WO2017079955A1 - 有效改善复合材料界面结合的复合材料制备系统及方法 - Google Patents

有效改善复合材料界面结合的复合材料制备系统及方法 Download PDF

Info

Publication number
WO2017079955A1
WO2017079955A1 PCT/CN2015/094507 CN2015094507W WO2017079955A1 WO 2017079955 A1 WO2017079955 A1 WO 2017079955A1 CN 2015094507 W CN2015094507 W CN 2015094507W WO 2017079955 A1 WO2017079955 A1 WO 2017079955A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
reaction vessel
induction
temperature
pressure
Prior art date
Application number
PCT/CN2015/094507
Other languages
English (en)
French (fr)
Inventor
黄剑锋
李文斌
李瑞梓
李嘉胤
费杰
欧阳海波
曹丽云
李多
周磊
Original Assignee
陕西科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西科技大学 filed Critical 陕西科技大学
Priority to US15/739,370 priority Critical patent/US10493420B2/en
Publication of WO2017079955A1 publication Critical patent/WO2017079955A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1875Stationary reactors having moving elements inside resulting in a loop-type movement internally, i.e. the mixture circulating inside the vessel such that the upwards stream is separated physically from the downwards stream(s)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/0009Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0295Synthetic organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0854Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0888Liquid-liquid

