell 72 such that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are equal to or higher than the minimum allowable voltage (step S409).
- Step S411 the control unit 60 included in the BMU 52 closes the contactor 56 that connects the plurality of battery modules 54 and the main circuit, and sets the battery unit 50-1 in a state where the cell voltage of the battery cell 72 is controlled to the main circuit.
- Step S411 the process of this flowchart ends.
- step 405 if the voltage difference between the main circuit voltage Vm and the battery panel voltage Vb does not exceed the predetermined threshold Th2, the battery unit 50-1 is set to the main circuit without controlling the cell voltage. Connection is made (step S411), and the processing of this flowchart ends.
- the BMU 52 of the fourth embodiment described above before connecting the plurality of battery modules 54 to the main circuit, it is confirmed whether or not the voltage difference between the unit voltage Vu and the battery panel voltage Vb exceeds a threshold value.
- the cell voltage of each of the plurality of battery cells 72 By controlling the cell voltage of each of the plurality of battery cells 72, it is possible to avoid an excessive current when connecting the plurality of battery modules 54 to the main circuit.
- manual voltage difference adjustment work is omitted, and cell voltage adjustment and connection to the main circuit are automatically performed under the control of the BMU 52, so that the operability of the battery system 1 at the time of battery replacement can be improved.
- voltage control can be performed without lowering energy efficiency by using the allowable voltage calculated according to the main circuit voltage Vm and the configuration of the battery panel 10-1.
- the battery system according to the fifth embodiment differs in the processing of the BMU 52 at the time of battery replacement. For this reason, about the structure etc., the figure and related description which were demonstrated in 1st Embodiment are used, the same code
- FIG. 9 illustrates a case where when two or more battery units 50 are connected to the main circuit, voltage control is performed by calculating an allowable voltage (target voltage) based on a comparison of unit voltages between the plurality of battery units 50.
- the flowchart of is shown. The processing of this flowchart is executed when, for example, battery replacement is performed in an apparatus that uses a battery system.
- the BMU 52 included in the battery unit 50-1 When connecting the replacement battery unit 50-1 to the main circuit, first, the BMU 52 included in the battery unit 50-1 performs control. Here, the contactors 56 that connect the plurality of battery modules 54 included in the battery unit 50-1 and the main circuit are not closed, and the plurality of battery modules 54 are not electrically connected to the main circuit. Under this condition, the measurement unit 64 included in the BMU 52 measures the main circuit voltage Vm applied to the main circuit (step S501).
- the measurement unit 64 included in the BMU 52 measures each cell voltage of the plurality of battery cells 72 included in each battery module 54 connected to the BMU 52 and inputs the cell voltage to the voltage control unit 62.
- the voltage control unit 62 adds up the cell voltages to measure the unit voltage Vu of the battery unit 50-1 (step S503).
- the voltage control unit 62 calculates a voltage difference between the main circuit voltage Vm measured in step S501 and the unit voltage Vu measured in step S503, and whether or not the calculated voltage difference exceeds a predetermined threshold Th1. Is determined (step S505).
- the communication unit 66 included in the BMU 52 acquires a unit voltage from one or more other battery units 50 connected to the main circuit.
- the voltage control unit 62 selects the minimum voltage as the reference voltage among the unit voltage Vu of the own battery unit 50-1 and the unit voltages of one or more other battery units 50 (step S507).
- the voltage control unit 62 divides the value obtained by adding a predetermined margin voltage to the reference voltage selected in step S507 by the total number of battery cells connected in series with each other in the battery unit 50-1.
- the maximum allowable voltage (target voltage) is calculated (step S509).
- the margin voltage is determined in advance based on the configuration (number of battery cells connected in series) of the battery unit 50-1.
- the margin voltage may be zero.
- the voltage control unit 62 controls the voltage of each battery cell 72 such that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are equal to or lower than the maximum allowable voltage (step 511).
- the communication unit 66 included in the BMU 52 acquires a unit voltage from one or more other battery units 50 connected to the main circuit.
- the voltage control unit 62 selects the maximum voltage as the reference voltage among the unit voltage Vu of the own battery unit 50-1 and the unit voltages of one or more other battery units 50 (step S507).
- the voltage control unit 62 divides, for example, a value obtained by subtracting a predetermined margin voltage from the reference voltage selected in step S507 by the total number of battery cells connected in series in the battery unit 50-1. Thus, the minimum allowable voltage (target voltage) is calculated (step S509).
- the voltage control unit 62 controls the voltage of each battery cell 72 so that the cell voltages of the plurality of battery cells 72 included in each battery module 54 are equal to or higher than the minimum allowable voltage (step 511).
- Step S5 the control unit 60 included in the BMU 52 closes the contactor 56 that connects the plurality of battery modules 54 and the main circuit, and sets the battery unit 50-1 in a state where the cell voltage of the battery cell 72 is controlled to the main circuit.
- Step S5 if the voltage difference between the main circuit voltage Vm and the unit voltage Vu does not exceed the predetermined threshold Th1, the battery unit 50-1 is connected to the main circuit without controlling the cell voltage.
- Step S513 if the voltage difference between the main circuit voltage Vm and the unit voltage Vu does not exceed the predetermined threshold Th1, the battery unit 50-1 is connected to the main circuit without controlling the cell voltage.
- the BMU 52 of the fifth embodiment described above before connecting the plurality of battery modules 54 to the main circuit, it is confirmed whether or not the voltage difference between the unit voltage Vu and the main circuit voltage Vm exceeds a threshold value.
- the cell voltage of each of the plurality of battery cells 72 By controlling the cell voltage of each of the plurality of battery cells 72, it is possible to avoid an excessive current when connecting the plurality of battery modules 54 to the main circuit. As a result, manual voltage difference adjustment work is omitted, and cell voltage adjustment and connection to the main circuit are automatically performed under the control of the BMU 52, so that the operability of the battery system 1 at the time of battery replacement can be improved.
- the unit voltage between the plurality of battery units 50 connected to the main circuit is compared and used for calculation of the allowable voltage, so that the allowable voltage can be obtained without using the main circuit voltage. Can be determined.
- an optimal voltage control method can be designated in advance according to the configuration of the battery system 1. Or you may enable it to change according to the instruction
- FIG. 10 is a diagram illustrating an example of the configuration of the battery module 54-1A according to the sixth embodiment.
- the battery module 54-1A in FIG. 10 has a balance resistor used for voltage control during normal operation of the battery system and a battery module at the time of battery replacement. The difference is that other balance resistors used for voltage control are provided with a switch for switching between the two balance resistors.
- the battery module 54-1A includes a first balance resistor 82 (first resistor) for normal operation and a second battery replacement second resistor having a lower resistance value (for example, half the resistance value) than the first balance resistor 82.
- a balance resistor 84 (second resistor) and a switch 86 for switching between the two balance resistors are provided.
