WO2017077789A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2017077789A1
WO2017077789A1 PCT/JP2016/078094 JP2016078094W WO2017077789A1 WO 2017077789 A1 WO2017077789 A1 WO 2017077789A1 JP 2016078094 W JP2016078094 W JP 2016078094W WO 2017077789 A1 WO2017077789 A1 WO 2017077789A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
rotor core
bridge portion
permanent magnet
convex pole
Prior art date
Application number
PCT/JP2016/078094
Other languages
English (en)
French (fr)
Inventor
恭平 旭
崇 朝賀
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201690001244.4U priority Critical patent/CN208423969U/zh
Publication of WO2017077789A1 publication Critical patent/WO2017077789A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotating electrical machine.
  • a rotating electrical machine having a rotor core in which a permanent magnet is embedded is known.
  • Such a rotating electrical machine is disclosed in, for example, Japanese Patent Application Laid-Open No. 2014-54155 and International Publication No. 2014/027631.
  • Japanese Unexamined Patent Application Publication No. 2014-54155 discloses a rotating electrical machine including an embedded magnet type motor including a rotor core in which permanent magnets are embedded.
  • a rotor yoke rotor core
  • a stator core including a plurality of permanent magnets embedded so as to have a flux barrier made of a gap on both sides in the rotational direction, and an annular shape having a predetermined distance from the rotor yoke on the radially outer side of the rotor yoke
  • a stator core to be arranged and an exciting coil (winding) for exciting the stator core are provided.
  • the rotor yoke includes a convex pole portion that protrudes radially outward of the permanent magnet, and a bridge portion that connects the convex pole portions on the radially outer side of the flux barrier.
  • the curvature of the outer peripheral surface of the convex pole portion in the vicinity of the outermost peripheral point where the distance from the rotation center is maximum is the curvature of the outermost peripheral circle passing through the outermost peripheral point of the rotor yoke with the rotation center of the rotor yoke as the center. It is comprised so that it may become larger.
  • the rotor core includes a core body fixed to the rotor shaft and six magnetic pole portions provided so as to protrude in the radial direction from the core body.
  • the magnetic pole portion is provided with a magnet mounting hole into which a magnet is inserted, and a groove-like recess is formed between adjacent magnetic pole portions. Cutout portions are provided at both ends in the circumferential direction of the magnetic pole portion.
  • the curvature of the outer peripheral surface of the magnetic pole portion in the vicinity of the outermost peripheral point where the distance from the rotation center is maximum is centered on the rotation center of the rotor core. It is comprised so that it may become larger than the curvature of the outermost periphery circle which passes through the outermost periphery point.
  • the curvature of the outer peripheral surface of the convex pole portion (magnetic pole portion) at the outermost peripheral point on the rotor yoke (rotor core). Is larger than the curvature of the outermost circle.
  • the curvature of the outer peripheral surface of the convex pole part (magnetic pole part) at the outermost peripheral point becomes larger than the curvature of the outermost peripheral circle, the circumferential width of the convex pole part (arc-shaped part of the magnetic pole part) becomes larger.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a rotating electrical machine capable of suppressing a decrease in motor torque caused by a decrease in the amount of magnetic flux. It is to be.
  • a rotating electrical machine includes a stator core and a rotor core that is provided to face the stator core and has a magnet hole in which a plurality of permanent magnets are embedded.
  • a bridge portion provided in a range of an outermost circumference circle passing through the outermost circumference point of the rotor core.
  • the curvature of the arc portion of the convex pole portion is configured to be equal to the curvature of the outermost circle of the rotor core so that the curvature of the arc portion of the convex pole portion is the outermost circumference.
  • the magnet hole and the permanent magnet can be arranged more radially outward without reducing the circumferential width of the permanent magnet. Thereby, the fall of the surface area of a permanent magnet can be suppressed. As a result, it is possible to suppress a decrease in motor torque due to a decrease in the amount of magnetic flux.
  • the projecting pole portion further includes a linear portion extending obliquely inward in the radial direction from the end portions on both sides in the circumferential direction of the arc portion to the end portion of the bridge portion,
  • the straight portion is provided on the inner diameter side of the outermost circumference circle of the rotor core, and the length between both ends of the arc portion of the convex pole portion is between both end portions of the bridge portion intersecting with the straight portion provided at both ends of the convex pole portion. It is comprised so that it may become smaller than the length of.
  • the outer peripheral surface of the rotor core is permanently connected to the outer peripheral surface of the rotor core as compared with the case where the arc portion is connected from both ends in the circumferential direction to the bridge portion. Since the distance to the magnet is reduced, the vicinity of the portion connected to the straight portion of the bridge portion becomes thinner. Thereby, since the magnetic resistance of a bridge part can be increased, the leakage of the magnetic flux from a bridge part can be suppressed.
  • the length between both ends of the arc portion becomes both ends of the bridge portion intersecting with the straight portion.
  • the angle at which the straight portion and the bridge portion are connected is greater than when the length is greater than or equal to the length between them.
  • the bridge portion is connected to the first bridge portion having one end connected to the end portion of the linear portion and the other end of the first bridge portion, and from the other end.
  • a second bridge portion extending in an inclined manner toward the radially inner diameter side, and a second bridge portion provided on one side of the convex pole portion corresponding to one of the adjacent permanent magnets, and an adjacent permanent
  • the second bridge portion provided on the other side of the convex pole portion corresponding to the other of the magnets is connected, and the rotor core includes a connection portion between adjacent second bridge portions, a center side of the rotor core, and And a connecting portion for supporting the short side of the permanent magnet having a rectangular cross section.
  • variety of the circumferential direction of a permanent magnet becomes large, and, as a result, it can suppress the fall of the surface area of the permanent magnet on the side facing a stator core. In addition, it is possible to further suppress a reduction in motor torque due to a decrease in the amount of magnetic flux.
  • the connecting portion has a circumferential width in the vicinity of the central portion in the radial direction so as to support the short side of the permanent magnet. It is comprised so that it may become larger than the width
  • the permanent magnet can be easily supported because the short side of the permanent magnet and the connecting portion are in contact with each other.
  • the circumferential width of the connecting portion is uniformly smaller than the circumferential width in the vicinity of the central portion in the radial direction, the minimum circumferential width of the connecting portion is reduced. As a result, leakage of magnetic flux from the connecting portion can be suppressed.