Definitions

  • the present invention belongs to the technical field of synthesis of materials, and relates to a composite material preparation system and method capable of effectively improving interfacial bonding of composite materials. Background technique
  • the physical methods mainly include mechanical grinding composite method, dry impact method, high energy ball milling method, blending method, heterogeneous coacervation method and high temperature evaporation method, etc.
  • the nanocomposites prepared by these methods have surface cleanliness, no impurities, and particles. It has the advantages of controllability and high activity, but the current yield is low and the cost is high.
  • the chemical method mainly includes a sol-gel method, a hydrothermal method, a microemulsion method, a chemical vapor deposition method, a solvent evaporation method, etc., although these methods have high yields, the prepared composite material contains certain impurities.
  • the template method synthesizes a material having a certain structure, which is required for the template, that is, the template itself should have an active site or can be inserted into the active site through a certain treatment, so that the reactant can be realized in the matrix.
  • the growth of materials, which makes some templates with special structure can not be used [Chen Zhangxu, Zheng Bingyun, Li Xianxue, Fu Minglian, Xie Fuguang, Deng Chao, Hu Yanhua, "Progress in the preparation of nanomaterials by template method"
  • the technical problem to be solved by the present invention is a composite material preparation system and method capable of effectively improving the interface of composite materials, and capable of utilizing induction heating at a precondition of controllable temperature and pressure.
  • the composite material having excellent interfacial bonding is prepared by utilizing the characteristics that the reactant itself is heated.
  • the present invention provides a composite material preparation system comprising: a reaction vessel for containing a seal of a reactant and a base material; and detecting a temperature of the temperature inside the reaction vessel a unit for detecting a pressure in the reaction vessel; heating the hydrothermal induction heating of the reaction vessel based on a temperature value detected by the temperature detecting unit and a pressure value detected by the pressure detecting unit
  • the heating unit includes an induction coil, an induction heating device, and a control mechanism for controlling the occurrence of an induction frequency of the induction heating device, wherein the reaction vessel is located in the induction coil, and both ends of the induction coil are mounted on the An outer wall of the induction heating device, the induction coil and the interior of the induction heating device are provided with circulating water.
  • the circulating water is first flowed into the induction coil through the internal pipe of the induction heating device before the reaction, flows out from the induction coil, and then flows out through the internal pipe of the induction heating device, and is finally discharged.
  • the reactant and the base material are then introduced into the reaction vessel, and the reaction vessel is sealed, and the temperature and pressure in the reaction vessel are detected by a temperature detecting unit and a pressure detecting unit.
  • the reaction kettle is fixed in the induction coil, the temperature detecting unit and the pressure detecting unit are operated, the induction heating device is driven, and the reaction temperature and the output current of the induction heating device are controlled to perform hydrothermal sensing on the reaction kettle. Heat up. After the reaction, the induction heating device, the temperature detecting unit and the pressure detecting unit were turned off, and after the kettle was cooled to room temperature, the circulating water was closed, the reaction vessel was taken out, and the reaction product was taken out.
  • the circulating water is first discharged into the induction coil and the induction heating device before the reaction. Then, the mixed solution as a reactant is transferred into the reaction vessel, a base material capable of inducing an alternating magnetic field is added, sealed, placed in the heating unit of the present invention for hydrothermal reaction, and then naturally cooled to room temperature, from the suspension after the reaction. The product is separated from the liquid, and the product is separately washed with deionized water and absolute ethanol, and dried to obtain a product-loaded composite product.
  • the composite material can be synthesized by hydrothermal sensing technology or have a special structural material, thereby effectively improving the interface bonding of the composite material.
  • the temperature of the induction heating device may be controlled to control the temperature in the reaction kettle according to the temperature value detected by the temperature detecting unit. .
  • the temperature value detected by the temperature detecting unit can be collected by the induction heating device and fed back to the induction heating device, so that the temperature can be automatically adjusted and controlled by the on or off of the current in the induction heating device.
  • the present invention is not limited thereto, and the temperature value detected by the temperature detecting unit may be observed by a person, and the current is turned on or off in the induction heating device by a manual manner, thereby The temperature inside the reactor was manually controlled.
  • the temperature detecting unit may include an optical fiber temperature sensor or an infrared thermometer connected to the reaction vessel.
  • an optical fiber temperature sensor or an infrared thermometer is used as a temperature detecting unit, which is intrinsically safe, free from electromagnetic interference, can be remotely monitored, has high precision and sensitivity, is resistant to high pressure, is resistant to corrosion, and can be in a harsh environment. Work and low cost. Therefore, the electromagnetic interference resistance of the temperature measuring system can be significantly improved, the accuracy of temperature measurement can be improved, and the cost can be reduced.
  • the pressure detecting unit may include a pressure sensor and a pressure digital display system connected to the reaction kettle.
  • the pressure detecting unit mainly realizes the pressure measurement by a pressure sensor capable of sensing the gas pressure in the reaction tank, and can convert the electric signal into a digital signal by, for example, a micro high pressure reactor program control system, and then display it.
  • an exhaust valve can be provided to relieve the pressure after the reaction is completed. use.
  • the pressure value detected by the pressure detecting unit can be collected by the induction heating device and fed back to the induction heating device, so that the automatic adjustment and control of the pressure can be realized by turning on or off the current in the induction heating device.
  • the present invention is not limited thereto, and the pressure value detected by the pressure detecting unit may be observed by a person.
  • a gas pressure sensor of a non-metallic or non-carbon (mainly polymer) probe may be used as the sensor of the pressure detecting unit.
  • the stirring device may further include: a stirring device for stirring the substance in the reaction kettle, the stirring device comprising: a transmission rod disposed in the kettle body of the reaction kettle a stirring paddle mounted on the transmission rod; a driving device disposed outside the kettle body for driving the rotation of the transmission rod.
  • a stirring device for stirring the substance in the reaction kettle comprising: a transmission rod disposed in the kettle body of the reaction kettle a stirring paddle mounted on the transmission rod; a driving device disposed outside the kettle body for driving the rotation of the transmission rod.
  • the agitating paddle may include one or more of an axial flow agitating paddle, a radial flow agitating paddle, or a mixed flow agitating paddle.
  • the agitating paddle The gap with the inner wall of the kettle body is 0.5 to 1 cm.
  • the selection of the above-described gap parameter is more advantageous in producing a uniform stirring effect, so as to achieve the purpose of not agglomerating the reactants in the reactor, not sedimenting, and uniformly mixing.
  • reaction vessel may be provided in an ultrasonic unit and stirred.
  • the reaction vessel can also be placed, for example, in an ultrasound system to achieve dispersion of the reactants by controlling the ultrasonic power so that the product can be uniformly grown and distributed on the substrate material.
  • the induction coil may be made of a square copper tube and the coil shape is circular.
  • the outer layer is wound with an insulating layer, the number of turns of the coil is 2 to 10, the length of the coil is 0.5 to 2 m, and the inner diameter of the coil is 20 to 2 00mm.
  • the use of a square copper tube as an induction coil has the advantages of low resistance, low power consumption, convenient soldering, and high strength.
  • the selection of the circular induction coil is more conducive to the generation of the alternating magnetic field and the inductive object cutting the magnetic induction line, which contributes to the generation of induced current and the heating of the sensing object.
  • the frequency is too low, the device will automatically protect, oscillate or stop automatically.
  • the frequency is too high, the device will automatically reduce the heating power.
  • the frequency is too high, the power device in the device will be burned in an instant. The difference in the number of turns, the length and the inner diameter will result in different inductive frequency and output power.
  • the sensing frequency and power range are determined, which requires that the number of turns, length and inner diameter of the coil are well matched and cannot be set arbitrarily.
  • the parameters protected by the present invention are premised on the safe operation of the induction heating device, which is more conducive to the generation of an alternating magnetic field, is more conducive to achieving a better cooling effect, and is more conducive to a better heating effect.
  • the material of the reaction vessel may include a high molecular polymer.
  • the reactor can use a high molecular polymer such as para-polyphenol (PPL) or polytetrafluoroethylene (PTFE), thereby improving the electromagnetic interference resistance, high temperature resistance, and heat stability of the reaction vessel.
  • a high molecular polymer such as para-polyphenol (PPL) or polytetrafluoroethylene (PTFE)
  • PPL para-polyphenol
  • PTFE polytetrafluoroethylene
  • the entire sealing system is made of a non-metallic, non-carbon (primarily polymer) material to avoid the influence of alternating magnetic fields on the metal sealing system.
  • the entire reactor including the lid, the kettle body and the sealing system are made of a polymer material, so that the entire system is light and easy to fix and carry.
  • the fixing of the reaction vessel on the induction coil can be achieved by providing a card slot at the bottom of the reactor, or by setting the reactor to a stepped cylinder shape, and using the upper cylinder diameter of the reactor to be larger than the inner diameter of the induction coil, or This is achieved by constructing a reaction vessel fixing bracket.
  • the material of the exhaust valve is made of metal in consideration of safety and the like, and the distance of the exhaust valve from the induction coil can be set to be larger than 50 cm in order to prevent the exhaust valve from being affected by the alternating magnetic field.
  • the reaction vessel may be sealed by a sealing mechanism including a flange plate provided at a mouth end of the kettle body of the reaction vessel, and a flange cover on the kettle lid of the reaction vessel, and a fastening member for tightly connecting the flange plate and the flange cover.
  • the sealing of the reaction vessel can be effectively achieved by the above sealing mechanism, and it is easy to react at the reaction junction. After the bundle, the reaction vessel was taken out and the reaction product was taken out.
  • the present invention also provides a method for preparing a composite material using the above composite material preparation system, comprising: circulating circulating water through an induction coil of a heating unit and an interior of an induction heating device; and reacting the reactant with the base material Storing in a sealed reaction vessel; placing the reaction vessel in the induction coil; detecting the temperature in the reaction vessel; detecting the pressure in the reaction vessel; based on the detected temperature value and The detected pressure value is controlled by the induction heating device to hydrothermally induce the reaction vessel; after the reaction, the reaction vessel is cooled to obtain a reaction product.
  • the induction heating device may output an inductive frequency of 10 to 500 kHz and an induced current of 0 to 1200 amps.
  • an induction heating device capable of outputting an induction frequency of 10 to 500 KHz can be selected.
  • the amount of induced current in the sensing device can be continuously adjusted from 0 to 1200A.
  • the induction heating device may be connected to a control mechanism that controls the occurrence of an inductive frequency of the inductive heating device, such as an active pedal that can remotely control the occurrence of an inductive frequency, by which the output of the inductive frequency can be effectively controlled.
  • FIG. 1 is a schematic view showing the overall structure of a composite material preparation system capable of effectively improving interfacial bonding of a composite material according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of a reaction kettle in the composite material preparation system shown in FIG. 1;
  • FIG. 3 is a schematic structural view of a stirring device in the composite material preparation system shown in FIG. 1;
  • Example 4 is a scanning electron microscope (SEM) photograph of a MnO 2 /graphite composite material prepared in Example 4 of the present invention.
  • Reference numerals 1, optical fiber thermometer; 2, fiber temperature sensor; 3, micro high pressure reactor program control system; 4, pressure sensor; 5, exhaust valve; 6, reactor; 7, induction coil; 8, induction heating equipment 9, pedal; 10, flange cover; 11, kettle cover; 12, flange plate; 13, kettle body; 14, thread; 15, bolts; 16, drive device (motor); 17, transmission rod; mixer.
  • FIG. 1 is a schematic view showing the overall structure of a composite material preparation system capable of effectively improving interfacial bonding of a composite material according to an embodiment of the present invention
  • FIG. 2 is a view showing the composite material preparation system shown in FIG. Schematic diagram of the structure of the reaction vessel
  • Fig. 3 is a schematic view showing the structure of the stirring device in the composite material preparation system shown in Fig. 1.
  • the present invention provides a composite material preparation system, as shown in FIGS. 1 to 3, comprising: a reaction kettle for containing a seal of a reactant and a base material.
  • a temperature detecting unit that detects a temperature in the reaction vessel 6; a pressure detecting unit that detects a pressure in the reaction vessel 6; a temperature value detected based on the temperature detecting unit and the pressure detecting unit detects a pressure value, a heating unit that performs hydrothermal induction heating on the reaction vessel; the heating unit includes an induction coil 7, an induction heating device 8, and a control mechanism 9 that controls the occurrence of an induction frequency of the induction heating device 8, the reaction