- the BMU 52 When reducing the cell voltage of the battery cell in the voltage control process at the time of battery replacement, the BMU 52 connects the switch 86 to the second balance resistor 84. Thereby, the battery cell 72 and the 2nd balance resistance 84 are electrically connected, and the discharge process of the battery cell 72 is performed. Since the second balance resistor 84 has a resistance value lower than that of the first balance resistor 82, the discharge amount increases, and the time for reducing the voltage of the battery cell 72 can be shortened.
- the control unit 60 has a first balance resistor 82 provided for each of the plurality of battery cells 72 and a second resistance value lower than the first balance resistor. After connecting each of the plurality of battery cells 72 of the balance resistor 84 and the second balance resistor 84 to control the voltage of the plurality of battery cells 72 and bringing the contactor 56 into a connected state, the plurality of batteries The voltage of the plurality of battery cells 72 is controlled by connecting each of the cells 72 and the first balance resistor 82.
- the voltage of the battery cell 72 is reduced by connecting the battery cell 72 to a balance resistor having a low resistance value. Can be shortened. As a result, the operability of the battery system 1 at the time of battery replacement can be improved.
- a main circuit voltage measurement unit (64) that measures a voltage of a main circuit to which a battery unit (50) including a plurality of battery cells (72) is connected, and a plurality of The switch unit (56) for connecting or disconnecting the battery cell and the main circuit, and the voltage of the main circuit measured by the main circuit voltage measurement unit and the configuration of the battery unit when a plurality of battery cells are connected to the main circuit
- a control unit (60, 62) for calculating a target voltage for the plurality of battery cells based on the control unit and setting the switch unit in a connected state in a state in which the voltage of the plurality of battery cells is controlled based on the calculated target voltage.
- the target voltage is obtained from another battery unit that is already connected to the main circuit to which the own battery unit (50) including the plurality of battery cells (72) is connected.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
実施形態の電池管理装置は、主回路電圧測定部と、スイッチ部と、制御部とを持つ。主回路電圧測定部は、複数の電池セルを含む電池ユニットの接続対象である主回路の電圧を測定する。スイッチ部は、複数の電池セルと主回路とを接続または遮断状態にする。制御部は、複数の電池セルを主回路に接続する場合、主回路電圧測定部により測定された主回路の電圧および電池ユニットの構成に基づいて、複数の電池セルに対する目標電圧を算出し、算出された目標電圧に基づいて複数の電池セルの電圧を制御した状態でスイッチ部を接続状態にする。
Description
本発明の実施形態は、電池管理装置および電圧制御方法に関する。
電池システムを利用する装置において電池の劣化や故障などにより電池交換が必要となった場合、電池セルを直列および/または並列に組み合わせた組電池単位で電池交換が行われる。この場合、電池システムを利用する装置に印加されている電圧と、交換に利用される組電池の電圧との電圧差が大きいと過大電流が発生し、装置の故障などを引き起こす場合がある。このため、手動でこの電圧差を規定値未満に調整した上で電池システムを起動させる必要があり、電池システムの稼働性を低下させる場合があった。
本発明が解決しようとする課題は、電池交換時における電池システムの稼働性を向上させることが出来る電池管理装置および電圧制御方法を提供することである。
実施形態の電池管理装置は、主回路電圧測定部と、スイッチ部と、制御部とを持つ。主回路電圧測定部は、複数の電池セルを含む電池ユニットの接続対象である主回路の電圧を測定する。スイッチ部は、複数の電池セルと主回路とを接続または遮断状態にする。制御部は、複数の電池セルを主回路に接続する場合、主回路電圧測定部により測定された主回路の電圧および電池ユニットの構成に基づいて、複数の電池セルに対する目標電圧を算出し、算出された目標電圧に基づいて複数の電池セルの電圧を制御した状態でスイッチ部を接続状態にする。
以下、実施形態の電池システムを、図面を参照して説明する。
(第1の実施形態)
図1は、第1の実施形態における電池システム1の構成の一例を示す図である。電池システム1は、例えば、互いに並列に接続された複数の電池盤10-1、電池盤10-2、…、電池盤10-l(lは任意の自然数)を備える。それぞれの電池盤10は、同様の構成を有しているが、一部に相違点があってもよい。
図1は、第1の実施形態における電池システム1の構成の一例を示す図である。電池システム1は、例えば、互いに並列に接続された複数の電池盤10-1、電池盤10-2、…、電池盤10-l(lは任意の自然数)を備える。それぞれの電池盤10は、同様の構成を有しているが、一部に相違点があってもよい。
