WO2017076252A1 - 一种高灵敏度单芯片推挽式tmr磁场传感器 - Google Patents

一种高灵敏度单芯片推挽式tmr磁场传感器 Download PDF

Info

Publication number
WO2017076252A1
WO2017076252A1 PCT/CN2016/104000 CN2016104000W WO2017076252A1 WO 2017076252 A1 WO2017076252 A1 WO 2017076252A1 CN 2016104000 W CN2016104000 W CN 2016104000W WO 2017076252 A1 WO2017076252 A1 WO 2017076252A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
comb
sensing unit
pull
push
Prior art date
Application number
PCT/CN2016/104000
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to EP16861520.1A priority Critical patent/EP3373022A4/en
Priority to US15/773,368 priority patent/US11169225B2/en
Priority to JP2018522777A priority patent/JP6852906B2/ja
Publication of WO2017076252A1 publication Critical patent/WO2017076252A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Definitions

  • the invention relates to the field of magnetic sensors, in particular to a high-sensitivity single-chip push-pull TMR magnetic field sensor.
  • the main difficulties in processing high-sensitivity single-chip linear TMR magnetic field sensors are as follows.
  • the push-pull bridge type linear magnetoresistive sensor the push magnet resistance sensing unit of the corresponding push arm and the corresponding arm are required to be magnetically loaded.
  • the resistance sensing unit respectively sets the opposite pinning layer direction;
  • the reference bridge type linear magnetoresistive sensor the reference magnetoresistive sensing unit corresponding to the reference arm is required to be magnetically shielded, and the main problems thereof are as follows:
  • the sensitivity is only half of the maximum possible sensitivity.
  • the higher the magnetoresistance value makes the output linearity of the reference bridge magnetoresistive sensor worse.
  • the present invention has developed a design of a flux concentrator, the main advantage of which is that a long interdigital flux concentrator is used to increase the external magnetic field gain, and the flux concentrator and the nearby TMR tunnel magnetoresistive sensing unit are mutually Alternately arranged, a push-pull magnetic field profile can be generated and applied to the magnetoresistive sensing unit, which enables the single-chip linear magnetoresistive device to have high magnetic field sensitivity and good linearity.
  • the invention proposes a new Y-axis magnetoresistive sensor design scheme, which uses an interdigitated soft magnetic flux concentrator to realize the conversion of the X magnetic field into the -Y and +Y magnetic fields of the same magnitude and opposite direction at the interdigitated gap.
  • the magnetoresistive sensing unit at the gap has the same magnetic multilayer film structure and Y-axis sensitive direction, thereby realizing the preparation of the push-pull Y-axis magnetoresistive sensor, and further, the interdigitated soft magnetic flux concentration
  • the device can also amplify the amplitude of the magnetic field to realize the manufacture of a high-sensitivity push-pull magnetoresistive sensor.
  • a high-sensitivity single-chip push-pull TMR magnetic field sensor comprises a substrate, two comb-shaped soft magnetic flux concentrators located above the substrate, and a comb-shaped soft magnetic flux concentrator comprising a comb and N lengths ⁇ rectangular combs of width Lx ⁇ Ly, and another comb-shaped soft magnetic flux concentrator comprising a comb and N-1 rectangular combs of length ⁇ width Lx ⁇ Ly, N being an integer greater than 1, two The comb teeth of the comb-shaped soft magnetic flux concentrators intersect each other to form an interdigitated structure, and a comb gap is formed between the comb teeth of one comb-shaped soft magnetic flux concentrator and the comb of the other comb-shaped soft magnetic flux concentrator in the X direction,
  • the gap gap length is Lgx
  • a space gap is formed between adjacent comb teeth, and the space gap is divided into an odd space gap of 2 m-1 and a 2 m space gap formed in the +Y direction, respectively.
