WO2017084502A1 - 一种可变形无人飞行器 - Google Patents

一种可变形无人飞行器 Download PDF

Info

Publication number
WO2017084502A1
WO2017084502A1 PCT/CN2016/104631 CN2016104631W WO2017084502A1 WO 2017084502 A1 WO2017084502 A1 WO 2017084502A1 CN 2016104631 W CN2016104631 W CN 2016104631W WO 2017084502 A1 WO2017084502 A1 WO 2017084502A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
seat
rod
driving
fuselage
Prior art date
Application number
PCT/CN2016/104631
Other languages
English (en)
French (fr)
Inventor
郑伯省
Original Assignee
温州市通翔智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州市通翔智能科技有限公司 filed Critical 温州市通翔智能科技有限公司
Publication of WO2017084502A1 publication Critical patent/WO2017084502A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/50Foldable or collapsible UAVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to the field of micro small unmanned aerial vehicles, and more particularly to a deformable unmanned aerial vehicle.
  • micro-miniature unmanned aerial vehicles have broad prospects in the military and civilian industries, and can be used for near-surface monitoring, reconnaissance and other tasks, as well as for indoor and outdoor aerial photography projects between shorts.
  • the prior art micro-miniature unmanned aerial vehicles are usually implemented by special materials in order to control the weight and size of the aircraft.
  • the micro-miniature aircraft performs aerial photography tasks at high altitude, it needs a sufficient spatial viewing angle to obtain better.
  • Aerial photography effect Since the basic structure of the existing aircraft is a fixed rigid structure, in the aerial photography process, it is impossible to expand the view of the aircraft by changing the shape.
  • the "Aircraft Deformation Structure and Micro Air Vehicle” disclosed in the structure includes a fuselage, a deformation frame, a power unit and a landing gear.
  • the landing gear is mounted on the deformation frame, and the body includes a power motor, and the power motor is passed through the screw.
  • the deformation frame drive connection which drives the deformation frame to change up or down by the up and down movement of the screw rod.
  • the power motor drives the screw rod to rotate in one direction to make the deformation frame upturn and expand the aircraft.
  • the power motor drives the screw to rotate in the other direction to move the deformation frame downwards, so that the landing gear is in contact with the ground to prevent the fuselage from landing.
  • the present invention is based on the above-described aircraft structure, and provides an aircraft with a deformable frame having different transmission structures.
  • the present invention provides a deformable unmanned aerial vehicle capable of expanding the field of view of an aircraft, which can achieve 360° unobstructed shooting during aerial photography, and has low cost and quick response. Easy to install and so on.
  • the technical solution adopted by the present invention is: a deformable unmanned aerial vehicle comprising a fuselage and a deformation frame, and a deformation device is provided with a power device capable of driving the fuselage and the deformation frame to take off or land, the deformation machine
  • the frame is further provided with a landing gear, and the deformation frame is distributed on both sides of the fuselage
  • the body comprises a driving portion, a transmission portion and a mounting seat, and the driving portion is disposed on the mounting seat
  • the transmission portion comprises a gear transmission component
  • the gear transmission assembly includes an output gear that moves in synchronization with the driving portion, and the output gear meshes with the reduction gear assembly.
  • the reduction gear assembly is respectively connected to the deformation frame on both sides of the fuselage through the transmission gear, and the body further includes an angle control device.
  • the angle control device comprises a signal receiver, an angle detector and a control circuit. The input end of the signal receiver is connected to the control circuit, the input end of the angle detector is connected to the control circuit, and the output end of the control circuit is electrically connected to the drive unit.
  • the landing gear on the deformed frame is used to rest on the ground, to avoid collision of the floor landing, and the power on the deformed frame.
  • the device includes a propeller motor and a propeller, and the propeller motor drives the propeller to rotate to drive the body to ascend or descend, and the deforming frame realizes the up and down deformation by the cooperation of the driving portion and the transmission portion located on the fuselage.
  • the transmission part is deformed by the gear drive driving deformation frame, and the angle of the upward adjustment of the deformation frame is determined by the angle control device, the signal receiver receives the remote control signal, and transmits the input signal to the control circuit, and the angle detection
  • the device is connected to the deformation frame to detect the current upturn angle of the deformation frame. After detecting the current upturn angle of the deformation frame, the angle detector transmits a signal to the control circuit.
  • the control circuit When the current angle of the deformation frame is greater than the remote control signal angle , the control circuit outputs a pressing signal so that the driving portion drives the deforming frame in the reverse direction to press it down to a certain angle and then returns to the remote control signal angle.
  • the control circuit When the current angle of the deformed frame is smaller than the remote control signal angle ⁇ , the control circuit outputs the upturn signal so that the driving portion continues to drive the deformed frame to continue to be upturned, thereby maintaining the deformed frame to maintain a stable angle of flight.
  • the transmission gear includes a driving gear and a driven gear
  • the input end of the angle detector is synchronously connected with the driving gear
  • the driving gear meshes with the driven gear
  • the reduction gear assembly includes a coaxial The connected large gear and pinion, the large gear meshes with the output gear, the pinion is located between the driving gear and the driven gear, and the pinion meshes with the driving gear.
  • the driving portion meshes with the driving gear through the output gear, transmits power to the driving gear, and transmits power to the driven gear through the driving gear to form a gear transmission matching structure.
  • the transmission gear is a sector gear having a sector-shaped tooth surface
  • the active tooth The wheel and the driven gear are located on the same mounting surface, and a gear space is accommodated between the respective sector-shaped tooth surfaces of the driving gear and the driven gear, and the pinion gear meshes with the fan-shaped tooth surface of the driving gear, and the fan shape of the driving gear
  • the lower part of the tooth surface meshes with the lower part of the driven gear sector tooth surface, and the other end of the sector gear with respect to the sector tooth surface is hinged to the mounting seat via the gear shaft, and the sector gear is fixed to the deformation frame.
  • the sector tooth surface of the transmission gear and the reduction gear form a reasonable mounting structure.
  • the deformation frame includes a main rod and a secondary rod that are parallel to each other, and the main rod includes a proximal end and a distal end, and the proximal end of the main rod and the transmission gear are fixed by the force arm seat,
  • the transmission gear is hinged to the mounting seat through the gear shaft.
  • the force arm seat is provided with a shaft hole adapted to the gear shaft.
  • the proximal end of the main rod is hinged to the mounting seat through the gear shaft, and the cross rod of the main rod is connected with the cross rod.
  • the proximal end of the rod is hinged to the mounting seat through the connecting rod, and the distal end of the auxiliary rod is hinged to the horizontal rod through the balance seat, the proximal end hinge point of the main rod, the distal end connection point of the main rod, the proximal hinge point of the auxiliary rod, and the distal end of the auxiliary rod
  • the line connecting the hinge points forms a parallelogram.
  • the deformed frame passes through the parallelogram structure between the proximal end and the distal end of the main rod and the auxiliary rod.
  • the deformation frame maintains the horizontal deformation movement of the crossbar during the deformation process, so that the deformation frame is kept up or down in a horizontal state, ensuring that the camera carried on the aircraft can smoothly capture images.
  • the deformation frame includes a main rod and a secondary rod that are parallel to each other, and the main rod includes a proximal end and a distal end, and the proximal end of the main rod and the transmission gear are fixed by the force arm seat,
  • the force arm seat comprises a force arm head, and the force arm mounting cavity is formed by the two side plates, and the force arm head is integrally connected with the transmission gear, and the two side plates are fixed on both sides of the force arm head, and the arm assembly is installed
  • a tube clamp for clamping the proximal end of the main rod is also secured in the chamber.
  • the proximal end of the main shaft of the deformation frame is connected to the force arm seat through the pipe clamp, and the force arm seat is connected to the body through the force arm head to form a stable and firm installation structure.
  • the distal end of the main rod is fixed to the cross rod through the connecting seat
  • the connecting seat is provided with a through hole through which the cross rod can pass