  • the kettle 6 is located in the induction coil 7, and both ends of the induction coil 7 are mounted on an outer wall of the induction heating device 8, and the induction coil 7 and the interior of the induction heating device 8 are provided with circulating water.
  • the composite material preparation system of the present invention can perform a hydrothermal induction preparation method which effectively improves the interface bonding of the composite material, and the method is simple and easy to control, can synthesize a special structure which is difficult to synthesize by various conventional methods, and can effectively improve the composite. Interface bonding of materials.
  • the As substance is dissolved in the A1 solvent and stirred to obtain the A solution
  • the Bs substance is dissolved in the B1 solvent and stirred to obtain the B solution
  • the A solution and the B solution are mixed and stirred uniformly, and the pH value is adjusted.
  • the C solution is transferred as a reactant into the reaction vessel 6, and a matrix material D capable of inducing an alternating magnetic field is added, and the reactor 6 is sealed and placed in the induction coil 7, and the current output through the induction heating device 8 is applied.
  • the reaction vessel 6 is heated, and after the reaction, the product is separated from the resulting suspension, and after washing and drying, a composite product F loaded with the product E (E is a product synthesized from As and Bs) is obtained.
  • Step 1 The As substance is dissolved in the A1 solvent, magnetically stirred for 30 ⁇ 120min (or ultrasonic 30 ⁇ 120m in) to obtain 0.01 ⁇ 5mol/L of the A solution;
  • Step two Bs substance is dissolved in B1 solvent, magnetic stirring 30 ⁇ 120min (or ultrasonic 30 ⁇ 120 min) to obtain 0.01 ⁇ 5mol/L B solution;
  • Step three Mix A solution and B solution, magnetically stirred for 30 ⁇ 300min, and adjust the pH value to obtain mixed liquid C;
  • Step 4 Transfer the C solution into the reaction vessel, add a matrix material D capable of inducing an alternating magnetic field, seal and place in a hydrothermal induction heating device, at an induction frequency of 10 to 500 KHz and 0 to 1200 A.
  • the reaction is carried out for 10 min to 24 h at the output current, and then naturally cooled to room temperature;
  • Step 5 The product is separated from the suspension after the reaction, and the product is separately washed with deionized water and anhydrous ethanol, and dried to obtain a composite product F loaded with product E.
  • the induction coil 7 is distributed on the outer wall of the kettle body of the reaction vessel 6, and the induction material D in the kettle is just in the middle of the induction coil 7, which is uniform in heating and high in efficiency, avoiding local overheating; induction heating equipment 8 output AC power to the induction coil, generate an alternating magnetic field through the induction coil, and cut the magnetic induction line in the kettle to generate an induced current, so that the substance in the kettle capable of inducing the alternating magnetic field reaches the purpose of being heated; by controlling the magnitude of the output current
  • the output power can be adjusted to achieve the control of the reaction temperature.
  • the higher temperature base material D can make the substance E easy to nucleate around it, and then adjust the stirring speed or the ultrasonic power to regulate the growth rate of the crystal, thereby achieving the purpose of controlling the particle size of the product.
  • the kettle body of the reaction kettle 6 is located inside the induction coil 7, and the induction coil 7 is mounted on the outer wall of the induction heating device 8, and the induction coil 7 and the induction heating device 8 are internally connected with a circulating water system.
  • the circulating water, the measuring kettle 8 is equipped with a temperature measuring and pressure measuring system and is connected to the program control system, and the program control system can display the temperature and pressure in the kettle.
  • the temperature inside the kettle increases, so that it is necessary to introduce a control system in order to achieve constant temperature.
  • the temperature can be controlled in two ways, one is manual, that is, by observing the change of the temperature on the temperature detecting unit, the pedaling is used to realize the on and off of the induction heating; An automatic adjustment system that collects the temperature value of the temperature detection unit and feeds it back to the induction heating device. Automatic temperature regulation and control through induction heating equipment.
  • thermocouple sensors mostly use metal probes, and metal probes generate heat under the action of an alternating magnetic field, and thus cannot be used in hydrothermal sensing devices.
  • the temperature detecting unit may employ an optical fiber temperature sensor 2 or an infrared thermometer connected to the reaction vessel 6.
  • a stirring device may be introduced into the reaction vessel 6, wherein the stirring device includes a transmission rod 17 disposed inside the kettle body, and a stirring paddle provided on the transmission rod. 18 and a driving device 16 for driving the rotation of the transmission rod 17, the driving device 16 is disposed outside the kettle body.
  • the agitating paddle 18 adopts one or more of an axial flow agitating paddle, a radial flow agitating paddle or a mixed flow agitating paddle, and a gap between the agitating paddle 18 and the inner wall of the kettle is 0.5 to 1 cm; Placed in the ultrasound system, the dispersion of the reactants is achieved by controlling the ultrasonic power so that the product E can be uniformly grown and distributed on the matrix material D.
  • the pressure detecting unit is mainly realized by the pressure sensor 4 capable of sensing the gas pressure in the reaction vessel, and converts the electrical signal into a digital signal through the micro high pressure reactor programming system 3, and then displays come out.
  • the exhaust valve 5 connected to the reaction vessel 6 shown in Fig. 1 can function as a pressure relief after the reaction is completed.
  • the reactor 6 can be made of para-polyphenol (PPL) or poly four. High molecular weight polymer such as fluoroethylene (PTFE).
  • PPL para-polyphenol
  • PTFE fluoroethylene
  • the flange cover 10 of the thread 14 and the flange plate 12 are sealed.
  • the flange plate 12 can be disposed at the mouth end of the kettle body 13 of the reaction vessel 6, and the flange cover 10 is disposed on the kettle lid 11 of the reaction vessel 6.
  • the flange plate 12 and the flange cover 10 are tightly coupled by the bolts 15 inserted in the threads 14, whereby the upper seal of the reaction vessel body is screw-sealed, and a snap or the like can be added to increase the safety of the apparatus.
  • the product obtained in the above step 5 may be subjected to chemical etching or physical calcination treatment to remove the matrix material D, and the obtained material may be obtained.
  • Material E with controllable structure This provides a new technique for templating synthetic materials.
  • the structure of the composite material to be prepared may be a film structure, a coating structure, a core-shell structure, a sheet-like interconnected particle structure, a porous structure, or the like.
  • the mixed liquid may be in the form of a sol, thereby achieving a combination with the sol-gel method. It may also be a paste on the base material D to achieve material synthesis under air (or atmosphere) conditions, rather than in liquid phase conditions.
  • the pH in the above step 3 is adjusted by using a hydrochloric acid solution of 0.1 to 5 mol.L -1 , an acetic acid solution, a sodium hydroxide solution, a potassium hydroxide solution or ammonia water.
  • the specific drying process in the third step is to place the product in an electric vacuum drying oven at 50 to 120. Heat under C to 12 to 36 hours, and the pH in step 3 is 0 to 14.
  • the present invention provides a preparation method for preparing a composite material having excellent interface bonding by hydrothermal sensing technology. Mixing the A solution and the B solution to adjust the pH to obtain a C solution, then transferring the C solution into the reaction vessel and adding a matrix material D capable of inducing an alternating magnetic field. After reacting in an induction heating device, the suspension is taken out and separated. , washing and drying treatment, finally preparing composite F loaded with product E.
  • Composite materials having different properties can be synthesized by changing the output current and the reaction enthalpy, and composite materials having different structures can be obtained by selecting the base material D having different structures.
  • the heating effect of the matrix material D provides a site for the nucleation of the reactants and accelerates the growth of the crystal.
  • the invention changes the way of third-party heating in the traditional process to the base material itself is directly heated, fundamentally (heating and heat transfer angle) changes the principle of preparing the composite material, the process is simple and easy to control, and the obtained
  • the chemical composition of the composite material is uniform, the purity is high, the crystal morphology is regular, the particle size is small and the distribution is uniform, and the interface is excellent.
  • the preparation cycle of the composite material is greatly shortened, requires no subsequent processing and is environmentally friendly, making it easier to achieve industrial production.
  • the conventional hydrothermal or microwave hydrothermal synthesis technology is heated by a third-party solvent, and then the heated solvent transfers heat to the base material and the reactant to achieve the purpose of preparing the composite material. There is no direct contact or reaction between D and E, resulting in weak interface bonding.
  • the invention adopts hydrothermal induction heating technology to completely change the way of heating and heat transfer in the reaction.
  • the base material itself is first heated to a higher temperature in a shorter turn, and the temperature in other places is relatively low, so that Make As
  • the product E is synthesized by reacting with Bs at a high temperature of the matrix material D, so that the interface bonding between D and E can be remarkably improved.
  • the technology can be applied to a method for preparing a material having a certain structure by a template method, thereby avoiding the disadvantage that a conventional template needs to be processed in advance to obtain an active site, which broadens the application field of the template method.
  • the technique can also be combined with a sol-gel method to prepare a composite material under air (or atmosphere) conditions.
  • Step 1 0.012 mol of potassium permanganate was dissolved in 30 ml of distilled water, magnetically stirred for 30 min to obtain 0.
  • Step two 0.012 mol of phenylpropanal is dispersed in 30 ml of distilled water, magnetic stirring for 30 min to obtain a 0.4 mol / L phenylpropanal solution;
  • Step three the potassium permanganate solution and the phenylpropanal solution are mixed and magnetically stirred for 30 min to obtain the reaction precursor C;
  • Step 4 Transfer the precursor C into the reaction vessel, add a graphite sheet capable of inducing an alternating magnetic field, seal and place in a hydrothermal induction heating device, and react at an induction frequency of 50 KHz and an output current of 200 A. 24h, then naturally cooled to room temperature;
  • Step 5 The composite product is separated from the suspension after the reaction, and the product is separately washed with deionized water and absolute ethanol, and dried to obtain a sheet-like MnO 2 /graphite composite material.
  • Step 1 Dissolve 0.015 mol of potassium permanganate in 30 ml of distilled water, and magnetically stir for 50 min to obtain 0.
  • Step two Disperse 0.015 mol of phenylpropanal in 30 ml of distilled water, magnetic stirring for 50 min to obtain a 0.5 mol / L phenylpropanal solution;
  • Step 3 The potassium permanganate solution and the phenylpropanal solution are mixed and then magnetically stirred for 50 min to obtain a reaction precursor C;
  • Step 4 Transfer the precursor C into the reaction vessel, add a graphite sheet capable of inducing an alternating magnetic field, seal and place in a hydrothermal induction heating device, and react at an induction frequency of 50 KHz and an output current of 300 A. 16h, then naturally cooled to room temperature;
  • Step 5 separating the composite product from the suspension after the reaction, and then washing the product with deionized water and absolute ethanol, respectively, and drying to obtain a sheet-like MnO 2 /graphite composite material.
  • Step 1 Dissolve 0.02 mol of potassium permanganate in 30 ml of distilled water, and magnetically stir for 70 min to obtain 0.6.
  • Step 2 Disperse 0.02 mol of phenylpropanal in 30 ml of distilled water, and magnetically stir for 70 min to obtain 0.67 mol/L of phenylpropanal solution;
  • Step three the potassium permanganate solution and the phenylpropanal solution are mixed and magnetically stirred for 70 min to obtain the reaction precursor C;
  • Step 4 Transfer the precursor C into the reaction vessel, add a graphite sheet capable of inducing an alternating magnetic field, seal and place in a hydrothermal induction heating device, and react at an induction frequency of 50 KHz and an output current of 400 A. 10h, then naturally cooled to room temperature;
  • Step 5 separating the composite product from the suspension after the reaction, and then washing the product with deionized water and absolute ethanol, respectively, and drying to obtain a sheet-like MnO 2 /graphite composite material.
  • Step 1 0.03 mol of potassium permanganate was dissolved in 30 ml of distilled water, magnetic stirring for 90 min to obtain lm ol / L potassium permanganate solution;
  • Step 2 Disperse 0.03 mol of phenylpropanal in 30 ml of distilled water, and magnetically stir for 90 min to obtain lmol/
  • Step three the potassium permanganate solution and the phenylpropanal solution are mixed and magnetically stirred for 90 min to obtain the reaction precursor C;
  • Step 4 Transfer the precursor C into the reaction vessel, add a graphite sheet capable of inducing an alternating magnetic field, seal and place in a hydrothermal induction heating device, and react at an induction frequency of 50 KHz and an output current of 500 A.
  • Step 5 The composite product is separated from the suspension after the reaction, and the product is separately washed with deionized water and absolute ethanol, and dried to obtain a sheet-like MnO 2 /graphite composite material.
  • the invention integrates the advantages of induction heating and hydrothermal reaction technology, and the application of hydrothermal induction heating technology to the preparation of composite materials can greatly improve the interface bonding of composite materials and overcome the synthesis of third-party heating technology.
  • the disadvantage of poor interface bonding of composite materials by introducing a temperature detecting unit and a pressure detecting unit, the reaction temperature and pressure during the reaction are tested, thereby realizing the controllable preparation of the composite material.
  • an E material having a special structure can be obtained, and thus the technique provides a new implementation method for synthesizing a material having a certain structure by a template method.