電池システム1は、例えば、PCS(Power Conditioning System)20と並列に接続されている。すなわち、複数の電池盤10は、PCS20に対して互いに並列に配置されている。PCS20は、電力を直流と交流との間で互いに変換する。PCS20は、例えば、電力系統30と、負荷40とに接続されている。電池システム1が充電される場合、PCS20を介して電力系統30から電池システム1に電力が供給される。一方、電池システム1が放電する場合、PCS20を介して電池システム1から負荷40に電力が供給される。それぞれの電池盤10は、同様の構成を有しているため、以下では複数の電池盤10を代表して電池盤10-1の構成についてのみ詳細に記載する。
図2は、電池盤10-1の構成の一例を示す図である。電池盤10-1は、例えば、複数の電池セルを直列および/または並列に組み合わせた組電池(以下、「電池ユニット」と称する)50-1、50-2、…、50-m(mは任意の自然数)を含む。それぞれの電池ユニット50は、同様の構成を有しているため(一部に相違点があってもよい)、図2では複数の電池ユニット50を代表して電池ユニット50-1の構成についてのみ詳細に記載している。
電池ユニット50-1は、例えば、直列に接続された複数の電池モジュール(MDL:Module)54-1、54-2、…、54-n(nは任意の自然数)と、電池管理装置(BMU:Battery Management Unit)52と、複数の電池モジュール54を電池交換の対象となる装置(以下、「主回路」と称する)に接続するコンタクタ56(スイッチ部)とを含む。電池ユニット50-1内の各構成要素は、ユニット内通信線CL1で接続されている。ユニット内通信線CL1では、例えば、CAN(Controller Area Network)に基づいた通信が行われる。複数の電池モジュール54は直列に接続されているため、電池ユニット50-1が出力する電圧(以下、「ユニット電圧Vu」と称する)は、複数の電池モジュール54の電圧の合算値となる。複数の電池ユニット50の各々に含まれるBMU52は、ユニット間通信線CL2で互いに接続されている。
BMU52は、ユニット内通信線CL1を介して接続された複数の電池モジュール54の動作を制御する。BMU52は、CPU(Central Processing Unit)などのプロセッサ、各種記憶装置、CANコントローラ並びに通信線CL1に対応した通信インターフェースなどを備える。
電池システムを利用する装置において電池交換が行われる場合、例えば、電池盤単位で電池交換が行われる。この場合において、電池盤内に含まれる複数の電池ユニット(複数の電池モジュール)の主回路への接続処理は、各電池ユニットに設けられたBMUの制御下において、各電池ユニット単位で行われる。
図3は、BMU52の構成の一例を示す図である。BMU52は、例えば、制御部60(制御部)と、電圧制御部62(制御部)と、測定部64と、通信部66とを含む。制御部60は、電圧制御部62、測定部64、および通信部66の動作を統括して制御する。また、制御部60は、コンタクタ56の開閉状態の制御を行う。
電圧制御部62は、ユニット内通信線CL1を介して接続された複数の電池モジュール54の電圧を制御する。例えば、電圧制御部62は、複数の電池モジュール54の各々に含まれる複数の電池セルの電圧を取得し、さらにこの電池セルの各々の電圧を制御する。
測定部64(主回路電圧測定部)は、主回路に印加されている電圧(以下、「主回路電圧」と称する)を測定する。また、測定部64(ユニット内電圧測定部)は、電池モジュール54の各々に含まれる複数の電池セルの電圧を測定する。
通信部66は、他の電池ユニット50-2から50-mの各々含まれるBMU52と通信を行う。例えば、通信部66は、他の電池ユニット50-2から、電池ユニット50-2のユニット電圧を取得する。
図4は、電池モジュール54-1の構成の一例を示す図である。それぞれの電池モジュール54は、同様の構成を有しているため(一部に相違点があってもよい)、図4では複数の電池モジュール54を代表して電池モジュール54-1の構成についてのみ詳細に記載している。電池モジュール54-1は、複数の電池セル72が接続された組電池である。電池モジュール54-1では、例えば、並列に接続された二つの電池セル72の組が、直列に接続されている。これに限らず、電池モジュール54-1内の電池セルの接続態様は、任意に定めてよい。
電池セル72は、リチウムイオン電池、鉛蓄電池、ナトリウム硫黄電池、レドックスフロー電池、ニッケル水素電池などの充放電可能な二次電池である。リチウムイオン電池である場合、電池セル72は、チタン酸リチウムを負極材料として用いたものであってよい。
電池モジュール54-1は、更に、CMU(Cell Monitoring Unit)70と、複数の電圧センサ74とを含む。CMU70は、複数の電池セル72の動作を制御する。CMU70は、CPUなどのプロセッサ、各種記憶装置、CANコントローラその他の通信インターフェースなどを備える。
電圧センサ74は、例えば、並列に接続された電池セル72の組の電圧を測定する。電圧センサ74の検出結果は、CMU70に出力される。CMU70は、電圧センサ74から入力された検出結果をBMU52に出力する。
電池モジュール54-1は、更に、電池セル72を放電させるためのバランス抵抗76と、このバランス抵抗76と直列に接続されたスイッチ78とを備える。バランス抵抗76およびスイッチ78は、電池セル72と並列に接続されている。また、電池モジュール54-1は、このバランス抵抗76およびスイッチ78に加えて(あるいは代えて)、電池セル72を充電させるための構成を備えてよい。電池セル72を充電させるための構成としては、例えば、DC/DCコンバータを含む定電圧電源80などが挙げられる。
以下において、第1の実施形態のBMU52の動作について説明する。図5は、BMU52において、BMU52に接続された複数の電池セル72の電圧(以下、「セル電圧」と称する)のうちの最小の電圧を目標電圧に設定して電圧制御を行う場合のフローチャートを示す。本フローチャートの処理は、例えば、電池システムを利用する装置において電池交換を行う際に実行される。
交換用の電池ユニット50-1を主回路に接続する場合、まず、電池ユニット50-1に含まれるBMU52が制御を行う。ここで、電池ユニット50-1に含まれる複数の電池モジュール54と、主回路とを繋ぐコンタクタ56は閉じられておらず、複数の電池モジュール54と主回路とは電気的に接続されていない。この条件下において、BMU52に含まれる測定部64は、主回路に印加されている電圧(以下、「主回路電圧Vm」と称する)を測定する(ステップS101)。
次に、BMU52に含まれる測定部64は、BMU52に接続された各電池モジュール54に含まれる複数の電池セル72の各々のセル電圧を測定し、電圧制御部62に入力する。電圧制御部62は、このセル電圧を合算することにより、電池ユニット50-1のユニット電圧Vuを測定する(ステップS103)。例えば、図4に示すように、各電池モジュール54に含まれるCMU70が、電圧センサ74を用いて並列に接続された電池セル72の組の電圧を測定し、CMU70が測定結果をBMU52の測定部64に送信する。これにより、BMU52は、複数の電池セル72の各々の電圧を測定し、電池ユニット50-1のユニット電圧Vuを算出する。
次に、電圧制御部62は、ステップS101において測定した主回路電圧Vmと、ステップS103において測定したユニット電圧Vuとの電圧差を算出し、算出した電圧差が所定の閾値Th1を超えているか否かを判断する(ステップS105)。閾値Th1は、電池ユニットの構成(直列に接続された電池セルの数)などに基づいて予め設定される。
主回路電圧Vmがユニット電圧Vuよりも低く、且つ主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えている場合、ユニット電圧Vuの値が高すぎるため、この電圧値を低下させる必要がある。この場合、ステップS103で測定した複数の電池セル72のセル電圧のうち、最小のセル電圧を目標電圧に設定する(ステップS107)。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧を目標電圧と揃えるように各電池セル72の電圧を制御する(ステップS109)。例えば、電圧制御部62は、CMU70を制御し、各電池セル72に対して設けられたスイッチ78を閉じ、電池セル72とバランス抵抗76とを電気的に接続させることで放電処理を行う。これにより、各電池セル72の電圧を低下させることが出来る。
