WO2017085822A1 - 光増幅装置 - Google Patents

光増幅装置 Download PDF

Info

Publication number
WO2017085822A1
WO2017085822A1 PCT/JP2015/082484 JP2015082484W WO2017085822A1 WO 2017085822 A1 WO2017085822 A1 WO 2017085822A1 JP 2015082484 W JP2015082484 W JP 2015082484W WO 2017085822 A1 WO2017085822 A1 WO 2017085822A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
optical
signal light
unit
tilt
Prior art date
Application number
PCT/JP2015/082484
Other languages
English (en)
French (fr)
Inventor
浩志 三浦
十倉 俊之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580084532.0A priority Critical patent/CN108352672A/zh
Priority to US15/774,019 priority patent/US10971888B2/en
Priority to JP2017551453A priority patent/JPWO2017085822A1/ja
Priority to PCT/JP2015/082484 priority patent/WO2017085822A1/ja
Priority to EP15908762.6A priority patent/EP3379662A4/en
Publication of WO2017085822A1 publication Critical patent/WO2017085822A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • H01S3/1003Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors tunable optical elements, e.g. acousto-optic filters, tunable gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]

Definitions

  • the present invention relates to an optical amplifying apparatus used for optical wavelength division multiplexing communication.
  • an optical amplifying apparatus is used to compensate for the signal light power that has been reduced by long-distance transmission and multi-span transmission. in use.
  • an erbium-doped fiber (EDF) is usually used, and a plurality of signal lights are propagated to the EDF and irradiated with excitation light at the same time. And amplified.
  • EDF erbium-doped fiber
  • OADM optical wavelength add / drop multiplexer
  • a signal light power control device that measures the signal light power of each wavelength using OCM (Optical Channel Monitor) and can change the signal light power for each wavelength component as a technique for suppressing the wavelength dependency of the gain described above.
  • OCM Optical Channel Monitor
  • a technique for suppressing the wavelength dependence of the gain using the above is disclosed (for example, see Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical amplifying device capable of suppressing the wavelength dependence of gain even with a simple configuration.
  • An optical amplification apparatus includes an optical input unit to which input signal light in which a plurality of signal lights having different wavelengths are multiplexed is input, and an optical amplification unit that amplifies the input signal light and outputs the amplified signal light And a signal light propagation path having an optical output section from which the amplified signal light is output.
  • the signal light propagation path is provided between the optical amplification section and the optical output section, and is linear with respect to the amplified signal light.
  • An optical amplifying apparatus having a variable tilt equalizer that gives a loss due to a large loss slope and is capable of changing a loss slope value that is a slope of the loss slope, and detects a power of input signal light in an optical input unit.
  • An excitation light source for exciting the optical amplification unit, a second photodetector for detecting the output signal light power in the optical output unit, a first control unit for controlling the excitation light source, a variable tilt, etc.
  • a second control unit for controlling the loss slope value of the generator
  • an optical amplifying device capable of suppressing the wavelength dependency of the gain without measuring the signal light power for each wavelength is obtained.
  • FIG. 1 is a configuration diagram showing a configuration of an optical amplifying device according to Embodiment 1.
  • FIG. It is an example of the measurement figure which shows the gain inclination characteristic at the time of using EDF. It is explanatory drawing which shows the gain inclination of the signal beam
  • FIG. 3 is a configuration diagram illustrating a configuration of an optical amplification device according to a second embodiment. It is explanatory drawing for demonstrating the suppression method of the gain inclination by a variable tilt equalizer and a shape equalizer. It is a block diagram which shows the structure of the conventional optical amplification apparatus 600.
  • FIG. 6 is a configuration diagram illustrating a configuration of an optical amplifying device according to a third embodiment.
  • FIG. 6 is a configuration diagram illustrating a configuration of an optical amplifying device according to a fourth embodiment.
  • FIG. 10 is a configuration diagram illustrating a configuration of an optical amplifying device according to a fifth embodiment.
  • FIG. 1 is a configuration diagram illustrating a configuration of an optical amplifying device 100 according to the first embodiment.
  • an optical amplifying device 100 includes a signal light propagation path 10 having an optical amplifying unit that amplifies input signal light, a plurality of optical element parts including a light source element and a light receiving element, and a configuration of the optical amplifying device 100. It is comprised from the control part which controls components.
  • the signal light propagation path 10 is a transmission path for propagating the signal light from the light input unit 1 toward the light output unit 2 for amplification.
  • the signal light propagation path 10 includes an optical demultiplexer 4 a that demultiplexes the signal light in the optical input unit 1 on the side close to the optical input unit 1, and the signal light in the optical output unit 2 on the side close to the optical output unit 2.
  • An optical demultiplexer 4b for demultiplexing is provided.
  • the EDF 3a as the first optical amplifying unit in the signal light propagation path 10 is provided between the optical demultiplexers 4a and 4b, and amplifies the input signal light.
  • the signal light propagation path 10 includes a variable tilt equalizer (VTEQ) 11 between the EDF 3a and the optical demultiplexer 4b, and the first optical multiplexing between the demultiplexer 4a and the EDF 3a.
  • VTEQ variable tilt equalizer
  • a wavelength selective optical multiplexer 5a as a unit is further provided.
  • signal light is input as input signal light.
  • This input signal light is obtained by multiplexing a plurality of signal lights having different wavelengths.
  • the optical output unit 2 outputs the signal light amplified by the EDF 3a as output signal light.
  • the optical demultiplexers 4 a and 4 b demultiplex a part of the signal light passing through the signal light propagation path 10.
  • the wavelength selective optical multiplexer 5a combines only light in a specific wavelength band.
  • the VTEQ 11 suppresses the wavelength dependence of the gain in the EDF 3a.
  • the VTEQ 11 is a component that gives a loss having a linear loss slope to the signal light power of each wavelength.
  • a current-controlled element using a magneto-optic effect or a temperature-controlled planar lightwave circuit PLC: Planar Lightwave Circuit
  • a photodiode (PD: Photo Diode) 6a serving as a first photodetector is connected to the signal light propagation path 10 via the duplexer 4a.
  • the PD 6 a that is a light receiving element measures the input signal light power input in the light input unit 1.
  • the PD 6b as the second photodetector is connected to the signal light propagation path 10 via the duplexer 4b.
  • the PD 6 b measures the output signal light power output from the light output unit 2.
  • a laser diode (LD: Laser Diode) 7a serving as an excitation light source is connected to the signal light propagation path 10 via a wavelength selective optical multiplexer 5a.
  • the LD 7a amplifies the input signal light by irradiating the EDF 3a with light having a specific wavelength. Note that light having a wavelength of 980 nm or 1480 nm is generally used as the excitation light of the EDF.
  • the doped optical fiber an optical fiber added with other rare earth elements such as thulium instead of erbium may be used.
  • the control unit of the optical amplifying apparatus 100 includes an excitation light control unit 21 as a first control unit and a tilt control unit 22 as a second control unit.
  • the excitation light control unit 21 obtains the input signal light power measured by the PD 6a and the output signal light power measured by the PD 6b, and compares the input signal light power and the output signal light power to calculate the operation gain. .
  • the intensity of the excitation light of the LD 7a is controlled so that the target gain set outside is a value within a certain range of the operating gain. That is, the excitation light control unit 21 performs control so that the operation gain that is the average gain in the section A approaches the target gain G1.
  • the average gain indicates the gain of the entire signal light, not the gain of each wavelength, in the signal light in which light of a plurality of wavelengths is multiplexed.
  • the tilt control unit 22 controls the VTEQ 11 using the target gain input from the excitation light control unit 21 so that the wavelength dependency of the amplified signal light is suppressed.
  • the operation of the excitation light controller 21 will be specifically described.
  • the operating gain can be calculated using (Equation 1).
  • the operation gain calculated by (Equation 1) is compared with the target gain.
  • the intensity of the excitation light of the LD 7a is controlled so that the difference between the operating gain and the target gain is within the set range.
  • Operating gain (dB) 10 Log (Po / Pi) (Equation 1)
  • the LD 7a is controlled so as to reduce the excitation light intensity of the LD 7a in order to reduce the operating gain.
  • the output signal light power Po decreases.
  • the LD 7a is controlled so as to increase the pumping light intensity of the LD 7a.
  • the output signal light power Po increases.
  • the wavelength dependence of gain is generally linear in a narrow wavelength range and has linear characteristics.
  • the gain dependence on the wavelength is defined as a gain slope.
  • FIG. 2 is an example of a measurement diagram showing gain tilt characteristics when using the EDF 3a.
  • the horizontal axis indicates the average gain [dB]
  • the vertical axis indicates the gain slope value.
  • ((longest wavelength gain) ⁇ (shortest wavelength gain)) is defined as a gain tilt value
  • the relationship between the average gain and the gain tilt value is defined as a gain tilt characteristic.