  • the gap length is Ls
  • the magnetic resistance sensing unit string and the magnetizing resistance sensing unit string are further included, and the push magnetoresistive sensing unit string and the magnetizing resistance sensing unit string are respectively located in the odd space gap and the even space gap and Parallel to the X direction, the push magnetoresistive sensing unit string and the magnetizing resistive sensing unit string are respectively located in the odd space gap and the even space gap and parallel to the X direction, and the push magnetoresistive sensing unit is connected in series Connected as a push arm, the magnetic resistance sensing unit is electrically connected to a pull arm, and the push arm and the pull arm are electrically connected into a push-pull magnetoresistive sensing unit bridge, and the push magnet resistance sensing unit string
  • the utility model comprises a plurality of magnetoresistive sensing unit, the magnetizing resistor sensing unit string comprises a plurality of magnetizing resistance sensing units, and the magnetizing resistance unit and the magnetizing resistance sensing unit magnetic pinning layer magnetization direction The same as the +Y or -Y direction, the
  • the comb is rectangular, has a length of Lex and a width of Ley.
  • the rectangular soft magnetic flux concentrator having a length and a width parallel to the X and Y directions, respectively, and respectively placed at the same distance from the + finger end and the -Y end of the interdigital structure Location.
  • the comb is in the shape of a cork, comprising a rectangle and a trapezoid, the short bottom edge of the trapezoid being connected to the comb tooth, and the large long base of the trapezoid is the common side of the trapezoid and the rectangle.
  • the sum of the odd space gap and the even space gap number of the resistance sensing unit string and the magnetizing resistance sensing unit string is 2N+1, that is, for any one of the magneto-resistance sensing units labeled 2m-1
  • another label is 2(Nm) +1 of the push magnetoresistive sensing unit string.
  • the magnetic field gain coefficient ANS is increased by increasing the comb tooth width Ly or decreasing the space gap width Lsy.
  • the magnetic field gain coefficient ANS is increased by decreasing the space gap length Lsx or increasing the gap gap length Lgx.
  • the magnetic field gain coefficient ANS is increased by increasing the aspect ratio of the comb, increasing Lex, decreasing Ley, or decreasing the number N of combs.
  • the comb width Ly ranges from 20 to 200 um
  • the space gap width Lsy ranges from 6 to 200 um.
  • the space gap length Lsx ranges from 10 to 200 um, and the gap gap length Lgx ranges from 20 to 500 um.
  • the length of the Lex ranges from 20 to 2000 um, and the number N of the comb teeth ranges from 2 ⁇ N ⁇ 10.
  • the push magnetoresistive sensing unit and the magnetoresistive sensing unit are TMR sensing units, wherein the pinning layer direction is parallel to the Y axis direction, and the free layer direction is parallel to the X axis direction.
  • the magnetoresistive sensing unit and the magnetizing resistance sensing unit make the magnetization direction of the magnetic free layer and the magnetic pinning layer by permanent magnet bias, double exchange action, shape anisotropy or any combination.
  • the magnetization direction is vertical.
  • the push-pull magnetoresistive sensing unit bridge is a half bridge, a full bridge or a quasi bridge.
  • the number of the magnetoresistive sensing unit on the push arm and the magnetoresistive sensing unit on the arm are the same.
  • the material of the comb-shaped soft magnetic flux concentrator is a soft magnetic alloy containing one or more of Fe, Ni, and Co elements.
  • the substrate material is a glass or silicon wafer and the substrate contains an ASIC integrated circuit.
  • the ASIC integrated circuit is CMOS, BiCMOS, Bipolar, BCDMOS or SOI.
  • the substrate material is a glass or silicon wafer and the substrate is connected to an ASIC chip.
  • the ASIC chip includes any one or more of an offset circuit, a gain circuit, a calibration circuit, a temperature compensation circuit, and a logic circuit.
  • the logic circuit is a digital switch circuit or a rotation angle calculation circuit.
  • the present invention has the following beneficial effects:
  • the invention adopts an interdigital soft magnetic flux concentrator and alternately sets a TMR magnetoresistive sensing unit at the inter-finger gap, so that the single-chip push-pull TMR magnetic field sensor has high magnetic field sensitivity and good linearity.
  • the invention also has the advantages of simple structure and low power consumption.