  • the connecting seat is further provided with the distal end of the main rod
  • the balance clamp includes a balance sleeve sleeved on the crossbar, the balance sleeve body extends with a balance arm, and the distal end of the auxiliary pole is hinged to the balance arm through the connecting rod, and both ends of the balance seat
  • the connection between the connection points is parallel and equidistant from the line connecting the respective proximal ends of the main and sub-rods.
  • a stable connection structure is formed between the main rod and the cross rod through the connecting seat and the pipe clamp member, and the parallelogram structure between the main rod, the auxiliary rod and the connecting ends thereof is ensured by the balance seat structure. Stable setting Set.
  • the mounting base includes a gear assembly mounting cavity formed by connecting upper and lower walls and side walls, the driving portion is mounted on one side wall, and the other side wall is extended with camera fixing. seat.
  • the gear assembly is mounted on a mount of the fuselage, the mount has a mounting cavity adapted to the gear assembly, and the drive portion and the camera required during the aerial photography are respectively mounted on the gear assembly Balanced on both sides for flight stability.
  • the gear assembly mounting cavity is further provided with a casing
  • the upper and lower walls are respectively provided with upper and lower partitions
  • the lower partition plate is further provided with a pan/tilt pad
  • a cloud table pad A guard plate on both sides of the camera mount is further extended on both sides of the board.
  • the cover of the outer casing functions to protect the fuselage, and the gimbal pad of the lower baffle serves as a shockproof function, and the guard plate further protects the image, ensures smooth imaging, and prevents the motor from rotating.
  • Body shake
  • the power device includes a propeller, a propeller motor that drives the propeller to rotate, and the propeller is mounted on the output shaft of the propeller motor, and the motor is mounted on the motor base, and the motor base is provided There is a clamping seat mounted on the end of the crossbar in the deforming frame, the propeller is mounted on one end of the motor seat facing the fuselage, and the landing gear is mounted on the downward end of the motor seat.
  • the propeller is mounted on both ends of the crossbar, and the propellers are all driven by the propeller motor, and are distributed up and down with the landing gear, the landing gear is disposed downward, and is used for resting on the ground, and the landing gear includes L
  • the type of landing foot the upper end of the landing foot extends with a connecting arm fixed to the motor seat, and the inner wall of the landing foot is provided with a tapered reinforcing rib to play a strong role.
  • the holder includes a panel extending from an upper end surface of the motor block, the panel being provided with an arcuate groove adapted to the end of the crossbar, the arcuate groove cover being disposed on the crossbar
  • the upper surface of the end portion, the lower surface of the end of the crossbar is covered with an arcuate strip having an arcuate groove adapted to the lower surface of the end of the crossbar, the curved strip being fixed to the side wall of the arcuate groove of the panel .
  • the motor base is formed by the clamping and fixing action of the holder and the end of the crossbar.
  • the present invention adopts the gear transmission efficiency to replace the screw drive in the prior art, and the gear transmission has the advantage of higher efficiency.
  • the above gear transmission efficiency can reach 99%, and the gear transmission also includes a similar rack-fit transmission.
  • the efficiency of the conventional screw drive is only 50%, and the power required for the gear transmission of the present invention is smaller.
  • the motor of the present invention has a greater driving force for the aircraft, and is completed.
  • the deformation time is shorter, and its load-bearing capacity is better, it can carry a heavier and better camera, and a better shooting process is obtained during aerial photography.
  • the invention also adjusts the deformation of the deformation frame by the angle control device.
  • the angle is such that it can be arbitrarily adjusted between the range of deformation angles, and it is stabilized to fly at a certain angle, and the deformation angle range of the deformation frame is preferably -50° to 50°;
  • the driving in the prior art The motor of the screw sliding drive is placed above the mount, which causes the mounting surface of the mount for mounting the battery to be uneven, which easily affects the battery continuation. Between inches, while the present invention as a motor and a camera is disposed between the left and right side mounts, mounts with a flat upper end surface to facilitate battery installation, it may be appropriate to extend the battery life inch inch.
  • FIG. 1 is a schematic view showing the structure of a specific embodiment of the present invention.
  • FIG. 2 is a perspective view showing the structure of the body casing removed in accordance with an embodiment of the present invention
  • FIG. 3 is a perspective view showing the structure of FIG. 2 in a rear view state according to a specific embodiment of the present invention
  • FIG. 4 is a perspective view of a mounting structure of a specific embodiment of the present invention.
  • Figure 5 is a front elevational view of a mounting structure of a specific embodiment of the present invention.
  • FIG. 6 is a schematic view showing a mounting structure of a deformed frame and a gear assembly according to an embodiment of the present invention
  • Figure 7 is a front elevational view of a gear assembly in accordance with an embodiment of the present invention.
  • Figure 8 is a rear elevational view of a gear assembly in accordance with an embodiment of the present invention.
  • Figure 9 is a front elevational view of the landing gear of a specific embodiment of the present invention.
  • FIG. 10 is an enlarged view of A in FIG. 1 according to a specific embodiment of the present invention.
  • Figure 11 is an enlarged view of B in Figure 2 of an embodiment of the present invention.
  • Figure 12 is an enlarged view of C in Figure 3 of an embodiment of the present invention.
  • FIG. 13 is a structural block diagram of a working principle of a specific embodiment of the present invention.
  • FIG. 14 is a circuit structural diagram of a control circuit according to an embodiment of the present invention.
  • fuselage 1 deformation frame 2, main pole 21, main rod proximal end 211, main rod distal end 212, secondary rod 22, secondary rod proximal end 221, secondary rod distal end 222, crossbar 23, force arm Seat 24, force arm mounting cavity 241, force arm head 242, pipe clamp member 25, connecting rod 26, connecting seat 27, balance seat 28, balance sleeve body 281, balance arm 282, landing gear 3, landing gear 31, connection Arm 32, rib 33, drive portion 4, transmission portion 5, output gear 51, reduction gear assembly 52, large gear 521, pinion 522, transmission gear 53, drive gear 531, driven gear 532, sector tooth surface 533, gear
  • a specific embodiment of the present invention is a deformable unmanned aerial vehicle comprising a fuselage 1, a deformable frame 2, and a deformable frame 2 provided with a drivable fuselage 1 and a deformed frame 2 for takeoff Or the landing power device, the deformation frame 2 is further provided with a landing gear 3, the deformation frame 2 is distributed on both sides of the fuselage 1, the fuselage 1 comprises a driving portion 4, a transmission portion 5 and a mounting seat 6, the driving portion 4 is arranged On the mount 6, the transmission portion 5 includes a gear transmission assembly including an output gear 51 that moves in synchronization with the drive portion 4, the output gear 51 meshes with the reduction gear assembly 52, and the reduction gear assembly 52 passes through the transmission gear 53 and the fuselage, respectively.
  • the fuselage 1 further comprises an angle control device 7, the angle control device 7 comprises a signal receiver, an angle detector and a control circuit, the input end of the signal receiver is connected with the control circuit, the angle The input of the detector is connected to the control circuit, and the output of the control circuit is electrically connected to the drive unit 4.
  • the angle control device 7 comprises a signal receiver, an angle detector and a control circuit, the input end of the signal receiver is connected with the control circuit, the angle The input of the detector is connected to the control circuit, and the output of the control circuit is electrically connected to the drive unit 4.
  • At least two deformation frames 2 are respectively located on two sides of the fuselage 1, and the landing gear 3 on the deformation frame 2 is used to rest on the ground, so as to avoid collision and deformation of the fuselage 1
  • the power unit on the frame 2 includes a propeller motor 81 and a propeller 8, the power motor drives the propeller 8 to rotate to drive the fuselage 1 to ascend and descend, and the deforming frame 2 passes through the driving portion 4 and the transmission located on the fuselage 1.
  • the driving cooperation of the portion 5 realizes the deformation action of the upturning and the pressing, the driving portion 4 is driven by the power motor, and the transmission portion 5 is deformed by the gear drive driving the deformation frame 2, and the deformation frame is controlled by the angle control device 7.
  • the signal receiver receives the remote control signal, and transmits the input signal to the control circuit
  • the angle detector is connected to the deformation frame 2
  • the angle detector uses a potentiometer to detect the current deformation frame 2 Upward angle