  • gain is assumed to be the gain of light of each wavelength
  • target gain or “operating gain” is assumed to be gain as signal light corresponding to the average gain. To do.
  • the gain slope value is ( ⁇ 0.4) [dBpp] with respect to the average gain of 18 [dB].
  • the gain slope value is 0.4 [dBpp] with respect to the average gain 13 [dB].
  • the relationship between the average gain and the gain slope value is measured in advance for the EDF 3a used.
  • Gain slope characteristics as shown in FIG. 2 are derived by sequentially changing the average gain within a certain average gain setting range and obtaining a gain slope value corresponding to the average gain.
  • a data table created by measuring the relationship between the average gain and the gain tilt value may be stored in advance in the tilt control unit 22 as a gain tilt characteristic.
  • the gain tilt characteristic may be formulated as a gain tilt value as a monovalent function of average gain.
  • FIG. 3 is an explanatory diagram showing the gain inclination of signal light composed of a plurality of lights having different wavelengths.
  • the vertical axis represents the gain at each wavelength.
  • the horizontal axis represents the wavelength of each signal light constituting the signal light.
  • FIG. 3 shows gains of signal light having five wavelengths from CH1 to CH5. Also, the gain slope is shown as a dotted line.
  • the gain of each wavelength is not measured, but the gain of each wavelength is used for explanation.
  • FIG. 3A corresponds to the gain slope for each wavelength in the case of FIG. 2A, and the gain slope value is ( ⁇ 0.4) [dBpp].
  • FIG. 3B corresponds to the gain slope in the case of FIG. 2B, and the gain slope value is (0.4) [dBpp].
  • FIG. 4 is an explanatory diagram showing a method of suppressing the gain tilt shown in FIG.
  • FIG. 4A is a diagram illustrating the gain of each wavelength before the VTEQ 11 is applied.
  • the vertical axis represents the gain at each wavelength.
  • the horizontal axis represents the wavelength of each signal light constituting the signal light.
  • the gain slope is indicated by a dotted line.
  • FIG. 4B is a diagram showing the loss slope derived from the gain slope value.
  • the horizontal axis shows the wavelength of the signal light
  • the vertical axis shows the loss given to the signal light of each wavelength
  • the dotted line shows the loss slope.
  • FIG. 4C is a diagram illustrating the gain of each wavelength after applying VTEQ11.
  • the vertical axis represents the gain at each wavelength.
  • the horizontal axis represents the wavelength of each signal light constituting the signal light.
  • a dotted line indicates a gain inclination.
  • the tilt control unit 22 estimates the gain tilt value corresponding to the target gain obtained from the pumping light control unit 21, using the gain tilt characteristic shown in FIG. That is, as shown in FIG. 2A, if the target gain is 18 [dB], it can be estimated that the gain slope value is ( ⁇ 0.4) [dBpp]. As a result, it can be estimated that the gain slope decreases to the right as shown in FIG.
  • the VTEQ 11 is controlled by the tilt control unit 22 and gives loss of loss tilt to the signal light as shown in FIG.
  • this line segment is referred to as a loss slope, and the slope is defined as a loss slope value.
  • the signal light power is attenuated by the VTEQ 11 by an amount corresponding to the loss slope of each wavelength.
  • the gain of each wavelength becomes flat.
  • the maximum loss is given to the wavelength of CH1, which is the shortest wavelength
  • the minimum loss is given to CH5, which is the longest wavelength.
  • CH2 to CH4 a loss corresponding to a line segment passing through the point corresponding to CH1 and the point corresponding to CH5 in FIG. 4B is given.
  • the VTEQ 11 gives the loss of the loss slope value to the signal light by using the calculated gain slope value as the loss slope value.
  • the loss slope as shown in FIG. 4B, the loss of CH5 is preferably close to 0 from the viewpoint of securing the signal light power. However, even if the loss of CH5 is larger than 0, the loss slope value corresponding to the gain slope value. As long as it is a loss slope due to the above, the gain of each wavelength can be flattened.
  • the loss slope value is the gain slope value, but the correspondence between the loss slope and the gain slope may be formulated, or the correspondence may be stored as a data table obtained by measurement. .
  • the tilt control unit 22 may control the VTEQ 11 using an operation gain instead of the target gain transmitted from the excitation light control unit 21.
  • the gain slope value can be obtained with high accuracy even when the operation gain differs from the target gain.
  • the LD 7a may be controlled so that the output signal light power detected by the PD 6b is within the set range.
  • the loss slope of the VTEQ 11 is adjusted by the operation gain calculated by (Equation 1) from the input signal light power.
  • control time constant of the VTEQ 11 is set longer than the control time constant of the LD controlled by the excitation light control unit 21. The reason is that there is a limit to the response speed when changing the loss gradient of the VTEQ 11, and also preventing the control from being stably converged due to competition with the control when changing the excitation light intensity of the LD. .
  • the gain tilt is suppressed by the VTEQ 11, and therefore the wavelength dependency of the gain can be suppressed even with a simple configuration.
  • FIG. FIG. 5 is a configuration diagram showing the configuration of the optical amplifying device 200 according to the second embodiment.
  • a shape equalizer SEQ: Shape Equalizer 12 is newly provided between the EDF 3a and the VTEQ 11 in the first embodiment.
  • SEQ Shape Equalizer
  • symbol is attached
  • a section A indicated by a solid double arrow is the same as that in FIG. 1, and a section B indicated by a solid double arrow indicates a section between the light input unit 1 and a dotted downward arrow.
  • a dotted line downward arrow indicates a portion between the output terminal of SEQ12 and the input terminal of VTEQ11.
  • the section A and the section B are used when comparing an optical amplifying apparatus 200 according to the present embodiment described later and a conventional optical amplifying apparatus.
  • SEQ12 is a component having a loss characteristic for compensating a non-linear characteristic that cannot be compensated for by the VTEQ 11 out of the wavelength dependence of the gain of the amplified signal light to make the wavelength dependence a linear characteristic. . Note that, unlike the tilt equalizer 11 in which the loss slope is variable, the SEQ 12 has inherent loss characteristics.
  • FIG. 6 is an explanatory diagram for illustrating a method of suppressing the gain tilt by VTEQ11 and SEQ12.
  • (a) shows the gain of each wavelength before applying SEQ12.
  • (B) shows the gain of each wavelength after applying SEQ12.
  • (c) shows the gain of each wavelength after applying SEQ12 and VTEQ11.
  • SEQ12 compensates for the non-linear part of the wavelength dependence of gain so that the gain slope is substantially linear. Specifically, (a) including a non-linear component is changed to a substantially linear (b). Next, as shown in (c), the VTEQ 11 reduces the gain slope and flattens the gain slope.
  • SEQ12 uses, for example, a diffraction grating such as fiber grading, etalon filter or dielectric multilayer filter.
  • the gain tilt is suppressed by the VTEQ 11 and the wavelength-dependent nonlinear component of the gain is compensated by the SEQ 12. Therefore, even when the wavelength dependency of gain is not linear, it is possible to suppress the wavelength dependency of gain.
  • FIG. 7 is a configuration diagram of a conventional optical amplifying apparatus 600. 7 is different from the VTEQ 11 in that a variable shape equalizer 13 (VSEQ: Variable Shape Equalizer) is provided, and an optical demultiplexer 4c and an OCM 8 are provided. Further, in the optical amplifying apparatus 200 according to the second embodiment, the PD 6b is provided in the subsequent stage of the VTEQ 11, whereas in the conventional optical amplifying apparatus 600, the PD 6b is provided in the previous stage of the VSEQ 13. .
  • a solid line double arrow A is a section from the light input unit 1 to the light output unit 2.
  • a solid line double arrow C is a section between the optical input unit 1 and the input end of the VSEQ 13 (indicated by a dotted line downward arrow in the figure).
  • the pumping light control unit 23 controls the LD 7a so that the average gain of the signal light in the section C approaches the target gain G1.
  • the signal light is demultiplexed by the optical demultiplexer 4 c and input to the OCM 8.
  • the OCM 8 measures the signal light power of the wavelength-multiplexed signal light for each wavelength.
  • the VSEQ 13 adjusts so that the signal light power of each wavelength output from the light output unit 2 becomes the same level.
  • the attenuation controller 24 controls the VSEQ 13 based on the signal light power of each wavelength acquired by the OCM 8 so that the signal light power of each wavelength becomes a constant value.
  • FIG. 8 is an explanatory diagram showing a control result when the conventional optical amplifying apparatus 600 is used.
  • line ( réelle1) indicates a 5-wavelength input state in which signal light of 5 wavelengths CH1 to CH5 is input
  • line (b1) indicates a 1-wavelength input state.
  • column (i) shows the average gain of section C (shown in FIG. 7), which is a section between optical input unit 1 and VSEQ 13
  • column (ii) shows the loss that VSEQ 13 gives to the signal light.
  • the column (iii) indicates the average gain in the section A (shown in FIG. 7), which is the section between the optical input unit 1 and the optical output unit 2.
  • the dotted line in the horizontal direction indicates the target gain G1 set externally
  • the single chain line in the horizontal direction indicates G2 that is the gain of CH1 in the 5-wavelength input state in the section C.
  • the (a1) line in FIG. 8 will be described in more detail.
  • the pumping light control unit 23 controls the operation gain, which is an average gain in the section C, based on the target gain G1. Therefore, the gain of CH3 and the target gain G1 substantially coincide with each other in (a1) row (i) column. This is because, in FIG. 8, the gain of CH3 substantially matches the average gain of the entire signal light of the five wavelengths CH1 to CH5, and the average gain in the section C is controlled to approach the target gain G1. is there.