  • the minimum width in the direction orthogonal to the direction in which the first bridge portion of the first bridge portion extends or the first
  • the at least one of the minimum widths in the direction orthogonal to the direction in which the second bridge portion of the two bridge portions extends is configured to be equal to the minimum width in the direction orthogonal to the direction in which the connection portion of the connection portion extends.
  • the stress is dispersed by at least one of the first bridge portion or the second bridge portion and the connecting portion, so that the durability of the rotor core can be improved.
  • both ends of the bridge portion intersecting with the straight portions provided at both ends of the convex pole portion is configured to be greater than 1 and less than or equal to 3 times the length between both ends of the arc part of the convex pole part.
  • the length between the both ends of the bridge portion is larger than three times the length between both ends of the arc portion, the reduction amount of the motor torque becomes relatively large. Therefore, the length between the both ends of the bridge portion is more than 1 time and less than 3 times the length between the both ends of the arc portion, thereby effectively reducing the motor torque while improving the durability of the rotor core. Can be suppressed.
  • the first bridge portion and the second bridge portion are preferably provided on the inner diameter side of the outermost circumference circle of the rotor core.
  • the first bridge portion and the second bridge portion do not interfere with the stator core due to the rotation of the rotor core. Therefore, it is not necessary to widen the gap between the stator core and the rotor core, and the reduction of the magnetic flux density can be suppressed, so that the reduction of the motor output can be suppressed.
  • a concave portion that is recessed toward the inner diameter side is provided between the second bridge portions that are directly connected to each other.
  • the second bridge portions directly connected are arranged in a V shape.
  • the recess can be easily formed.
  • the magnet hole is preferably configured to have a gap near the inner diameter side end of the permanent magnet in a state where the permanent magnet is embedded in the magnet hole.
  • the permanent magnet can escape into the magnet hole, so that the permanent magnet can be easily inserted into the magnet hole.
  • FIG. 3 is an enlarged view of FIG. 2.
  • the rotating electrical machine 100 is, for example, an IPM motor in which a permanent magnet 31 described later is embedded in a rotor core 30.
  • the rotating electrical machine 100 includes a stator core 20 and a rotor core 30.
  • the rotor core 30 is provided inside the annular stator core 20 so as to face the stator core 20.
  • “circumferential direction” means the circumferential direction of the rotor core 30 (stator core 20)
  • radial direction means the radial direction of the rotor core 30.
  • the stator core 20 is provided with a plurality of (for example, nine) teeth 22 so as to protrude from the back yoke 21 toward the inner peripheral side. Slots 23 are respectively formed between adjacent teeth 22. A winding (not shown) is wound around each tooth 22 (slot 23).
  • the rotor core 30 has a plurality of (for example, six) cross-sections having a rectangular shape (rectangular shape) as viewed from the rotation axis direction (Z direction). It has a magnet hole 31a in which the permanent magnet 31 is embedded. The six permanent magnets 31 are embedded at equal angular intervals in the circumferential direction. As shown in FIGS. 2 and 3, the rotor core 30 is provided with a convex pole portion 30 b that protrudes radially outward of each of the six permanent magnets 31 and has an arc portion 30 a having an arc shape on the outer diameter side. ing.
  • the rotor core 30 includes bridge portions 30c that are provided on both sides of the convex pole portion 30b in the circumferential direction and provided between the outer diameter side of the rotor core 30 and the magnet hole 31a.
  • the bridge portion 30c protrudes outward in the radial direction.
  • a connection portion C (see FIG. 3) between a first bridge portion 301c and a second bridge portion 302c described later overlaps with the outermost circumference circle 300,
  • the portions other than the connection portion C are provided on the inner diameter side from the outermost peripheral circle 300.
  • connection portion C of the bridge portion 30 c is formed in an arc shape having a larger curvature than the outermost peripheral circle 300.
  • the connection portion C is an example of the “convex portion” or “the other end of the first bridge portion” in the claims.
  • the curvature of the outer diameter side of the circular arc part 30a of the convex pole part 30b becomes equal to the curvature of the outermost periphery circle 300 seeing from the rotating shaft direction of the rotor core 30. That is, the outermost circumferential circle 300 and the arc portion 30a overlap each other.
  • the magnet hole 31 a When viewed from the rotational axis direction, the magnet hole 31 a supports the two long sides 310 of the permanent magnet 31 in a state where the permanent magnet 31 is inserted, and from the vicinity of the center of each of the two short sides 311 of the permanent magnet 31. Supports the inner diameter side. Further, when viewed from the rotational axis direction, the permanent magnet 31 is inserted into the magnet hole 31a so as to cover the outer diameter side from the vicinity of the center of each of the two short sides 311 of the permanent magnet 31 and project in the circumferential direction. The gap portion 31b is formed.
  • the convex pole portion 30b includes a linear portion 30e extending obliquely inward in the radial direction from the connection portion A, which is an end portion on both sides in the circumferential direction of the arc portion 30a, to the end portion of the bridge portion 30c. Is provided.
  • the straight portion 30 e extends in a straight line when viewed from the rotation axis direction, and is provided on the inner diameter side of the outermost circumferential circle 300.
  • the length L1 (see FIG. 2) between the connecting portions A at both ends of the arc portion 30a in the tangential direction of the center in the circumferential direction of the arc portion 30a is between the connecting portions B between the bridge portion 30c and the straight portion 30e.
  • connection portion A is an example of the “ends on both sides in the circumferential direction of the arc portion” in the claims.
  • connection portion B is an example of “both ends of the bridge portion intersecting with the straight portion” or “one end of the first bridge portion” in the claims.
  • the bridge portion 30c includes a first bridge portion 301c connected to the outer end portion (connection portion B) of the straight portion 30e (see FIG. 3). , Connected to the outer end portion (connecting portion C) of the first bridge portion 301c, and extended obliquely toward the inner diameter side in the radial direction with respect to the extending direction of the first bridge portion 301c when viewed from the rotation axis direction. And a second bridge portion 302c.
  • the second bridge portion 302 c provided on one side of the convex pole portion 30 b corresponding to one of the adjacent permanent magnets 31 and the other of the convex pole portions 30 b corresponding to the other of the adjacent permanent magnets 31.
  • the second bridge portion 302c provided on the side is directly connected.
  • the rotor core 30 includes a connecting portion 30 f that connects the connecting portion D between the adjacent second bridge portions 302 c and the inner diameter side of the rotor core 30 and supports the short side 311 of the permanent magnet 31.