一方、主回路電圧Vmがユニット電圧Vuよりも高く、且つ主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えている場合、ユニット電圧Vuの値が低すぎるため、この電圧値を上昇させる必要がある。この場合、ステップS103で測定した複数の電池セル72のセル電圧のうち、最大のセル電圧を目標電圧に設定する(ステップS107)。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧を目標電圧と揃えるように各電池セル72の電圧を制御する(ステップS109)。例えば、電圧制御部62は、CMU70を制御し、電池セル72と電池セル72に対して設けられた定電圧電源80とを電気的に接続させることで充電処理を行う。これにより、各電池セル72の電圧を上昇させることが出来る。
次に、BMU52に含まれる制御部60は、複数の電池モジュール54と、主回路とを繋ぐコンタクタ56を閉じて、電池セル72のセル電圧が制御された状態の電池ユニット50-1を主回路に接続し(ステップS111)、本フローチャートの処理を終了する。尚、ステップS105において、主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えていない場合には、セル電圧の制御を行うことなく、電池ユニット50-1を主回路に接続し(ステップS111)、本フローチャートの処理を終了する。
以上説明した第1の実施形態のBMU52によれば、複数の電池モジュール54を主回路に接続する前に、ユニット電圧Vuと主回路電圧Vmと電圧差が閾値を超えているか否かを確認し、複数の電池セル72の各々のセル電圧を制御することで、複数の電池モジュール54を主回路に接続する際の過大電流を回避することが出来る。この結果、手動による電圧差の調節作業を省き、BMU52の制御下においてセル電圧の調節および主回路への接続を自動で行うため、電池交換時における電池システム1の稼働性を向上させることが出来る。また、別途のコンタクタ(プレチャージコンタクタ)を用いる必要がないため、電池システム構成を簡略化することが出来る。
尚、上記の説明では、測定部64が主回路電圧Vmを測定する例について説明したが、この主回路電圧Vmに代えて、主回路に既に接続されている他の電池ユニットのユニット電圧を取得するようにしてもよい。主回路に既に接続されている他の電池ユニットのユニット電圧は、主回路電圧Vmと同じであるため、この他の電池ユニットのユニット電圧を用いて電圧制御を行うことも出来る。
(第2の実施形態)
以下、第2の実施形態について説明する。第1の実施形態と比較して、第2の実施形態に係る電池システムは、電池交換時におけるBMU52の処理が異なる。このため、構成などについては第1の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
以下、第2の実施形態について説明する。第1の実施形態と比較して、第2の実施形態に係る電池システムは、電池交換時におけるBMU52の処理が異なる。このため、構成などについては第1の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
図6は、BMU52において、主回路電圧Vmと電池ユニット50-1の構成に基づいて許容電圧(目標電圧)を算出して電圧制御を行う場合のフローチャートを示す。本フローチャートの処理は、例えば、電池システム1を利用する装置において電池交換を行う際に実行される。
交換用の電池ユニット50-1を主回路に接続する場合、まず、電池ユニット50-1に含まれるBMU52が制御を行う。ここで、電池ユニット50-1に含まれる複数の電池モジュール54と、主回路とを繋ぐコンタクタ56は閉じられておらず、複数の電池モジュール54と主回路とは電気的に接続されていない。この条件下において、BMU52に含まれる測定部64は、主回路に印加されている主回路電圧Vmを測定する(ステップS201)。
次に、BMU52に含まれる測定部64は、BMU52に接続された各電池モジュール54に含まれる複数の電池セル72の各々のセル電圧を測定し、電圧制御部62に入力する。電圧制御部62は、このセル電圧を合算することにより、電池ユニット50-1のユニット電圧Vuを測定する(ステップS203)。
次に、電圧制御部62は、ステップS201において測定した主回路電圧Vmと、ステップS203において測定したユニット電圧Vuとの電圧差を算出し、算出した電圧差が所定の閾値Th1を超えているか否かを判断する(ステップS205)。
主回路電圧Vmがユニット電圧Vuよりも低く、且つ主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えている場合、ユニット電圧Vuの値が高すぎるため、この電圧値を低下させる必要がある。この場合、電圧制御部62は、ステップS201で測定した主回路電圧Vmに所定のマージン電圧を加算した値を、電池ユニット50-1内において互いに直列に接続された電池セルの総数で除することにより、最大許容電圧(目標電圧)を算出する(ステップS207)。マージン電圧は、電池ユニット50-1の構成(直列に接続された電池セルの数)などに基づいて予め決定される。マージン電圧は、0であってもよい。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧が最大許容電圧以下となるように各電池セル72の電圧を制御する(ステップS209)。例えば、電圧制御部62は、CMU70を制御し、各電池セル72に対応して設けられたスイッチ78を閉じ、電池セル72とバランス抵抗76とを電気的に接続させることで放電処理を行う。これにより、各電池セル72の電圧を低下させることが出来る。
一方、主回路電圧Vmがユニット電圧Vuよりも高く、且つ主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えている場合、ユニット電圧Vuの値が低すぎるため、この電圧値を上昇させる必要がある。この場合、電圧制御部62は、例えば、ステップS201で測定した主回路電圧Vmから所定のマージン電圧を減算した値を、電池ユニット50-1内において互いに直列に接続された電池セルの総数で除することにより、最小許容電圧(目標電圧)を算出する(ステップS207)。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧が最小許容電圧以上となるように各電池セル72の電圧を制御する(ステップS209)。例えば、電圧制御部62は、CMU70を制御し、電池セル72と電池セル72に対応して設けられた定電圧電源80とを電気的に接続させることで充電処理を行う。これにより、各電池セル72の電圧を上昇させることが出来る。
次に、BMU52に含まれる制御部60は、複数の電池モジュール54と、主回路とを繋ぐコンタクタ56を閉じて、電池セル72のセル電圧が制御された状態の電池ユニット50-1を主回路に接続し(ステップS211)、本フローチャートの処理を終了する。尚、ステップ205において、主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えていない場合には、セル電圧の制御を行うことなく、電池ユニット50-1を主回路に接続し(ステップS211)、本フローチャートの処理を終了する。
以上説明した第2の実施形態のBMU52によれば、複数の電池モジュール54を主回路に接続する前に、ユニット電圧Vuと主回路電圧Vmと電圧差が閾値を超えているか否かを確認し、複数の電池セル72の各々のセル電圧を制御することで、複数の電池モジュール54を主回路に接続する際の過大電流を回避することが出来る。この結果、手動による電圧差の調節作業を省き、BMU52の制御下においてセル電圧の調節および主回路への接続を自動で行うため、電池交換時における電池システム1の稼働性を向上させることが出来る。また、セル電圧を制御する際に、主回路電圧Vmおよび電池ユニット50-1の構成に応じて算出される許容電圧を用いることで、エネルギー効率を下げることなく電圧制御を行うことが出来る。
(第3の実施形態)