  • CH1 to CH5 have a lower right gain slope, the gains of CH1 and CH2 are higher than the target gain G1, and the gains of CH4 and CH5 are lower than the target gain G1.
  • the column (iii) in the figure shows a state in which the gains of CH1 to CH5 are equal to a constant value after passing through VSEQ13. Since VSEQ13 is a component that causes a loss, the operating gain G01, which is the average gain in the five-wavelength input state in section A, is lower than the target gain G1.
  • the average gain of the entire signal light is the target gain G1
  • the gain of CH1 is the target gain because there is a gain slope that decreases to the right. It becomes higher than G1.
  • the gain of CH1 is controlled to be equal to the target gain G1. Therefore, as indicated by the solid line down arrow in the figure, the gain of CH1 decreases from G2.
  • the conventional optical amplifying apparatus 600 has a problem that the operating gain varies greatly when the number of wavelengths of the signal light varies.
  • a decrease in gain can be compensated by adjusting VSEQ13.
  • control of VSEQ13 is generally slower than constant gain control of EDF. This is because there is a restriction on the response speed of the attenuation component used in VSEQ13. Note that the response speed of the VSEQ 13 controlled by the attenuation controller 24 is low (milliseconds or more), and the response speed of the EDF 3a controlled by the excitation light controller 23 is high (milliseconds or less).
  • the operation gain changes that is, the signal light power deviates from the target gain.
  • signal light transmitted over a long distance such deviation accumulates as it passes through many optical amplifying devices, which causes deterioration in communication quality. Therefore, in such an optical transmission system, temporary deterioration of communication quality is not allowed, and sacrifice of communication quality until the adjustment of VSEQ 13 is completed is not allowed.
  • FIG. 9 is an explanatory diagram illustrating a control result when using the optical amplifying device 200 according to the second embodiment.
  • Row (b1) shows a state in which signal light of five wavelengths CH1 to CH5 is inputted
  • row (b2) shows a state in which signal light of one wavelength is inputted.
  • Column (i) shows the gains of CH1 to CH5 in section B shown in FIG.
  • Column (ii) shows the loss of VTEQ11.
  • the column (iii) shows the gains of CH1 to CH5 in the section A shown in FIG.
  • the dotted line indicates the target gain G1 set outside.
  • the gain constant control is performed in the section A by measuring the signal light power on the output side of the VTEQ 11, and therefore, the average gain of the five-wavelength input state in the section A with respect to the target gain G1
  • the operating gain G01 and the operating gain G02 that is the average gain in the one-wavelength input state in the section A coincide with each other.
  • the operating gain G01 in the 5-wavelength input state in the section A is the same as the operating gain G02 that is the average gain in the 1-wavelength input state. That is, even if the number of wavelengths varies, the average gain of the signal light in the section A does not change.
  • This is different from the conventional optical amplifying apparatus 600 shown in FIG. 8 in that the optical demultiplexer 4b is provided not on the input side of the VTEQ 11 but on the output side, and the PD 6b measures the signal light power on the output side of the VTEQ 11. It is.
  • the optical amplifying device 200 when the number of wavelengths of signal light changes from 5 wavelengths to 1 wavelength, the optical amplifying device 200 is compared with the conventional optical amplifying device 600 in the average of the section A. There is little fluctuation in gain.
  • the optical amplifying apparatus 200 has a configuration in which the PD 6b for measuring the signal light power is appropriately arranged on the output side instead of the input side of the VTEQ 11, and further, the VSEQ 13 that aligns the signal light power of each wavelength.
  • the VTEQ 11 is configured to make the gain of each wavelength constant. Therefore, with the above configuration, even when the number of wavelengths varies, the operating gain G01 in the 5-wavelength input state in the section A hardly changes with respect to the operating gain G02 in the 1-wavelength input state. That is, it is possible to appropriately control to suppress the wavelength dependence of the gain and to suppress the significant fluctuation of the operation gain when the wavelength changes.
  • the communication quality can be stably maintained even when the wavelength is decreased.
  • the conventional optical amplifying apparatus 600 adopts a method of constant gain control and a method of suppressing a gain deviation between wavelengths, and can obtain a desired operation / performance, but operates strictly. Analysis shows that constant gain control with sufficiently high accuracy cannot be realized.
  • the optical amplifying device 200 according to Embodiment 2 of the present invention realizes high-precision constant gain control based on accurate analysis. In addition, even if gain wavelength dependence occurs without using an excessively high power / high cost excitation light source, the gain flatness of each wavelength is maintained and high-accuracy constant gain control is realized. To do.
  • the optical amplifying apparatus 200 appropriately arranges the optical demultiplexer 4b on the output side of the VTEQ 11, and performs constant gain control using the signal light power on the output side measured by the PD 6b. In addition, it is possible to perform appropriate control even when the number of wavelengths fluctuates by making the gain of signal light having different wavelengths constant, rather than making signal light powers having different wavelengths uniform.
  • FIG. FIG. 10 is a configuration diagram showing the configuration of the optical amplifying device 300 according to the third embodiment.
  • the wavelength selective optical multiplexer 5a and the LD 7a are provided on the front side of the EDF 3a
  • the second The difference is that the wavelength selective optical multiplexer 5b and the LD 7b are provided in the subsequent stage of the EDF 3a.
  • the LD 7b excites the EDF 3a in the subsequent stage of the EDF 3a.
  • SEQ 12 may be provided between wavelength selective optical multiplexer 5b and VTEQ 11 as in the second embodiment.
  • the backward pumping configuration in which the pumping light is multiplexed from the rear stage side of the EDF 3a increases noise degradation as compared with the forward pumping configuration, but the signal light gain saturation is less likely to occur. That is, a higher output can be obtained as compared with forward excitation in which excitation is performed using the LD 5a from the front stage of the EDF 3a.
  • components that are the same as or correspond to those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 11 is a configuration diagram illustrating a configuration of the optical amplifying device 400 according to the fourth embodiment.
  • the configuration further includes an LD 7b as a pumping light source and a wavelength-selective optical multiplexer 5b provided at the subsequent stage of the EDF 3a.
  • the EDF 3a is excited from both the front side and the rear side. Therefore, uniform excitation is possible over the entire length of the EDF 3a.
  • SEQ 12 may be provided between wavelength selective optical multiplexer 5b and VTEQ 11 as in the second embodiment. Further, in the figure, the same or corresponding components as those in FIG.
  • FIG. 12 is a configuration diagram illustrating a configuration of an optical amplification device 500 according to the fifth embodiment.
  • the optical amplifying device 500 according to the fifth embodiment is further provided with an EDF 3b as a second optical amplifying unit in the previous stage of the VTEQ 11 and wavelength selection as compared with the optical amplifying device 400 according to the fourth embodiment.
  • a wavelength-selective optical multiplexer 5c as a third optical multiplexer is provided between the EDFs 3a and 3b instead of the optical optical multiplexer 5b.
  • the LD 7b pumps the EDF 3b forward via the wavelength selective optical multiplexer 5c.
  • SEQ 12 may be provided between the wavelength selective optical multiplexer 5c and the VTEQ 11 as in the second embodiment.
  • the same or corresponding components as those in FIG. 11 are denoted by the same reference numerals, and the description thereof is omitted.
  • the VTEQ is used to suppress the wavelength dependence of the EDF using the VTEQ.
  • the gain of the EDF is fixed to a value that does not cause the wavelength dependence without using the VTEQ.
  • the gain value that does not cause wavelength dependency is larger than the required gain, the gain that is required after exciting the EDF so as to obtain a gain that does not cause wavelength dependency once is obtained.
  • the gain is attenuated. In this case, an expensive high-power pumping light source is required, and there is a problem that an optical amplifier with high cost and high power consumption is obtained.
  • the pumping light intensity of the pumping light source is controlled so that the gain of the optical amplifying device becomes the target gain by measuring the input signal light power and the output signal light power of the optical amplifying device.
  • the amplified signal light power is measured immediately after the amplification unit, the pumping light intensity of the pumping light source is controlled using the input signal light power and the amplified signal light power, and then the wavelength dependency of the gain is suppressed.
  • the gain of the optical amplifying device is lower than the target gain because the signal light is attenuated when the influence of the wavelength dependency of the gain is suppressed.
  • the optical amplifying apparatus of the present invention suppresses fluctuations in gain compared to the conventional optical amplifying apparatus.
  • the present invention is not limited to the configuration of the second embodiment, and the first embodiment or the embodiment of the present invention. It goes without saying that the same effect can be obtained even with the configuration of the third to fifth embodiments.
  • the optical amplifying apparatus may be configured by appropriately changing the configuration obtained by the combination of the embodiments.