  • the first bridge portion 301 c extends along the vicinity of the end portion 310 a of the long side 310 on the outer diameter side of the permanent magnet 31 when viewed from the rotation axis direction.
  • the second bridge portion 302c extends along the side 310b on the outer diameter side of the gap portion 31b when viewed from the rotation axis direction.
  • a line segment ⁇ (see FIG. 2) passing through the connecting portion D and the rotation center 30d (see FIG. 2) of the rotor core 30 passes through a connecting portion 30f provided between adjacent magnet holes 31a.
  • the bridge part 30c and the connection part 30f each function as a flux barrier.
  • the connecting portion 30f has a circumferential width W1 in the vicinity of the central portion in the radial direction larger than the circumferential width of other portions so as to support the short side 311 of the permanent magnet 31. It is comprised so that it may become. Specifically, the connecting portion 30f gradually increases in width from the outer diameter side toward the central portion, and gradually decreases in width from the central portion toward the inner diameter side.
  • the minimum width W3 in the direction orthogonal to the direction W is configured to be equal to the minimum width W1 in the direction orthogonal to the direction in which the connection portion 30f of the connection portion 30f extends.
  • each of the first bridge portion 301c and the second bridge portion 302c extends uniformly, and thus the first bridge portion 301c of the first bridge portion 301c.
  • the width in the direction orthogonal to the extending direction of W2 is uniformly W2, and the width of the second bridge portion 302c in the direction orthogonal to the extending direction of the second bridge portion 302c is uniformly W3. Further, the width in the direction orthogonal to the direction in which the connecting portion 30f extends is the smallest in the portion where the gap portion 31b on one side of the magnet hole 31a and the gap portion 31b on the other side of the adjacent magnet hole 31a are closest to each other. The value is W1.
  • a recess 30g that is recessed toward the inner diameter side is provided between the second bridge portions 302c that are directly connected. Specifically, since the connection portion C is on the outermost circumferential circle 300 and the connection portion D is on the inner diameter side of the outermost circumferential circle 300, a recess 30g is formed between the second bridge portions 302c.
  • the second bridge portions 302c that are directly connected are arranged in a V shape. Specifically, the second bridge portion 302c extends in a straight line so as to form a recess 30g when viewed from the rotation axis direction, and is arranged in a V shape.
  • the magnet hole 31a is configured to have a gap portion 31c in the vicinity of the end 310c on the inner diameter side of the permanent magnet 31 in a state where the permanent magnet 31 is embedded in the magnet hole 31a.
  • a semicircular gap portion 31c is provided that covers the vicinity of the end portion 310c of the long side 310 on the inner diameter side of the permanent magnet 31 as viewed from the rotation axis direction and protrudes toward the inner diameter side.
  • the curvature of the arc portion 30a of the convex pole portion 30b is equal to the curvature of the outermost circumference circle 300 of the rotor core 30, so that the curvature of the arc portion 30a of the convex pole portion 30b is the outermost circumference.
  • the magnet hole 31a and the permanent magnet 31 can be arranged on the outer side in the radial direction without reducing the circumferential width of the permanent magnet 31. Thereby, the fall of the surface area of the permanent magnet 31 can be suppressed. As a result, it is possible to suppress a decrease in motor torque due to a decrease in the amount of magnetic flux.
  • the rotor core 30 is compared with the case where the connection is made from the connection portion A on both sides in the circumferential direction of the arc portion 30a to the bridge portion 30c by an arc. Since the distance between the outer peripheral surface of the magnet and the permanent magnet 31 becomes smaller, the vicinity of the portion of the bridge portion 30c connected to the straight portion 30e becomes thinner. Thereby, since the magnetic resistance of the bridge part 30c can be increased, the leakage of the magnetic flux from the bridge part 30c can be suppressed.
  • the arc portion 30a by making the length L1 between both ends (connecting portion A) of the arc portion 30a smaller than the length L2 between both ends (connecting portion B) of the bridge portion 30c intersecting with the straight portion 30e, the arc portion 30a.
  • the length L1 between both ends (connecting portion A) of the straight portion 30e and the bridge portion 30c is larger than the length L2 between both ends (connecting portion B) of the bridge portion 30c intersecting the straight portion 30e.
  • the angle at which is connected increases. As a result, it is possible to suppress the load due to the centrifugal force applied to the convex pole portion 30b due to the rotation of the rotor core 30 from being concentrated on the connection portion B between the bridge portion 30c and the straight portion 30e. Thereby, durability of the rotor core 30 can be improved.
  • the permanent magnet 31 extends to the connecting portion 30f, the circumferential width of the permanent magnet 31 is increased, and as a result, the surface area of the permanent magnet 31 facing the stator core 20 is suppressed from being reduced. In addition, the motor torque can be further prevented from decreasing due to the decrease in the amount of magnetic flux.
  • the permanent magnet 31 since the short side 311 of the permanent magnet 31 and the connection part 30f contact
  • the circumferential width of the connecting portion 30f is uniformly the circumferential width (for example, W1) in the vicinity of the central portion in the radial direction, the minimum circumferential width of the connecting portion 30f is smaller. The magnetic resistance of the connecting portion 30f can be increased, and as a result, leakage of magnetic flux from the connecting portion 30f can be suppressed.
  • the length L2 between both ends (connecting portion B) of the bridge portion 30c is greater than 1 and less than 3 times the length L1 between both ends (connecting portion A) of the arc portion 30a.
  • each of the first bridge portion 301 c and the second bridge portion 302 c does not interfere with the stator core 20 due to the rotation of the rotor core 30. Therefore, it is not necessary to widen the gap between the stator core 20 and the rotor core 30, and the reduction of the magnetic flux density can be suppressed, so that the reduction of the output of the motor can be suppressed.
  • the second bridge portions 302c that are directly connected to each other are arranged in a V shape, so that a recess can be easily formed.
  • the permanent magnet 31 can escape to the magnet hole 31a, the permanent magnet 31 can be easily inserted into the magnet hole 31a.
  • the width of the first bridge portion, the width of the second bridge portion, and the minimum width of the connecting portion are equal is shown, but the present invention is not limited to this.
  • one of the width of the first bridge portion or the width of the second bridge portion may be configured to be equal to the minimum width of the connecting portion.
  • the widths of the first bridge portion and the second bridge portion are uniform has been described, but the present invention is not limited to this. In the present invention, the widths of the first bridge portion and the second bridge portion may not be uniform.
  • the gap 31c is semicircular
  • the present invention is not limited to this.
  • the gap 31c may not be semicircular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