以下、第3の実施形態について説明する。第1の実施形態と比較して、第3の実施形態に係る電池システムは、電池交換時におけるBMU52の処理が異なる。このため、構成などについては第1の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
以下、第3の実施形態について説明する。第1の実施形態と比較して、第3の実施形態に係る電池システムは、電池交換時におけるBMU52の処理が異なる。このため、構成などについては第1の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
図7は、BMU52が他の電池ユニットのBMUと通信して許容電圧(目標電圧)を取得する場合のフローチャートを示す。本フローチャートの処理は、例えば、電池システムを利用する装置において電池交換を行う際に実行される。
交換用の電池ユニット50-1を主回路に接続する場合、まず、電池ユニット50-1に含まれるBMU52が制御を行う。ここで、電池ユニット50-1に含まれる複数の電池モジュール54と、主回路とを繋ぐコンタクタ56は閉じられておらず、複数の電池モジュール54と主回路とは電気的に接続されていない。この条件下において、BMU52に含まれる測定部64は、主回路に印加されている主回路電圧Vmを測定する(ステップS301)。
次に、BMU52に含まれる測定部64は、BMU52に接続された各電池モジュール54に含まれる複数の電池セル72の各々のセル電圧を測定し、電圧制御部62に入力する。電圧制御部62は、このセル電圧を合算することにより、電池ユニット50-1のユニット電圧Vuを測定する(ステップS303)。
次に、電圧制御部62は、ステップS301において測定した主回路電圧Vmと、ステップS303において測定したユニット電圧Vuとの電圧差を算出し、算出した電圧差が所定の閾値Th1を超えているか否かを判断する(ステップS305)。
主回路電圧Vmがユニット電圧Vuよりも低く、且つ主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えている場合、ユニット電圧Vuの値が高すぎるため、この電圧値を低下させる必要がある。この場合、BMU52に含まれる通信部66は、主回路に既に接続されている他の電池ユニットから、この他の電池ユニットに含まれる電池セルに対して既に設定された最大許容電圧(目標電圧)を取得する(ステップS307)。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧が最大許容電圧以下となるように各電池セル72の電圧を制御する(ステップS309)。
一方、主回路電圧Vmがユニット電圧Vuよりも高く、且つ主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えている場合、ユニット電圧Vuの値が低すぎるため、この電圧値を上昇させる必要がある。この場合、通信部66は、主回路に既に接続されている他の電池ユニットから、この他の電池ユニットに含まれる電池セルに対して既に設定された最小許容電圧(目標電圧)を取得する(ステップS307)。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧が最小許容電圧以上となるように各電池セル72の電圧を制御する(ステップS309)。
次に、BMU52に含まれる制御部60は、複数の電池モジュール54と、主回路とを繋ぐコンタクタ56を閉じて、電池セル72のセル電圧が制御された状態の電池ユニット50-1を主回路に接続し(ステップS311)、本フローチャートの処理を終了する。尚、ステップ305において、主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えていない場合には、セル電圧の制御を行うことなく、電池ユニット50-1を主回路に接続し(ステップS311)、本フローチャートの処理を終了する。
以上説明した第3の実施形態のBMU52によれば、複数の電池モジュール54を主回路に接続する前に、ユニット電圧Vuと主回路電圧Vmと電圧差が閾値を超えているか否かを確認し、複数の電池セル72の各々のセル電圧を制御することで、複数の電池モジュール54を主回路に接続する際の過大電流を回避することが出来る。この結果、手動による電圧差の調節作業を省き、BMU52の制御下においてセル電圧の調節および主回路への接続を自動で行うため、電池交換時における電池システム1の稼働性を向上させることが出来る。また、セル電圧を制御する際に、主回路に既に接続されている他の電池ユニットから目標電圧を取得して利用することで、目標電圧の算出処理を行うことなく電圧制御を行うことが出来る。
(第4の実施形態)
以下、第4の実施形態について説明する。第1の実施形態と比較して、第4の実施形態に係る電池システムは、電池交換時におけるBMU52の処理が異なる。このため、構成などについては第1の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
以下、第4の実施形態について説明する。第1の実施形態と比較して、第4の実施形態に係る電池システムは、電池交換時におけるBMU52の処理が異なる。このため、構成などについては第1の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
図8は、BMU52において、主回路電圧Vmと電池盤10-1の構成に基づいて許容電圧(目標電圧)を算出して電圧制御を行う場合のフローチャートを示す。本フローチャートの処理は、例えば、電池システムを利用する装置において電池交換を行う際に実行される。
交換用の電池ユニット50-1を主回路に接続する場合、まず、電池ユニット50-1に含まれるBMU52が制御を行う。ここで、電池ユニット50-1に含まれる複数の電池モジュール54と、主回路とを繋ぐコンタクタ56は閉じられておらず、複数の電池モジュール54は主回路と電気的に接続されていない。この条件下において、BMU52に含まれる測定部64は、主回路に印加されている主回路電圧Vmを測定する(ステップS401)。
次に、BMU52に含まれる測定部64は、電池ユニット50-1が設けられた電池盤10-1の電圧(以下、「電池盤電圧Vb」と称する)を測定する(ステップS403)。
次に、電圧制御部62は、ステップS401において測定した主回路電圧Vmと、ステップS403において測定した電池盤電圧Vbとの電圧差を算出し、算出した電圧差が所定の閾値Th2を超えているか否かを判断する(ステップS405)。閾値Th2は、電池盤の構成(電池盤内において直列に接続された電池セルの数)などに基づいて予め設定される。
主回路電圧Vmが電池盤電圧Vbよりも低く、且つ主回路電圧Vmと電池盤電圧Vbとの電圧差が所定の閾値Th2を超えている場合、電池盤電圧Vbの値が高すぎるため、この電圧値を低下させる必要がある。この場合、電圧制御部62は、例えば、ステップS401で測定した主回路電圧Vmに所定のマージン電圧を加算した値を、電池盤10-1内において互いに直列に接続された電池セルの総数で除することにより、最大許容電圧(目標電圧)を算出する(ステップS407)。マージン電圧は、電池盤10-1の構成(電池盤内において直列に接続された電池セルの数)などに基づいて予め決定される。マージン電圧は、0であってもよい。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧が最大許容電圧以下となるように各電池セル72の電圧を制御する(ステップS409)。
一方、主回路電圧Vmが電池盤電圧Vbよりも高く、且つ主回路電圧Vmと電池盤電圧Vbとの電圧差が所定の閾値Th2を超えている場合、電池盤電圧Vbの値が低すぎるため、この電圧値を上昇させる必要がある。この場合、電圧制御部62は、例えば、ステップS401で測定した主回路電圧Vmから所定のマージン電圧を減算した値を、電池盤10-1内において互いに直列に接続された電池セルの総数で除することにより、最小許容電圧(目標電圧)を算出する(ステップS407)。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧が最小許容電圧以上となるように各電池セル72の電圧を制御する(ステップS409)。