Abstract

互いに波長の異なる複数の信号光が多重化された信号光について、波長ごとの信号光パワーを計測しなくとも利得の波長依存性を抑制することが可能な光増幅装置を提供する。本発明に係る光増幅装置(100)は、増幅信号光に対して直線的な損失傾斜による損失を与えることで利得の波長依存性を抑制し、損失傾斜の傾きである損失傾斜値を変更可能である可変チルト等化器(11)と、可変チルト等化器の損失傾斜値を制御するチルト制御部(22)とを備える。

Description

光増幅装置
 本発明は、光波長多重通信に用いられる光増幅装置に関するものである。
 大容量ネットワークサービスの全世界的な拡大に伴い、光波長多重通信方式の更なる普及が進んでいる。1本の光ファイバで複数の波長の信号光を1本の光ファイバで伝送する光波長多重通信方式において、長距離伝送及び多スパン伝送で低下した信号光パワーを補償するために光増幅装置が使用されている。
 このような光増幅装置では、エルビウム添加ファイバ(EDF:Erbium Doped Fiber)が通常用いられ、複数波長の信号光をEDFに伝搬させて、そこに励起光を照射することで複数の信号光を一括して増幅している。
 さらに、波長単位で光信号を分岐・挿入する光波長分岐挿入装置(OADM:Optical Add-Drop Multiplexer)の導入により、ネットワークが複雑化している。分岐・挿入により、伝送経路の異なる波長が多重伝送されるネットワークでは、一部の伝送区間に障害が発生した場合に、下流の伝送区間の一部の波長のみが消光して、一部の波長のみ残留し、波長多重数が変化する。そのような場合でも、残留した光信号の伝送特性に影響を与えないことが望ましい。そのためには、波長数の変化が残留光のパワーに影響を与えないように1波長当たりの信号光パワーを一定に保つことが必要である。その観点で、光増幅装置は、利得を一定に制御する方法が広く採用されている。この方法で各波長の信号光パワーを一定に保つことで、障害のない伝送区間に障害の影響が波及するのを回避することができる。
 複数波長の信号光を一括して増幅するため、利得を変更する際、波長ごとの信号光の利得の偏りである利得の波長依存性が生じる。このような利得の波長依存性が生じることが信号光の劣化の一因となっていた。
 上述した利得の波長依存性を抑制するための技術として、OCM(Optical Channel Monitor)を用いて各波長の信号光パワーを計測し、波長成分ごとの信号光パワーを変更可能な信号光パワー制御デバイスを用いて、利得の波長依存性を抑制する技術が開示されている(例えば、特許文献1参照)。
特開2006-286918号公報
 従来の光増幅装置にあっては、利得の波長依存性を抑制するためには、波長ごとの信号光パワーを計測するためのOCM等の複雑な部品が必要となり、光増幅装置の構成が複雑になるという問題があった。
 本発明は、上述のような課題を解決するためになされたもので、簡単な構成であっても利得の波長依存性を抑制可能な光増幅装置を提供することを目的としている。
 本発明に係る光増幅装置は、互いに異なる波長を有する複数の信号光が多重化された入力信号光が入力される光入力部と、入力信号光を増幅し増幅信号光として出力する光増幅部と、増幅信号光が出力される光出力部とを有する信号光伝搬路を備え、信号光伝搬路は、光増幅部と光出力部との間に設けられ、増幅信号光に対して直線的な損失傾斜による損失を与え、損失傾斜の傾きである損失傾斜値を変更可能である可変チルト等化器を有する光増幅装置であって、光入力部における入力信号光のパワーを検出する第1の光検出器と、光増幅部を励起する励起光源と、光出力部における出力信号光パワーを検出する第2の光検出器と、励起光源を制御する第1の制御部と、可変チルト等化器の損失傾斜値を制御する第2の制御部とを備える。
 利得を変動させた場合において、波長ごとの信号光パワーを計測しなくとも利得の波長依存性を抑制することが可能な光増幅装置を得る。
実施の形態1に係る光増幅装置の構成を示す構成図である。 EDFを用いた際の利得傾斜特性を示す測定図の一例である。 互いに異なる波長を有する複数の光からなる信号光の利得傾斜を示す説明図である。 可変チルト等化器による利得傾斜の抑制する方法を示す説明図である。 実施の形態2に係る光増幅装置の構成を示す構成図である。 可変チルト等化器とシェイプ等化器による利得傾斜の抑制方法を示すための説明図である。 従来の光増幅装置600の構成を示す構成図である。 従来の光増幅装置を用いた際の制御結果を示す説明図である。 本発明の実施の形態2に係る光増幅装置を用いた際の制御結果を示す説明図である。 実施の形態3に係る光増幅装置の構成を示す構成図である。 実施の形態4に係る光増幅装置の構成を示す構成図である。 実施の形態5に係る光増幅装置の構成を示す構成図である。
実施の形態1.
 図1は、実施の形態1に係る光増幅装置100の構成を示す構成図である。図1において、光増幅装置100は、入力された信号光を増幅する光増幅部を有する信号光伝搬路10と、光源素子と受光素子からなる複数の光学素子部品と、光増幅装置100の構成部品を制御する制御部とから構成されている。
 はじめに、信号光伝搬路10に設けられた各構成を説明する。信号光伝搬路10は、光入力部1から光出力部2に向けて信号光を伝搬させて増幅するための伝送路である。信号光伝搬路10は、光入力部1に近い側に光入力部1における信号光を分波する光分波器4aを備え、光出力部2に近い側に光出力部2における信号光を分波する光分波器4bを備える。また、信号光伝搬路10のうち第1の光増幅部としてのEDF3aは、光分波器4a,4bの間に設けられ、入力された信号光を増幅する。信号光伝搬路10は、EDF3aと光分波器4bとの間に可変チルト等化器(VTEQ:Variable Tilt EQualizer)11を備え、分波器4aとEDF3aとの間に、第1の光合波部としての波長選択性光合波器5aをさらに備える。
 なお、以下では、光入力部1と光出力部2との間の区間を区間A(図中、実線両矢印)として説明する。
 光入力部1では、信号光が入力信号光として入力される。この入力信号光は、互いに異なる波長を有する複数の信号光が多重化されたものである。光出力部2は、EDF3aで増幅された信号光を出力信号光として出力する。光分波器4a,4bは、信号光伝搬路10を通る信号光の一部を分波する。波長選択性光合波器5aは、特定波長帯の光のみを合波する。VTEQ11は、EDF3aにおける利得の波長依存性を抑制する。
 VTEQ11は、各波長の信号光パワーに直線的な損失傾斜を有する損失を与える部品である。例えば、磁気光学効果を用いた電流制御型の素子あるいは温度制御型の平面光波回路(PLC:Planar Lightwave Circuit)を用いることができる。
 次に、光増幅装置100に設けられた複数の光学素子部品について各構成を説明する。第1の光検出器としてのフォトダイオード(PD:Photo Diode)6aは、分波器4aを介して信号光伝搬路10と接続する。また、受光素子であるPD6aは、光入力部1において入力される入力信号光パワーを測定する。同様に、第2の光検出器としてのPD6bは、分波器4bを介して信号光伝搬路10と接続する。また、PD6bは、光出力部2において出力される出力信号光パワーを測定する。励起光源としてのレーザダイオード(LD:Laser Diode)7aは、波長選択性光合波器5aを介して信号光伝搬路10と接続している。LD7aは、特定の波長の光をEDF3aに照射することで、入力された信号光を増幅する。なお、EDFの励起光としては、980nmあるいは1480nmの波長の光が一般的に使用されている。また、不純物添加光ファイバとして、エルビウムの代わりにツリウムなどの他の希土類元素を添加したものを用いてもよい。