この回転電機は、ステータコアと、ステータコアに対向するように設けられ、複数の永久磁石が埋め込まれた磁石穴を有するロータコアとを備え、ロータコアは、永久磁石よりも径方向外側に突出するとともに、ロータコアの最外周円の曲率と等しい円弧状の円弧部を有する凸極部と、凸極部の周方向の両側に設けられるとともに、半径方向外側に突出する接続部を有し、接続部がロータコアの最外周点を通る最外周円の範囲内に設けられるブリッジ部とを有する。

Description

回転電機
 本発明は、回転電機に関する。
 従来、永久磁石が埋め込まれたロータコアを備える回転電機が知られている。このような回転電機は、たとえば、特開2014-54155号公報および国際公開第2014/027631号に開示されている。
 特開2014-54155号公報には、永久磁石が埋め込まれたロータコアを備える埋込磁石型モータを備えた回転電機が開示されている。この回転電機には、回転方向両側に空隙からなるフラックスバリアを備えるように埋め込まれる複数の永久磁石を含むロータヨーク(ロータコア)と、ロータヨークの径方向外側にロータヨークと所定の間隔を有して環状に配置されるステータコアと、ステータコアを励磁させる励磁コイル(巻線)とが備えられている。ロータヨークは、永久磁石の径方向外側に突出する凸極部と、フラックスバリアの径方向外側で凸極部間を連結するブリッジ部と、を含む。また、ロータヨーク上において、回転中心からの距離が最大となる最外周点近傍における凸極部の外周表面の曲率は、ロータヨークの回転中心を中心とし、ロータヨークの最外周点を通る最外周円の曲率よりも大きくなるように構成されている。
 国際公開第2014/027631号には、上記特開2014-54155号公報と同様に、マグネット(永久磁石)が埋め込まれたロータコアを備える埋込磁石型モータを備えた回転電機が開示されている。この回転電機では、ロータコアは、ロータシャフトに固定されたコアボディと、コアボディから径方向に突出するように設けられた6個の磁極部とを含む。磁極部には、マグネットが挿入されるマグネット取付孔が設けられ、隣接する磁極部との間には溝状の凹部が形成されている。磁極部の周方向両端には、切欠部が設けられている。また、上記特開2014-54155号公報と同様に、ロータコア上において、回転中心からの距離が最大となる最外周点近傍における磁極部の外周表面の曲率は、ロータコアの回転中心を中心とし、ロータコアの最外周点を通る最外周円の曲率よりも大きくなるように構成されている。
特開2014-54155号公報 国際公開第2014/027631号
 しかしながら、上記特開2014-54155号公報および上記国際公開第2014/027631号に記載された回転電機では、ロータヨーク(ロータコア)上において、最外周点における凸極部(磁極部)の外周表面の曲率が、最外周円の曲率よりも大きい。ここで、最外周点における凸極部(磁極部)の外周表面の曲率が、最外周円の曲率よりも大きくなる程、凸極部(磁極部の円弧状の部分)の周方向の幅が小さくなるので、永久磁石の周方向の幅を小さくするか、または、永久磁石をロータコアの回転中心側に寄せる必要がある。しかし、永久磁石の周方向の幅を小さくした場合には、ステータコアに対向する側の永久磁石の表面積が小さくなるので、磁束量が低下する。また、永久磁石をロータコアの回転中心側に寄せた場合には、永久磁石とステータコアとの間の距離が大きくなるので、磁束量が低下する。このように、磁束量が低下する場合には、モータトルクが減少するという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、磁束量の低下に起因したモータトルクの減少を抑制することが可能な回転電機を提供することである。
 上記目的を達成するために、この発明の一の局面における回転電機は、ステータコアと、ステータコアに対向するように設けられ、複数の永久磁石が埋め込まれた磁石穴を有するロータコアとを備え、ロータコアは、永久磁石よりも径方向外側に突出するとともに、ロータコアの最外周円の曲率と等しい円弧状の円弧部を有する凸極部と、凸極部の周方向の両側に設けられるとともに、半径方向外側に突出する凸部を有し、凸部がロータコアの最外周点を通る最外周円の範囲内に設けられるブリッジ部とを有する。
 この発明の一の局面による回転電機では、凸極部の円弧部の曲率を、ロータコアの最外周円の曲率と等しくなるように構成することによって、凸極部の円弧部の曲率が、最外周円の曲率よりも大きい場合に比べて、永久磁石の周方向の幅を小さくすることなく磁石穴および永久磁石をより径方向外側に配置することができる。これにより、永久磁石の表面積の低下を抑制することができる。その結果、磁束量の低下に起因したモータトルクの減少を抑制することができる。
 上記一の局面による回転電機において、好ましくは、凸極部は、円弧部の周方向の両側の端部からブリッジ部の端部まで半径方向の内側に傾斜して延びる直線部をさらに有し、直線部は、ロータコアの最外周円よりも内径側に設けられ、凸極部の円弧部の両端間の長さは、凸極部の両端に設けられた直線部と交わるブリッジ部の両端部間の長さよりも小さくなるように構成されている。
 このように構成すれば、半径方向の内側に傾斜した直線部を設けることによって、円弧部の周方向の両側の端部からブリッジ部まで円弧で接続する場合に比べて、ロータコアの外周面と永久磁石との間の距離が小さくなるので、ブリッジ部の、直線部に接続されている部分の近傍がより細くなる。これにより、ブリッジ部の磁気的抵抗を増大させることができるので、ブリッジ部からの磁束の漏れを抑制することができる。また、円弧部の両端間の長さを、直線部と交わるブリッジ部の両端部間の長さよりも小さくすることによって、円弧部の両端間の長さが、直線部と交わるブリッジ部の両端部間の長さ以上である場合よりも、直線部とブリッジ部とが接続される角度が大きくなる。その結果、ロータコアの回転によって凸極部にかかる遠心力による荷重が、ブリッジ部と直線部との接続部に集中することを抑制することができる。これにより、ロータコアの耐久性を向上させることができる。
 上記直線部が設けられる回転電機において、好ましくは、ブリッジ部は、一端が直線部の端部に接続される第1のブリッジ部と、第1のブリッジ部の他端に接続され、他端から半径方向の内径側に傾斜して延びる第2のブリッジ部とを有し、隣接する永久磁石のうちの一方に対応する凸極部の一方側に設けられる第2のブリッジ部と、隣接する永久磁石のうちの他方に対応する凸極部の他方側に設けられる第2のブリッジ部とは接続されており、ロータコアは、隣接する第2のブリッジ部同士の接続部と、ロータコアの中心側とを連結するとともに断面が矩形形状の永久磁石の短辺を支持する連結部を有する。
 このように構成すれば、永久磁石が連結部まで延びる構成となるので、永久磁石の周方向の幅が大きくなり、その結果、ステータコアに対向する側の永久磁石の表面積の低下を抑制することができるとともに、磁束量の低下に起因したモータトルクの減少をさらに抑制することができる。
 上記永久磁石の短辺を支持する連結部を有する回転電機において、好ましくは、連結部は、永久磁石の短辺を支持するように、半径方向の中央部近傍の周方向の幅が、他の部分の周方向の幅よりも大きくなるように構成されている。
 このように構成すれば、永久磁石の短辺と連結部とが接するので、容易に永久磁石を支持することができる。また、連結部の周方向の幅が、一様に半径方向の中央部近傍の周方向の幅である場合よりも、連結部の周方向の最小幅が小さくなるので、連結部の磁気的抵抗を増大させることができ、その結果、連結部からの磁束の漏れを抑制することができる。
 上記第1のブリッジ部、第2のブリッジ部および連結部を有する回転電機において、好ましくは、第1のブリッジ部の第1のブリッジ部が延びる方向と直交する方向の最小の幅、または、第2のブリッジ部の第2のブリッジ部が延びる方向と直交する方向の最小の幅のうちの少なくとも一方は、連結部の連結部が延びる方向と直交する方向の最小の幅と等しくなるように構成されている。