Abstract

一种有效改善复合材料界面结合的复合材料制备系统及方法,该系统包括:用于容纳反应物与基体材料的密封的反应釜(6);检测反应釜(6)内的温度的温度检测单元;检测反应釜内的压力的压力检测单元;基于温度检测单元检测到的温度值和压力检测单元检测到的压力值,对反应釜进行水热感应加热的加热单元;加热单元包括感应线圈(7)、感应加热设备(8)以及控制感应加热设备的感应频率发生的控制机构(9),反应釜(6)位于感应线圈(7)中,感应线圈(7)的两端安装于感应加热设备(8)的外壁,感应线圈(7)与感应加热设备(8)的内部通有循环水。该设备和用该设备制备复合材料的方法能够利用感应加热在可控温度和压力的前提下,利用反应物本身被加热的特点来制备具有优异界面结合的复合材料。

Description

发明名称:有效改善复合材料界面结合的复合材料制备系统及方法 技术领域
[0001] 本发明属于材料的合成技术领域, 涉及一种能够有效改善复合材料界面结合的 复合材料制备系统及方法。 背景技术
[0002] 随着尖端科学技术的突飞猛进, 对材料的性能要求越来越高, 在许多方面, 传 统的单相材料的性能已不能满足实际的需要, 这促使人们研究制备出由多相组 成的复合材料, 以提高材料的性能 [周曦亚, "复合材料", 化学工业出版社, 北 京]。
[0003] 然而, 要使复合材料产生 1+1〉2的协同效应, 其界面起着至关重要的作用。 为 了获得优异的界面结合, 增强体表面处理 (如化学腐蚀、 射线照射以及加入硅 烷偶联剂等) 、 向基体中添加特定的元素、 增强体的表面涂层等方法已经被广 泛使用 [Su F, Zhang Z, Wang K, Jiang W, Liu W. Tribological and mechanical properties of the composites made of carbon fabrics modified with various methods. Composites Part A: Applied Science and Manufacturing. 2005;36(12): 1601-7.]。
[0004] 对于纳米复合材料的制备, 主要有物理法和化学法两种方法。 其中, 物理法主 要包括机械研磨复合法、 干式冲击法、 高能球磨法、 共混法、 异相凝聚法和高 温蒸发法等, 这些方法制备的纳米复合材料虽然具有表面清洁、 无杂质、 颗粒 可控、 活性高等优点, 但目前产率大都较低且成本高。 化学法主要包括溶胶凝 胶法、 水热法、 微乳液法、 化学气相沉积法、 溶剂蒸发法等, 这些方法虽然产 率高, 但是制备的复合材料含有一定的杂质。
[0005] 上述方法大都是通过加热第三方物质, 然后第三方物质将热量传递给反应物, 从而实现在一定温度下材料的合成。 在使用这些方法制备复合材料吋, 基体材 料与反应物同吋被第三方物质加热, 界面的形成没有引导完全是随机的, 反应 物在基体材料上的分布是不均匀的且界面结合较差。 要想在基体上实现定点可 控成核生长并形成较好的界面, 必须提前处理基体材料 (使它们带电或者具有 某种官能团) 使其选择性的具有活性位点, 从而实现复合结构的控制, 显然这 种工艺是较复杂的, 并且很难实现工业化生产。
[0006] 此外, 模板法合成具有一定结构的材料吋, 对模板是有要求的, 即模板本身应 具有活性位点或者通过一定的处理可以弓 I入活性位点, 这样才能实现反应物在 基体材料上的生长, 这使得某些具有特殊结构的模板不能被使用 [陈彰旭, 郑炳 云, 李先学, 傅明连, 谢署光, 邓超, 胡衍华, "模板法制备纳米材料研究进展"
[J]."化工进展", 2010, (第 1期)]。
技术问题
[0007] 鉴于现有技术中存在的上述问题, 本发明所要解决的技术问题在于一种能够有 效改善复合材料界面结合的复合材料制备系统及方法, 能够利用感应加热在可 控温度和压力的前提下, 利用反应物本身被加热的特点来制备具有优异界面结 合的复合材料。
问题的解决方案
技术解决方案
[0008] 为了解决上述技术问题, 一方面, 本发明提供了一种复合材料制备系统, 包括 : 用于容纳反应物与基体材料的密封的反应釜; 检测所述反应釜内的温度的温 度检测单元; 检测所述反应釜内的压力的压力检测单元; 基于所述温度检测单 元检测到的温度值和所述压力检测单元检测到的压力值, 对所述反应釜进行水 热感应加热的加热单元; 所述加热单元包括感应线圈、 感应加热设备以及控制 所述感应加热设备的感应频率发生的控制机构, 所述反应釜位于所述感应线圈 中, 所述感应线圈的两端安装于所述感应加热设备的外壁, 所述感应线圈与所 述感应加热设备的内部通有循环水。
[0009] 根据本发明的复合材料制备系统, 在反应前首先使循环水经过感应加热设备的 内部管道流入感应线圈, 从感应线圈流出后再经感应加热设备的内部管道流出 , 最终被排出。 然后将反应物和基体材料加入到反应釜内, 并对反应釜进行密 封, 并通过温度检测单元和压力检测单元检测反应釜内的温度和压力。 最后将 反应釜固定于感应线圈中, 运行温度检测单元和压力检测单元, 打幵感应加热 设备, 通过控制感应加热设备的感应频率和输出电流, 对反应釜进行水热感应 加热。 反应结束后关闭感应加热设备、 温度检测单元和压力检测单元, 待釜冷 却至室温后关闭循环水, 取出反应釜, 取出反应产物。
[0010] 根据本发明的复合材料制备系统, 在反应前首先使循环水流入感应线圈和感应 加热设备后排出。 然后将作为反应物的混合液转入反应釜中, 加入能够感应交 变磁场的基体材料, 密封后置于本发明的加热单元中进行水热反应, 然后自然 冷却到室温, 从反应后的悬浮液中分离出产物, 再将该产物分别用去离子水和 无水乙醇浸泡洗涤, 干燥后即可得到负载有产物的复合产物。 由此, 能够利用 水热感应技术合成复合材料或者具有特殊结构材料, 有效改善复合材料界面结 合。
[0011] 又, 在本发明中, 也可以是, 根据所述温度检测单元检测到的温度值控制所述 感应加热设备中电流的接通或断幵以对所述反应釜内的温度进行控制。
[0012] 根据本发明, 可通过感应加热设备采集温度检测单元检测的温度值, 将其反馈 给感应加热设备, 从而可通过感应加热设备中电流的接通或断幵实现温度的自 动调节和控制。
[0013] 本发明不限于此, 也可以是, 可通过人来观察所述温度检测单元检测的温度值 , 并通过手动的方式控制感应加热设备中电流的接通或断幵, 从而对所述反应 釜内的温度进行手动控制。
[0014] 又, 在本发明中, 也可以是, 所述温度检测单元包括与所述反应釜相连的光纤 温度传感器或红外测温仪。
[0015] 根据本发明, 采用光纤温度传感器或红外测温仪作为温度检测单元, 它们具有 本质安全、 不受电磁干扰、 可远程监测、 精度及灵敏度高、 耐高压、 抗腐蚀、 能在恶劣环境下工作以及成本低等优点。 因而可以显著改善测温系统的抗电磁 干扰性、 提高测温的精度、 并降低成本。
[0016] 又, 在本发明中, 也可以是, 所述压力检测单元包括与所述反应釜相连的压力 传感器和压力数显系统。
[0017] 根据本发明, 压力检测单元主要是通过能够感应反应釜中气体压力的压力传感 器来实现压力的测定, 并可通过例如微型高压反应釜程控系统将电信号转换为 数字信号, 然后显示出来。 并且, 还可设置排气阀以起到反应结束后泄压的作 用。
[0018] 根据本发明, 可通过感应加热设备采集压力检测单元检测的压力值, 将其反馈 给感应加热设备, 从而可通过感应加热设备中电流的接通或断幵实现压力的自 动调节和控制。
[0019] 本发明不限于此, 也可以是, 可通过人来观察所述压力检测单元检测的压力值
, 并通过手动的方式控制感应加热设备中电流的接通或断幵, 从而对所述反应 釜内的压力进行手动控制。
[0020] 根据本发明, 可通过在排气阀的位置设置可控接通或断幵幵关, 然后通过压力 检测系统检测到的压力反馈值来控制幵关的接通或断幵, 进而实现压力的精确 控制。
[0021] 又, 在本发明中, 也可以是, 选用非金属、 非碳 (主要是高分子) 材质探头的 气体压力传感器作为压力检测单元的传感器。
[0022] 又, 在本发明中, 也可以是, 还包括用于对所述反应釜内的物质进行搅拌的搅 拌装置, 所述搅拌装置包括: 设置于所述反应釜的釜体内的传动杆; 安装于所 述传动杆上的搅拌桨; 设于所述釜体的外部且用于驱动所述传动杆旋转的驱动 装置。
[0023] 根据本发明, 通过采用上述搅拌装置, 可以保证反应物有良好的均匀性和分散 性。
[0024] 又, 在本发明中, 也可以是, 所述搅拌桨包括轴向流搅拌桨、 径向流搅拌桨或 混合流搅拌桨中的一种或多种, 优选地, 所述搅拌桨与所述釜体的内壁之间的 间隙为 0.5〜lcm。
[0025] 根据本发明, 上述间隙参数的选择更有利于产生均匀的搅拌效果, 从而达到使 反应釜内反应物不团聚、 不沉降且均匀混合的目的。
[0026] 又, 在本发明中, 也可以是, 所述反应釜设于超声单元中进行搅拌。
[0027] 根据本发明, 也可以将反应釜置于例如超声仪中, 通过控制超声功率来实现反 应物的分散, 从而可以使产物在基体材料上均匀生长和分布。
[0028] 又, 在本发明中, 也可以是, 所述感应线圈的材质为方铜管, 线圈形状为圆形
, 外层缠绕绝缘层, 线圈匝数为 2〜10, 线圈长度为 0.5〜2m, 线圈内径为 20〜2 00mm。