次に、BMU52に含まれる制御部60は、複数の電池モジュール54と、主回路とを繋ぐコンタクタ56を閉じて、電池セル72のセル電圧が制御された状態の電池ユニット50-1を主回路に接続し(ステップS411)、本フローチャートの処理を終了する。尚、ステップ405において、主回路電圧Vmと電池盤電圧Vbとの電圧差が所定の閾値Th2を超えていない場合には、セル電圧の制御を行うことなく、電池ユニット50-1を主回路に接続し(ステップS411)、本フローチャートの処理を終了する。
以上説明した第4の実施形態のBMU52によれば、複数の電池モジュール54を主回路に接続する前に、ユニット電圧Vuと電池盤電圧Vbと電圧差が閾値を超えているか否かを確認し、複数の電池セル72の各々のセル電圧を制御することで、複数の電池モジュール54を主回路に接続する際の過大電流を回避することが出来る。この結果、手動による電圧差の調節作業を省き、BMU52の制御下においてセル電圧の調節および主回路への接続を自動で行うため、電池交換時における電池システム1の稼働性を向上させることが出来る。また、セル電圧を制御する際に、主回路電圧Vmおよび電池盤10-1の構成に応じて算出される許容電圧を用いることで、エネルギー効率を下げることなく電圧制御を行うことが出来る。
(第5の実施形態)
以下、第5の実施形態について説明する。第1の実施形態と比較して、第5の実施形態に係る電池システムは、電池交換時におけるBMU52の処理が異なる。このため、構成などについては第1の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
以下、第5の実施形態について説明する。第1の実施形態と比較して、第5の実施形態に係る電池システムは、電池交換時におけるBMU52の処理が異なる。このため、構成などについては第1の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
図9は、2つ以上の電池ユニット50が主回路に接続される際に、複数の電池ユニット50間のユニット電圧の比較に基づいて許容電圧(目標電圧)を算出して電圧制御を行う場合のフローチャートを示す。本フローチャートの処理は、例えば、電池システムを利用する装置において電池交換を行う際に実行される。
交換用の電池ユニット50-1を主回路に接続する場合、まず、電池ユニット50-1に含まれるBMU52が制御を行う。ここで、電池ユニット50-1に含まれる複数の電池モジュール54と、主回路とを繋ぐコンタクタ56は閉じられておらず、複数の電池モジュール54は主回路と電気的に接続されていない。この条件下において、BMU52に含まれる測定部64は、主回路に印加されている主回路電圧Vmを測定する(ステップS501)。
次に、BMU52に含まれる測定部64は、BMU52に接続された各電池モジュール54に含まれる複数の電池セル72の各々のセル電圧を測定し、電圧制御部62に入力する。電圧制御部62は、このセル電圧を合算することにより、電池ユニット50-1のユニット電圧Vuを測定する(ステップS503)。
次に、電圧制御部62は、ステップS501において測定した主回路電圧Vmと、ステップS503において測定したユニット電圧Vuとの電圧差を算出し、算出した電圧差が所定の閾値Th1を超えているか否かを判断する(ステップS505)。
主回路電圧Vmがユニット電圧Vuよりも低く、且つ主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えている場合、ユニット電圧Vuの値が高すぎるため、この電圧値を低下させる必要がある。この場合、BMU52に含まれる通信部66は、主回路に接続される1つ以上の他の電池ユニット50からユニット電圧を取得する。電圧制御部62は、自電池ユニット50-1のユニット電圧Vuおよび1つ以上の他の電池ユニット50のユニット電圧の中で最小の電圧を基準電圧として選択する(ステップS507)。
次に、電圧制御部62は、例えば、ステップS507で選択した基準電圧に所定のマージン電圧を加算した値を、電池ユニット50-1内において互いに直列に接続された電池セルの総数で除することにより、最大許容電圧(目標電圧)を算出する(ステップS509)。マージン電圧は、電池ユニット50-1の構成(直列に接続された電池セルの数)などに基づいて予め決定される。マージン電圧は、0であってもよい。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧が最大許容電圧以下となるように各電池セル72の電圧を制御する(ステップ511)。
一方、主回路電圧Vmがユニット電圧Vuよりも高く、且つ主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えている場合、ユニット電圧Vuの値が低すぎるため、この電圧値を上昇させる必要がある。この場合、BMU52に含まれる通信部66は、主回路に接続される1つ以上の他の電池ユニット50からユニット電圧を取得する。電圧制御部62は、自電池ユニット50-1のユニット電圧Vuおよび1つ以上の他の電池ユニット50のユニット電圧の中で最大の電圧を、基準電圧として選択する(ステップS507)。
次に、電圧制御部62は、例えば、ステップS507で選択した基準電圧に所定のマージン電圧を減算した値を、電池ユニット50-1内において互いに直列に接続された電池セルの総数で除することにより、最小許容電圧(目標電圧)を算出する(ステップS509)。
次に、電圧制御部62は、各電池モジュール54に含まれる複数の電池セル72のセル電圧が最小許容電圧以上となるように各電池セル72の電圧を制御する(ステップ511)。
次に、BMU52に含まれる制御部60は、複数の電池モジュール54と、主回路とを繋ぐコンタクタ56を閉じて、電池セル72のセル電圧が制御された状態の電池ユニット50-1を主回路に接続し(ステップS513)、本フローチャートの処理を終了する。尚、ステップ505において、主回路電圧Vmとユニット電圧Vuとの電圧差が所定の閾値Th1を超えていない場合には、セル電圧の制御を行うことなく、電池ユニット50-1を主回路に接続し(ステップS513)、本フローチャートの処理を終了する。
以上説明した第5の実施形態のBMU52によれば、複数の電池モジュール54を主回路に接続する前に、ユニット電圧Vuと主回路電圧Vmと電圧差が閾値を超えているか否かを確認し、複数の電池セル72の各々のセル電圧を制御することで、複数の電池モジュール54を主回路に接続する際の過大電流を回避することが出来る。この結果、手動による電圧差の調節作業を省き、BMU52の制御下においてセル電圧の調節および主回路への接続を自動で行うため、電池交換時における電池システム1の稼働性を向上させることが出来る。また、セル電圧を制御する際に、主回路に接続される複数の電池ユニット50間のユニット電圧を比較して許容電圧の算出に利用することで、主回路電圧を利用することなく許容電圧を決定することが出来る。
第1から第5の実施形態のどの電圧制御方法を適用するかについては、電池システム1の構成に従い、最適な電圧制御方法を予め指定しておくことが出来る。または、電池システム1の上位装置からの指示に応じて変更出来るようにしてもよい。
(第6の実施形態)
以下、第6の実施形態について説明する。第1から5の実施形態と比較して、第6の実施形態に係る電池システムは、電池セルの放電処理を行うための構成のみが異なる。このため、その他構成などについては第1から5の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
以下、第6の実施形態について説明する。第1から5の実施形態と比較して、第6の実施形態に係る電池システムは、電池セルの放電処理を行うための構成のみが異なる。このため、その他構成などについては第1から5の実施形態で説明した図および関連する記載を援用して同じ符号を使用し、説明を省略する。
電池交換時の電圧制御処理において電池セルのセル電圧を低下させる場合、電池セルの放電に時間を要してしまう場合がある。放電処理が長時間化すると、電池交換時における電池システムの稼働性を低下させる要因となる。そこで、第6の実施形態では、電池システムの通常運転時の電圧制御に使用するバランス抵抗に加え、電池交換時の電圧制御処理において使用する抵抗の低い他のバランス抵抗を別途設けることで、放電時間を短縮する。