  • the signal is transmitted to the control circuit, when the deformation frame 2 is currently
  • the angle of the control signal is greater than the angle of the remote control signal
  • the control circuit outputs a depression signal so that the driving portion 4 drives the deformation frame 2 in the reverse direction to be pressed down to a certain angle and then returns to the remote control signal angle, and when the current angle of the deformation frame 2 is smaller than the remote control signal
  • the control circuit outputs an up-warping signal so that the driving portion 4 is driven to the deformation frame 2 to continue to be upturned, thereby maintaining the deformation frame 2 to maintain a stable angle of flight.
  • the transmission gear 53 includes a driving gear 531 and a driven gear 532.
  • the input end of the angle detector is synchronously connected with the driving gear 531, the driving gear 531 is meshed with the driven gear 532, and the reduction gear assembly 52 includes a coaxially connected large gear 521.
  • the pinion 522 the large gear 521 is meshed with the output gear 51, the pinion 522 is located between the driving gear 531 and the driven gear 532, and the pinion 522 is meshed with the driving gear 531.
  • the driving portion 4 meshes with the driving gear 531 through the output gear 51, transmits power to the driving gear 531, and transmits power to the driven gear 532 through the driving gear 531 to form a gear transmission coupling structure.
  • the transmission gear 53 is a sector gear having a sector-shaped tooth surface 533.
  • the driving gear 531 and the driven gear 532 are located on the same mounting surface, and a pinion gear is formed between the driving gear 531 and the fan-shaped tooth surface 533 of the driven gear 532.
  • the gear space accommodated by 522, the pinion 522 meshes with the upper portion of the sector tooth surface 533 of the driving gear 531, and the lower portion of the sector tooth surface 533 of the driving gear 531 meshes with the lower portion of the fan tooth surface 533 of the driven gear 532, and the sector gear is opposite to the sector tooth surface 533.
  • the other end is hinged to the mounting seat 6 via a gear shaft 54, and the sector gear is fixed to the deforming frame 2.
  • the sector-shaped tooth surface 533 of the transmission gear 53 and the reduction gear form a reasonable mounting structure.
  • the deformation frame 2 includes a main rod 21 and a secondary rod 22 which are parallel to each other.
  • the main rod 21 includes a proximal end and a distal end.
  • the proximal end 211 of the main rod and the transmission gear 53 are fixed by the force arm seat 24, and are driven.
  • the gear 53 is hinged to the mounting seat 6 via a gear shaft 54.
  • the arm seat 24 is provided with a shaft hole adapted to the gear shaft 54.
  • the main rod proximal end 211 is hinged to the mounting seat 6 via the gear shaft 54, the distal end of the main rod 212 is connected with a cross bar 23, the proximal end 221 of the auxiliary rod is hinged to the mounting seat 6 through the connecting rod 26, and the distal end 222 of the auxiliary rod is hinged to the crossbar 23 through the balance seat 28, and the proximal end 211 of the main rod is hinged and the distal end 212 of the main rod.
  • the connection point, the hinge point of the proximal end 221 of the secondary rod, and the hinge point of the distal end 222 of the secondary rod form a parallelogram.
  • the deforming frame 2 passes through the parallelogram structure between the proximal end and the distal end of the main rod 21 and the auxiliary rod 22, thereby ensuring that the deforming frame 2 maintains the horizontal deformation movement of the cross bar 23 during the deformation process.
  • the deformation frame 2 includes a main rod 21 and a sub-rod 22 which are parallel to each other, and the main rod 21 includes a proximal end and a distal end, and the main The rod proximal end 211 and the transmission gear 53 are fixed by the force arm seat 24, and the force arm base 24 includes a force arm head 242, and the force arm mounting cavity 241 is formed by the two side plates to form the force arm 242.
  • the force arm head The 242 is connected to the transmission gear 53.
  • the two side plates are fixed on both sides of the force arm head 242, and the pipe clamp member 25 for clamping the proximal end 211 of the main rod is also fixed in the force arm mounting cavity 241.
  • the proximal end 211 of the deformed frame 2 is connected to the arm seat 24 through the tube clamp 25, and the arm seat 24 is connected to the body 1 through the force arm head 242 to form a stable and firm installation. structure.
  • the distal end 212 of the main rod is fixed to the crossbar 23 through the connecting base 27, and the connecting seat 27 is provided with a through hole through which the crossbar 23 passes, and the connecting seat 27 is further provided with the distal end 212 of the main rod.
  • the balance seat 28 includes a balance sleeve 281 sleeved on the crossbar 23, the balance sleeve 281 extends with a balance arm 282, and the distal end 22 2 of the secondary rod is hinged to the balance arm by the connecting rod 26.
  • the line connecting the two ends of the balance base 28 is parallel and equidistant from the line connecting the respective ends of the main and auxiliary rods 2 2 .
  • the main rod 21 and the cross rod 23 form a stable connection structure through the connecting seat 27 and the tube clamp member 25, and the main rod 21, the auxiliary rod 22 and the two ends thereof are ensured by the structure of the balance seat 28.
  • the mounting base 6 includes a gear assembly mounting cavity 61 formed by connecting upper and lower walls and side walls.
  • the driving portion 4 is mounted on one side wall, and the other side wall extends the imaging fixing seat 62.
  • the gear assembly is mounted on the mount 6 of the body 1, the mount 6 has a mounting cavity adapted to the gear assembly, and the drive portion 4 and the camera required during the aerial photography are respectively Installed on both sides of the gear unit for weight balance and flight stability.
  • the gear assembly mounting cavity 61 is further provided with a casing 66, and the upper and lower walls are respectively provided with upper and lower partition plates 63, and the lower partition plate 63 is further provided with a pan/tilt plate 64, and the two sides of the gimbal pad 64 are respectively extended.
  • the cover of the outer casing 66 functions to protect the body 1, and the pan/tilt 64 of the lower partition 63 serves as a shockproof function, and the shield 65 further protects.
  • the power device includes a propeller 8, a propeller motor 81 that drives the rotation of the propeller 8, and the propeller 8 is mounted on an output shaft of the propeller motor 81.
  • the motor is mounted on the motor base 82, and the motor base 82 is provided.
  • the holder 83 is attached to the end of the crossbar 23 of the deforming frame 2, and the propeller 8 is attached to one end of the motor base 82 facing the body 1, and the landing gear 3 is attached to the lower end of the motor base 82.
  • the propeller 8 is attached to both ends of the crossbar 23, and the propellers 8 are all driven by the propeller motor 81, and are distributed up and down with the landing gear 3 , and the landing gear 3 is disposed downward for rest
  • the landing gear 3 includes an L-shaped landing foot 31.
  • the upper end of the landing foot 31 extends with a connecting arm 32 fixed to the motor base 82.
  • the inner wall of the landing foot 31 is provided with a tapered reinforcing rib 33 for reinforcing.
  • the clamping seat 83 includes a panel 831 extending from an upper end surface of the motor base 82.
  • the panel 831 is provided with an arcuate groove 832 adapted to the end of the crossbar 23, and the arcuate groove 832 is disposed on the crossbar 23.
  • the upper surface of the end, the lower surface of the end of the crossbar 23 is covered with a curved band 833 having an arcuate groove 832 adapted to the lower surface of the end of the crossbar 23, a curved band 833 and a panel 831
  • the side walls of the arcuate groove 832 are fixed.
  • the motor base 82 is formed by the clamping seat 83 and the end of the crossbar 23 to form a clamping and fixing function.
  • the working principle of the present invention is as shown in FIG. 13, and the propeller 8 mounted on the crossbar 23 drives the aircraft to be driven by the propeller motor 81.
  • the deforming frame 2 is upturned.
  • the camera's field of view makes the aircraft achieve 360° unobstructed shooting during aerial photography.
  • the remote control sends a signal that causes the deformed frame to be tilted by 15°
  • the signal receiver in the angle controller 7 receives the signal and The remote control signal is transmitted to the control circuit.
  • the angle detector transmits the angle signal detected on the driving gear to the control circuit.
  • the control circuit outputs the command signal by comparing the remote control signal and the gear signal, and when the gear angle signal is larger than the remote control signal, The control circuit outputs the reverse information to the power motor, so that the motor reverses back to the position of upturned by 15°.
  • the gear angle signal is consistent with the remote control signal, the original state is maintained.
  • the control circuit outputs The forward rotation signal is transmitted to the power motor, so that the power motor rotates forward and the deformation frame is tilted up to 15°. Remains stable, since the detection process is always kept in circulation between the angle detector and the control circuit, it is possible to hold the deformable chassis maintained at a stable angle aerial photography.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)
  • Gear Transmission (AREA)