 さらに、光増幅装置100の構成部品を制御する制御部について説明する。光増幅装置100の制御部は、第1の制御部としての励起光制御部21と第2の制御部としてのチルト制御部22とから構成されている。励起光制御部21は、PD6aで測定された入力信号光パワー及びPD6bで測定された出力信号光パワーを取得して、入力信号光パワーと出力信号光パワーとを比較して動作利得を算出する。そして、外部にて設定された目標利得を、動作利得が一定範囲内の値をとるようにLD7aの励起光強度を制御する。つまり、励起光制御部21は、区間Aにおける平均利得である動作利得が目標利得G1に近付けるように制御を行う。ここでは、平均利得とは、複数の波長の光が多重化された信号光において、各波長の利得ではなく、信号光全体としての利得を示している。
 チルト制御部22は、励起光制御部21から入力された目標利得を用いて、増幅された信号光の波長依存性が抑制されるように、VTEQ11を制御する。
 ここで、励起光制御部21の動作を具体的に説明する。PD6aで測定される入力信号光パワーをPiとし、PD6bで測定される出力信号光パワーをPoとすると、動作利得は、(式1)を用いて計算できる。(式1)により算出された動作利得と目標利得とを比較する。ここで、動作利得と目標利得との差が設定範囲内となるようにLD7aの励起光強度を制御する。
動作利得(dB)=10Log(Po/Pi)・・・(式1)
 例えば、目標利得に対して動作利得が大きい場合には、動作利得を減少させるために、LD7aの励起光強度を下げるように、LD7aを制御する。その結果、出力信号光パワーPoが減少する。逆に、目標利得に対して動作利得が小さい場合には、LD7aの励起光強度を上げるようにLD7aを制御する。その結果、出力信号光パワーPoが増加する。
 一般に増幅用光ファイバとしてEDFを用いる場合において、利得の波長依存性は、狭い波長範囲において概ね線形であり、直線的な特性を有している。以下では、利得の波長依存性のうち線形に近いものを利得傾斜と定義して説明する。
 図2は、EDF3aを用いた際の利得傾斜特性を示す測定図の一例である。図2では、横軸は、平均利得[dB]を示し、縦軸は、利得傾斜値を示している。なお、以下では、((最長波長の利得)-(最短波長の利得))を利得傾斜値とし、平均利得と利得傾斜値との関係を利得傾斜特性と定義して説明を行う。
 以下、「利得」とは、各波長の光の利得であるとし、「目標利得」あるいは「動作利得」とは、平均利得に相当する信号光としての利得であるとし、この両者を区別して説明する。
 例えば、図2に示す(a)では、平均利得18[dB]に対して利得傾斜値は、(-0.4)[dBpp]の値をとる。また、図2に示す(b)では、平均利得13[dB]に対して利得傾斜値は、0.4[dBpp]の値をとる。なお、この平均利得と利得傾斜値との関係は、予め使用するEDF3aに対して測定しておく。
 EDF3aの利得傾斜特性の測定方法を説明する。一定の平均利得設定範囲内で平均利得を順次変化させ、その平均利得に対応する利得傾斜値を求めることで、図2に示すような利得傾斜特性を導出する。また、平均利得と利得傾斜値との関係を測定することで作成されたデータテーブルを、チルト制御部22に利得傾斜特性として予め保存してもよい。利得傾斜特性は、利得傾斜値を平均利得の一価関数として定式化したものでもよい。
 励起光強度を変更させた場合における利得の波長依存性について説明を行う。図3は、互いに異なる波長を有する複数の光からなる信号光の利得傾斜を示す説明図である。縦軸は、各波長の利得である。横軸は、信号光を構成する各々の信号光の波長である。図3では、CH1からCH5まで5種類の波長の信号光の利得が示されている。また、利得傾斜が点線として示されている。なお、本発明における光増幅装置においては、各波長の利得を測定していないが、説明のため各波長の利得を用いる。
 EDF3aは、励起光強度を変化させて利得を変化させると、利得の波長依存性が生じる。具体例を示せば、励起光強度を増加させて利得上げる場合には、図3(a)のように、短波長側の利得が高くなり、右下がりの利得傾斜となる。ここで、図3(a)は、図2に示した(a)の場合の波長ごとの利得傾斜に対応し、その利得傾斜値は、(-0.4)[dBpp]である。一方で、励起光強度を減少させて利得下げる場合には、図3(b)のように、長波長側の利得が高くなり、右上がりの利得傾斜となる。ここで、図3(b)は、図2に示した(b)の場合の利得傾斜に対応し、その利得傾斜値は、(0.4)[dBpp]である。
 次に、チルト制御部22によるVTEQ11の制御について図2から図4を参照しつつ詳細に説明する。図4は、図3(a)に示した利得傾斜を抑制する方法を示す説明図である。図4(a)は、VTEQ11を適用する前の各波長の利得を示す図である。縦軸は、各波長の利得である。横軸は、信号光を構成する各々の信号光の波長である。また、利得傾斜を点線で示している。図4(b)は、利得傾斜値により導出された損失傾斜を示す図である。横軸に信号光の波長を示し、縦軸に各波長の信号光に与える損失を示し、点線は損失傾斜を示す。図4(c)は、VTEQ11を適用した後の各波長の利得を示す図である。縦軸は、各波長の利得である。横軸は、信号光を構成する各々の信号光の波長である。また、点線は、利得傾斜を示している。
 チルト制御部22は、図2に示された利得傾斜特性を用いて、励起光制御部21から得られた目標利得に対応する利得傾斜値を推測する。すなわち、図2の(a)のように、目標利得が18[dB]であれば、利得傾斜値は、(-0.4)[dBpp]であると推測することができる。これにより、図4(a)に示す右下がりの利得傾斜となることを推測できる。
 次に、VTEQ11は、チルト制御部22により制御され、図4(b)のように損失傾斜の損失を信号光に与える。以下、この線分のことを損失傾斜とし、その傾きを損失傾斜値と定義して説明する。ここでは、各波長の信号光について、各波長の損失傾斜に対応する損失分だけ信号光パワーがVTEQ11により減衰される。これにより、各波長の利得が平坦になる。具体的には、図4(b)においては、最短波長であるCH1の波長には最大の損失を与え、最長波長であるCH5には最小の損失を与える。CH2~CH4には、図4(b)においてCH1に対応する点とCH5に対応する点とを通る線分に対応する損失を与える。
 さらに詳細には、VTEQ11は、算出された利得傾斜値を損失傾斜値として、損失傾斜値の損失を信号光に与える。損失傾斜において、図4(b)のようにCH5の損失は、信号光パワー確保の観点から0に近いことが望ましいが、CH5の損失が0より大きくとも、利得傾斜値に対応した損失傾斜値による損失傾斜であり、各波長の利得の平坦化を図れるものであればよい。なお、ここでは、損失傾斜値を利得傾斜値としているが、損失傾斜と利得傾斜との対応関係を定式化してもよいし、その対応関係を測定により求めたデータテーブルとして保存していてもよい。
 このように利得傾斜から損失傾斜を求めて損失を与えることで、図4(c)に示すような利得の波長依存性の少ない信号光を得ることができる。なお、図4では、右下がりの利得傾斜の場合を述べたが、右上がりの利得傾斜の場合でも同様の方法で利得の波長依存性を抑制することが可能である。
 チルト制御部22は、励起光制御部21から伝達される目標利得の代わりに、動作利得を用いてVTEQ11を制御してもよい。動作利得を用いることで、目標利得に対して動作利得が異なる場合においても、精度良く利得傾斜値を求めることが可能である。
 また、目標利得あるいは動作利得を用いる代わりに、PD6bで検出される出力信号光パワーが設定範囲内となるように、LD7aを制御してもよい。この場合、入力信号光パワーから(式1)で算出される動作利得によって、VTEQ11の損失傾斜を調整する。