[0029] 根据本发明, 选用方铜管作为感应线圈具有电阻小、 电耗低、 焊接方便以及强 度高等优点。 圆形感应线圈的选择更有利于交变磁场的产生和感应物切割磁感 线, 这有助于感应电流的产生和感应物的加热。 当频率太低吋, 设备将自动保 护, 震荡不起来或自动停机, 当频率偏高吋, 设备会自动减小加热功率, 当频 率太高吋会在瞬间烧损设备中的功率器件。 线圈匝数、 长度和内径的不同会导 致感应频率和输出功率的不同, 过少的线圈匝数和过小的线圈内径可能引起频 率过高而引发设备故障, 过长的线圈不利于反应釜的固定。 因此对于一台确定 的感应加热设备, 其感应频率和功率范围是确定的, 这要求线圈的匝数、 长度 和内径具有很好地匹配性, 而不能随意设置。 综上, 本发明所保护的这些参数 , 是以感应加热设备安全工作为前提, 更有利于产生交变磁场、 更利于达到较 好的冷却效果、 更利于产生较好的加热效果。
[0030] 又, 在本发明中, 也可以是, 所述反应釜的材质包括高分子聚合物。
[0031] 根据本发明, 反应釜可采用对位聚苯酚 (PPL) 或聚四氟乙烯 (PTFE) 等高分 子聚合物, 由此能够提高反应釜的抗电磁干扰性、 耐高温性、 热稳定性、 耐腐 蚀性、 抗辐射性、 耐化学腐蚀及抗溶剂性等性能。
[0032] 根据本发明, 整个密封系统采用非金属、 非碳 (主要是高分子) 材质, 这样可 以避免交变磁场对金属密封系统的影响。 此外, 整个反应釜包括釜盖、 釜体以 及密封系统采用高分子材质, 因而整个系统很轻, 易于固定和携带。 反应釜在 感应线圈上的固定, 可以通过在反应釜底部设置卡槽的方式来实现, 也可以通 过将反应釜设置成阶梯圆柱状, 利用反应釜上部圆柱直径大于感应线圈内径来 实现, 还可以通过搭建反应釜固定支架的方式来实现。
[0033] 根据本发明, 考虑到安全等问题, 排气阀的材质采用金属材质, 为了避免排气 阀受到交变磁场的影响, 排气阀距感应线圈的距离可设置为大于 50cm。
[0034] 又, 在本发明中, 也可以是, 所述反应釜通过密封机构进行密封, 所述密封机 构包括设于所述反应釜的釜体的幵口端处的法兰板、 设于所述反应釜的釜盖上 的法兰盖、 以及用于紧密地连接所述法兰板与所述法兰盖的紧固构件。
[0035] 根据本发明, 通过上述密封机构可有效地实现反应釜的密封, 并易于在反应结 束后打幵反应釜取出反应产物。
[0036] 另一方面, 本发明还提供了一种采用上述复合材料制备系统制备复合材料的方 法, 包括: 使循环水流通加热单元的感应线圈与感应加热设备的内部; 将反应 物与基体材料容纳于密封的反应釜中; 将所述反应釜置于所述感应线圈中; 对 所述反应釜内的温度进行检测; 对所述反应釜内的压力进行检测; 基于检测到 的温度值和检测到的压力值, 控制所述感应加热设备对所述反应釜进行水热感 应; 反应后使所述反应釜冷却以得到反应产物。
[0037] 根据本发明, 能够利用水热感应技术合成复合材料或者具有特殊结构材料, 有 效改善复合材料界面结合。
[0038] 又, 在本发明中, 也可以是, 所述感应加热设备输出的感应频率为 10〜500KH z, 感应电流为 0〜1200A。
[0039] 根据本发明, 根据被加热物质尺寸的不同, 可以选择能够输出 10〜500KHz感 应频率的感应加热设备。 感应设备中感应电流的大小可在 0〜1200A的范围内连 续可调。 感应加热设备可连有控制所述感应加热设备的感应频率发生的控制机 构, 例如可远距离控制感应频率的发生的活动踏板, 通过该控制机构可有效地 控制感应频率的输出。
[0040] 根据下述具体实施方式并参考附图, 将更好地理解本发明的上述内容及其它目 的、 特征和优点。
发明的有益效果
对附图的简要说明
附图说明
[0041] 图 1示出了根据本发明一实施形态的能够有效改善复合材料界面结合的复合材 料制备系统的整体结构示意图;
[0042] 图 2示出了图 1所示的复合材料制备系统中的反应釜的结构示意图;
[0043] 图 3示出了图 1所示的复合材料制备系统中的搅拌装置的结构示意图;
[0044] 图 4为本发明的实施例 4制备的 Mn02/石墨复合材料的扫描电镜 (SEM) 照片。
[0045] 附图标记: 1、 光纤测温仪; 2、 光纤温度传感器; 3、 微型高压反应釜程控系 统; 4、 压力传感器; 5、 排气阀; 6、 反应釜; 7、 感应线圈; 8、 感应加热设备 ; 9、 踏板; 10、 法兰盖; 11、 釜盖; 12、 法兰板; 13、 釜体; 14、 螺纹; 15、 螺栓; 16、 驱动装置 (电动机) ; 17、 传动杆; 18、 搅拌桨。
实施该发明的最佳实施例
本发明的最佳实施方式
[0046] 以下结合附图和下述实施方式进一步说明本发明, 应理解, 附图及下述实施方 式仅用于说明本发明, 而非限制本发明。
[0047] 具体地, 图 1示出了根据本发明一实施形态的能够有效改善复合材料界面结合 的复合材料制备系统的整体结构示意图; 图 2示出了图 1所示的复合材料制备系 统中的反应釜的结构示意图; 图 3示出了图 1所示的复合材料制备系统中的搅拌 装置的结构示意图。
[0048] 针对现有技术中制备复合材料的种种缺陷, 本发明提供了一种复合材料制备系 统, 如图 1至图 3所示, 包括: 用于容纳反应物与基体材料的密封的反应釜 6; 检 测所述反应釜 6内的温度的温度检测单元; 检测所述反应釜 6内的压力的压力检 测单元; 基于所述温度检测单元检测到的温度值和所述压力检测单元检测到的 压力值, 对所述反应釜进行水热感应加热的加热单元; 所述加热单元包括感应 线圈 7、 感应加热设备 8以及控制所述感应加热设备 8的感应频率发生的控制机构 9, 所述反应釜 6位于所述感应线圈 7中, 所述感应线圈 7的两端安装于所述感应 加热设备 8的外壁, 所述感应线圈 7与所述感应加热设备 8的内部通有循环水。
[0049] 采用本发明的复合材料制备系统能够执行有效改善复合材料界面结合的水热感 应制备方法, 该方法工艺简单易控, 能够合成多种传统方法难以合成的特殊结 构, 并能够有效改善复合材料的界面结合。
[0050] 例如, 首先将 As物质溶解于 A1溶剂中搅拌后得到 A溶液, 将 Bs物质溶解于 B1溶 剂中搅拌后得到 B溶液; 然后将 A溶液和 B溶液混合搅拌均匀, 调节 pH值后得到 C 溶液; 最后将 C溶液作为反应物转入反应釜 6中, 加入能够感应交变磁场的基体 材料 D, 将反应釜 6密封后置于感应线圈 7中, 通过感应加热设备 8输出的电流对 反应釜 6进行加热中, 反应后从所产生的悬浮液中分离出产物, 清洗、 干燥后即 得到负载有产物 E (E为由 As和 Bs合成的产物) 的复合产物 F。
[0051] 具体地, 采用本发明的复合材料制备系统可以执行以下制备方法: [0052] 步骤一: 将 As物质溶解于 A1溶剂中, 磁力搅拌 30〜120min (或者超声 30~120m in) 后得到 0.01〜5mol/L的 A溶液;
[0053] 步骤二: 将 Bs物质溶解于 B1溶剂中, 磁力搅拌 30〜120min (或者超声 30〜120 min) 后得到 0.01〜5mol/L的 B溶液;
[0054] 步骤三: 将 A溶液和 B溶液混合后磁力搅拌 30〜300min, 并调节 pH值, 得到混 合液 C;
[0055] 步骤四: 将 C溶液转入反应釜中, 加入能够感应交变磁场的基体材料 D, 密封 后置于水热感应加热设备中, 在 10〜500KHz的感应频率下和 0〜1200A的输出电 流下反应 10min〜24h, 然后自然冷却到室温;
[0056] 步骤五: 从反应后的悬浮液中分离出产物, 再将产物分别用去离子水和无水乙 醇浸泡洗涤, 干燥后即可得到负载有产物 E的复合产物 F。
[0057] 本发明中, 感应线圈 7分布于反应釜 6的釜体的外壁, 且釜内感应材料 D正好处 于感应线圈 7的中部, 加热均匀且效率高, 避免产生局部过热现象; 感应加热设 备 8输出交流电到感应线圈, 通过感应线圈产生交变磁场, 釜内物质切割磁感应 线, 产生感应电流, 从而使釜内能够感应交变磁场的物质自身达到被加热的目 的; 通过控制输出电流的大小, 可以实现输出功率的调节, 从而实现反应温度 的控制。 同吋, 温度较高的基体材料 D可使物质 E易于在其周围成核, 再通过调 整搅拌速度或者超声功率来调控晶体的生长速度, 从而达到对生成物的颗粒尺 寸调控的目的。
[0058] 并且, 如图 1所示, 反应釜 6的釜体位于感应线圈 7内部, 感应线圈 7安装于感应 加热设备 8的外壁, 感应线圈 7与感应加热设备 8内部通有来自循环水系统的循环 水, 反应釜 8内装有测温、 测压系统并接于程控系统, 程控系统可显示出釜内温 度和压力。
[0059] 又, 对于水热感应加热技术而言, 一般随着输出功率的增大和反应吋间的延长 , 釜内温度增高, 因而要想实现温度的恒定不变必须引入控制系统。 本发明中 , 可通过两种方式来实现温度的控制, 一种是人工的, 即通过观察温度检测单 元上温度的变化, 采用脚踏的方式来实现感应加热的接通和断幵; 另一种是自 动调节系统, 即采集温度检测单元的温度值, 将其反馈给感应加热设备, 从而 通过感应加热设备实现温度的自动调节和控制。
[0060] 另外, 传统的热电偶传感器大都采用金属探头, 而金属探头在交变磁场的作用 下会发热, 因而不能用于水热感应设备中。 考虑到探头的抗电磁干扰性、 测温 的精度以及成本等问题, 本实施形态中, 温度检测单元可以采用与反应釜 6相连 的光纤温度传感器 2或者红外测温仪。