Abstract

一种可变形无人飞行器,包括机身(1)、变形机架(2),变形机架设有可驱动机身和变形机架起飞或降落的动力装置,变形机架设有起落架(3),变形机架分布于机身两侧,机身包括驱动部(4)、传动部(5)和安装座(6),驱动部设于安装座上,传动部包括齿轮传动组件,齿轮传动组件包括与驱动部同步运动的输出齿轮(51),输出齿轮啮合减速齿轮组件(52),减速齿轮组件通过传动齿轮(53)分别与机身两侧的变形机架传动连接,机身还包括角度控制装置(7),角度控制装置包括信号接收器、角度检测器和控制电路,信号接收器的输入端、角度检测器的输入端均与控制电路连接,控制电路的输出端与驱动部电连接。该飞行器在航拍过程中可实现360°无遮挡拍摄,且具有成本低、反应快、便于安装等优点。

Description

说明书 发明名称:一种可变形无人飞行器
技术领域
[0001] 本发明涉及微小型无人飞行器技术领域, 尤其是一种可变形无人飞行器。
背景技术
[0002] 目前, 微小型无人飞行器在军用和民用行业均具有广阔的前景, 可以用于近地 面的监测、 侦察等任务, 也可用于短吋间的室内室外的航拍项目。 现有技术的 微小型无人飞行器, 为了控制飞行器的重量和尺寸, 通常采用特殊材料来实现 , 然而, 由于微小型飞行器是在高空执行航拍任务, 需要有足够大的空间视角 才能获得较好的航拍效果。 而由于现有的飞行器的基本架构都是采用固定的刚 体结构, 在航拍过程中, 无法通过改变形状而达到扩大飞行器视野的目的。
[0003] 为了克服上述缺陷, 工程师们幵发了一种通过在飞行器的结构上进行改进而获 得可视空间优化的一种微小型无人飞行器, 如中国专利公幵号为: CN103921933 A的文件所公幵的 《飞行器变形结构及微型飞行器》 , 其结构包括机身、 变形机 架、 动力装置和起落架, 起落架安装于变形机架上, 机身包括动力电机, 动力 电机通过丝杆与变形机架传动连接, 其通过丝杆的上下运动带动变形机架产生 上翘或下移等变化, 当飞行器起飞吋, 通过动力电机驱动丝杆向一个方向旋转 使得变形机架上翘, 扩大飞行器视野, 当飞行器降落过程中, 通过动力电机驱 动丝杆向另一个方向旋转使得变形机架下移, 使得起落架与地面接触, 避免机 身落地。 本发明基于上述飞行器结构, 提供了一种传动结构不同的可变形机架 的飞行器。
技术问题
[0004] 为了克服现有技术的不足, 本发明提供了一种可扩大飞行器视野的可变形无人 飞行器, 该飞行器在航拍过程中可以实现 360°无遮挡拍摄, 本发明具有成本低、 反应快、 便于安装等优点。
问题的解决方案
技术解决方案 [0005] 本发明采用的技术方案是: 一种可变形无人飞行器, 包括机身、 变形机架, 变 形机架上设有可驱动机身和变形机架起飞或降落的动力装置, 变形机架上还设 有起落架, 变形机架分布于机身两侧, 机身包括驱动部、 传动部和安装座, 驱 动部设置于安装座上, 其特征在于: 所述传动部包括齿轮传动组件, 齿轮传动 组件包括与驱动部同步运动的输出齿轮, 输出齿轮啮合减速齿轮组件, 减速齿 轮组件通过传动齿轮分别与机身两侧的变形机架传动连接, 所述机身还包括角 度控制装置, 该角度控制装置包括信号接收器、 角度检测器和控制电路, 信号 接收器的输入端与控制电路连接, 角度检测器的输入端与控制电路连接, 控制 电路的输出端与驱动部电连接。
[0006] 上述结构中, 变形机架至少有 2个, 分别位于机身两侧, 变形机架上的起落架 用于搁置于地面, 避免机身落地吋遭到碰撞, 变形机架上的动力装置包括旋桨 电机和旋桨, 旋桨电机驱动旋桨旋转带动机身上升或下降, 而变形机架则通过 位于机身上的驱动部和传动部的配合实现上翘和下压的变形动作, 传动部通过 齿轮传动驱动变形机架进行变形, 并通过角度控制装置对该变形机架的上翘角 度进行定位, 信号接收器接收到遥控信号, 并将该输入信号传递到控制电路, 角度检测器与变形机架连接, 检测变形机架当前的上翘角度, 角度检测器检测 到变形机架当前的上翘角度后, 将信号传递到控制电路, 当变形机架当前的角 度大于遥控信号角度, 则控制电路输出下压信号使得驱动部反向驱动变形机架 使其下压一定角度后回到遥控信号角度, 而当变形机架当前的角度小于遥控信 号角度吋, 则控制电路输出上翘信号使得驱动部正向驱动变形机架继续上翘, 从而保持变形机架维持在稳定的角度飞行。
[0007] 作为本发明的进一步设置, 所述传动齿轮包括主动齿轮和被动齿轮, 所述角度 检测器的输入端与主动齿轮同步连接, 主动齿轮与被动齿轮啮合, 所述减速齿 轮组件包括同轴连接的大齿轮和小齿轮, 大齿轮与输出齿轮啮合, 小齿轮位于 主动齿轮和被动齿轮之间且小齿轮与主动齿轮啮合。
[0008] 上述结构中, 驱动部通过输出齿轮与主动齿轮啮合, 将动力传递到主动齿轮上 , 并通过主动齿轮将动力传递到被动齿轮, 形成齿轮传动的配合结构。
[0009] 作为本发明的进一步设置, 所述传动齿轮为具有扇形齿面的扇形齿轮, 主动齿 轮和被动齿轮位于同一安装面上, 主动齿轮和被动齿轮各自的扇形齿面之间形 成可供所述小齿轮容纳的齿轮空间, 小齿轮与主动齿轮的扇形齿面上部啮合, 主动齿轮的扇形齿面下部与被动齿轮扇形齿面下部啮合, 扇形齿轮相对于扇形 齿面的另一端通过齿轮轴铰接于安装座上, 扇形齿轮与变形机架固接。
[0010] 上述结构中, 传动齿轮的扇形齿面与减速齿轮形成合理的安装结构。
[0011] 作为本发明的进一步设置, 所述变形机架包括互相平行的主杆、 副杆, 主杆包 括近端和远端, 主杆近端与传动齿轮之间通过力臂座固接, 传动齿轮通过齿轮 轴铰接于安装座上, 力臂座设有与齿轮轴适配的轴孔, 主杆近端通过所述齿轮 轴铰接于安装座上, 主杆远端连接有横杆, 副杆近端通过连接杆与安装座铰接 , 副杆远端通过平衡座与横杆铰接, 所述主杆近端铰接点、 主杆远端连接点、 副杆近端铰接点、 副杆远端铰接点的连线形成平行四边形。
[0012] 上述结构中, 变形机架通过主杆、 副杆各自近端、 远端之间的平行四边形结构
, 保证变形机架在变形过程中保持横杆水平变形运动, 使得变形机架保持水平 状态上翘或下压, 保证飞行器上承载的摄像机可以平稳拍摄图像。
[0013] 作为本发明的进一步设置, 所述变形机架包括互相平行的主杆、 副杆, 主杆包 括近端和远端, 主杆近端与传动齿轮之间通过力臂座固接, 力臂座包括力臂头 、 由两边侧板形成可供力臂头容纳的力臂安装腔, 力臂头与传动齿轮一体连接 , 两边侧板固设于力臂头的两侧, 力臂安装腔中还固设有用于夹持主杆近端的 管夹件。
[0014] 上述结构中, 变形机架主杆近端通过管夹件与力臂座连接, 而力臂座则通过力 臂头与机身连接, 形成稳定牢固的安装结构。
[0015] 作为本发明的进一步设置, 所述主杆远端通过连接座与横杆固接, 连接座设有 可供横杆穿过的通孔, 连接座上还设有与主杆远端夹持配合的管夹件, 所述平 衡座包括套设于横杆上的平衡套体, 该平衡套体延伸有平衡臂, 副杆远端通过 连接杆铰接于平衡臂上, 平衡座两端连接点之间的连线与主副杆各自近端的连 线平行且等距设置。