  • Figure 1 shows the structure 1 of the soft magnetic flux concentrator of the interdigital structure
  • Figure 2 shows the structure of the soft magnetic flux concentrator of the interdigital structure
  • Figure 3 shows the structure of the soft magnetic flux concentrator of the interdigital structure
  • Figure 4 is a structural diagram of a high sensitivity push-pull magnetoresistive sensor
  • FIG. 5 is a distribution diagram of a push-pull magnetoresistive sensing unit string in an interdigital soft magnetic flux concentrator
  • Figure 6 is a diagram showing the Y magnetic field distribution at the gap of the soft magnetic flux concentrator of the interdigital structure under the action of an external magnetic field of X;
  • Figure 7 is a Y magnetic field distribution diagram at the gap of the soft magnetic flux concentrator of the interdigital structure under the action of the external magnetic field of Y;
  • Figure 8 is a magnetic line distribution diagram of the soft magnetic flux concentrator of the interdigitated structure of the cork-like comb
  • FIG. 9 is a magnetic line distribution diagram of a soft magnetic flux concentrator of an interdigital structure of a rectangular comb
  • Figure 10 shows the magnetic field gain factor of the interdigital optical flux concentrator as a function of the gap length Lsx
  • Figure 11 shows the magnetic field gain factor of the interdigital optical flux concentrator as a function of the space gap width Lsx;
  • Figure 12 shows the magnetic field gain factor of the interdigital soft magnetic flux concentrator as a function of the gap gap width Lgx;
  • Figure 13 shows that the magnetic flux gain factor of the interdigital optical flux concentrator varies with the comb width Ly
  • Figure 14 shows the magnetic field gain factor of the interdigital soft magnetic flux concentrator as a function of the length of the comb.
  • 1 is a cross-sectional structure soft magnetic flux concentrator structure 1 comprising two comb-shaped soft magnetic flux concentrators 4 and 7, wherein the comb-shaped soft magnetic flux concentrator 4 comprises a comb 2 and N rectangular comb teeth 3 (i), i is an integer from 1 to N, and the comb-shaped soft magnetic flux concentrator 7 includes a comb 5 and N-1 rectangular comb teeth 6 (j), j is an integer from 1 to N-1, and each of the rectangular combs
  • the teeth 3(i) and 6(j) have a length Lx and a width of Ly.
  • the combs 2 and 5 are rectangular, the length is Lex, the width is Ley, and the comb teeth of the comb-shaped soft magnetic flux concentrators 4 and 7 cross each other to form an interdigitated structure, wherein any rectangular comb 3 (i) forming a length Lgx between the comb base 5 and any of the rectangular comb teeth 6(j) and the comb base 2 in the X direction A gap gap is formed between adjacent comb teeth 3(i) and 6(j), and the space gap is divided into odd space gaps g (2m-) which are alternately formed in the +Y direction and are labeled 2m-1. 1) and an even space gap g (2m) labeled 2m, the length of the odd space gap and the even space gap is Lsx, and the width is Lsy, where m is an integer and 0 ⁇ m ⁇ N.
  • the combs 13 and 18 are in the shape of a stopper, and the comb 13 includes a rectangle 9 and a trapezoidal 10, the short bottom edge 11 of the trapezoid 10 is connected to the comb tooth, and the long base 12 is connected to the rectangle 9; the comb base 18 comprises a rectangle 14 and a trapezoid 15, and the short bottom edge 16 of the trapezoid 15 is connected to the comb tooth, and the long bottom thereof The edge 17 is connected to the rectangle 14.
  • interdigitated structure soft magnetic flux concentrator structure 30 which differs in that a strip-shaped soft magnetic flux concentrator 22 is added to the +Y and -Y ends of the interdigital soft magnetic flux concentrator structure 21, respectively. And 23, the distance from the soft magnetic flux concentrator 22 to the +Y end of the interdigital soft magnetic flux concentrator structure 21 is equal to the distance from the soft magnetic flux concentrator 23 to the -Y end of the interdigital optical flux concentrator structure 21.
  • the interdigital soft magnetic flux concentrator structure 21 may be the above-mentioned interdigital optical flux concentrator structure 1 or the interdigital soft magnetic flux concentrator structure 8 .
  • FIG. 4 is a high-sensitivity push-pull magnetoresistive sensor structure diagram 30, including a substrate 31, comb-like soft magnetic flux concentrators 36 and 37 forming an interdigitated structure on the substrate 31, and a magneto-resistance sensing unit string. 38 and the magnetoresistive sensing unit string 39; the comb teeth of the comb-shaped soft magnetic flux concentrators 36 and 37 cross each other and alternately form an odd space gap g (2m-1) and an even space gap g (2m) in the +Y direction.