図10は、第6の実施形態の電池モジュール54-1Aの構成の一例を示す図である。図10における電池モジュール54-1Aは、図4に示す第1の実施形態の電池モジュール54-1と比較して、電池システムの通常運転時の電圧制御に使用するバランス抵抗と、電池交換時の電圧制御に使用する他のバランス抵抗と、この2つのバランス抵抗を切り替えるためのスイッチを備えている点が異なる。例えば、電池モジュール54-1Aは、通常運転用の第1バランス抵抗82(第1抵抗)とこの第1バランス抵抗82よりも低い抵抗値(例えば半分の抵抗値)を有する電池交換用の第2バランス抵抗84(第2抵抗)と、この2つバランス抵抗を切り替えるためのスイッチ86とを備えている。
電池交換時の電圧制御処理において電池セルのセル電圧を低下させる場合、BMU52は、スイッチ86を第2バランス抵抗84と接続する。これにより、電池セル72と、第2バランス抵抗84とを電気的に接続し、電池セル72の放電処理を行う。第2バランス抵抗84は、第1バランス抵抗82よりも抵抗値が低いため、放電量が増え、電池セル72の電圧を低下させるための時間を短縮することが出来る。
すなわち、制御部60は、コンタクタ56を接続状態にする前は、複数の電池セル72の各々に対して設けられた第1バランス抵抗82とこの第1バランス抵抗よりも低い抵抗値を有する第2バランス抵抗84のうち、複数の電池セル72の各々と第2バランス抵抗84とを接続することにより、複数の電池セル72の電圧を制御し、コンタクタ56を接続状態にした後は、複数の電池セル72の各々と第1バランス抵抗82とを接続することにより、複数の電池セル72の電圧を制御する。
以上説明した第6の実施形態のBMU52によれば、電池セル72の放電処理を行う場合に、抵抗値の低いバランス抵抗に電池セル72を接続することで、電池セル72の電圧を低下させるための時間を短縮することが出来る。この結果、電池交換時における電池システム1の稼働性を向上させることが出来る。
以上説明した少なくとも一つの実施形態によれば、複数の電池セル(72)を含む電池ユニット(50)の接続対象である主回路の電圧を測定する主回路電圧測定部(64)と、複数の電池セルと主回路とを接続または遮断状態にするスイッチ部(56)と、複数の電池セルを主回路に接続する場合、主回路電圧測定部により測定された主回路の電圧および電池ユニットの構成に基づいて、複数の電池セルに対する目標電圧を算出し、算出された目標電圧に基づいて複数の電池セルの電圧を制御した状態でスイッチ部を接続状態にする制御部(60、62)とを備えることで、複数の電池セルを主回路に接続する際の過大電流を回避することが出来る。
また、以上説明した少なくとも一つの実施形態によれば、複数の電池セル(72)を含む自電池ユニット(50)の接続対象である主回路に既に接続された他の電池ユニットから目標電圧を取得する通信部(66)と、前記自電池ユニットに含まれる複数の電池セルと前記主回路とを接続または遮断状態にするスイッチ部(56)と、前記自電池ユニットに含まれる複数の電池セルを前記主回路に接続する場合、前記通信部により取得された目標電圧に基づいて、前記自電池ユニットに含まれる複数の電池セルの電圧を制御した状態で前記スイッチ部を接続状態にする制御部(60、62)とを備えることで、複数の電池セルを主回路に接続する際の過大電流を回避することが出来る。
この結果、手動による電圧差の調節作業を省き、電池管理装置(52)の制御下においてセル電圧の調節および主回路への接続を自動で行うため、電池交換時における電池システム(1)の稼働性を向上させることが出来る。また、別途のコンタクタ(プレチャージコンタクタ)を用いる必要がないため、電池システム構成を簡略化することが出来る。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Claims (10)
- 複数の電池セルを含む電池ユニットの接続対象である主回路の電圧を測定する主回路電圧測定部と、
前記複数の電池セルと前記主回路とを接続または遮断状態にするスイッチ部と、
前記複数の電池セルを前記主回路に接続する場合、前記主回路電圧測定部により測定された主回路の電圧および前記電池ユニットの構成に基づいて、前記複数の電池セルに対する目標電圧を算出し、前記算出された目標電圧に基づいて前記複数の電池セルの電圧を制御した状態で前記スイッチ部を接続状態にする制御部と
を備える電池管理装置。 - 前記電池ユニットに含まれる複数の電池セルの電圧を測定するユニット内電圧測定部を更に備え、
前記制御部は、前記ユニット内電圧測定部により測定された電池セルの電圧に基づいて前記電池ユニットの電圧を算出し、前記算出された電池ユニットの電圧が前記主回路電圧測定部により測定された主回路の電圧よりも高く、且つ前記電池ユニットの電圧と前記主回路の電圧との電圧差が閾値よりも大きい場合、前記ユニット内電圧測定部により測定された電池セルの電圧のうちの最小の値を前記目標電圧に設定し、前記複数の電池セルの電圧を前記設定された目標電圧に揃えた状態で前記スイッチ部を接続状態にする、
請求項1に記載の電池管理装置。 - 前記電池ユニットに含まれる複数の電池セルの電圧を測定するユニット内電圧測定部を更に備え、
前記制御部は、前記ユニット内電圧測定部により測定された電池セルの電圧に基づいて前記電池ユニットの電圧を算出し、前記算出された電池ユニットの電圧が前記主回路電圧測定部により測定された主回路の電圧よりも低く、且つ前記電池ユニットの電圧と前記主回路の電圧との電圧差が閾値よりも大きい場合、前記ユニット内電圧測定部により測定された電池セルの電圧のうちの最大の値を前記目標電圧に設定し、前記複数の電池セルの電圧を前記設定された目標電圧に揃えた状態で前記スイッチ部を接続状態にする、
請求項1に記載の電池管理装置。 - 前記電池ユニットに含まれる複数の電池セルの電圧を測定するユニット内電圧測定部を更に備え、
前記制御部は、前記ユニット内電圧測定部により測定された電池セルの電圧に基づいて前記電池ユニットの電圧を算出し、前記算出された電池ユニットの電圧が前記主回路電圧測定部により測定された主回路の電圧よりも高く、且つ前記電池ユニットの電圧と前記主回路の電圧との電圧差が閾値よりも大きい場合、前記主回路の電圧にマージン電圧を加算した値を、前記電池ユニット内において互いに直列に接続された電池セルの総数で除することにより、前記目標電圧を算出する、
請求項1に記載の電池管理装置。 - 前記電池ユニットに含まれる複数の電池セルの電圧を測定するユニット内電圧測定部を更に備え、
前記制御部は、前記ユニット内電圧測定部により測定された電池セルの電圧に基づいて前記電池ユニットの電圧を算出し、前記算出された電池ユニットの電圧が前記主回路電圧測定部により測定された主回路の電圧よりも低く、且つ前記電池ユニットの電圧と前記主回路の電圧との電圧差が閾値よりも大きい場合、前記主回路の電圧からマージン電圧を減算した値を、前記電池ユニット内において互いに直列に接続された電池セルの総数で除することにより、前記目標電圧を算出する、
請求項1に記載の電池管理装置。 - 複数の電池セルを含む自電池ユニットの接続対象である主回路に既に接続された他の電池ユニットから目標電圧を取得する通信部と、
前記自電池ユニットに含まれる複数の電池セルと前記主回路とを接続または遮断状態にするスイッチ部と、
前記自電池ユニットに含まれる複数の電池セルを前記主回路に接続する場合、前記通信部により取得された目標電圧に基づいて、前記自電池ユニットに含まれる複数の電池セルの電圧を制御した状態で前記スイッチ部を接続状態にする制御部と
を備える電池管理装置。 - 前記主回路の電圧を測定する主回路電圧測定部と、
前記電池ユニットに含まれる複数の電池セルの電圧を測定するユニット内電圧測定部と、
を更に備え、
前記制御部は、前記ユニット内電圧測定部により測定された電池セルの電圧に基づいて前記電池ユニットの電圧を算出し、前記算出された電池ユニットの電圧と前記主回路電圧測定部により測定された主回路の電圧との電圧差が閾値よりも大きい場合、前記目標電圧に基づいて前記複数の電池セルの電圧を制御した状態で前記スイッチ部を接続状態にする、
請求項6に記載の電池管理装置。 - 前記制御部は、前記スイッチ部を接続状態にする前は、前記複数の電池セルの各々に対して設けられた第1抵抗と前記第1抵抗よりも低い抵抗値を有する第2抵抗のうち、前記複数の電池セルの各々と前記第2抵抗とを接続することにより、前記複数の電池セルの電圧を制御し、前記スイッチ部を接続状態にした後は、前記複数の電池セルの各々と前記第1抵抗とを接続することにより、前記複数の電池セルの電圧を制御する、