 なお、VTEQ11の制御時定数は、励起光制御部21で制御されるLDの制御時定数よりも長く設定する。その理由は、VTEQ11の損失傾斜を変化させる際の応答速度に制限があり、また、LDの励起光強度を変化させる際の制御との競合によって制御が安定に収束なくなることを防止するためである。
 以上のように、実施の形態1に係る光増幅装置100においては、VTEQ11により利得傾斜を抑制するため、簡単な構成であっても、利得の波長依存性を抑制することができる。
実施の形態2.
 図5は、実施の形態2に係る光増幅装置200の構成を示す構成図である。実施の形態2に係る光増幅装置200では、実施の形態1にEDF3aとVTEQ11との間にシェイプ等化器(SEQ:Shape EQualizer)12が新たに設けられている。なお、実施の形態1と同一もしくは対応する構成については、同一符号を付し、その説明を省略する。
 図5において、実線両矢印で示す区間Aは図1と同一であり、実線両矢印で示す区間Bは、光入力部1と、点線下向き矢印との間の区間を示す。ここで、点線下向き矢印が、SEQ12の出力端とVTEQ11の入力端との間の部分を示す。なお、区間Aおよび区間Bは、後述する本実施の形態に係る光増幅装置200と従来の光増幅装置との比較の際に用いる。
 SEQ12は、増幅された信号光の利得の波長依存性のうち、VTEQ11が補償できない非直線的な特性を補償して、波長依存性を直線的な特性にするための損失特性を有する部品である。なお、損失傾斜が可変であるチルト等化器11とは異なり、SEQ12は、固有の損失特性を有する。
 図6は、VTEQ11とSEQ12による利得傾斜の抑制方法を示すための説明図である。図6において、(a)は、SEQ12を適用する前の各波長の利得を示す。(b)は、SEQ12を適用した後の各波長の利得を示す。また、(c)は、SEQ12及びVTEQ11を適用した後の各波長の利得を示す。
 まず、SEQ12は、利得傾斜が概ね直線となるように、利得の波長依存性の非直線的な部分を補償する。具体的には、非直線成分を含む(a)を、概ね線形な(b)のように変化させる。次に、VTEQ11は、(c)に示すように利得傾斜を減少させ、利得傾斜を平坦にする。
 SEQ12は、例えば、ファイバーグレーディング、エタロンフィルタあるいは誘電体多層膜フィルタなどの回折格子を用いる。
 以上の構成から、実施の形態2に係る光増幅装置200においては、VTEQ11により利得傾斜が抑制されると共に、SEQ12により利得の波長依存性の非線形成分が補償されている。そのため、利得の波長依存性が線形ではない場合でも、利得の波長依存性を抑制することが可能である。
 一方、図7は、従来の光増幅装置600の構成図である。図7では、VTEQ11の代わりに可変シェイプ等化器13(VSEQ:Variable Shape Equalizer)が設けられると共に、光分波器4c及びOCM8が設けられている点が異なる。また、実施の形態2に係る光増幅装置200では、PD6bがVTEQ11の後段に設けられているのに対して、従来の光増幅装置600では、PD6bがVSEQ13の前段に設けられている点も異なる。図中、実線両矢印Aが、光入力部1から光出力部2までの区間である。また、実線両矢印Cは、光入力部1とVSEQ13の入力端(図中、点線下向き矢印で示す)との間の区間である。
 励起光制御部23は、区間Cにおける信号光の平均利得が目標利得G1に近付けるようにLD7aを制御する。
 信号光は、光分波器4cで分波されてOCM8に入力される。OCM8は、波長多重化された信号光の信号光パワーを波長ごとに測定する。VSEQ13は、光出力部2から出力される各波長の信号光パワーが同一レベルとなるように調整する。減衰制御部24は、OCM8が取得した各波長の信号光パワーに基づき、各波長の信号光パワーが一定値になるようVSEQ13を制御する。
 図7に示す従来の光増幅装置600では、EDFの利得の波長依存性に起因して、波長間の利得偏差が生じると、その利得偏差に起因して、波長数の変化時に各波長の利得が変動するという課題がある。以下に、その課題を詳細に説明する。
 図8は、従来の光増幅装置600を用いた際の制御結果を示す説明図である。図中、(а1)行は、CH1~CH5の5波長の信号光が入力された5波長入力状態を示し、(b1)行は、1波長入力状態を示している。また、図中(i)列は、光入力部1とVSEQ13との間の区間である区間C(図7に図示)の平均利得を示し、(ii)列は、VSEQ13が信号光に与える損失を示す。また、(iii)列が、光入力部1と光出力部2との間の区間である区間A(図7に図示)における平均利得を示す。図中、横方向の点線が、外部にて設定された目標利得G1を示し、横方向の一本鎖線が、区間Cにおける5波長入力状態のCH1の利得であるG2を示す。
 図8の(a1)行をさらに詳細に説明する。励起光制御部23は、区間Cにおける平均利得である動作利得を目標利得G1に基づいて制御している。そのため、(a1)行(i)列にて、CH3の利得と目標利得G1とがほぼ一致する。これは、図8において、CH3の利得が、5波長CH1~CH5の信号光全体としての平均利得とほぼ一致すると共に、区間Cにおける平均利得が、目標利得G1に近づけるように制御されるためである。ここで、CH1~CH5が右下がりの利得傾斜を有するため、CH1及びCH2の利得が目標利得G1よりも高い利得になり、CH4及びCH5の利得が目標利得G1より低い利得になる。また、図中(iii)列は、VSEQ13を通過後にCH1~CH5の利得が、一定値にそろった状態を示している。VSEQ13が損失を与える部品であるため、区間Aにおける5波長入力状態の平均利得である動作利得G01は、目標利得G1より低くなる。
 (a1)行と(a2)行とを参照しつつ、5波長入力状態から1波長入力状態に変わった場合の区間Aにおける平均利得の変動を説明する。まず、(i)列において(a1)行の5波長入力状態では、信号光全体としての平均利得が目標利得G1となっているが、右下がりの利得傾斜があるため、CH1の利得が目標利得G1より高くなる。一方で、(a2)行の1波長入力状態では、CH1の利得が、目標利得G1と等しくなるように制御される。従って、図中、実線下矢印に示す通り、CH1の利得がG2から低下する。5波長入力状態から1波長入力状態に変化する場合、区間Aにおける平均利得、すなわち動作利得が、図中に示すようにG01からG02に大幅に低下している。
 以上のように、従来の光増幅装置600では、信号光の波長数が変動した場合に動作利得が大幅に変動するという問題がある。
 この場合、利得の低下は、VSEQ13の調整で補償することができる。しかし、一般にVSEQ13の制御はEDFの利得一定制御に比べて遅い。これは、VSEQ13に用いられる減衰部品の応答速度の制約があるためである。なお、減衰制御部24の制御によるVSEQ13の応答速度は、低速(ミリ秒以上)であり、励起光制御部23の制御によるEDF3aの応答速度は、高速(ミリ秒以下)である。
 従って、VSEQ13の調整が完了するまでの間は、動作利得が変化した状態、つまり、信号光パワーが目標利得からずれた状態となってしまう。長距離伝送される信号光では、多くの光増幅装置を通過するにつれてこのようなずれが蓄積し、通信品質が劣化する原因となる。従って、このような光伝送システムにおいては、一時的な通信品質の劣化が許容されず、VSEQ13の調整が完了するまでの間の通信品質を犠牲にすることは許容されない。