[0016] 上述结构中, 主杆与横杆之间通过连接座和管夹件形成稳定的连接结构, 并通 过平衡座结构保证主杆、 副杆以及其两端连线之间的平行四边形结构的稳定设 置。
[0017] 作为本发明的进一步设置, 所述安装座包括由上下壁和两边侧壁连接形成的齿 轮组件安装腔, 所述驱动部安装于一边侧壁上, 另一边侧壁则延伸有摄像固定 座。
[0018] 上述结构中, 齿轮组件安装于机身的安装座上, 该安装座具有与齿轮组件适配 的安装腔, 并且, 将驱动部和在航拍过程中所需的摄像分别安装于齿轮组件两 侧, 进行重量平衡, 保持飞行稳定性。
[0019] 作为本发明的进一步设置, 所述齿轮组件安装腔还罩设有外壳, 所述上下壁还 分别设有上下隔板, 所述下隔板还设有云台垫板, 云台垫板两侧还分别延伸有 位于摄像固定座两侧的护板。
[0020] 上述结构中, 外壳的罩设起到保护机身的作用, 下隔板的云台垫板起到防震作 用, 护板则进一步起到保护作用, 保证摄像平稳, 避免电机转动造成机身抖动
[0021] 作为本发明的进一步设置, 所述动力装置包括旋桨、 驱动旋桨转动的旋桨电机 , 旋桨安装于旋桨电机的输出轴上, 电机安装于电机座上, 电机座上设有安装 于变形机架中横杆端部的夹持座, 所述旋桨安装于电机座朝向机身的一端, 所 述起落架安装于电机座朝下的一端。
[0022] 上述结构中, 旋桨安装于横杆的两端, 旋桨均通过旋桨电机驱动, 并且其与起 落架上下分布, 起落架朝下设置, 用于搁置于地面, 起落架包括 L型起落支脚, 该起落支脚的上端延伸有与电机座固接的连接臂, 起落支脚的内壁设有锥形加 强筋, 起到强固作用。
[0023] 作为本发明的进一步设置, 所述夹持座包括由电机座上端面延伸的面板, 该面 板设有与横杆端部适配的弧形槽, 该弧形槽罩设于横杆端部的上表面, 横杆端 部的下表面包覆有弧形带, 该弧形带具有与横杆端部下表面适配的弧形槽, 弧 形带与面板弧形槽侧壁固接。
[0024] 上述结构中, 电机座通过该夹持座与横杆端部形成贴合的夹持固定作用。
发明的有益效果
有益效果 [0025] 本发明采用齿轮传动效率代替现有技术中的丝杆传动, 齿轮传动具有效率更高 的优点, 上述齿轮传动效率可以达到 99%, 该齿轮传动也包括类似的齿条配合传 动, 而如现有技术中的普通丝杆传动的效率只在 50%, 而且本发明的齿轮传动所 需功率更小, 在同样电机驱动的前提下, 本发明的电机对飞行器的推动力更大 , 完成变形吋间更短, 且其承重能力更好, 可以承载更重更好的摄像机, 在航 拍过程中获得更好的拍摄过程; 再者, 本发明还通过角度控制装置来调节变形 机架的变形角度, 使其可以在变形角度范围之间任意调整, 并且使其稳定在一 定角度进行飞行, 该变形机架的变形角度范围优选的为 -50°〜50°; 其次, 现有 技术中的驱动丝杆滑动传动的电机设置在安装座的上方, 导致安装座用于安装 电池的安装面不平整, 容易影响电池的续航吋间, 而本发明中的电机以及摄像 机是呈左右两侧设置在安装座上, 安装座上方具有平整的端面便于电池安装, 可适吋延长电池的续航吋间。
对附图的简要说明
附图说明
[0026] 附图 1为本发明具体实施例结构外观示意图;
[0027] 附图 2为本发明具体实施例去掉机身外壳的结构立体图;
[0028] 附图 3为本发明具体实施例是附图 2在后视状态下的结构立体图;
[0029] 附图 4为本发明具体实施例安装座结构立体图;
[0030] 附图 5为本发明具体实施例安装座结构主视图;
[0031] 附图 6为本发明具体实施例变形机架与齿轮组件的安装结构示意图;
[0032] 附图 7为本发明具体实施例齿轮组件的主视图;
[0033] 附图 8为本发明具体实施例齿轮组件的后视图;
[0034] 附图 9为本发明具体实施例起落架的主视图;
[0035] 附图 10为本发明具体实施例附图 1中 A的放大图;
[0036] 附图 11为本发明具体实施例附图 2中 B的放大图;
[0037] 附图 12为本发明具体实施例附图 3中 C的放大图;
[0038] 附图 13为本发明具体实施例工作原理结构框图;
[0039] 附图 14为本发明具体实施例控制电路的电路结构图; [0040] 机身 1、 变形机架 2、 主杆 21、 主杆近端 211、 主杆远端 212、 副杆 22、 副杆近端 221、 副杆远端 222、 横杆 23、 力臂座 24、 力臂安装腔 241、 力臂头 242、 管夹件 2 5、 连接杆 26、 连接座 27、 平衡座 28、 平衡套体 281、 平衡臂 282、 起落架 3、 起 落支脚 31、 连接臂 32、 加强筋 33、 驱动部 4、 传动部 5、 输出齿轮 51、 减速齿轮 组件 52、 大齿轮 521、 小齿轮 522、 传动齿轮 53、 主动齿轮 531、 被动齿轮 532、 扇形齿面 533、 齿轮轴 54、 安装座 6、 齿轮组件安装腔 61、 摄像固定座 62、 隔板 6 3、 云台垫板 64、 护板 65、 外壳 66、 角度控制装置 7、 旋桨 8、 旋桨电机 81、 电机 座 82、 夹持座 83、 面板 831、 弧形槽 832、 弧形带 833。
实施该发明的最佳实施例
本发明的最佳实施方式
[0041] 本发明的具体实施例如图 1-14所示是可变形无人飞行器, 包括机身 1、 变形机 架 2, 变形机架 2上设有可驱动机身 1和变形机架 2起飞或降落的动力装置, 变形 机架 2上还设有起落架 3, 变形机架 2分布于机身 1两侧, 机身 1包括驱动部 4、 传 动部 5和安装座 6, 驱动部 4设置于安装座 6上, 传动部 5包括齿轮传动组件, 齿轮 传动组件包括与驱动部 4同步运动的输出齿轮 51, 输出齿轮 51啮合减速齿轮组件 52, 减速齿轮组件 52通过传动齿轮 53分别与机身 1两侧的变形机架 2传动连接, 机身 1还包括角度控制装置 7, 该角度控制装置 7包括信号接收器、 角度检测器和 控制电路, 信号接收器的输入端与控制电路连接, 角度检测器的输入端与控制 电路连接, 控制电路的输出端与驱动部 4电连接。
[0042] 上述结构中, 变形机架 2至少有 2个, 分别位于机身 1两侧, 变形机架 2上的起落 架 3用于搁置于地面, 避免机身 1落地吋遭到碰撞, 变形机架 2上的动力装置包括 旋桨电机 81和旋桨 8, 动力电机驱动旋桨 8旋转带动机身 1上升和下降, 而变形机 架 2则通过位于机身 1上的驱动部 4和传动部 5的传动配合实现上翘和下压的变形 动作, 该驱动部 4采用动力电机驱动, 而传动部 5通过齿轮传动驱动变形机架 2进 行变形, 并通过角度控制装置 7对该变形机架 2的上翘角度进行定位, 信号接收 器接收到遥控信号, 并将该输入信号传递到控制电路, 角度检测器与变形机架 2 连接, 角度检测器采用电位器, 检测变形机架 2当前的上翘角度, 角度检测器检 测到变形机架 2当前的上翘角度后, 将信号传递到控制电路, 当变形机架 2当前 的角度大于遥控信号角度, 则控制电路输出下压信号使得驱动部 4反向驱动变形 机架 2使其下压一定角度后回到遥控信号角度, 而当变形机架 2当前的角度小于 遥控信号角度吋, 则控制电路输出上翘信号使得驱动部 4正向驱动变形机架 2继 续上翘, 从而保持变形机架 2维持在稳定的角度飞行。