 このように構成すれば、第1のブリッジ部または第2のブリッジ部のうちの少なくとも一方と、連結部とによって応力が分散されるので、ロータコアの耐久性を向上させることができる。
 上記凸極部の円弧部の両端間の長さがブリッジ部の両端部間の長さよりも小さくなる回転電機において、好ましくは、凸極部の両端に設けられた直線部と交わるブリッジ部の両端部間の長さは、凸極部の円弧部の両端間の長さの1倍より大きく3倍以下になるように構成されている。
 ここで、ブリッジ部の両端部間の長さが円弧部の両端間の長さの3倍よりも大きい場合には、モータトルクの減少量が比較的大きくなる。したがって、ブリッジ部の両端部間の長さが円弧部の両端間の長さの1倍より大きく3倍以下になることによって、ロータコアの耐久性を向上させつつ、モータトルクの減少を効果的に抑制することができる。
 上記第1のブリッジ部および第2のブリッジ部を有する回転電機において、好ましくは、第1のブリッジ部および第2のブリッジ部はそれぞれ、ロータコアの最外周円よりも内径側に設けられる。
 このように構成すれば、ロータコアの回転によって、第1のブリッジ部および第2のブリッジ部のそれぞれが、ステータコアと干渉することがない。したがって、ステータコアとロータコアとの間のギャップを広げる必要がなく、磁束密度の低減を抑制することができるので、モータの出力の低減を抑制することができる。
 上記第1のブリッジ部および第2のブリッジ部を有する回転電機において、好ましくは、直接的に接続される第2のブリッジ部同士の間には、内径側に窪んでいる凹部が設けられている。
 このように構成すれば、第2のブリッジ部同士が接続される部分の幅が小さくなるので、第2のブリッジ部の磁気的抵抗が増加し、第2のブリッジ部からの磁束の漏れを抑制することができる。
 上記凹部が設けられている回転電機において、好ましくは、直接的に接続される第2のブリッジ部同士は、V字形状に配置されている。
 このように構成すれば、容易に凹部を形成することがことができる。
 上記一の局面による回転電機において、好ましくは、磁石穴は、磁石穴に永久磁石を埋め込んだ状態で、永久磁石の内径側の端部近傍に、空隙部を有するように構成されている。
 このように構成すれば、磁石穴に永久磁石の逃げができるので、容易に永久磁石を磁石穴に挿入することができる。
本発明の一実施形態による回転電機のステータコアおよびロータコアを、軸方向から見た平面図である。 本発明の一実施形態による回転電機のロータコアを、軸方向から見た平面図である。 図2の拡大図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1~図3を参照して、本実施形態による回転電機100の構成について説明する。
 [モータの全体の構成]
 図1に示すように、回転電機100は、たとえば、後述する永久磁石31がロータコア30に埋め込まれたIPMモータである。また、回転電機100は、ステータコア20と、ロータコア30とを備えている。ロータコア30は、ステータコア20に対向するように、円環状のステータコア20の内側に設けられている。なお、本願明細書では、「周方向」とは、ロータコア30(ステータコア20)の周方向を意味し、「径方向」とは、ロータコア30の径方向を意味するものとして記載している。
 ステータコア20には、図1に示すように、バックヨーク21から内周側に突出するように、複数(たとえば、9個)のティース22が設けられている。そして、隣接するティース22の間に、それぞれスロット23が形成されている。各ティース22(スロット23)には、巻線(図示せず)が巻回されている。
 [ロータコアの構成]
 ここで、本実施形態では、図1~図3に示すように、ロータコア30は、回転軸方向(Z方向)から見て、断面が矩形形状(長方形形状)の複数(たとえば、6個)の永久磁石31が埋め込まれた磁石穴31aを有している。また、6つの永久磁石31は、周方向に等角度間隔に埋め込まれている。また、図2および図3に示すように、ロータコア30には、6つの永久磁石31のそれぞれの径方向外側に突出するとともに外径側が円弧状の円弧部30aを有する凸極部30bが設けられている。また、ロータコア30は、凸極部30bの周方向の両側に設けられるとともに、ロータコア30の外径側と磁石穴31aとの間に設けられる、ブリッジ部30cを含んでいる。ブリッジ部30cは、半径方向外側に突出している。具体的には、回転軸方向から見て、ブリッジ部30cにおいて、後述する第1のブリッジ部301cと第2のブリッジ部302cとの接続部C(図3参照)は最外周円300に重なり、接続部C以外は、最外周円300より内径側に設けられる。また、ブリッジ部30cの接続部C近傍は、最外周円300よりも曲率が大きい円弧状に形成されている。なお、接続部Cは、特許請求の範囲の「凸部」または「第1のブリッジ部の他端」の一例である。
 そして、本実施形態では、ロータコア30の回転軸方向から見て、凸極部30bの円弧部30aの外径側の曲率は、最外周円300の曲率と等しくなる。すなわち、最外周円300と円弧部30aとは、互いに重なる。
 回転軸方向から見て、磁石穴31aは、永久磁石31を挿入した状態において、永久磁石31の2つの長辺310を支持するとともに、永久磁石31の2つの短辺311それぞれの中央部近傍から内径側を支持する。また、回転軸方向から見て、磁石穴31aには、永久磁石31を挿入した状態において、永久磁石31の2つの短辺311それぞれの中央部近傍から外径側を覆うとともに、周方向に突出した空隙部31bが形成されるように構成されている。
 また、本実施形態では、凸極部30bには、円弧部30aの周方向の両側の端部である接続部Aからブリッジ部30cの端部まで半径方向の内側に傾斜して延びる直線部30eが設けられている。直線部30eは、回転軸方向から見て、直線状に延びており、最外周円300よりも内径側に設けられている。また、円弧部30aの周方向の中心の接線方向における、円弧部30aの両端の接続部A間の長さL1(図2参照)は、ブリッジ部30cと直線部30eとの接続部B間の長さL2(図2参照)よりも小さくなるように構成されている。具体的には、長さL1および長さL2は、L2/L1が1より大きく3以下となるように構成されている。なお、接続部Aは、特許請求の範囲の「円弧部の周方向の両側の端部」の一例である。また、接続部Bは、特許請求の範囲の「直線部と交わるブリッジ部の両端部」または「第1のブリッジ部の一端」の一例である。
 また、本実施形態では、図2および図3に示すように、ブリッジ部30cは、直線部30e(図3参照)の外側端部(接続部B)に接続される第1のブリッジ部301cと、第1のブリッジ部301cの外側端部(接続部C)に接続され、回転軸方向から見て、第1のブリッジ部301cの延びる方向に対してより半径方向の内径側に傾斜して延びる第2のブリッジ部302cとを有する。また、隣接する永久磁石31のうちの一方に対応する凸極部30bの一方側に設けられる第2のブリッジ部302cと、隣接する永久磁石31のうちの他方に対応する凸極部30bの他方側に設けられる第2のブリッジ部302cとは直接的に接続されている。
 図3に示すように、ロータコア30は、隣接する第2のブリッジ部302c同士の接続部Dと、ロータコア30の内径側とを連結するとともに永久磁石31の短辺311を支持する連結部30fを有する。具体的には、第1のブリッジ部301cは、回転軸方向から見て、永久磁石31の外径側の長辺310の端部310aの近傍に沿って延びている。第2のブリッジ部302cは、回転軸方向から見て、空隙部31bの外径側の辺310bに沿って延びている。また、接続部Dと、ロータコア30の回転中心30d(図2参照)とを通る線分α(図2参照)は、隣接する磁石穴31a同士の間に設けられる連結部30fを通る。また、ブリッジ部30cおよび連結部30fはそれぞれ、フラックスバリアとして機能する。