[0061] 又, 为了保证反应物有良好的均匀性和分散性, 可以在反应釜 6上引入搅拌装 置, 其中搅拌装置包括设于釜体内部的传动杆 17、 设于传动杆上的搅拌桨 18及 用于驱动传动杆 17旋转的驱动装置 16, 驱动装置 16设于釜体外部。 搅拌桨 18采 用轴向流搅拌桨、 径向流搅拌桨或混合流搅拌桨中的一种或多种, 且搅拌桨 18 与釜体内壁之间的间隙为 0.5〜lcm; 也可以将反应釜置于超声仪中, 通过控制 超声功率来实现反应物的分散, 从而可以使产物 E在基体材料 D上均匀生长和分 布。
[0062] 又, 在本实施形态中, 压力检测单元主要是通过能够感应反应釜中气体压力的 压力传感器 4来实现, 并通过微型高压反应釜程控系统 3将电信号转换为数字信 号, 然后显示出来。 此外, 图 1中所示的与反应釜 6相连的排气阀 5可以起到反应 结束后泄压的作用。
[0063] 此外, 由于大多金属都能感应交变磁场, 因而反应釜 6材质的选择是一个关键 的问题。 考虑到材质的抗电磁干扰性、 耐高温性、 热稳定性、 耐腐蚀性、 抗辐 射性、 耐化学腐蚀及抗溶剂性等性能, 反应釜 6可以采用对位聚苯酚 (PPL) 或 聚四氟乙烯 (PTFE) 等高分子聚合物。
[0064] 考虑到反应釜密封安全和密封物材质的选择 (抗电磁干扰性、 耐高温性、 热稳 定性、 耐腐蚀性、 抗辐射性、 耐化学腐蚀及抗溶剂性等) , 采用带有螺纹 14的 法兰盖 10、 法兰板 12进行密封, 法兰板 12可设于反应釜 6的釜体 13的幵口端处, 法兰盖 10设于反应釜 6的釜盖 11上, 通过插入于螺纹 14中的螺栓 15紧密地连接法 兰板 12与法兰盖 10, 由此, 反应釜体的上部密封采用了螺纹密封, 此外还可增 加卡扣等以增加设备的安全性。
[0065] 优选地, 采用本发明的制备系统所执行的前述制备方法中, 还可将上述步骤五 中得到的产物经过化学腐蚀或者物理煅烧处理后, 除去基体材料 D, 可以得到具 有可控结构的材料 E。 这给模板法合成材料提供了一种新的技术。
[0066] 所制备的复合材料的结构可以是薄膜结构、 涂层结构、 核壳结构、 片状连通颗 粒结构以及多孔结构等。
[0067] 此外, 上述步骤三中混合液可以是溶胶状, 从而实现与溶胶凝胶法的结合。 也 可以是糊状刷于基体材料 D上, 实现在空气 (或者气氛) 条件下的材料合成, 而 不是在液相条件下。 且, 上述步骤三中的 pH值是采用 0.1〜5mol.L - 1的盐酸溶液 、 醋酸溶液、 氢氧化钠溶液、 氢氧化钾溶液或者氨水等进行调节的。 优选地, 所述步骤三中的干燥具体过程为将产物置于电热真空干燥箱内, 在 50〜120。C下 加热 12〜36小吋, 且步骤三中的 pH值为 0〜 14。
[0068] 相对于现有技术, 本发明的有益效果为: 本发明提供了一种采用水热感应技术 制备具有优异界面结合的复合材料的制备方法。 将 A溶液和 B溶液混合调节其 pH 值得到 C溶液, 然后将 C溶液转入反应釜中并加入能够感应交变磁场的基体材料 D, 在感应加热设备中反应后, 取出悬浮液并经过分离、 洗涤和干燥处理, 最终 制备出负载有产物 E的复合材料 F
[0069] 通过改变输出电流和反应吋间可以合成具有不同性能的复合材料, 通过选择具 有不同结构的基体材料 D可以获得具有不同结构的复合材料。 水热感应加热技术 中基体材料 D的加热效果, 为反应物成核提供位点并加速晶体的生长。
[0070] 本发明将传统工艺中第三方加热的方式改变为基体材料本身直接被加热, 从根 本上 (加热和传热的角度) 改变了制备复合材料的原理, 工艺简单易控, 制得 的复合材料化学组成均一, 纯度较高, 晶体形貌规则, 粒径较小且分布均匀, 界面结合优异。 此外, 复合材料的制备周期被大大缩短, 无需后续处理且对环 境友好, 因而更易于实现工业化生产。
[0071] 其更具体的有益效果如下:
[0072] (1) 传统的水热或者微波水热合成技术, 都是利用第三方溶剂被加热, 然后 被加热的溶剂将热量传给基体材料和反应物, 以达到制备复合材料的目的, 这 样 D与 E之间并没有直接的接触或反应, 导致它们的界面结合较弱。 本发明采用 水热感应加热技术完全改变了反应中加热和传热的方式, 基体材料本身在较短 的吋间内最先被加热到较高的温度, 其余地方的温度都比较低, 这样可以使 As 和 Bs在基体材料 D的高温下进行反应合成产物 E, 从而可以明显改善 D与 E的界面 结合。
[0073] (2) 由于在感应加热中基体材料的温度很高, 导致合成材料 E的速度非常快、 结晶度较高并且纯度较高, 因而无需后处理。
[0074] (3) 该技术能够应用于模板法合成具有一定结构的材料的制备方法中, 避免 了传统模板需要提前经过处理以获得活性位点的缺点, 这拓宽了模板法的应用 领域。
[0075] (4) 该技术也可以与溶胶凝胶法进行结合, 实现在空气 (或者气氛) 条件下 复合材料的制备。
[0076] (5) 该方法为涂层和薄膜的制备提供了一种全新的实现途径。
本发明的实施方式
[0077] 下面结合附图及实施例对本发明作进一步详细说明。
[0078] 实施例 1
[0079] 步骤一: 将 0.012mol的高锰酸钾溶解于 30ml蒸馏水中, 磁力搅拌 30min后得到 0.
4mol/L的高锰酸钾溶液;
[0080] 步骤二: 将 0.012mol的苯丙醛分散于 30ml蒸馏水中, 磁力搅拌 30min后得到 0.4 mol/L的苯丙醛溶液;
[0081] 步骤三: 将高锰酸钾溶液和苯丙醛溶液混合后磁力搅拌 30min, 得到反应前驱 液 C;
[0082] 步骤四: 将前驱液 C转入反应釜中, 加入能够感应交变磁场的石墨片, 密封后 置于水热感应加热设备中, 在 50KHz的感应频率下和 200A的输出电流下反应 24h , 然后自然冷却到室温;
[0083] 步骤五: 从反应后的悬浮液中分离出复合产物, 再将产物分别用去离子水和无 水乙醇浸泡洗涤, 干燥后即可得到片状 MnO 2/石墨复合材料。
[0084] 实施例 2
[0085] 步骤一: 将 0.015mol的高锰酸钾溶解于 30ml蒸馏水中, 磁力搅拌 50min后得到 0.
5mol/L的高锰酸钾溶液; [0086] 步骤二: 将 0.015mol的苯丙醛分散于 30ml蒸馏水中, 磁力搅拌 50min后得到 0.5 mol/L的苯丙醛溶液;
[0087] 步骤三: 将高锰酸钾溶液和苯丙醛溶液混合后磁力搅拌 50min, 得到反应前驱 液 C;
[0088] 步骤四: 将前驱液 C转入反应釜中, 加入能够感应交变磁场的石墨片, 密封后 置于水热感应加热设备中, 在 50KHz的感应频率下和 300A的输出电流下反应 16h , 然后自然冷却到室温;
[0089] 步骤五: 从反应后的悬浮液中分离出复合产物, 再将产物分别用去离子水和无 水乙醇浸泡洗涤, 干燥后即可得到片状 MnO 2/石墨复合材料。
[0090] 实施例 3
[0091] 步骤一: 将 0.02mol的高锰酸钾溶解于 30ml蒸馏水中, 磁力搅拌 70min后得到 0.6
7mol/L的高锰酸钾溶液;
[0092] 步骤二: 将 0.02mol的苯丙醛分散于 30ml蒸馏水中, 磁力搅拌 70min后得到 0.67 mol/L的苯丙醛溶液;
[0093] 步骤三: 将高锰酸钾溶液和苯丙醛溶液混合后磁力搅拌 70min, 得到反应前驱 液 C;
[0094] 步骤四: 将前驱液 C转入反应釜中, 加入能够感应交变磁场的石墨片, 密封后 置于水热感应加热设备中, 在 50KHz的感应频率下和 400A的输出电流下反应 10h , 然后自然冷却到室温;
[0095] 步骤五: 从反应后的悬浮液中分离出复合产物, 再将产物分别用去离子水和无 水乙醇浸泡洗涤, 干燥后即可得到片状 MnO 2/石墨复合材料。
[0096] 实施例 4
[0097] 步骤一: 将 0.03mol的高锰酸钾溶解于 30ml蒸馏水中, 磁力搅拌 90min后得到 lm ol/L的高锰酸钾溶液;
[0098] 步骤二: 将 0.03mol的苯丙醛分散于 30ml蒸馏水中, 磁力搅拌 90min后得到 lmol/
L的苯丙醛溶液;
[0099] 步骤三: 将高锰酸钾溶液和苯丙醛溶液混合后磁力搅拌 90min, 得到反应前驱 液 C; [0100] 步骤四: 将前驱液 C转入反应釜中, 加入能够感应交变磁场的石墨片, 密封后 置于水热感应加热设备中, 在 50KHz的感应频率下和 500A的输出电流下反应 lh
, 然后自然冷却到室温;
[0101] 步骤五: 从反应后的悬浮液中分离出复合产物, 再将产物分别用去离子水和无 水乙醇浸泡洗涤, 干燥后即可得到片状 MnO 2/石墨复合材料。
[0102] 图 4为示出了上述实施例 1制备的 MnO 2/石墨复合材料的扫描电镜 (SEM) 照片
。 由图 4可以看出颗粒尺寸较小的 MnO 2负载于石墨片上形成了较致密的一层, 并且颗粒之间相互连通形成了较规则的孔结构。
工业实用性
[0103] 本发明整合了感应加热和水热反应技术的优势, 将水热感应加热技术应用于复 合材料的制备, 能够在很大程度上改善复合材料的界面结合, 克服了第三方加 热技术合成复合材料界面结合差的缺点。 同吋, 通过引入温度检测单元和压力 检测单元, 实现了反应过程中反应温度和压力的测试, 从而实现了复合材料的 可控制备。 此外, 通过化学腐蚀或物理煅烧的方法将基体材料除去后, 可以得 到具有特殊结构的 E材料, 因而该技术给模板法合成具有一定结构的材料提供了 一种新的实现方法。
[0104] 在不脱离本发明的基本特征的宗旨下, 本发明可体现为多种形式, 因此本发明 中的实施形态是用于说明而非限制, 由于本发明的范围由权利要求限定而非由 说明书限定, 而且落在权利要求界定的范围, 或其界定的范围的等价范围内的 所有变化都应理解为包括在权利要求书中。