 図8、図9を参照しつつ、従来の光増幅装置600と、実施の形態2に係る光増幅装置200とを比較する。図9は、実施の形態2に係る光増幅装置200を用いた際の制御結果を示す説明図である。(b1)行は、CH1~CH5の5波長の信号光が入力された状態を示し、(b2)行は、1波長の信号光が入力された状態を示している。また、(i)列は、図5に示す区間BにおけるCH1~CH5の利得を示す。(ii)列は、VTEQ11の損失を示す。また、(iii)列は、図5に示す区間AにおけるCH1~CH5の利得を示す。図中、点線は、外部にて設定された目標利得G1を示す。
 図9を用いて、実施の形態2に係る光増幅装置200の効果を説明する。この光増幅装置では、VTEQ11の出力側で信号光パワーを測定することで、区間Aにて、利得一定制御を行うため、目標利得G1に対して区間Aにおける5波長入力状態の平均利得である動作利得G01と区間Aにおける1波長入力状態の平均利得である動作利得G02が一致している。
 さらに、(iii)列に示すように、区間Aにおける5波長入力状態の動作利得G01が、1波長入力状態の平均利得である動作利得G02と同じである。すなわち、波長数が変動しても区間Aにおける信号光の平均利得が変化しない。これは、図8に示す従来の光増幅装置600と異なり、光分波器4bがVTEQ11の入力側ではなく出力側に設けられ、PD6bがVTEQ11の出力側の信号光パワーを測定することによる効果である。
 図8及び図9の(iii)列に示す通り、5波長から1波長に信号光の波長数が変化する場合、光増幅装置200は、従来の光増幅装置600と比較して区間Aの平均利得の変動が少ない。
 本実施の形態に係る光増幅装置200は、信号光パワーを測定するPD6bをVTEQ11の入力側ではなく出力側に適切に配置する構成を有し、さらに、各波長の信号光パワーを揃えるVSEQ13の代わりにVTEQ11により各波長の利得を一定にする構成を有する。従って、以上の構成により、波長数が変動した場合でも、区間Aにおける5波長入力状態の動作利得G01が1波長入力状態の動作利得G02に対してほとんど変化しない。すなわち、波長の変動時において、利得の波長依存性を抑制すると共に、動作利得の大幅な変動を抑制する適切な制御が可能になっている。
 本実施の形態に係る光増幅装置200においては、波長が減少した場合であっても、通信品質を安定的に保つことができる。
 以上のように、従来の光増幅装置600には、利得一定制御の方法、波長間の利得偏差を抑圧する方法が取り入れられており、おおむね所望の動作・性能を得られるものの、厳密に動作を分析すると、必ずしも精度が十分高い利得一定制御が実現できていない。本発明の実施の形態2に係る光増幅装置200は、正確な分析に基づいて、精度の高い利得一定制御を実現するものである。さらに、過剰な高パワー・高コストな励起光源を使用することなく、利得の波長依存性が生じた場合であっても、各波長の利得平坦性を維持し、精度の高い利得一定制御を実現するものである。
 従来の光増幅装置600と異なり、光増幅装置200は、光分波器4bをVTEQ11の出力側に適切に配置して、PD6bで測定したこの出力側の信号光パワーを用いて利得一定制御を行うと共に、波長の異なる信号光パワーを揃えるのではなく、波長の異なる信号光の利得を一定にすることで、波長数が変動した場合であっても適切な制御を行うことが可能である
実施の形態3.
 図10は、実施の形態3に係る光増幅装置300の構成を示す構成図である。実施の形態1に係る光増幅装置100では、波長選択性光合波器5a及びLD7aがEDF3aの前段側に設けられているのに対して、実施の形態3に係る光増幅装置300では、第2の光合波部としての波長選択性光合波器5b及びLD7bがEDF3aの後段に設けられている点が異なる。ここで、LD7bは、EDF3aの後段においてEDF3aを励起している。なお、実施の形態2と同様に、波長選択性光合波器5bとVTEQ11との間にSEQ12を設けてもよいことは言うまでもない。
 EDF3aの後段側から励起光を合波させる後方励起の構成により、前方励起の構成に比べて雑音劣化が大きくなるものの、信号光の利得飽和が発生しにくくなる。すなわち、EDF3aの前段からLD5aを用いて励起する前方励起と比較して、高出力を得ることができる。なお、図中、図1と同一もしくは対応する構成については、同一符号を付し、その説明を省略する。
実施の形態4.
 図11は、実施の形態4に係る光増幅装置400の構成を示す構成図である。実施の形態1に係る光増幅装置100の構成に加えて、EDF3aの後段に設けられる励起光源としてのLD7b及び波長選択性光合波器5bをさらに備える構成である。EDF3aは、前段側と後段側の両方から励起される。そのため、EDF3a全長に亘って均一な励起が可能となる。なお、実施の形態2と同様に、波長選択性光合波器5bとVTEQ11との間にSEQ12を設けてもよいことは言うまでもない。また、図中、図1と同一もしくは対応する構成については、同一符号を付し、その説明を省略する。
実施の形態5.
 図12は、実施の形態5に係る光増幅装置500の構成を示す構成図である。実施の形態5に係る光増幅装置500は、実施の形態4に係る光増幅装置400と比較して、第2の光増幅部としてのEDF3bがVTEQ11の前段にさらに設けられていると共に、波長選択性光合波器5bの代わりに、第3の光合波部としての波長選択性光合波器5cがEDF3a,3bの間に設けられている点が異なる。ここでは、LD7bは、波長選択性光合波器5cを介してEDF3bを前方励起している。なお、実施の形態2と同様に、波長選択性光合波器5cとVTEQ11との間にSEQ12を設けてもよいことは言うまでもない。また、図中、図11と同一もしくは対応する構成については、同一符号を付し、その説明を省略する。
 なお、本発明では、VTEQを用いてEDFの波長依存性を抑制するためにVTEQを用いる構成としたが、一般に、VTEQを用いずに、EDFの利得を波長依存性が生じない値に固定するという考え方がある。しかしながら、波長依存性が生じない利得の値が必要とする利得に比べて大きい場合であっても、一旦波長依存性が生じない利得となるようにEDFを励起した上で必要とする利得になるように利得を減衰させることとなる。この場合、高価な高出力の励起用光源が必要となり、高コストで高消費電力な光増幅装置になるという問題がある。
 また、本発明では、光増幅装置の利得を光増幅装置の入力信号光パワーと出力信号光パワーとを測定して目標利得になるように励起光源の励起光強度を制御しているが、光増幅部の直後で増幅信号光パワーを測定し、入力信号光パワーと増幅信号光パワーとを用いて励起光源の励起光強度を制御し、その後に利得の波長依存性を抑制するという考え方がある。しかしながら、その場合は利得の波長依存性の影響を抑制する際に信号光が減衰するため光増幅装置の利得が目標利得よりも低下するという問題がある。
 また、従来の光増幅装置600と本発明の実施の形態2に係る光増幅装置200との比較することで、従来の光増幅装置に比べて本発明の光増幅装置は、利得の変動を抑制することができ、波長が減少した場合であっても、通信品質を安定に保つことができることを説明したが、実施の形態2の構成に限らず、本発明の実施の形態1あるいは実施の形態3から実施の形態5の構成であっても同様な効果が得られることは言うまでもない。
 なお、上述した実施の形態1から実施の形態5のそれぞれの構成以外にも、これらの実施の形態を組合せた構成にしてもよい。また、実施の形態の組合せにより得られた構成を適宜変更することで光増幅装置を構成してもよいのは言うまでもない。
1 光入力部
2 光出力部
3a,3b EDF(エルビウム添加ファイバ)
5a,5b,5c 波長選択性光合波器
6a,6b PD(フォトダイオード)
7a,7b LD(レーザダイオード)
10 信号光伝搬路
11 VTEQ(可変チルト等化器)
12 SEQ(シェイプ等化器)
21 励起光制御部
22 チルト制御部