 また、本実施形態では、連結部30fは、永久磁石31の短辺311を支持するように、半径方向の中央部近傍の周方向の幅W1が、他の部分の周方向の幅よりも大きくなるように構成されている。具体的には、連結部30fは、外径側から中央部に向かって、徐々に幅が大きくなり、中央部から内径側に向かって幅が徐々に小さくなっている。
 また、本実施形態では、第1のブリッジ部301cの第1のブリッジ部301cが延びる方向と直交する方向の最小の幅W2と、第2のブリッジ部302cの第2のブリッジ部302cが延びる方向と直交する方向の最小の幅W3と、連結部30fの連結部30fが延びる方向と直交する方向の最小の幅W1とが等しくなるように構成されている。具体的には、回転軸方向から見て、第1のブリッジ部301cおよび第2のブリッジ部302cのそれぞれは、一様に延びているので、第1のブリッジ部301cの第1のブリッジ部301cの延びる方向と直交する方向の幅は一様にW2であり、第2のブリッジ部302cの第2のブリッジ部302cの延びる方向と直交する方向の幅は一様にW3である。また、磁石穴31aの一方側の空隙部31bと、隣接する磁石穴31aの他方側の空隙部31bとが最も接近している部分において、連結部30fが延びる方向と直交する方向の幅が最小値W1となる。
 また、直接的に接続される第2のブリッジ部302c同士の間には、内径側に窪んでいる凹部30gが設けられている。具体的には、接続部Cが最外周円300上にあるとともに、接続部Dが最外周円300の内径側にあるので、第2のブリッジ部302c同士の間に凹部30gが形成される。
 また、直接的に接続される第2のブリッジ部302c同士は、V字形状に配置されている。具体的には、第2のブリッジ部302cは、回転軸方向から見て、凹部30gが形成されるように、直線状に延びており、V字形状に配置されている。
 また、磁石穴31aは、磁石穴31aに永久磁石31を埋め込んだ状態で、永久磁石31の内径側の端部310c近傍に、空隙部31cを有するように構成されている。具体的には、回転軸方向から見て、永久磁石31の内径側の長辺310の端部310c近傍を覆うとともに、内径側に突出した半円状の空隙部31cが設けられている。
 [本実施形態の効果]
 本実施形態では、以下のような効果を得ることができる。
 本実施形態では、凸極部30bの円弧部30aの曲率を、ロータコア30の最外周円300の曲率と等しくなるように構成することによって、凸極部30bの円弧部30aの曲率が、最外周円300の曲率よりも大きい場合に比べて、永久磁石31の周方向の幅を小さくすることなく磁石穴31aおよび永久磁石31をより径方向外側に配置することができる。これにより、永久磁石31の表面積の低下を抑制することができる。その結果、磁束量の低下に起因したモータトルクの減少を抑制することができる。
 また、本実施形態では、半径方向の内側に傾斜した直線部30eを設けることによって、円弧部30aの周方向の両側の接続部Aからブリッジ部30cまで円弧で接続する場合に比べて、ロータコア30の外周面と永久磁石31との間の距離が小さくなるので、ブリッジ部30cの、直線部30eに接続されている部分の近傍がより細くなる。これにより、ブリッジ部30cの磁気的抵抗を増大させることができるので、ブリッジ部30cからの磁束の漏れを抑制することができる。また、円弧部30aの両端(接続部A)間の長さL1を、直線部30eと交わるブリッジ部30cの両端部(接続部B)間の長さL2よりも小さくすることによって、円弧部30aの両端(接続部A)間の長さL1が、直線部30eと交わるブリッジ部30cの両端部(接続部B)間の長さL2以上である場合よりも、直線部30eとブリッジ部30cとが接続される角度が大きくなる。その結果、ロータコア30の回転によって凸極部30bにかかる遠心力による荷重が、ブリッジ部30cと直線部30eとの接続部Bに集中することを抑制することができる。これにより、ロータコア30の耐久性を向上させることができる。
 また、本実施形態では、永久磁石31が連結部30fまで延びる構成となるので、永久磁石31の周方向の幅が大きくなり、その結果、ステータコア20に対向する永久磁石31の表面積を低下を抑制することができるとともに、磁束量の低下に起因したモータトルクの減少をさらに抑制することができる。
 また、本実施形態では、永久磁石31の短辺311と連結部30fとが接するので、容易に永久磁石31を支持することができる。また、連結部30fの周方向の幅が、一様に半径方向の中央部近傍の周方向の幅(たとえば、W1)である場合よりも、連結部30fの周方向の最小幅が小さくなるので、連結部30fの磁気的抵抗を増大させることができ、その結果、連結部30fからの磁束の漏れを抑制することができる。
 また、本実施形態では、第1のブリッジ部301c、第2のブリッジ部302c、および、連結部30fのそれぞれによって応力が分散されるので、ロータコア30の耐久性を向上させることができる。
 また、本実施形態では、ブリッジ部30cの両端部(接続部B)間の長さL2が円弧部30aの両端(接続部A)間の長さL1の1倍より大きく3倍以下になることによって、ロータコア30の耐久性を向上させつつ、モータトルクの減少を効果的に抑制することができる。
 また、本実施形態では、ロータコア30の回転によって、第1のブリッジ部301cおよび第2のブリッジ部302cのそれぞれが、ステータコア20と干渉することがない。したがって、ステータコア20とロータコア30との間のギャップを広げる必要がなく、磁束密度の低減を抑制することができるので、モータの出力の低減を抑制することができる。
 また、本実施形態では、第2のブリッジ部302c同士が接続される部分の幅が小さくなるので、第2のブリッジ部302cの磁気的抵抗が増加し、第2のブリッジ部302cからの磁束の漏れを抑制することができる。
 また、本実施形態では、直接的に接続される第2のブリッジ部302c同士がV字形状に配置されていることによって、容易に凹部を形成することがことができる。
 また、本実施形態では、磁石穴31aに永久磁石31の逃げができるので、容易に永久磁石31を磁石穴31aに挿入することができる。
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、第1のブリッジ部の幅と第2のブリッジ部の幅と連結部の最小幅とが等しい例を示したが、本発明は、これに限られない。たとえば、本発明では、第1のブリッジ部の幅または第2のブリッジ部の幅のうちの一方と、連結部の最小幅とが等しくなるように構成してもよい。
 また、上記実施形態では、永久磁石が6個埋め込まれている例を示したが、本発明は、これに限られない。本発明では、6個以外(たとえば8個)の永久磁石が埋め込まれるように構成してもよい。
 また、上記実施形態では、第1のブリッジ部および第2のブリッジ部のそれぞれの幅が一様である例を示したが、本発明はこれに限られない。本発明では、第1のブリッジ部および第2のブリッジ部のそれぞれの幅が一様でなくてもよい。
 また、上記実施形態では、空隙部31cが半円状である例を示したが、本発明はこれに限られない。本発明では、空隙部31cが半円状でなくてもよい。
 20 ステータコア
 30 ロータコア
 30a 円弧部
 30b 凸極部
 30c ブリッジ部
 30d 回転中心
 30e 直線部
 30f 連結部
 30g 凹部
 31 永久磁石
 31a 磁石穴
 31c 空隙部
 100 回転電機
 300 最外周円
 301c 第1のブリッジ部
 302c 第2のブリッジ部
 311 短辺
 A 接続部(円弧部の周方向の両側の端部)
 B 接続部(直線部と交わるブリッジ部の両端部)(第1のブリッジ部の一端)
 C 接続部(凸部)(第1のブリッジ部の他端)
 D 接続部
 L1 接続部A同士の間の長さ
 L2 接続部B同士の間の長さ
 W2 第1のブリッジ部の幅(最小の幅)
 W3 第2のブリッジ部の幅(最小の幅)
 W4 連結部の最小の幅

Claims (6)

  1.  ステータコアと、
     前記ステータコアに対向するように設けられ、複数の永久磁石が埋め込まれた磁石穴を有するロータコアとを備え、
     前記ロータコアは、前記永久磁石よりも径方向外側に突出するとともに、前記ロータコアの最外周円の曲率と等しい円弧状の円弧部を有する凸極部と、前記凸極部の周方向の両側に設けられるとともに、半径方向外側に突出する凸部を有し、前記凸部が前記ロータコアの最外周点を通る前記最外周円の範囲内に設けられるブリッジ部とを有する、回転電機。
  2.  前記凸極部は、前記円弧部の周方向の両側の端部から前記ブリッジ部の端部まで半径方向の内側に傾斜して延びる直線部をさらに有し、
     前記直線部は、前記ロータコアの前記最外周円よりも内径側に設けられ、
     前記凸極部の前記円弧部の両端間の長さは、前記凸極部の両端に設けられた前記直線部と交わる前記ブリッジ部の両端部間の長さよりも小さくなるように構成されている、請求項1に記載の回転電機。
  3.  前記ブリッジ部は、一端が前記直線部の端部に接続される第1のブリッジ部と、前記第1のブリッジ部の他端に接続され、前記他端から半径方向の内径側に傾斜して延びる第2のブリッジ部とを有し、
     隣接する前記永久磁石のうちの一方に対応する前記凸極部の一方側に設けられる前記第2のブリッジ部と、隣接する前記永久磁石のうちの他方に対応する前記凸極部の他方側に設けられる前記第2のブリッジ部とは接続されており、
     前記ロータコアは、隣接する前記第2のブリッジ部同士の接続部と、前記ロータコアの中心側とを連結するとともに断面が矩形形状の前記永久磁石の短辺を支持する連結部を有する、請求項2に記載の回転電機。
  4.  前記連結部は、前記永久磁石の短辺を支持するように、半径方向の中央部近傍の周方向の幅が、他の部分の周方向の幅よりも大きくなるように構成されている、請求項3に記載の回転電機。
  5.  前記第1のブリッジ部の前記第1のブリッジ部が延びる方向と直交する方向の最小の幅、または、前記第2のブリッジ部の前記第2のブリッジ部が延びる方向と直交する方向の最小の幅のうちの少なくとも一方は、前記連結部の前記連結部が延びる方向と直交する方向の最小の幅と等しくなるように構成されている、請求項3または4に記載の回転電機。
  6.  前記凸極部の両端に設けられた前記直線部と交わる前記ブリッジ部の両端部間の長さは、前記凸極部の前記円弧部の両端間の長さの1倍より大きく3倍以下になるように構成されている、請求項2~5のいずれか1項に記載の回転電機。
PCT/JP2016/078094 2015-11-06 2016-09-23 回転電機 WO2017077789A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201690001244.4U CN208423969U (zh) 2015-11-06 2016-09-23 旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-218136 2015-11-06
JP2015218136A JP6601169B2 (ja) 2015-11-06 2015-11-06 回転電機

Publications (1)

Publication Number Publication Date
WO2017077789A1 true WO2017077789A1 (ja) 2017-05-11

Family

ID=58661908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078094 WO2017077789A1 (ja) 2015-11-06 2016-09-23 回転電機

Country Status (3)

Country Link
JP (1) JP6601169B2 (ja)
CN (1) CN208423969U (ja)
WO (1) WO2017077789A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097603A1 (ja) * 2017-11-15 2019-05-23 三菱電機株式会社 永久磁石式回転電機
CN110912304A (zh) * 2019-10-25 2020-03-24 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机、压缩机和空调器
US20220247268A1 (en) * 2021-01-29 2022-08-04 Mikuni Corporation Permanent magnet-embedded motor and pump device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870717B2 (ja) * 2019-10-31 2021-05-12 株式会社富士通ゼネラル 回転子及び電動機
KR102606374B1 (ko) * 2021-09-01 2023-11-24 하이윈 마이크로시스템 코포레이션 고주파 회전 구조체

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119015A1 (ja) * 2008-03-27 2009-10-01 パナソニック株式会社 永久磁石埋込型回転子およびこれを用いた電動機並びに電気機器
JP2010093910A (ja) * 2008-10-07 2010-04-22 Hitachi Industrial Equipment Systems Co Ltd 永久磁石式回転電機及びそれを用いた圧縮機
JP2011062059A (ja) * 2009-09-14 2011-03-24 Toyota Industries Corp 永久磁石埋設型回転電機
WO2014027631A1 (ja) * 2012-08-16 2014-02-20 株式会社ミツバ ブラシレスモータ及びブラシレスモータ用ロータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119015A1 (ja) * 2008-03-27 2009-10-01 パナソニック株式会社 永久磁石埋込型回転子およびこれを用いた電動機並びに電気機器
JP2010093910A (ja) * 2008-10-07 2010-04-22 Hitachi Industrial Equipment Systems Co Ltd 永久磁石式回転電機及びそれを用いた圧縮機
JP2011062059A (ja) * 2009-09-14 2011-03-24 Toyota Industries Corp 永久磁石埋設型回転電機
WO2014027631A1 (ja) * 2012-08-16 2014-02-20 株式会社ミツバ ブラシレスモータ及びブラシレスモータ用ロータ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097603A1 (ja) * 2017-11-15 2019-05-23 三菱電機株式会社 永久磁石式回転電機
JPWO2019097603A1 (ja) * 2017-11-15 2020-04-02 三菱電機株式会社 永久磁石式回転電機
CN111316537A (zh) * 2017-11-15 2020-06-19 三菱电机株式会社 永磁体式旋转电机
CN111316537B (zh) * 2017-11-15 2022-05-03 三菱电机株式会社 永磁体式旋转电机
CN110912304A (zh) * 2019-10-25 2020-03-24 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机、压缩机和空调器
CN110912304B (zh) * 2019-10-25 2021-11-30 珠海格力节能环保制冷技术研究中心有限公司 电机转子、电机、压缩机和空调器
US20220247268A1 (en) * 2021-01-29 2022-08-04 Mikuni Corporation Permanent magnet-embedded motor and pump device

Also Published As

Publication number Publication date
JP2017093082A (ja) 2017-05-25
CN208423969U (zh) 2019-01-22
JP6601169B2 (ja) 2019-11-06

Similar Documents

Publication Publication Date Title
WO2017077789A1 (ja) 回転電機
US9419481B2 (en) Rotary electric machine
JP5385076B2 (ja) 均一なエアギャップ及び不均一なエアギャップを持ったローブのあるローターを備えたモーター
JP6654902B2 (ja) 回転電動機
JP2006288042A (ja) 永久磁石形モータ
JP6627082B2 (ja) 電動機
JP2016032340A (ja) 回転電機のロータ
JP5557713B2 (ja) ロータ
JP2012075278A (ja) 回転電機のロータ
WO2017064938A1 (ja) 回転電機
JP6641545B1 (ja) 回転電機
JP2014197948A (ja) 永久磁石電動機
JP6503016B2 (ja) ロータおよび回転電機
JP6733568B2 (ja) 回転電機
JP2010207021A (ja) 回転子用エンドプレートおよびこれを用いた回転電機
JP6012046B2 (ja) ブラシレスモータ
JP2013208014A (ja) 回転電機
JP2018182968A (ja) ロータおよび回転電機
JP2018026965A (ja) 回転子及び永久磁石式回転電機
JP2012143128A (ja) 埋込磁石形回転電機のロータ
JP2012044789A (ja) 回転電機およびその製造方法
JP5394890B2 (ja) モータ
WO2019123962A1 (ja) ロータおよびモータ
JP6210160B2 (ja) 同期リラクタンス回転電機
JP7450796B2 (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861857

Country of ref document: EP

Kind code of ref document: A1