[0043] 上述传动齿轮 53包括主动齿轮 531和被动齿轮 532, 角度检测器的输入端与主动 齿轮 531同步连接, 主动齿轮 531与被动齿轮 532啮合, 减速齿轮组件 52包括同轴 连接的大齿轮 521和小齿轮 522, 大齿轮 521与输出齿轮 51啮合, 小齿轮 522位于 主动齿轮 531和被动齿轮 532之间且小齿轮 522与主动齿轮 531啮合。
[0044] 上述结构中, 驱动部 4通过输出齿轮 51与主动齿轮 531啮合, 将动力传递到主动 齿轮 531上, 并通过主动齿轮 531将动力传递到被动齿轮 532, 形成齿轮传动的配 合结构。
[0045] 上述传动齿轮 53为具有扇形齿面 533的扇形齿轮, 主动齿轮 531和被动齿轮 532 位于同一安装面上, 主动齿轮 531和被动齿轮 532各自的扇形齿面 533之间形成可 供小齿轮 522容纳的齿轮空间, 小齿轮 522与主动齿轮 531的扇形齿面 533上部啮 合, 主动齿轮 531的扇形齿面 533下部与被动齿轮 532扇形齿面 533下部啮合, 扇 形齿轮相对于扇形齿面 533的另一端通过齿轮轴 54铰接于安装座 6上, 扇形齿轮 与变形机架 2固接。
[0046] 上述结构中, 传动齿轮 53的扇形齿面 533与减速齿轮形成合理的安装结构。
[0047] 上述变形机架 2包括互相平行的主杆 21、 副杆 22, 主杆 21包括近端和远端, 主 杆近端 211与传动齿轮 53之间通过力臂座 24固接, 传动齿轮 53通过齿轮轴 54铰接 于安装座 6上, 力臂座 24设有与齿轮轴 54适配的轴孔, 主杆近端 211通过齿轮轴 5 4铰接于安装座 6上, 主杆远端 212连接有横杆 23, 副杆近端 221通过连接杆 26与 安装座 6铰接, 副杆远端 222通过平衡座 28与横杆 23铰接, 主杆近端 211铰接点、 主杆远端 212连接点、 副杆近端 221铰接点、 副杆远端 222铰接点的连线形成平行 四边形。
[0048] 上述结构中, 变形机架 2通过主杆 21、 副杆 22各自近端、 远端之间的平行四边 形结构, 保证变形机架 2在变形过程中保持横杆 23水平变形运动。
[0049] 上述变形机架 2包括互相平行的主杆 21、 副杆 22, 主杆 21包括近端和远端, 主 杆近端 211与传动齿轮 53之间通过力臂座 24固接, 力臂座 24包括力臂头 242、 由 两边侧板形成可供力臂头 242容纳的力臂安装腔 241, 力臂头 242与传动齿轮 53— 体连接, 两边侧板固设于力臂头 242的两侧, 力臂安装腔 241中还固设有用于夹 持主杆近端 211的管夹件 25。
[0050] 上述结构中, 变形机架 2主杆近端 211通过管夹件 25与力臂座 24连接, 而力臂座 24则通过力臂头 242与机身 1连接, 形成稳定牢固的安装结构。
[0051] 上述主杆远端 212通过连接座 27与横杆 23固接, 连接座 27设有可供横杆 23穿过 的通孔, 连接座 27上还设有与主杆远端 212夹持配合的管夹件 25, 平衡座 28包括 套设于横杆 23上的平衡套体 281, 该平衡套体 281延伸有平衡臂 282, 副杆远端 22 2通过连接杆 26铰接于平衡臂 282上, 平衡座 28两端连接点之间的连线与主副杆 2 2各自近端的连线平行且等距设置。
[0052] 上述结构中, 主杆 21与横杆 23之间通过连接座 27和管夹件 25形成稳定的连接结 构, 并通过平衡座 28结构保证主杆 21、 副杆 22以及其两端连线之间的平行四边 形结构的稳定设置。
[0053] 上述安装座 6包括由上下壁和两边侧壁连接形成的齿轮组件安装腔 61, 驱动部 4 安装于一边侧壁上, 另一边侧壁则延伸有摄像固定座 62。
[0054] 上述结构中, 齿轮组件安装于机身 1的安装座 6上, 该安装座 6具有与齿轮组件 适配的安装腔, 并且, 将驱动部 4和在航拍过程中所需的摄像分别安装于齿轮组 件两侧, 进行重量平衡, 保持飞行稳定性。
[0055] 上述齿轮组件安装腔 61还罩设有外壳 66, 上下壁还分别设有上下隔板 63, 下隔 板 63还设有云台垫板 64, 云台垫板 64两侧还分别延伸有位于摄像固定座 62两侧 的护板 65。
[0056] 上述结构中, 夕卜壳 66的罩设起到保护机身 1的作用, 下隔板 63的云台垫板 64起 到防震作用, 护板 65则进一步起到保护作用。
[0057] 上述动力装置包括旋桨 8、 驱动旋桨 8转动的旋桨电机 81, 旋桨 8安装于旋桨电 机 81的输出轴上, 电机安装于电机座 82上, 电机座 82上设有安装于变形机架 2中 横杆 23端部的夹持座 83, 旋桨 8安装于电机座 82朝向机身 1的一端, 起落架 3安装 于电机座 82朝下的一端。 [0058] 上述结构中, 旋桨 8安装于横杆 23的两端, 旋桨 8均通过旋桨电机 81驱动, 并且 其与起落架 3上下分布, 起落架 3朝下设置, 用于搁置于地面, 起落架 3包括 L型 起落支脚 31, 该起落支脚 31的上端延伸有与电机座 82固接的连接臂 32, 起落支 脚 31的内壁设有锥形加强筋 33, 起到强固作用。
[0059] 上述夹持座 83包括由电机座 82上端面延伸的面板 831, 该面板 831设有与横杆 23 端部适配的弧形槽 832, 该弧形槽 832罩设于横杆 23端部的上表面, 横杆 23端部 的下表面包覆有弧形带 833, 该弧形带 833具有与横杆 23端部下表面适配的弧形 槽 832, 弧形带 833与面板 831弧形槽 832侧壁固接。
[0060] 上述结构中, 电机座 82通过该夹持座 83与横杆 23端部形成贴合的夹持固定作用
[0061] 本发明的工作原理如图 13所示, 安装于横杆 23上的旋桨 8在旋桨电机 81的驱动 下带动飞行器上升, 为了扩大飞行器的视野, 该变形机架 2上翘, 离幵摄像机的 视野, 使得飞行器在航拍过程中实现 360°无阻挡拍摄效果; 而当遥控发出让变形 机架上翘 15°的信号吋, 角度控制器 7中的信号接收器, 接收信号并将遥控信号传 递到控制电路, 同吋, 角度检测器将主动齿轮上检测的角度信号传递到控制电 路, 控制电路通过比较遥控信号和齿轮信号后输出指令信号, 当齿轮角度信号 比遥控信号大吋, 控制电路输出反转信息传递到动力电机, 使得电机反转回到 上翘 15°的位置, 当齿轮角度信号与遥控信号一致吋, 则保持原状, 当齿轮角度 小于遥控信号吋, 则控制电路输出正转信号传递至动力电机, 使得动力电机正 转带动变形机架上翘至 15°后保持稳定, 由于该角度检测器和控制电路之间始终 保持循环检测过程, 故可以保持该变形机架维持在稳定的角度进行航拍。

Claims

权利要求书
[权利要求 1] 一种可变形无人飞行器, 包括机身、 变形机架, 变形机架上设有可驱 动机身和变形机架起飞或降落的动力装置, 变形机架上还设有起落架 , 变形机架分布于机身两侧, 机身包括驱动部、 传动部和安装座, 驱 动部设置于安装座上, 其特征在于: 所述传动部包括齿轮传动组件, 齿轮传动组件包括与驱动部同步运动的输出齿轮, 输出齿轮啮合减速 齿轮组件, 减速齿轮组件通过传动齿轮分别与机身两侧的变形机架传 动连接, 所述机身还包括角度控制装置, 该角度控制装置包括信号接 收器、 角度检测器和控制电路, 信号接收器的输入端与控制电路连接 , 角度检测器的输入端与控制电路连接, 控制电路的输出端与驱动部 电连接。
[权利要求 2] 根据权利要求 1所述的可变形无人飞行器, 其特征在于: 所述传动齿 轮包括主动齿轮和被动齿轮, 所述角度检测器的输入端与主动齿轮同 步连接, 主动齿轮与被动齿轮啮合, 所述减速齿轮组件包括同轴连接 的大齿轮和小齿轮, 大齿轮与输出齿轮啮合, 小齿轮位于主动齿轮和 被动齿轮之间且小齿轮与主动齿轮啮合。
[权利要求 3] 根据权利要求 2所述的可变形无人飞行器, 其特征在于: 所述传动齿 轮为具有扇形齿面的扇形齿轮, 主动齿轮和被动齿轮位于同一安装面 上, 主动齿轮和被动齿轮各自的扇形齿面之间形成可供所述小齿轮容 纳的齿轮空间, 小齿轮与主动齿轮的扇形齿面上部啮合, 主动齿轮的 扇形齿面下部与被动齿轮扇形齿面下部啮合, 扇形齿轮相对于扇形齿 面的另一端通过齿轮轴铰接于安装座上, 扇形齿轮与变形机架固接。
[权利要求 4] 根据权利要求 1所述的可变形无人飞行器, 其特征在于: 所述变形机 架包括互相平行的主杆、 副杆, 主杆包括近端和远端, 主杆近端与传 动齿轮之间通过力臂座固接, 传动齿轮通过齿轮轴铰接于安装座上, 力臂座设有与齿轮轴适配的轴孔, 主杆近端通过所述齿轮轴铰接于安 装座上, 主杆远端连接有横杆, 副杆近端通过连接杆与安装座铰接, 副杆远端通过平衡座与横杆铰接, 所述主杆近端铰接点、 主杆远端连 接点、 副杆近端铰接点、 副杆远端铰接点的连线形成平行四边形。 根据权利要求 1-4任意一项所述的可变形无人飞行器, 其特征在于: 所述变形机架包括互相平行的主杆、 副杆, 主杆包括近端和远端, 主 杆近端与传动齿轮之间通过力臂座固接, 力臂座包括力臂头、 由两边 侧板形成可供力臂头容纳的力臂安装腔, 力臂头与传动齿轮一体连接 , 两边侧板固设于力臂头的两侧, 力臂安装腔中还固设有用于夹持主 杆近端的管夹件。
根据权利要求 4所述的可变形无人飞行器, 其特征在于: 所述主杆远 端通过连接座与横杆固接, 连接座设有可供横杆穿过的通孔, 连接座 上还设有与主杆远端夹持配合的管夹件, 所述平衡座包括套设于横杆 上的平衡套体, 该平衡套体延伸有平衡臂, 副杆远端通过连接杆铰接 于平衡臂上, 平衡座两端连接点之间的连线与主副杆各自近端的连线 平行且等距设置。
根据权利要求 1或 2或 3或 4所述的可变形无人飞行器, 其特征在于: 所 述安装座包括由上下壁和两边侧壁连接形成的齿轮组件安装腔, 所述 驱动部安装于一边侧壁上, 另一边侧壁则延伸有摄像固定座。
根据权利要求 7所述的可变形无人飞行器, 其特征在于: 所述齿轮组 件安装腔还罩设有外壳, 所述上下壁还分别设有上下隔板, 所述下隔 板还设有云台垫板, 云台垫板两侧还分别延伸有位于摄像固定座两侧 的护板。
根据权利要求 1-4任意一项所述的可变形无人飞行器, 其特征在于: 所述动力装置包括旋桨、 驱动旋桨转动的旋桨电机, 旋桨安装于旋桨 电机的输出轴上, 电机安装于电机座上, 电机座上设有安装于变形机 架中横杆端部的夹持座, 所述旋桨安装于电机座朝向机身的一端, 所 述起落架安装于电机座朝下的一端。
根据权利要求 9所述的可变形无人飞行器, 其特征在于: 所述夹持座 包括由电机座上端面延伸的面板, 该面板设有与横杆端部适配的弧形 槽, 该弧形槽罩设于横杆端部的上表面, 横杆端部的下表面包覆有弧 形带, 该弧形带具有与横杆端部下表面适配的弧形槽, 弧形带与面板
PCT/CN2016/104631 2015-11-17 2016-11-04 一种可变形无人飞行器 WO2017084502A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510788621.5 2015-11-17
CN201510788621.5A CN105235899B (zh) 2015-11-17 2015-11-17 一种可变形无人飞行器