  • the push magnetoresistive sensing unit string 38 is located in the odd space gap g (2m-1), the magnetizing resistance sensing unit string 39 is located in the even space gap g (2m), and the push magnetoresistive sensing single string 38 is electrically connected
  • the push arm, the magnetoresistive sensing unit string 39 is electrically connected as a pulling arm, and the push arm and the arm are electrically connected to each other by a wire 40 into a bridge structure, and are connected to the power source 32 and the ground electrode 35, and output signal electrodes 33 and 34.
  • Figure 5 is a distribution diagram of the push magnet resistance sensing unit string and the magnetizing resistance sensing unit string in the interdigitated structure gap, the actual corresponding to the elliptical region in Fig. 4, the external magnetic field B (x-ext) is soft through the interdigitated structure After the magnetic flux concentrator, a B y magnetic field component and a -B y magnetic field component are respectively generated in the gap 51 and the gap 52 and respectively act on the urging resistance sensing unit string and the snubber resistance sensing unit string, corresponding to the magnetic field gain factor.
  • ANS B y /B (x-ext) , wherein the push magnetoresistive sensing unit and the magnetoresistive sensing unit have the same magnetic field sensitive direction 53, that is, in the +Y or -Y direction, in addition, in order to ensure push
  • the pull-type magnetoresistive sensor has a higher magnetic field sensitivity, and requires an ANS greater than 1, that is, it can amplify the external magnetic field.
  • the material of the comb-shaped soft magnetic flux concentrator is one or more of elements including Fe, Ni, Co, and the like. Soft magnetic alloy.
  • the substrate material is glass or silicon wafer, and the substrate comprises an ASIC integrated circuit, the ASIC integrated circuit is CMOS, BiCMOS, Bipolar, BCDMOS or SOI; or the substrate is connected with another ASIC chip
  • the ASIC chip includes any one or more of an offset circuit, a gain circuit, a calibration circuit, a temperature compensation circuit, and a logic circuit, and the logic circuit is a digital switch circuit or a rotation angle calculation circuit.
  • Fig. 6 is a graph showing the variation of the Y magnetic field component at the odd space gap and the even space gap under the action of the X magnetic field by the soft magnetic flux concentrator of the interdigital structure. It can be seen that the Y magnetic field component at the odd space gap and the even space gap. It has the opposite magnetic field direction and, in addition, its amplitude is the same.
  • Fig. 7 is a graph showing the variation of the Y magnetic field component at the odd space gap and the even space gap under the action of the Y magnetic field by the soft magnetic flux concentrator of the interdigital structure. It can be seen that the Y magnetic field component is at each odd space gap and even space gap. The amplitudes are not uniform, and the space gap Y from the 1 to N is characterized by a central symmetry, that is, the labels and the two space gaps of 1+N have the same Y magnetic field component.
  • the push magnet resistance sensing unit string and the magnetizing resistance sensing unit string included in the push-pull magnetoresistive sensor in order to ensure that the magneto-resistance sensing unit string and the magnetizing resistance sensing unit string are in the Y magnetic field Under the action, the resistances on the push arm and the pull arm are exactly the same, thereby generating a zero signal output, except that the string of the magnetoresistive resistance sensing unit and the string of the magnetoresistive resistance sensing elements are alternately located outside the odd space gap and the even space gap.
  • the distribution of the magnetoresistive sensing unit strings must also satisfy the condition that for any of the magnetoresistive sensing unit strings labeled 2m-1, there must be another label 2 (N-m+1).
  • the magnetoresistive sensing unit string for any one of the magnetoresistive sensing unit strings labeled 2m, there must be another string of the magnetoresistive sensing unit labeled 2(Nm)+1 Where m is an integer and 0 ⁇ m ⁇ N.
  • Fig. 8 and Fig. 9 respectively show the magnetic field lines of the interdigitated soft magnetic flux concentrator of the cork-shaped comb and the rectangular comb in the external magnetic field of X. It can be seen that the cork-like comb is compared with the rectangular comb structure. The seat can concentrate the magnetic lines more effectively at the space gap, thus having a higher magnetic field gain.
  • Figure 10-14 shows the gain factor of the push-pull magnetoresistive sensor as a function of the geometric design parameters of the soft magnetic flux concentrator of the interdigital structure to ensure that a high magnetic field gain factor can be obtained. "Represents the reverse.
  • Figure 10 shows the variation of the magnetic field gain factor with the space gap length. It can be seen that reducing the length Lsx of the space gap will increase the magnetic field gain factor.
  • Figure 11 shows the variation of the magnetic field gain factor with the gap width of the space. It can be seen that the space is reduced. The width of the gap Lsy will increase the magnetic field gain factor.
  • Figure 12 shows the change of the magnetic field gain factor with the gap length of the gap. It can be seen that increasing the length Lgx of the gap gap can increase the magnetic field gain factor, but the length of the gap gap Lgx is greater than 60um, and the improvement effect is not obvious.
  • Figure 13 shows the variation of the magnetic field gain factor with the comb tooth width Ly. It can be seen that increasing the comb tooth width Ly will greatly increase the magnetic field gain factor.
  • Figure 14 shows the variation of the magnetic field gain factor with the length of the comb, Lex. It can be seen that increasing the length of the comb, Lex, will increase the magnetic field gain factor.
  • the interdigital soft magnetic flux guide is required in design, the comb width Ly ranges from 20 to 200 um, and the space gap width Lsy ranges from 6 to 200um; the space gap length Lsx ranges from 10 to 200 um, the gap gap length Lgx ranges from 20 to 500 um; the comb length Lex ranges from 20 to 2000 um, and the number of comb teeth N ranges from 2 ⁇ N ⁇ 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种高灵敏度单芯片推挽式TMR磁场传感器(30),包括衬底(31)、位于衬底(31)上的形成叉指结构的两个梳状软磁通量集中器(36,37),两个梳状软磁通量集中器(36,37)分别包括N和N-1个矩形梳齿,N为大于1的整数,及各自对应的梳座,一个梳状软磁通量集中器(36)的梳齿与另一个梳状软磁通量集中器(37)的梳座沿X方向形成gap间隙,相邻梳齿沿+Y方向形成标号为2m-1的奇space间隙和2m的偶space间隙,m为整数且0<m<N,推磁电阻传感单元串(38)和挽磁电阻传感单元串(39)分别位于奇space间隙和偶space间隙内,并电连接成推挽式磁电阻传感单元电桥,磁电阻传感单元磁性钉扎层磁化方向同为Y方向,X方向外磁场B (x-ext)与Y方向space间隙处B y磁场分量的磁场增益系数ANS=B y/B (x-ext)大于1,该磁场传感器(30)具有结构简单、高灵敏度、低功耗的优点。

Description

一种高灵敏度单芯片推挽式TMR磁场传感器 技术领域
本发明涉及磁性传感器领域,特别涉及一种高灵敏度单芯片推挽式TMR磁场传感器。
背景技术
加工高灵敏度单芯片线性TMR磁场传感器存在的主要困难在于如下两个方面,其一,对于推挽桥式线性磁电阻传感器,要求对应推臂的推磁电阻传感单元和对应挽臂的挽磁电阻传感单元分别设置相反的钉扎层方向;其二,对于参考桥式线性磁电阻传感器,要求参考臂对应的参考磁电阻传感单元被磁屏蔽,其存在主要问题如下:
(1)、对于推挽桥式磁电阻传感器,需要开发一种能够对磁电阻传感单元钉扎层磁化方向进行局域编程磁化的新技术;该技术需要高昂的费用;磁电阻传感单元钉扎层磁化方向进行局域编程技术的可靠性还未知;
(2)、对于参考桥式磁电阻传感器,其灵敏度只有最大可能灵敏度的一半,此外,磁电阻值较高,使得参考桥式磁电阻传感器的输出线性度较差。
发明内容
为了克服以上问题,本发明开发了通量集中器的设计,主要优点在于,长的叉指结构通量集中器用于提高外磁场增益,通量集中器与附近的TMR隧道磁阻传感单元互相交替排列,从而可以产生推挽式磁场轮廓,并作用于磁电阻传感单元,该发明使得单芯片线性磁电阻器件具有高的磁场灵敏度和好的线性。
本发明提出了一种新的Y轴磁电阻传感器的设计方案,采用叉指状软磁通量集中器实现X磁场在叉指间隙处转变成-Y和+Y两个大小相同、方向相反的磁场,而间隙处的磁电阻传感单元具有相同的磁多层薄膜结构和Y轴敏感方向,从而实现了推挽式Y轴磁电阻传感器的制备,此外,所述叉指状软磁通量集中 器还能实现磁场的幅度的放大,从而实现一种高灵敏度推挽式磁电阻传感器的制造。
本发明所提出的一种高灵敏度单芯片推挽式TMR磁场传感器,包括衬底、位于所述衬底之上的两个梳状软磁通量集中器,一个梳状软磁通量集中器包括梳座和N个长度×宽度为Lx×Ly的矩形梳齿,另一个梳状软磁通量集中器包括梳座和N-1个长度×宽度为Lx×Ly的矩形梳齿,N为大于1的整数,两个梳状软磁通量集中器的梳齿相互交叉形成叉指结构,一个梳状软磁通量集中器的梳齿与另一个梳状软磁通量集中器的梳座之间沿X方向形成gap间隙,所述gap间隙长度为Lgx,相邻所述梳齿之间形成space间隙,所述space间隙分为沿+Y方向形成的标号分别为2m-1的奇space间隙和2m的偶space间隙,所述space间隙长度为Lsx,宽度为Lsy,其中m为整数,且0<m<N;
还包括推磁电阻传感单元串和挽磁电阻传感单元串,所述推磁电阻传感单元串和挽磁电阻传感单元串分别位于所述奇space间隙和所述偶space间隙内且平行于X方向,推磁电阻传感单元串和挽磁电阻传感单元串分别位于所述奇space间隙和所述偶space间隙内且平行于X方向,所述推磁电阻传感单元串电连接成推臂,所述挽磁电阻传感单元串电连接成挽臂,所述推臂和挽臂电连接成推挽式磁电阻传感单元电桥,所述推磁电阻传感单元串包括多个推磁电阻传感单元,所述挽磁电阻传感单元串包括多个挽磁电阻传感单元,所述推磁电阻传感单元和挽磁电阻传感单元磁性钉扎层磁化方向同为+Y或-Y方向,X或-X方向外磁场B(x-ext)与Y或-Y方向所述space间隙处磁场分量By的磁场增益系数ANS=By/B(x-ext)大于1。
所述梳座为矩形,其长为Lex,宽为Ley。
还包括两个矩形软磁通量集中器,所述矩形软磁通量集中器长和宽分别平行于X和Y方向,且分别放置于距离所述叉指结构+Y端和-Y端相同距离的两个位置处。
所述梳座为瓶塞状,包括一个矩形以及一个梯形,所述梯形的短底边与所述梳齿相连,所述梯形的大长底边为所述梯形与所述矩形的公共边。
电阻传感单元串和挽磁电阻传感单元串所在的所述奇space间隙和偶space间隙标号之和为2N+1,即对于任一个标号为2m-1的所述推磁电阻传感单元串,存在着另一个标号为2(N-m+1)的所述挽磁电阻传感单元串,对于任何一个标号为2m的所述挽磁电阻传感单元串,存在着另一个标号为2(N-m) +1的所述推磁电阻传感单元串。所述的磁场增益系数ANS通过增加所述梳齿宽度Ly或减小所述space间隙宽度Lsy来提高。
所述的磁场增益系数ANS通过减小所述space间隙长度Lsx或增加所述gap间隙长度Lgx来提高。
所述的磁场增益系数ANS通过增加所述梳座长宽比、增加Lex、减小Ley或减小所述梳齿数量N来提高。
所述梳齿宽度Ly范围为20-200um,所述space间隙宽度Lsy范围为6-200um。
所述space间隙长度Lsx范围为10-200um,所述gap间隙长度Lgx在范围为20-500um。
所述Lex长度范围为20-2000um,所述梳齿数量N的范围为2≤N≤10。
所述推磁电阻传感单元和挽磁电阻传感单元为TMR传感单元,其中钉扎层方向平行于Y轴方向,自由层方向平行于X轴方向。
没有外加磁场时,所述推磁电阻传感单元和挽磁电阻传感单元通过永磁偏置、双交换作用、形状各向异性或者任意结合来使磁性自由层的磁化方向与磁性钉扎层的磁化方向垂直。
所述推挽式磁电阻传感单元电桥为半桥、全桥或者准桥。
所述推臂上的推磁电阻传感单元和所述挽臂上的挽磁电阻传感单元的数量相同。
所述梳状软磁通量集中器的材料为包含Fe、Ni、Co元素中的一种或多种的软磁合金。
所述衬底材料为玻璃或者硅片,且所述衬底上含有ASIC集成电路。所述ASIC集成电路为CMOS、BiCMOS、Bipolar、BCDMOS或者SOI。
所述衬底材料为玻璃或者硅片,且所述衬底与ASIC芯片相连接。所述ASIC芯片包含有偏移电路、增益电路、校准电路、温度补偿电路和逻辑电路中的任一种或多种应用电路。所述逻辑电路为数字开关电路或者旋转角度计算电路。
由于上述技术方案,本发明具有如下有益效果:
本发明采用叉指结构软磁通量集中器,并在叉指间隙处交替设置TMR磁电阻传感单元,使得单芯片推挽式TMR磁场传感器具有高的磁场灵敏度和好的线性。本发明还具有结构简单、功耗低的优点。
附图说明
图1显示了叉指结构软磁通量集中器结构一;
图2显示了叉指结构软磁通量集中器结构二;
图3显示了叉指结构软磁通量集中器结构三;
图4为高灵敏度推挽式磁电阻传感器结构图;
图5为推挽磁电阻传感单元串在叉指结构软磁通量集中器中的分布图;
图6为X外磁场作用下叉指结构软磁通量集中器间隙处Y磁场分布图;
图7为Y外磁场作用下叉指结构软磁通量集中器间隙处Y磁场分布图;
图8为瓶塞状梳座的叉指结构软磁通量集中器磁力线分布图;
图9为矩形梳座的叉指结构软磁通量集中器磁力线分布图;
图10显示了叉指结构软磁通量集中器磁场增益因子随space间隙长度Lsx变化;
图11显示了叉指结构软磁通量集中器磁场增益因子随space间隙宽度Lsx变化;
图12显示了叉指结构软磁通量集中器磁场增益因子随gap间隙宽度Lgx变化;
图13显示了叉指结构软磁通量集中器磁场增益因子随梳齿宽度Ly变化;
图14显示了叉指结构软磁通量集中器磁场增益因子随梳座长度Lex变化。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1为叉指结构软磁通量集中器结构一1,包括两个梳状软磁通量集中器4和7,其中梳状软磁通量集中器4包括梳座2和N个矩形梳齿3(i),i为从1到N的整数,梳状软磁通量集中器7包括梳座5和N-1个矩形梳齿6(j),j为从1到N-1的整数,每个所述矩形梳齿3(i)和6(j)的长度为Lx,宽度为Ly。本结构1中所述梳座2和5均为矩形,长度为Lex,宽度为Ley,梳状软磁通量集中器4和7的梳齿相互交叉形成叉指结构,其中,任一矩形梳齿3(i)与梳座5之间、以及任一矩形梳齿6(j)与梳座2之间沿X方向形成长度为Lgx的 gap间隙,相邻所述梳齿3(i)和6(j)之间形成space间隙,所述space间隙分为沿+Y方向交替形成的标号为2m-1的奇space间隙g(2m-1)和标号为2m的偶space间隙g(2m),所述奇space间隙和偶space间隙的长度为Lsx,宽度为Lsy,其中m为整数,且0<m<N。
图2为叉指结构软磁通量集中器结构二8,其与叉指结构软磁通量集中器结构一1的不同之处在于,梳座13和18为瓶塞状,梳座13包括一个矩形9以及一个梯形10,梯形10的短底边11与梳齿连接,长底边12与矩形9相连;梳座18包括矩形14和梯形15,梯形15的短底边16与梳齿连接,其长底边17与矩形14相连。