Claims

权利要求书
一种复合材料制备系统, 其特征在于, 包括: 用于容纳反应物与基体 材料的密封的反应釜; 检测所述反应釜内的温度的温度检测单元; 检 测所述反应釜内的压力的压力检测单元; 基于所述温度检测单元检测 到的温度值和所述压力检测单元检测到的压力值, 对所述反应釜进行 水热感应加热的加热单元; 所述加热单元包括感应线圈、 感应加热设 备以及控制所述感应加热设备的感应频率发生的控制机构, 所述反应 釜位于所述感应线圈中, 所述感应线圈的两端安装于所述感应加热设 备的外壁, 所述感应线圈与所述感应加热设备的内部通有循环水。 根据权利要求 1所述的复合材料制备系统, 其特征在于, 根据所述温 度检测单元检测到的温度值和 /或所述压力检测单元检测到的压力值 控制所述感应加热设备中电流的接通或断幵以对所述反应釜内的温度 和 /或压力进行控制。
根据权利要求 1或 2所述的复合材料制备系统, 其特征在于, 所述温度 检测单元包括与所述反应釜相连的光纤温度传感器或红外测温仪。 根据权利要求 1至 3中任一项所述的复合材料制备系统, 其特征在于, 还包括用于对所述反应釜内的物质进行搅拌的搅拌装置, 所述搅拌装 置包括: 设置于所述反应釜的釜体内的传动杆; 安装于所述传动杆上 的搅拌桨; 设于所述釜体的外部且用于驱动所述传动杆旋转的驱动装 置; 优选地, 所述搅拌桨包括轴向流搅拌桨、 径向流搅拌桨或混合流 搅拌桨中的一种或多种, 更优选地, 所述搅拌桨与所述釜体的内壁之 间的间隙为 0.5〜lcm。
根据权利要求 1至 3中任一项所述的复合材料制备系统, 其特征在于, 所述反应釜设于超声单元中进行搅拌。
根据权利要求 1至 5中任一项所述的复合材料制备系统, 其特征在于, 所述压力检测单元包括与所述反应釜相连的压力传感器, 所述复合材 料制备系统还包括与所述反应釜相连以进行泄压的排气阀。
根据权利要求 1至 6中任一项所述的复合材料制备系统, 其特征在于, 所述感应线圈的材质为方铜管, 线圈形状为圆形, 外层缠绕绝缘层, 线圈匝数为 2〜10, 线圈长度为 0.5〜2m, 线圈内径为 l〜200mm; 且 , 所述反应釜的材质包括高分子聚合物。
[权利要求 8] 根据权利要求 1至 7中任一项所述的复合材料制备系统, 其特征在于, 所述反应釜通过密封机构进行密封, 所述密封机构包括设于所述反应 釜的釜体的幵口端处的法兰板、 设于所述反应釜的釜盖上的法兰盖、 以及用于紧密地连接所述法兰板与所述法兰盖的紧固构件。
[权利要求 9] 一种采用权利要求 1至 8中任一项所述的复合材料制备系统制备复合材 料的方法, 包括: 使循环水流通加热单元的感应线圈与感应加热设备 的内部; 将反应物与基体材料容纳于密封的反应釜中; 将所述反应釜 置于所述感应线圈中; 对所述反应釜内的温度进行检测; 对所述反应 釜内的压力进行检测; 基于检测到的温度值和检测到的压力值, 控制 所述感应加热设备对所述反应釜进行水热感应; 反应后使所述反应釜 冷却以得到反应产物。
[权利要求 10] 根据权利要求 9所述的复合材料制备方法, 其特征在于, 所述感应加 热设备输出的感应频率为 10〜500KHz, 感应电流为 0〜1200A。
PCT/CN2015/094507 2015-11-09 2015-11-13 有效改善复合材料界面结合的复合材料制备系统及方法 WO2017079955A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/739,370 US10493420B2 (en) 2015-11-09 2015-11-13 Composite material preparation system and method effectively improving composite material interface bonding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510755044.X 2015-11-09
CN201510755044.XA CN105413603B (zh) 2015-11-09 2015-11-09 有效改善复合材料界面结合的复合材料制备系统及方法