請求項1または6に記載の電池管理装置。 - 複数の電池セルを含む電池ユニットの接続対象である主回路の電圧を測定し、
前記測定された主回路の電圧および前記電池ユニットの構成に基づいて、前記複数の電池セルに対する目標電圧を算出し、
前記算出した目標電圧に基づいて前記複数の電池セルの電圧を制御し、
前記複数の電池セルと前記主回路とを接続する、
電圧制御方法。 - 複数の電池セルを含む自電池ユニットの接続対象である主回路に既に接続された他の電池ユニットから目標電圧を取得し、
前記取得された目標電圧に基づいて、前記自電池ユニットに含まれる複数の電池セルの電圧を制御し、
前記複数の電池セルと前記主回路とを接続する、
電圧制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/082572 WO2017085838A1 (ja) | 2015-11-19 | 2015-11-19 | 電池管理装置および電圧制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/082572 WO2017085838A1 (ja) | 2015-11-19 | 2015-11-19 | 電池管理装置および電圧制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017085838A1 true WO2017085838A1 (ja) | 2017-05-26 |
Family
ID=58718528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082572 WO2017085838A1 (ja) | 2015-11-19 | 2015-11-19 | 電池管理装置および電圧制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017085838A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019503038A (ja) * | 2015-12-11 | 2019-01-31 | ミルウォーキー エレクトリック ツール コーポレーションMilwaukee Electric Tool Corporation | 複数の電池セルを直列又は並列に接続するための方法及び装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250521A (ja) * | 2006-02-16 | 2007-09-27 | Denso Corp | 組電池の電圧調整装置 |
JP2010045923A (ja) * | 2008-08-13 | 2010-02-25 | Mitsubishi Heavy Ind Ltd | 蓄電システム |
JP2013078241A (ja) * | 2011-09-30 | 2013-04-25 | Toshiba Corp | 蓄電池装置、蓄電池装置の制御方法及び制御プログラム |
JP2013179739A (ja) * | 2012-02-28 | 2013-09-09 | Mitsubishi Heavy Ind Ltd | 電池システム |
-
2015
- 2015-11-19 WO PCT/JP2015/082572 patent/WO2017085838A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250521A (ja) * | 2006-02-16 | 2007-09-27 | Denso Corp | 組電池の電圧調整装置 |
JP2010045923A (ja) * | 2008-08-13 | 2010-02-25 | Mitsubishi Heavy Ind Ltd | 蓄電システム |
JP2013078241A (ja) * | 2011-09-30 | 2013-04-25 | Toshiba Corp | 蓄電池装置、蓄電池装置の制御方法及び制御プログラム |
JP2013179739A (ja) * | 2012-02-28 | 2013-09-09 | Mitsubishi Heavy Ind Ltd | 電池システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019503038A (ja) * | 2015-12-11 | 2019-01-31 | ミルウォーキー エレクトリック ツール コーポレーションMilwaukee Electric Tool Corporation | 複数の電池セルを直列又は並列に接続するための方法及び装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9160191B2 (en) | Battery pack and method for minimizing cell voltage deviations | |
WO2017154112A1 (ja) | 電池監視装置及び方法 | |
US10505375B2 (en) | Method for controlling an energy storage system | |
EP2725684A1 (en) | Storage battery device | |
JP6439866B2 (ja) | 蓄電装置及び接続制御方法 | |
JP6314748B2 (ja) | 蓄電システムおよび蓄電制御方法 | |
US9472960B2 (en) | Regulating device, battery assembly device and regulating method | |
EP2961023A1 (en) | Parallel-connected electricity storage system | |
US20150035492A1 (en) | Adjusting device, battery pack, and adjusting method | |
JP2015186331A (ja) | バランス補正回路、蓄電モジュール及びバランス補正方法 | |
JP5489779B2 (ja) | リチウムイオン組電池の充電システムおよび充電方法 | |
WO2017085838A1 (ja) | 電池管理装置および電圧制御方法 | |
KR20170035619A (ko) | 배터리 시스템 | |
JP6172868B2 (ja) | 電源装置 | |
US11581747B2 (en) | Power supply device | |
JP7299095B2 (ja) | 無停電電源装置 | |
JP6201919B2 (ja) | 組電池及び蓄電池システム | |
KR101988027B1 (ko) | 배터리의 밸런싱 장치 및 방법 | |
EP3214725B1 (en) | Spacesuit with battery | |
JP2012043581A (ja) | エネルギー蓄積装置 | |
JP2017027857A (ja) | 電池接続制御装置、電池接続制御方法、およびプログラム | |
US20200412140A1 (en) | Storage battery unit | |
US20230141602A1 (en) | Battery bank unit, remaining charge time calculation method, and remaining charge time calculation program | |
JP2016041001A (ja) | 蓄電池の充放電装置及び蓄電池の充放電方法 | |
RU142994U1 (ru) | Модульная система бесперебойного электропитания потребителей постоянным током |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15908778 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15908778 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |