WO2017084152A1 - 石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球 - Google Patents

石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球 Download PDF

Info

Publication number
WO2017084152A1
WO2017084152A1 PCT/CN2015/098513 CN2015098513W WO2017084152A1 WO 2017084152 A1 WO2017084152 A1 WO 2017084152A1 CN 2015098513 W CN2015098513 W CN 2015098513W WO 2017084152 A1 WO2017084152 A1 WO 2017084152A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
quantum dot
composite sphere
dot composite
encapsulated
Prior art date
Application number
PCT/CN2015/098513
Other languages
English (en)
French (fr)
Inventor
胡韬
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/912,608 priority Critical patent/US20180030343A1/en
Publication of WO2017084152A1 publication Critical patent/WO2017084152A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the field of display technology, in particular to a method for preparing a graphene-encapsulated quantum dot composite sphere and a graphene-encapsulated quantum dot composite sphere.
  • Quantum Dots refer to semiconductor grains having a particle size of 1-100 nm. Since the particle size of the QDs is small, the quantum Boolean effect is smaller or closer to the exciton Bohr radius of the corresponding bulk material, and the continuous energy band structure of the bulk material is transformed into a discrete energy level structure, which is excited by the external light source. The electrons will transition and emit fluorescence.
  • the special discrete level structure of QDs makes its half-wave width narrower, which can emit high-purity monochromatic light, which makes quantum dot display have higher luminous efficiency than traditional display.
  • the size of the QDs is greatly affected by the size of the QDs or the QDs of different compositions can be used to excite different wavelengths of light.
  • photoluminescent quantum dot film In order to meet the needs of people with wide color gamut and high saturation of color, it is an effective choice for major display manufacturers by adding photoluminescent quantum dot film to the backlight structure.
  • this kind of backlight enhancement quantum which is widely used at present is widely used.
  • the price of the dot film is relatively expensive, and the independent QDs film increases the thickness of the display module and does not conform to the trend of thinning. Therefore, the QDs are combined with the layers of the polarizer to form a polarizer containing QDs, or the QDs are mixed with the color resist material and then formed together to form a color filter layer, which not only saves the quantum dot film separately.
  • the cost and can effectively reduce the thickness of the entire module.
  • QDs are susceptible to the external environment, they are sensitive to water and oxygen, which easily affects their luminous efficiency and service life.
  • the QDs are usually wrapped with glue to form an isolation layer on the surface of the QDs to effectively protect the QDs.
  • glue can both wrap QDs and disperse evenly in color resist solvents, making it difficult.
  • the object of the present invention is to provide a method for preparing graphene-encapsulated quantum dot composite spheres.
  • the quantum dots are encapsulated by graphene, and the obtained graphene-encapsulated quantum dot composite spheres have good dispersion stability and a simple preparation method.
  • the object of the present invention is to provide a graphene-encapsulated quantum dot composite sphere, which uses graphene to encapsulate quantum dots, utilizes graphene to isolate water and oxygen, and effectively avoids the influence of external environment on quantum dots, and at the same time, due to the surface of graphene.
  • the hydrophobic property makes the graphene-encapsulated quantum dot composite spheres have good dispersion stability, which is convenient for forming quantum dot films and simplifies the fabrication process of quantum dot films.
  • the present invention provides a method for preparing a graphene-encapsulated quantum dot composite sphere, comprising the following steps:
  • Step 1 Mixing and stirring the quantum dots with a certain concentration of the graphene solution according to a certain ratio to obtain a mixed mixture
  • Step 2 the mixture is poured into a centrifuge tube, and then placed in a centrifuge for centrifugation;
  • Step 3 After the end of the centrifugation, the supernatant is decanted, and the precipitate at the bottom of the centrifuge tube is taken out and dried at a certain temperature to be dried to obtain a graphene-encapsulated quantum dot composite sphere.
  • the graphene in the graphene solution is a graphene nanosheet, and the number of layers of the graphene nanosheet is 1-3 layers.
  • the quantum dots are oil-soluble quantum dots, and the solvent of the graphene solution is an organic solvent.
  • the organic solvent is ethanol, methylpyrrolidone, or dimethylformamide.
  • the quantum dots are water soluble quantum dots, and the solvent of the graphene solution is water.
  • the quantum dots include one or more of the following doped or undoped quantum dots: zinc sulfide, cadmium sulfide, zinc oxide, gallium nitride, gallium selenide, zinc selenide, cadmium selenide, germanium Zinc, cadmium telluride, lead telluride, indium phosphide, and gallium arsenide.
  • the quantum dots include one or more of graphene quantum dots and carbon quantum dots.
  • the concentration of the graphene solution is 0.01 mg/ml to 2 mg/ml, and the quantum dot and the graphene solution are mixed according to the mass ratio of graphene to quantum dots of 1:10 to 1:100.
  • Stirring, stirring time is 5min ⁇ 120min.
  • the mixture is centrifuged at a rotation speed of 2000 rpm to 8000 rpm, and the centrifugation time is 1 min to 60 min; in the step 3, the drying temperature is 80 ° C to 120 ° C, and the drying time is 10 min to 60 min. .
  • the present invention also provides a graphene-encapsulated quantum dot composite sphere comprising a graphene on the outer layer and a quantum dot coated with graphene, wherein the graphene is a graphene nanosheet, and the layer of the graphene nanosheet The number is 1 to 3 layers.
  • the invention also provides a preparation method of graphene-encapsulated quantum dot composite sphere, comprising the following steps:
  • Step 1 Mixing and stirring the quantum dots with a certain concentration of the graphene solution according to a certain ratio to obtain a mixed mixture
  • Step 2 the mixture is poured into a centrifuge tube, and then placed in a centrifuge for centrifugation;
  • Step 3 after the end of the centrifugation, the supernatant is decanted, the precipitate at the bottom of the centrifuge tube is taken out and dried at a certain temperature to be dried to obtain a graphene-encapsulated quantum dot composite sphere;
  • the graphene in the graphene solution is a graphene nanosheet, and the number of layers of the graphene nanosheet is 1-3 layers;
  • the concentration of the graphene solution is 0.01 mg/ml to 2 mg/ml
  • the mass ratio of the quantum dot to the graphene solution according to graphene and quantum dots is 1:10 to 1:100.
  • Mixing and stirring, and the stirring time is 5 min to 120 min;
  • the mixed liquid is centrifuged at a rotation speed of 2000 rpm to 8000 rpm, and the centrifugation time is 1 min to 60 min; in the step 3, the drying temperature is 80 ° C to 120 ° C, and the drying time is 10 min. ⁇ 60min.
  • the present invention provides a method for preparing a graphene-encapsulated quantum dot composite sphere and a graphene-encapsulated quantum dot composite sphere.
  • the preparation method of the graphene-encapsulated quantum dot composite sphere of the invention adopts graphene-encapsulated quantum dots, and the obtained graphene-encapsulated quantum dot composite sphere has good dispersion stability and simple preparation method;
  • the graphene package of the invention Quantum dot composite spheres, which utilize graphene with excellent water-proof oxygen capacity to effectively protect quantum dots, and utilize the hydrophobicity of graphene to effectively improve the dispersion of quantum dots in materials such as glues and photoresist materials.
  • the olefin-encapsulated quantum dot composite sphere has good dispersion stability, and is convenient for use in the fabrication of a quantum dot film, which simplifies the fabrication process of the quantum dot film.
  • FIG. 1 is a flow chart of a method for preparing a graphene-encapsulated quantum dot composite sphere of the present invention.
  • the present invention first provides a method for preparing a graphene-encapsulated quantum dot composite sphere, comprising the following steps:
  • Step 1 Mixing and stirring the quantum dots with a certain concentration of the graphene solution according to a certain ratio to obtain a mixed mixture
  • the graphene in the graphene solution is a layer of 1 to 3 layers of graphite in order to prevent the luminosity of the obtained graphene-encapsulated quantum dots from being affected. Alkene nanosheets.
  • the solvent of the graphene solution is an organic solvent; preferably, the organic solvent is ethanol, methylpyrrolidone (NMP), or dimethylformamide ( DMF); and when the quantum dot is a water-soluble quantum dot, the solvent of the graphene solution is water.
  • the quantum dots may include one or more of the following doped or undoped quantum dots: zinc sulfide, cadmium sulfide, zinc oxide, gallium nitride, gallium selenide, zinc selenide, selenization Cadmium, zinc telluride, cadmium telluride, lead telluride, indium phosphide, and gallium arsenide.
  • the quantum dots may also include graphene quantum dots, carbon quantum dots, and the like.
  • the concentration of the graphene solution is 0.01 mg/ml to 2 mg/ml, and the quantum dot and the graphene solution are mixed and stirred according to a mass ratio of graphene to quantum dots of 1:10 to 1:100.
  • the stirring time is from 5 min to 120 min.
  • Step 2 Pour the mixture into a centrifuge tube, place it in a centrifuge, and centrifuge at a speed of 2000 rpm to 8000 rpm for 1 min to 60 min.
  • Step 3 After the end of the centrifugation, the supernatant is decanted, and the precipitate at the bottom of the centrifuge tube is taken out and dried at 80-120 ° C for 10 min to 60 min to be dried to obtain a graphene-encapsulated quantum dot composite sphere.
  • the present invention further provides a graphene-encapsulated quantum dot composite sphere, comprising graphene on the outer layer and quantum dots coated with graphene, wherein the graphene is a graphene nanosheet, the graphite The number of layers of the ene nanosheet is 1 to 3 layers.
  • the quantum dots may include one or more of the following doped or undoped quantum dots: zinc sulfide, cadmium sulfide, zinc oxide, gallium nitride, gallium selenide, zinc selenide, selenization Cadmium, zinc telluride, cadmium telluride, lead telluride, indium phosphide, and gallium arsenide; the quantum dots may also include graphene quantum dots, carbon quantum dots, and the like.
  • the graphene-encapsulated quantum dot composite sphere can be used for mixing with a glue, a solvent, a color resist material, or other materials to form a quantum dot film for a backlight structure, a polarizer, or a color filter of a display device.
  • a glue e.g., a glue, a solvent, a color resist material, or other materials to form a quantum dot film for a backlight structure, a polarizer, or a color filter of a display device.
  • the color gamut and color saturation of the display device can be improved.
  • the graphene-encapsulated quantum dot composite sphere prepared by the invention adopts a flexible graphene nanosheet with a layer number of 1 to 3 layers to wrap quantum dots, and the graphene has excellent water-blocking oxygen barrier capability, and is larger
  • the crosslinked overlapping graphene nanosheets can form a dense seal due to the strong van der Waals force between the carbon atoms on the surface of the graphene, such as a sack, encapsulating the quantum dots.
  • the quantum dots can be well protected; at the same time, because graphene is inorganic, the surface is hydrophobic, it can be easily dispersed in other materials such as glue, photoresist, etc., and will not affect the glue and photoresist.
  • the performance of the quantum dots further improves the dispersion of the quantum dots. Therefore, the graphene-encapsulated quantum dot composite sphere of the present invention is easily dispersed in a solvent, a glue, a photoresist material or the like to form a quantum dot film, which simplifies the existing quantum dots. The process of making the film.
  • the method for preparing the graphene-encapsulated quantum dot composite sphere of the present invention uses graphene to encapsulate quantum dots, and the obtained graphene-encapsulated quantum dot composite sphere has good dispersion stability and is simple to prepare; the invention is simple; Graphene-encapsulated quantum dot composite spheres utilize graphene to have excellent water-proof oxygen resistance to effectively protect quantum dots. At the same time, the hydrophobicity of graphene can effectively improve the dispersion of quantum dots in materials such as glue and photoresist materials. Therefore, the graphene-encapsulated quantum dot composite sphere has good dispersion stability, thereby being conveniently used for forming a quantum dot film, and simplifies the fabrication process of the quantum dot film.

Abstract

本发明提供一种石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球。本发明的石墨烯包裹量子点复合球的制备方法,采用石墨烯包裹量子点,所得到的石墨烯包裹量子点复合球具有很好的分散稳定性,制作方法简单;本发明的石墨烯包裹量子点复合球,利用石墨烯优异的防水氧能力可以对量子点进行有效的保护,同时利用石墨烯的疏水性可有效提高量子点在胶水、光阻材料等材料中的分散性,因此该石墨烯包裹量子点复合球具有很好的分散稳定性,从而方便用于制成量子点膜,简化了量子点膜的制作工艺。

Description

石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球 技术领域
本发明涉及显示技术领域,尤其涉及一种石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球。
背景技术
随着显示技术的不断发展,人们对显示装置的显示质量要求也越来越高。目前市面上的液晶电视能表现的色域在68%-72%NTSC(National Television Standards Committee)之间,因而不能提供高品质的色彩效果。为提高液晶电视的表现色域,高色域背光技术正成为行业内研究的重点。
量子点材料(Quantum Dots,简称QDs)是指粒径在1-100nm的半导体晶粒。由于QDs的粒径较小,小于或者接近相应体材料的激子波尔半径,产生量子限域效应,本体材料连续的能带结构会转变为分立的能级结构,在外部光源的激发下,电子会发生跃迁,发射荧光。
QDs这种特殊的分立能级结构使其半波宽较窄,因而可发出较高纯度的单色光,使得量子点显示器相比于传统显示器具有更高的发光效率。同时,由于QDs的能级带隙,受其尺寸影响较大,可以通过调控QDs的尺寸或使用不同成分的QDs来激发出不同波长的光。为了满足人们对显示器宽色域、色彩高饱和度的需求,通过在背光结构中加入光致发光的量子点膜成为各大显示器厂商的有效选择,但是,这种目前应用较广泛的背光加强量子点膜价格较昂贵,而且独立的QDs膜增加了显示屏模组的厚度,不符合轻薄化的趋势。因此,人们将QDs与偏光片上的各层结构结合,制作成含QDs的偏光片,或者将QDs与彩色光阻材料混合后,一起成型而形成彩色过滤层,这样不仅可以节省单独制备量子点膜的成本,而且可以有效地降低整个模组的厚度。但是,由于QDs易受外界环境的影响,对水和氧气较敏感,容易影响其发光效率和使用寿命。为了避免外界环境对QDs的影响,通常使用胶材包裹住QDs,从而在QDs表层形成隔离层,有效地保护QDs。但是,选择一款合适的,粘度适合的胶水既能够包裹QDs又能够在彩色光阻溶剂中分散均匀,显得困难重重。
发明内容
本发明的目的在于提供一种石墨烯包裹量子点复合球的制备方法,采 用石墨烯对量子点进行封装,所得到的石墨烯包裹量子点复合球具有很好的分散稳定性,且制作方法简单。
本发明的目的还在于提供一种石墨烯包裹量子点复合球,采用石墨烯对量子点进行封装,利用石墨烯隔绝水氧的特性,有效避免外界环境对量子点的影响,同时由于石墨烯表面疏水的特性,使得该石墨烯包裹量子点复合球具有很好的分散稳定性,从而方便用于制成量子点膜,简化了量子点膜的制作工艺。
为实现上述目的,本发明提供一种石墨烯包裹量子点复合球的制备方法,包括以下步骤:
步骤1、将量子点与一定浓度的石墨烯溶液按照一定的比例进行混合、搅拌,得到混合均匀的混合液;
步骤2、将混合液倒入离心管后,放入离心机内进行离心;
步骤3、离心结束后倒掉上清液,将离心管底的沉淀物取出并在一定温度下烘干使其干燥,得到石墨烯包裹量子点复合球。
所述石墨烯溶液内的石墨烯为石墨烯纳米片,该石墨烯纳米片的层数为1~3层。
所述量子点为油溶性量子点,所述石墨烯溶液的溶剂为有机溶剂。
所述有机溶剂为乙醇、甲基吡咯烷酮、或二甲基甲酰胺。
所述量子点为水溶性量子点,所述石墨烯溶液的溶剂为水。
所述量子点包括以下掺杂或非掺杂的量子点中的一种或多种:硫化锌、硫化镉、氧化锌、氮化镓、硒化镓、硒化锌、硒化镉、碲化锌、碲化镉、碲化铅、磷化铟、及砷化镓。
所述量子点包括石墨烯量子点和碳量子点中的一种或多种。
所述步骤1中,所述石墨烯溶液的浓度为0.01mg/ml~2mg/ml,所述量子点与石墨烯溶液按照石墨烯与量子点的质量比为1:10~1:100进行混合、搅拌,搅拌时间为5min~120min。
所述步骤2中,在转速2000rpm~8000rpm下对所述混合液进行离心,离心时间为1min~60min;所述步骤3中,烘干温度为80℃~120℃,烘干时间为10min~60min。
本发明还提供一种石墨烯包裹量子点复合球,包括位于外层的石墨烯、及被石墨烯包裹的量子点,其中,所述石墨烯为石墨烯纳米片,该石墨烯纳米片的层数为1~3层。
本发明还提供一种石墨烯包裹量子点复合球的制备方法,包括以下步骤:
步骤1、将量子点与一定浓度的石墨烯溶液按照一定的比例进行混合、搅拌,得到混合均匀的混合液;
步骤2、将混合液倒入离心管后,放入离心机内进行离心;
步骤3、离心结束后倒掉上清液,将离心管底的沉淀物取出并在一定温度下烘干使其干燥,得到石墨烯包裹量子点复合球;
其中,所述石墨烯溶液内的石墨烯为石墨烯纳米片,该石墨烯纳米片的层数为1~3层;
其中,所述步骤1中,所述石墨烯溶液的浓度为0.01mg/ml~2mg/ml,所述量子点与石墨烯溶液按照石墨烯与量子点的质量比为1:10~1:100进行混合、搅拌,搅拌时间为5min~120min;
其中,所述步骤2中,在转速2000rpm~8000rpm下对所述混合液进行离心,离心时间为1min~60min;所述步骤3中,烘干温度为80℃~120℃,烘干时间为10min~60min。
本发明的有益效果:本发明提供了一种石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球。本发明的石墨烯包裹量子点复合球的制备方法,采用石墨烯包裹量子点,所得到的石墨烯包裹量子点复合球,具有很好的分散稳定性,制作方法简单;本发明的石墨烯包裹量子点复合球,利用石墨烯具有优异的防水氧能力对量子点进行有效的保护,同时利用石墨烯的疏水性可有效提高量子点在胶水、光阻材料等材料中的分散性,因此该石墨烯包裹量子点复合球具有很好的分散稳定性,从而方便用于制成量子点膜,简化了量子点膜的制作工艺。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的石墨烯包裹量子点复合球的制备方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种石墨烯包裹量子点复合球的制备方法,包括以下步骤:
步骤1、将量子点与一定浓度的石墨烯溶液按照一定的比例进行混合、搅拌,得到混合均匀的混合液;
具体的,考量到石墨烯的透光性,为使所得到的被石墨烯包裹的量子点的发光性不受影响,所述石墨烯溶液内的石墨烯为层数为1~3层的石墨烯纳米片。
具体的,当所述量子点为油溶性量子点时,所述石墨烯溶液的溶剂为有机溶剂;优选的,所述有机溶剂为乙醇、甲基吡咯烷酮(NMP)、或二甲基甲酰胺(DMF);而当所述量子点为水溶性量子点时,所述石墨烯溶液的溶剂为水。
具体的,所述量子点可以包括以下掺杂或非掺杂的量子点中的一种或多种:硫化锌、硫化镉、氧化锌、氮化镓、硒化镓、硒化锌、硒化镉、碲化锌、碲化镉、碲化铅、磷化铟、及砷化镓。所述量子点还可以包括石墨烯量子点和碳量子点等。
具体的,所述石墨烯溶液的浓度为0.01mg/ml~2mg/ml,所述量子点与石墨烯溶液按照石墨烯与量子点的质量比为1:10~1:100进行混合、搅拌,搅拌时间为5min~120min。
步骤2、将混合液倒入离心管后,放入离心机内,在转速2000rpm~8000rpm下进行离心1min~60min。
步骤3、离心结束后倒掉上清液,将离心管底的沉淀物取出并在80~120℃下烘干10min~60min使其干燥,得到石墨烯包裹量子点复合球。
基于上述制备方法,本发明还提供一种石墨烯包裹量子点复合球,包括位于外层的石墨烯、及被石墨烯包裹的量子点,其中,所述石墨烯为石墨烯纳米片,该石墨烯纳米片的层数为1~3层。
具体的,所述量子点可以包括以下掺杂或非掺杂的量子点中的一种或多种:硫化锌、硫化镉、氧化锌、氮化镓、硒化镓、硒化锌、硒化镉、碲化锌、碲化镉、碲化铅、磷化铟、及砷化镓;所述量子点还可以包括石墨烯量子点和碳量子点等。
所述石墨烯包裹量子点复合球可用于与胶水,溶剂,色阻材料,或者其它材料混合,制作量子点膜,所述量子点膜用于显示装置的背光结构、偏光片、或彩色滤光片中,可以提高显示装置的色域和色彩饱和度。
本发明制得的石墨烯包裹量子点复合球,采用具有柔性的层数为1~3层的石墨烯纳米片包裹量子点,由于石墨烯优异的隔水隔氧能力,当较大 尺寸的石墨烯纳米片将量子点团团包裹住时,由于石墨烯表面碳原子之间的较强范德华力,交联重叠的石墨烯纳米片可形成密实的封口,如麻袋一样,将量子点封装住,从而可以对量子点进行很好的保护;同时又由于石墨烯属于无机物,表面疏水,可以很容易的分散在胶水、光阻材料等其他材料中,而且不会影响胶水、光阻材料本身的性能,进而提高了量子点的分散性,因此,本发明的石墨烯包裹量子点复合球易于分散在溶剂、胶水、光阻材料等材料中而形成量子点膜,简化了现有量子点膜的制作工艺。
以下为本发明的石墨烯包裹量子点复合球的制备方法的优选实施例:
实施案例1:
将由石墨烯分散在有机溶剂NMP中而得到的石墨烯溶液(浓度为0.01mg/ml),与油溶性量子点混合(按照石墨烯:量子点=1:10的质量比),搅拌均匀后(搅拌时间为5min),离心(离心机转速为2000rpm,离心时间为60min),再将离心管底的沉淀物取出,在80℃下烘干10min后,即得到石墨烯包裹量子点复合球。
实施案例2:
将由石墨烯分散在有机溶剂NMP中而得到的石墨烯溶液(浓度为2mg/ml),与油溶性量子点混合(按照石墨烯:量子点=1:50的质量比),搅拌均匀后(搅拌时间为120min),离心(离心机转速为8000rpm,离心时间为1min),再将离心管底的沉淀物取出,在120℃下烘干10min后,即得到石墨烯包裹量子点复合球。
实施案例3:
将由石墨烯分散在有机溶剂DMF中而得到的石墨烯溶液(浓度为1mg/ml),与油溶性量子点混合(按照石墨烯:量子点=1:100的质量比),搅拌均匀后(搅拌时间为60min),离心(离心机转速为5000rpm,离心时间为30min),再将离心管底的沉淀物取出,在100℃下烘干60min后,即得到石墨烯包裹量子点复合球。
实施案例4:
将由石墨烯分散在分散在有机溶剂乙醇中而得到的石墨烯溶液(浓度为0.8mg/ml),与油溶性量子点混合(按照石墨烯:量子点=1:30的质量比),搅拌均匀后(搅拌时间为100min),离心(离心机转速为6000rpm,离心时间为20min),再将离心管底的沉淀物取出,在100℃下烘干30min后,即得到石墨烯包裹量子点复合球。
实施案例5:
将石墨烯水溶液(浓度为0.01mg/ml)与水溶性量子点混合(按照石墨 烯:量子点=1:100的质量比),搅拌均匀后(搅拌时间为10min),离心(离心机转速4000rpm,离心时间为50min),再将离心管底的沉淀物取出,在80℃下烘干60min后,即得到石墨烯包裹量子点复合球。
实施案例6:
将石墨烯水溶液(浓度为0.5mg/ml)与水溶性量子点混合(按照石墨烯:量子点=1:50的质量比),搅拌均匀后(搅拌时间为5min),离心(离心机转速2000rpm,离心时间为60min),再将离心管底的沉淀物取出,在120℃下烘干10min后,即得到石墨烯包裹量子点复合球。
实施案例7:
将石墨烯水溶液(浓度为2mg/ml)与水溶性量子点混合(按照石墨烯:量子点=1:10的质量比),搅拌均匀后(搅拌时间为120min),离心(离心机转速8000rpm,离心时间为1min),再将离心管底的沉淀物取出,在120℃下烘干30min后,即得到石墨烯包裹量子点复合球。
实施案例8:
将石墨烯水溶液(浓度为1mg/ml)与水溶性量子点混合(按照石墨烯:量子点=1:30的质量比),搅拌均匀后(搅拌时间为60min),离心(离心机转速6000rpm,离心时间为30min),再将离心管底的沉淀物取出,在100℃下烘干60min后,即得到石墨烯包裹量子点复合球。
综上所述,本发明石墨烯包裹量子点复合球的制备方法,采用石墨烯包裹量子点,所得到的石墨烯包裹量子点复合球具有很好的分散稳定性,制作方法简单;本发明的石墨烯包裹量子点复合球,利用石墨烯具有优异的防水氧能力对量子点进行有效的保护,同时利用石墨烯的疏水性可有效提高量子点在胶水、光阻材料等材料中的分散性,因此该石墨烯包裹量子点复合球具有很好的分散稳定性,从而方便用于制成量子点膜,简化了量子点膜的制作工艺。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (16)

  1. 一种石墨烯包裹量子点复合球的制备方法,包括以下步骤:
    步骤1、将量子点与一定浓度的石墨烯溶液按照一定的比例进行混合、搅拌,得到混合均匀的混合液;
    步骤2、将混合液倒入离心管后,放入离心机内进行离心;
    步骤3、离心结束后倒掉上清液,将离心管底的沉淀物取出并在一定温度下烘干使其干燥,得到石墨烯包裹量子点复合球。
  2. 如权利要求1所述的石墨烯包裹量子点复合球的制备方法,其中,所述石墨烯溶液内的石墨烯为石墨烯纳米片,该石墨烯纳米片的层数为1~3层。
  3. 如权利要求1所述的石墨烯包裹量子点复合球的制备方法,其中,所述量子点为油溶性量子点,所述石墨烯溶液的溶剂为有机溶剂。
  4. 如权利要求3所述的石墨烯包裹量子点复合球的制备方法,其中,所述有机溶剂为乙醇、甲基吡咯烷酮、或二甲基甲酰胺。
  5. 如权利要求1所述的石墨烯包裹量子点复合球的制备方法,其中,所述量子点为水溶性量子点,所述石墨烯溶液的溶剂为水。
  6. 如权利要求1所述的石墨烯包裹量子点复合球的制备方法,其中,所述量子点包括以下掺杂或非掺杂的量子点中的一种或多种:硫化锌、硫化镉、氧化锌、氮化镓、硒化镓、硒化锌、硒化镉、碲化锌、碲化镉、碲化铅、磷化铟、及砷化镓。
  7. 如权利要求1所述的石墨烯包裹量子点复合球的制备方法,其中,所述量子点包括石墨烯量子点和碳量子点中的一种或多种。
  8. 如权利要求1所述的石墨烯包裹量子点复合球的制备方法,其中,所述步骤1中,所述石墨烯溶液的浓度为0.01mg/ml~2mg/ml,所述量子点与石墨烯溶液按照石墨烯与量子点的质量比为1:10~1:100进行混合、搅拌,搅拌时间为5min~120min。
  9. 如权利要求1所述的石墨烯包裹量子点复合球的制备方法,其中,所述步骤2中,在转速2000rpm~8000rpm下对所述混合液进行离心,离心时间为1min~60min;所述步骤3中,烘干温度为80℃~120℃,烘干时间为10min~60min。
  10. 一种石墨烯包裹量子点复合球,包括位于外层的石墨烯、及被石墨烯包裹的量子点,其中,所述石墨烯为石墨烯纳米片,该石墨烯纳米片 的层数为1~3层。
  11. 一种石墨烯包裹量子点复合球的制备方法,包括以下步骤:
    步骤1、将量子点与一定浓度的石墨烯溶液按照一定的比例进行混合、搅拌,得到混合均匀的混合液;
    步骤2、将混合液倒入离心管后,放入离心机内进行离心;
    步骤3、离心结束后倒掉上清液,将离心管底的沉淀物取出并在一定温度下烘干使其干燥,得到石墨烯包裹量子点复合球;
    其中,所述石墨烯溶液内的石墨烯为石墨烯纳米片,该石墨烯纳米片的层数为1~3层;
    其中,所述步骤1中,所述石墨烯溶液的浓度为0.01mg/ml~2mg/ml,所述量子点与石墨烯溶液按照石墨烯与量子点的质量比为1:10~1:100进行混合、搅拌,搅拌时间为5min~120min;
    其中,所述步骤2中,在转速2000rpm~8000rpm下对所述混合液进行离心,离心时间为1min~60min;所述步骤3中,烘干温度为80℃~120℃,烘干时间为10min~60min。
  12. 如权利要求11所述的石墨烯包裹量子点复合球的制备方法,其中,所述量子点为油溶性量子点,所述石墨烯溶液的溶剂为有机溶剂。
  13. 如权利要求12所述的石墨烯包裹量子点复合球的制备方法,其中,所述有机溶剂为乙醇、甲基吡咯烷酮、或二甲基甲酰胺。
  14. 如权利要求11所述的石墨烯包裹量子点复合球的制备方法,其中,所述量子点为水溶性量子点,所述石墨烯溶液的溶剂为水。
  15. 如权利要求11所述的石墨烯包裹量子点复合球的制备方法,其中,所述量子点包括以下掺杂或非掺杂的量子点中的一种或多种:硫化锌、硫化镉、氧化锌、氮化镓、硒化镓、硒化锌、硒化镉、碲化锌、碲化镉、碲化铅、磷化铟、及砷化镓。
  16. 如权利要求11所述的石墨烯包裹量子点复合球的制备方法,其中,所述量子点包括石墨烯量子点和碳量子点中的一种或多种。
PCT/CN2015/098513 2015-11-16 2015-12-23 石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球 WO2017084152A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/912,608 US20180030343A1 (en) 2015-11-16 2015-12-23 Preparation method of quantum dot compound spheres coated with graphenesand quantum dot compound spheres coated with graphenes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510790980.4 2015-11-16
CN201510790980.4A CN105295891A (zh) 2015-11-16 2015-11-16 石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球

Publications (1)

Publication Number Publication Date
WO2017084152A1 true WO2017084152A1 (zh) 2017-05-26

Family

ID=55193744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098513 WO2017084152A1 (zh) 2015-11-16 2015-12-23 石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球

Country Status (3)

Country Link
US (1) US20180030343A1 (zh)
CN (1) CN105295891A (zh)
WO (1) WO2017084152A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967169B (zh) * 2016-05-04 2018-07-03 华南师范大学 一种纳米碳点修饰三维石墨烯材料的方法
CN107446577B (zh) * 2017-07-20 2019-10-25 北京师范大学 制备光刻胶-石墨烯量子点的发光复合体系的方法
CN109980100B (zh) * 2017-12-27 2020-04-28 Tcl集团股份有限公司 发光材料及其制备方法和qled器件
CN108169837A (zh) * 2018-01-16 2018-06-15 惠州市华星光电技术有限公司 液晶显示器及其偏光片
CN109111596B (zh) * 2018-06-29 2019-09-10 华南农业大学 碳点复合纳米粒子、碳点/氟化物复合材料、制法及应用
CN108957619B (zh) * 2018-07-25 2022-09-27 京东方科技集团股份有限公司 一种导光组件、导光组件的制作方法以及背光源
CN110196511B (zh) * 2019-05-24 2021-11-12 武汉天马微电子有限公司 一种量子点膜及其制作方法、背光模组、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913600A (zh) * 2010-08-27 2010-12-15 上海交通大学 制备石墨烯/半导体量子点复合材料的方法
CN102965105A (zh) * 2012-11-21 2013-03-13 中国科学院等离子体物理研究所 一种石墨烯-CuInS2量子点复合物及其制备方法
CN103361044A (zh) * 2013-07-16 2013-10-23 东南大学 一种氧化石墨烯片包裹氧化锌量子点核壳结构的制备方法
CN103965867A (zh) * 2014-04-09 2014-08-06 上海大学 一种qd-led用石墨烯量子点包覆氧化锌的核壳结构量子点的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176382B (zh) * 2011-01-31 2013-10-16 中国科学院上海硅酸盐研究所 石墨烯-量子点复合薄膜的制备方法及构建的太阳能电池
CN102504807A (zh) * 2011-10-18 2012-06-20 西北师范大学 Eu(Ⅲ)-1,10-邻菲罗啉/石墨烯光电复合材料及其制备
KR101357045B1 (ko) * 2011-11-01 2014-02-05 한국과학기술연구원 그라핀이 결합된 산화물 반도체-그라핀 핵-껍질 양자점과 이를 이용한 튜너블 발광소자 및 그 제조 방법
KR101561841B1 (ko) * 2013-12-05 2015-11-20 명지대학교 산학협력단 양자점-그래핀 옥사이드 나노복합체, 환원된 양자점-그래핀 옥사이드 나노복합체 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913600A (zh) * 2010-08-27 2010-12-15 上海交通大学 制备石墨烯/半导体量子点复合材料的方法
CN102965105A (zh) * 2012-11-21 2013-03-13 中国科学院等离子体物理研究所 一种石墨烯-CuInS2量子点复合物及其制备方法
CN103361044A (zh) * 2013-07-16 2013-10-23 东南大学 一种氧化石墨烯片包裹氧化锌量子点核壳结构的制备方法
CN103965867A (zh) * 2014-04-09 2014-08-06 上海大学 一种qd-led用石墨烯量子点包覆氧化锌的核壳结构量子点的制备方法

Also Published As

Publication number Publication date
CN105295891A (zh) 2016-02-03
US20180030343A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
WO2017084152A1 (zh) 石墨烯包裹量子点复合球的制备方法及石墨烯包裹量子点复合球
TWI675092B (zh) 用於彩色濾光器應用之量子點架構
US10317785B2 (en) Optical film
TWI711583B (zh) 用於避免陰離子交換之帶殼的鹵化物鈣鈦礦奈米粒子
EP3122840B1 (en) Quantum dot compositions
US8098005B2 (en) White light emitting device
Han et al. High efficiency red emission carbon dots based on phenylene diisocyanate for trichromatic white and red LEDs
JP2020184544A (ja) 電子素子における半導体粒子
US9963621B2 (en) Manufacturing method of quantum dot glue, quantum dot glue and quantum dot polarizer
He et al. Ultra-stable, solution-processable CsPbBr3-SiO2 nanospheres for highly efficient color conversion in micro light-emitting diodes
TW201925422A (zh) 發光體,以及包含該發光體的發光膜、發光二極體、發光二極體封裝和顯示裝置
US20170261812A1 (en) Display device using quantum dot film
JP2013518166A5 (zh)
WO2017049788A1 (zh) 阵列基板及其制作方法
CN205452347U (zh) 一种支架型量子点led封装结构
TW201638298A (zh) 以金屬硫醇聚合物穩定化的量子點
KR20200021975A (ko) 조성물, 필름, 적층 구조체, 발광 장치 및 디스플레이
Um et al. Enhancing efficiency of quantum dot/photoresist nanocomposite using wrinkled silica-quantum dot hybrid particles
WO2016169069A1 (zh) 偏光片、基于量子效应的显示面板及显示装置
WO2017041323A1 (zh) 一种偏光片
CN106784260A (zh) 一种直下式led背光源的制作方法
CN105742462B (zh) 一种紫外光与多量子点组合的高色域白光实现方式
CN108155296A (zh) 量子点发光器件及显示装置
Kim et al. Synthesis of colloidal aluminum hydroxide nanoparticles for transparent luminescent polymer nanocomposite films
KR101413660B1 (ko) 발광다이오드용 양자점-고분자 복합체 플레이트 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908648

Country of ref document: EP

Kind code of ref document: A1