Claims (10)

  1.  互いに異なる波長を有する複数の信号光が多重化された入力信号光が入力される光入力部と、前記入力信号光を増幅し増幅信号光として出力する第1の光増幅部と、前記増幅信号光が出力される光出力部と、を有する信号光伝搬路を備え、
     前記信号光伝搬路は、前記第1の光増幅部と前記光出力部との間に設けられ、前記増幅信号光に対して直線的な損失傾斜による損失を与え、前記損失傾斜の傾きである損失傾斜値を変更可能である可変チルト等化器を有する光増幅装置であって、
     前記光入力部における入力信号光パワーを検出する第1の光検出器と、
     前記第1の光増幅部を励起する励起光源と、
     前記光出力部における出力信号光パワーを検出する第2の光検出器と、
     前記励起光源を制御する第1の制御部と、
     前記可変チルト等化器の前記損失傾斜値を制御する第2の制御部と
     を備える光増幅装置。
  2.  前記第1の制御部は、
     前記入力信号光パワー及び前記出力信号光パワーに基づいて動作利得を求め、前記動作利得が予め設定された目標利得に近付くように前記励起光源を制御する
     ことを特徴とする請求項1に記載の光増幅装置。
  3.  前記第2の制御部は、
     前記第1の光増幅部の利得の波長依存性である利得傾斜特性及び前記目標利得に基づき利得傾斜の傾きである利得傾斜値を算出し、前記利得傾斜値を前記損失傾斜値として前記可変チルト等化器を制御する
     ことを特徴とする請求項2に記載の光増幅装置。
  4.  前記第2の制御部は、
     前記第1の光増幅部の利得の波長依存性である利得傾斜特性及び前記動作利得に基づき利得傾斜の傾きである利得傾斜値を算出し、前記利得傾斜値を前記損失傾斜値として前記可変チルト等化器を制御する
     ことを特徴とする請求項2に記載の光増幅装置。
  5.  前記信号光伝搬路は、
     前記第1の光増幅部と前記可変チルト等化器との間に設けられ、前記利得傾斜を直線的な特性に補償する損失特性を有するシェイプ等化器を有する
     ことを特徴とする請求項3または請求項4に記載の光増幅装置。
  6.  前記信号光伝搬路は、
     前記光入力部と前記第1の光増幅部との間に設けられた第1の光合波部を有し、
     前記励起光源は、
     前記第1の光合波部を介して前記第1の光増幅部を励起する
     ことを特徴とする請求項1から請求項5のいずれか1項に記載の光増幅装置。
  7.  前記信号光伝搬路は、
     前記第1の光増幅部と前記可変チルト等化器との間に第2の光合波部を有し、
     前記励起光源は、
     前記第2の光合波部を介して前記第1の光増幅部を励起する
     ことを特徴とする請求項1から請求項5のいずれか1項に記載の光増幅装置。
  8.  前記信号光伝搬路は、
     前記光入力部と前記第1の光増幅部との間に設けられた第1の光合波部と、
     前記第1の光増幅部と前記可変チルト等化器との間に設けられた第2の光合波部と
     を有し、
     前記励起光源は、
     前記第1の光合波部及び前記第2の光合波部を介して前記第1の光増幅部を励起する
     ことを特徴とする請求項1から請求項5のいずれか1項に記載の光増幅装置。
  9.  前記信号光伝搬路は、
     前記光入力部と前記第1の光増幅部との間に設けられた第1の光合波部と、
     前記第1の光増幅部と前記可変チルト等化器との間に設けられた第3の光合波部と、
     前記第3の光合波部と前記可変チルト等化器との間に設けられた第2の光増幅部と
     を有し、
     前記励起光源は、
     前記第1の光合波部を介して前記第1の光増幅部を励起すると共に、前記第3の光合波部を介して前記第2の光増幅部を励起する
     ことを特徴とする請求項1から請求項5のいずれか1項に記載の光増幅装置。
  10.  前記第1の制御部の制御周期は、前記第2の制御部の周期より短い
     ことを特徴とする請求項1から請求項9のいずれか1項に記載の光増幅装置。
PCT/JP2015/082484 2015-11-19 2015-11-19 光増幅装置 WO2017085822A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580084532.0A CN108352672A (zh) 2015-11-19 2015-11-19 光放大装置
US15/774,019 US10971888B2 (en) 2015-11-19 2015-11-19 Optical amplifier
JP2017551453A JPWO2017085822A1 (ja) 2015-11-19 2015-11-19 光増幅装置
PCT/JP2015/082484 WO2017085822A1 (ja) 2015-11-19 2015-11-19 光増幅装置
EP15908762.6A EP3379662A4 (en) 2015-11-19 2015-11-19 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082484 WO2017085822A1 (ja) 2015-11-19 2015-11-19 光増幅装置

Publications (1)

Publication Number Publication Date
WO2017085822A1 true WO2017085822A1 (ja) 2017-05-26

Family

ID=58718625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082484 WO2017085822A1 (ja) 2015-11-19 2015-11-19 光増幅装置

Country Status (5)

Country Link
US (1) US10971888B2 (ja)
EP (1) EP3379662A4 (ja)
JP (1) JPWO2017085822A1 (ja)
CN (1) CN108352672A (ja)
WO (1) WO2017085822A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632390A (zh) * 2019-03-25 2021-11-09 日本电气株式会社 光学均衡器、方法和非暂时性计算机可读介质
CN110601766B (zh) * 2019-09-10 2020-11-13 武汉光迅科技股份有限公司 一种控制方法及光纤放大器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252923A (ja) * 1999-03-02 2000-09-14 Fujitsu Ltd 波長多重用光増幅器及び光通信システム
JP2003526215A (ja) * 2000-03-03 2003-09-02 テレフオンアクチーボラゲツト エル エム エリクソン 光増幅器内の利得制御
JP2006286918A (ja) 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The 光増幅装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306700B2 (ja) 1996-05-02 2002-07-24 富士通株式会社 光増幅装置及び波長多重光伝送システム
US6456428B1 (en) * 1999-09-02 2002-09-24 Sumitomo Electric Industries, Ltd. Optical amplifier
US6535329B1 (en) * 1999-12-20 2003-03-18 Jds Uniphase Inc. Temperature tuning an optical amplifier
US6731424B1 (en) * 2001-03-15 2004-05-04 Onetta, Inc. Dynamic gain flattening in an optical communication system
US6611371B2 (en) 2001-03-16 2003-08-26 Corning Incorporated Single parameter gain slope adjuster for an optical system
US6535330B1 (en) * 2001-03-31 2003-03-18 Corning Incorporated Dynamic controller for a multi-channel optical amplifier
US6483631B1 (en) * 2001-06-05 2002-11-19 Onetta, Inc. Optical amplifier spectral tilt controllers
GB0124258D0 (en) * 2001-10-09 2001-11-28 Marconi Comm Ltd Optical amplifier control in WDM communications systems
JP3903830B2 (ja) * 2002-04-05 2007-04-11 株式会社日立製作所 利得補償装置及びそれを用いた伝送システム
JP3551418B2 (ja) 2003-05-27 2004-08-04 富士通株式会社 光伝送装置及び波長多重光通信システム
JP4298570B2 (ja) * 2004-04-13 2009-07-22 富士通株式会社 光ファイバ増幅器の制御方法および光伝送システム
JP2006108499A (ja) * 2004-10-07 2006-04-20 Furukawa Electric Co Ltd:The 光信号増幅装置及びロススペクトルの決定方法。
US8233214B2 (en) * 2008-02-13 2012-07-31 Maxim Bolshtyansky Optical fiber amplifier and a control method therefor
JP2012156285A (ja) * 2011-01-26 2012-08-16 Fujitsu Ltd 光増幅装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252923A (ja) * 1999-03-02 2000-09-14 Fujitsu Ltd 波長多重用光増幅器及び光通信システム
JP2003526215A (ja) * 2000-03-03 2003-09-02 テレフオンアクチーボラゲツト エル エム エリクソン 光増幅器内の利得制御
JP2006286918A (ja) 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The 光増幅装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3379662A4

Also Published As

Publication number Publication date
CN108352672A (zh) 2018-07-31
EP3379662A4 (en) 2018-12-05
US20180358775A1 (en) 2018-12-13
JPWO2017085822A1 (ja) 2018-06-28
EP3379662A1 (en) 2018-09-26
US10971888B2 (en) 2021-04-06

Similar Documents

Publication Publication Date Title
US7359112B2 (en) Individual band gain equalizer for optical amplifiers
JP5239141B2 (ja) 光増幅装置およびその制御方法
US7715092B2 (en) Dynamic raman tilt compensation
JP3903650B2 (ja) 光増幅器および光増幅器制御方法
JPH08278523A (ja) 光増幅装置
JP5089723B2 (ja) 波長多重励起ラマンアンプ、波長多重励起ラマンアンプの制御方法および制御プログラム
US20100073762A1 (en) Raman amplifier and control method thereof
JP2010157785A (ja) 光受信装置および波長多重伝送システム
US8351112B2 (en) Optical amplifier
JP5471227B2 (ja) 光増幅器及び光増幅方法
WO2017085822A1 (ja) 光増幅装置
JP2001094181A (ja) 光増幅器
JP2004301991A (ja) 光増幅制御ユニットおよび光増幅制御方法
JP3811134B2 (ja) 光増幅器
JP6020640B2 (ja) 光増幅装置
JP4281245B2 (ja) 光増幅器
JP3832361B2 (ja) 光増幅器および光通信システム
JP5759437B2 (ja) 光増幅器システム及び光増幅方法
JP5304378B2 (ja) 光増幅器
JP2009164565A (ja) 利得等化器、光増幅器および光増幅方法
JP5682677B2 (ja) 光増幅器及び光増幅方法
JP5142024B2 (ja) 光増幅装置
JP3902214B2 (ja) 光伝送装置
JP2001196673A (ja) 光ファイバ増幅器
JP2007067424A (ja) 光伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015908762

Country of ref document: EP