Publications (1)

Publication Number Publication Date
WO2017079955A1 true WO2017079955A1 (zh) 2017-05-18

Family

ID=55492405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094507 WO2017079955A1 (zh) 2015-11-09 2015-11-13 有效改善复合材料界面结合的复合材料制备系统及方法

Country Status (3)

Country Link
US (1) US10493420B2 (zh)
CN (2) CN105413603B (zh)
WO (1) WO2017079955A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109183063A (zh) * 2018-11-23 2019-01-11 南京科技职业学院 一种金属有机骨架材料的批量电化学合成装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093703B (zh) * 2017-04-20 2019-07-02 陕西科技大学 一种二氧化锰/泡沫铜钠离子电池自支撑负极的制备方法
CN112023844A (zh) * 2020-08-12 2020-12-04 陕西科技大学 一种用于材料制备的水热感应加热法及其制备系统
CN114713133B (zh) * 2021-01-04 2023-06-30 中国石油天然气股份有限公司 可视化反应釜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098452A2 (en) * 2008-02-05 2009-08-13 Diverse Energy Ltd Conversion of ammonia into nitrogen and hydrogen
CN102794148A (zh) * 2012-07-19 2012-11-28 江苏中旗作物保护股份有限公司 自动控制的蒸汽加热反应釜
CN103044086A (zh) * 2013-01-08 2013-04-17 陕西科技大学 一种制备碳/碳复合材料硅酸钇晶须增强C-AlPO4-SiCn复合外涂层的方法
CN203090915U (zh) * 2012-12-13 2013-07-31 清远市美乐仕油墨有限公司 一种涂料生产用反应釜的控制系统
CN104130022A (zh) * 2014-07-10 2014-11-05 陕西科技大学 碳/碳复合材料ZrO2颗粒及SiC晶须协同增韧莫来石复合涂层的制备方法
CN204134630U (zh) * 2014-09-11 2015-02-04 杭州弘博新材料有限公司 一种优越搅拌温控压控蒸汽反应釜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273118B2 (ja) * 1995-04-20 2002-04-08 東北電力株式会社 高圧処理装置
CN100414001C (zh) * 2005-09-29 2008-08-27 陕西科技大学 一种微波水热电沉积制备涂层或薄膜的方法及装置
CN102260863B (zh) * 2011-05-05 2013-05-01 陕西科技大学 一种碳/碳复合材料含硅羟基磷灰石涂层的制备方法
CN102491742A (zh) * 2011-11-17 2012-06-13 上海大学 锰铜共掺杂ZnO稀磁半导体材料的制备方法与装置
EP2820170B1 (en) * 2012-02-28 2016-03-23 Inventram Fikri Mulkiyet Haklari Yonetim Ticaret Ve Yatirim Anonim Sirketi A zeolite coating preparation assembly and operation method
CN104701498B (zh) * 2015-03-27 2016-11-16 陕西科技大学 一种生物碳/钒酸铵锂离子电池正极材料的制备方法
CN104701517B (zh) * 2015-03-27 2017-04-12 陕西科技大学 一种锂离子电池用nh4v3o8正极材料制备方法
CN104945001B (zh) * 2015-06-30 2017-12-05 陕西科技大学 一种碳/碳复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098452A2 (en) * 2008-02-05 2009-08-13 Diverse Energy Ltd Conversion of ammonia into nitrogen and hydrogen
CN102794148A (zh) * 2012-07-19 2012-11-28 江苏中旗作物保护股份有限公司 自动控制的蒸汽加热反应釜
CN203090915U (zh) * 2012-12-13 2013-07-31 清远市美乐仕油墨有限公司 一种涂料生产用反应釜的控制系统
CN103044086A (zh) * 2013-01-08 2013-04-17 陕西科技大学 一种制备碳/碳复合材料硅酸钇晶须增强C-AlPO4-SiCn复合外涂层的方法
CN104130022A (zh) * 2014-07-10 2014-11-05 陕西科技大学 碳/碳复合材料ZrO2颗粒及SiC晶须协同增韧莫来石复合涂层的制备方法
CN204134630U (zh) * 2014-09-11 2015-02-04 杭州弘博新材料有限公司 一种优越搅拌温控压控蒸汽反应釜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109183063A (zh) * 2018-11-23 2019-01-11 南京科技职业学院 一种金属有机骨架材料的批量电化学合成装置

Also Published As

Publication number Publication date
CN105413603A (zh) 2016-03-23
CN105413603B (zh) 2017-12-05
US20180185812A1 (en) 2018-07-05
CN105582870A (zh) 2016-05-18
US10493420B2 (en) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2017079955A1 (zh) 有效改善复合材料界面结合的复合材料制备系统及方法
CN108101103A (zh) 一种铯铅卤Cs4PbX6纳米晶的合成方法
CN103588216B (zh) 一种硼/碳热还原法低温制备硼化锆粉体的方法
CN105238349B (zh) 一种Fe3O4‑ZnO纳米复合材料及其制备方法
CN105000567B (zh) 一种高分散纳米二氧化硅的制备方法
CN101792172A (zh) 氢氧化铜和氧化铜纳米材料的制备方法及应用
CN105129861B (zh) 一种铁酸铋BiFeO3纳米片的制备方法
CN111019152A (zh) 一种超声辅助合成锆基金属有机骨架材料的方法及其产品
CN107555470A (zh) 一种两步法合成锌镉硫固溶体材料的方法
CN104609476B (zh) 一种以单壁碳纳米管为轴制备同轴复合纳米线的方法
CN106082314B (zh) 一种在导电基底上生长多孔二氧化锡纳米管的方法
CN105709676B (zh) 有效改善复合材料界面结合的复合材料制备系统
CN104877277B (zh) 一种制备钨酸铋/聚偏氟乙烯复合材料的方法
CN104045093A (zh) 一种微波水热辅助制备纳米ZrB2粉体的方法
CN108329625A (zh) 一种核壳结构纳米纤维/聚偏氟乙烯基高储能薄膜及其制备方法
CN105347382B (zh) 一种花环状氧化铜纳米材料的制备方法
CN102557055B (zh) 一种硅酸锆粉体的制备方法
CN106830072B (zh) 一种二氧化钛纳米线阵列的制备方法
CN103754911B (zh) 纳米γ-Al2O3的合成方法
CN105692694B (zh) Ti3O5/TiO2混晶纳米纤维的制备方法
CN113980677A (zh) 一种g-C3N4量子点及其制备方法
CN209287315U (zh) 连续化生产甲基四氢苯酐的装置
CN106542578A (zh) 一种海胆状五氧化二铌电极材料及其制备方法
CN106477535B (zh) 二硒化铁微米管和二硒化铁纳米片的制备方法
CN205700569U (zh) 一种卧式反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908085

Country of ref document: EP

Kind code of ref document: A1