Publications (1)

Publication Number Publication Date
WO2017084502A1 true WO2017084502A1 (zh) 2017-05-26

Family

ID=55033815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104631 WO2017084502A1 (zh) 2015-11-17 2016-11-04 一种可变形无人飞行器

Country Status (2)

Country Link
CN (1) CN105235899B (zh)
WO (1) WO2017084502A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020200746A1 (de) 2020-01-22 2021-07-22 Volkswagen Aktiengesellschaft Multicopter und Verfahren zum Betreiben eines Multicopters
CN117533543A (zh) * 2024-01-09 2024-02-09 山东国建土地房地产评估测绘有限公司 一种国土空间规划地形测量装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105235899B (zh) * 2015-11-17 2017-05-03 温州市通翔智能科技有限公司 一种可变形无人飞行器
CN106005447B (zh) * 2016-06-30 2019-10-15 深圳一电航空技术有限公司 倾转装置及飞行器
CN106379514B (zh) * 2016-09-30 2019-08-20 深圳市高智尚创新科技有限公司 一种便携式折叠多旋翼无人机
CN106741895A (zh) * 2016-12-28 2017-05-31 合肥工业大学 违章巡查无人机及违章巡查无人机的操作方法
CN106904270A (zh) * 2017-04-11 2017-06-30 国网辽宁省电力有限公司辽阳供电公司 一种高稳定性六旋翼飞行器
CN107685872A (zh) * 2017-09-30 2018-02-13 深圳市道通智能航空技术有限公司 无人飞行器
CN107792370A (zh) * 2017-10-30 2018-03-13 张罗悦 一种无人机喷管的独立悬挂减震装置
CN107776904A (zh) * 2017-11-18 2018-03-09 丁奕森 一种具有折叠链接臂的无人机
CN108100243A (zh) * 2017-12-22 2018-06-01 深圳市道通智能航空技术有限公司 无人飞行器及其机架
WO2024021135A1 (zh) * 2022-07-29 2024-02-01 深圳市大疆创新科技有限公司 飞行器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525049A (zh) * 2009-04-03 2009-09-09 南京信息工程大学 高速转体式直升机
US20120298793A1 (en) * 2011-05-23 2012-11-29 Sky Windpower Corporation Flying electric generators with clean air rotors
CN103231798A (zh) * 2013-05-06 2013-08-07 西北工业大学 一种数字电动舵机控制装置和控制方法
CN103921933A (zh) * 2013-01-10 2014-07-16 深圳市大疆创新科技有限公司 飞行器变形结构及微型飞行器
CN104507800A (zh) * 2014-06-26 2015-04-08 深圳市大疆创新科技有限公司 变形飞行器
CN104859852A (zh) * 2015-05-15 2015-08-26 中国矿业大学 一种空陆两用四旋翼飞行器
CN105235899A (zh) * 2015-11-17 2016-01-13 永嘉县恒瑞礼品有限公司 一种可变形无人飞行器
CN205113699U (zh) * 2015-11-17 2016-03-30 永嘉县恒瑞礼品有限公司 一种可变形无人飞行器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203971397U (zh) * 2014-07-07 2014-12-03 沈灿斌 多功能变形四轴飞行器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525049A (zh) * 2009-04-03 2009-09-09 南京信息工程大学 高速转体式直升机
US20120298793A1 (en) * 2011-05-23 2012-11-29 Sky Windpower Corporation Flying electric generators with clean air rotors
CN103921933A (zh) * 2013-01-10 2014-07-16 深圳市大疆创新科技有限公司 飞行器变形结构及微型飞行器
CN103231798A (zh) * 2013-05-06 2013-08-07 西北工业大学 一种数字电动舵机控制装置和控制方法
CN104507800A (zh) * 2014-06-26 2015-04-08 深圳市大疆创新科技有限公司 变形飞行器
CN104859852A (zh) * 2015-05-15 2015-08-26 中国矿业大学 一种空陆两用四旋翼飞行器
CN105235899A (zh) * 2015-11-17 2016-01-13 永嘉县恒瑞礼品有限公司 一种可变形无人飞行器
CN205113699U (zh) * 2015-11-17 2016-03-30 永嘉县恒瑞礼品有限公司 一种可变形无人飞行器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020200746A1 (de) 2020-01-22 2021-07-22 Volkswagen Aktiengesellschaft Multicopter und Verfahren zum Betreiben eines Multicopters
DE102020200746B4 (de) 2020-01-22 2022-03-31 Volkswagen Aktiengesellschaft Multicopter und Verfahren zum Betreiben eines Multicopters
CN117533543A (zh) * 2024-01-09 2024-02-09 山东国建土地房地产评估测绘有限公司 一种国土空间规划地形测量装置
CN117533543B (zh) * 2024-01-09 2024-03-29 山东国建土地房地产评估测绘有限公司 一种国土空间规划地形测量装置

Also Published As

Publication number Publication date
CN105235899A (zh) 2016-01-13
CN105235899B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2017084502A1 (zh) 一种可变形无人飞行器
CN109383739B (zh) 一种机臂及无人机
WO2018095335A1 (zh) 用于无人机倾斜摄影系统的相机挂载装置
KR101918407B1 (ko) 무인항공기
WO2018095214A1 (zh) 无人飞行器及其起落架装置
CN106394919A (zh) 一种带有可调角度航拍摄像头且有收纳结构的旋翼无人机
CN213594546U (zh) 一种可收放式云台测绘六旋翼无人机
CN210555570U (zh) 一种基于高空缝隙深度检测的无人机
CN113716056A (zh) 一种民用无人机航拍的摄像机悬挂装置
CN201359495Y (zh) 航空测量相机
KR101549380B1 (ko) 항공촬영용 카메라 고정장치
CN112793771B (zh) 一种机身可折叠无人机
CN208264583U (zh) 一种云台可移动的无人机
CN207725613U (zh) 一种具有摄像功能的无人机
CN205113699U (zh) 一种可变形无人飞行器
CN206485583U (zh) 一种无人机倾斜摄影云台
CN215794502U (zh) 一种用于测绘无人机的云台升降机构
CN208470123U (zh) 无人机航飞取景装置
CN103523241A (zh) 无人机无刷云台
CN208102312U (zh) 一种旋转机构、无人机的起落架及机架、无人机
CN208228916U (zh) 一种用于高层建筑的可折叠的擦窗无人机
CN214608124U (zh) 一种无人机测绘数据采集装置
CN207106886U (zh) 一种全方位航拍无人机
CN111994255B (zh) 一种单兵轻小型航测无人机及单兵轻小型航测无人机系统
CN205366098U (zh) 一种俯仰垂直式结构创新云台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865679

Country of ref document: EP

Kind code of ref document: A1