图3为叉指结构软磁通量集中器结构三20,其不同之处在于,在叉指结构软磁通量集中器结构21的+Y端和-Y端分别增加了一个长条形软磁通量集中器22和23,软磁通量集中器22到叉指结构软磁通量集中器结构21的+Y端的距离与软磁通量集中器23到叉指结构软磁通量集中器结构21的-Y端的距离相等。叉指结构软磁通量集中器结构21可以是上述叉指结构软磁通量集中器结构一1或叉指结构软磁通量集中器结构二8。
图4为高灵敏度推挽式磁电阻传感器结构图30,包括衬底31,位于衬底31之上的形成叉指结构的梳状软磁通量集中器36和37,以及推磁电阻传感单元串38和挽磁电阻传感单元串39;梳状软磁通量集中器36和37的梳齿相互交叉,并沿+Y方向交替形成奇space间隙g(2m-1)和偶space间隙g(2m),推磁电阻传感单元串38位于奇space间隙g(2m-1),挽磁电阻传感单元串39位于偶space间隙g(2m),所述推磁电阻传感单串38电连接成推臂,挽磁电阻传感单元串39电连接成挽臂,推臂和挽臂通过导线40电连接成桥式结构,并连接到电源32和地电极35,输出信号电极33和34。
图5为推磁电阻传感单元串和挽磁电阻传感单元串在叉指结构间隙中的分布图,实际对应为图4中椭圆区域,外磁场B(x-ext)经过叉指结构软磁通量集中器之后,分别在间隙51和间隙52中产生By磁场分量和-By磁场分量并分别作用于推磁电阻传感单元串和挽磁电阻传感单元串,所对应的磁场增益因子为ANS=By/B(x-ext),其中推磁电阻传感单元和挽磁电阻传感单元具有相同的磁场敏感方向53,即为沿+Y或者-Y方向,此外,为了保证推挽式磁电阻传感器具有更高的磁场灵敏度,要求ANS大于1,即能够对外磁场进行放大。
梳状软磁通量集中器的材料为包含Fe、Ni、Co等元素中的一种或多种的 软磁合金。
所述衬底材料为玻璃或者硅片,且所述衬底上含有ASIC集成电路,所述ASIC集成电路为CMOS、BiCMOS、Bipolar、BCDMOS或者SOI;或所述衬底与另外的ASIC芯片相连接,所述ASIC芯片包含有偏移电路、增益电路、校准电路、温度补偿电路和逻辑电路中的任一种或多种应用电路,所述逻辑电路为数字开关电路或者旋转角度计算电路。
图6为叉指结构软磁通量集中器在X磁场作用下,各奇space间隙和偶space间隙处Y磁场分量的变化图,可以看出,所述奇space间隙和偶space间隙处的Y磁场分量具有相反的磁场方向,此外,其幅度相同。
图7为叉指结构软磁通量集中器在Y磁场作用下,各奇space间隙和偶space间隙处Y磁场分量的变化图,可以看出,Y磁场分量在各奇space间隙和偶space间隙处的幅度大小并不一致,标号为从1到N的space间隙Y磁场分量具有中心对称的特点,即标号和为1+N的两个space间隙具有相同的Y磁场分量。因此,在构造推挽式磁电阻传感器所包含的推磁电阻传感单元串和挽磁电阻传感单元串时,为了保证推磁电阻传感单元串和挽磁电阻传感单元串在Y磁场作用下,推臂和挽臂上的电阻完全相同,从而产生0信号输出,除了要求推磁电阻传感单元串和挽磁电阻传感单元串分别交替位于奇space间隙和偶space间隙之外,所述磁电阻传感单元串的分布还必须满足如下条件,即对于任一个标号为2m-1的所述推磁电阻传感单元串,必须存在另一个标号为2(N-m+1)的所述挽磁电阻传感单元串,对于任何一个标号为2m的所述挽磁电阻传感单元串,必须存在另一个标号为2(N-m)+1的所述推磁电阻传感单元串,其中m为整数,且0<m<N。
图8和图9分别为瓶塞形梳座和矩形梳座的叉指状软磁通量集中器在X外磁场作用下磁力线分布图,比较可以看出,相对于矩形梳座结构,瓶塞状梳座能够将磁力线更有效的集中在space间隙处,因此具有更高的磁场增益。
图10-14分别给出了推挽式磁电阻传感器的增益因子随叉指结构软磁通量集中器的几何设计参数的变化,以确保能够得到高的磁场增益因子,图中刻度值前的“-”表示反向。
图10表示磁场增益因子随space间隙长度的变化,可以看出,减小space间隙的长度Lsx将提高磁场增益因子。
图11表示磁场增益因子随space间隙宽度的变化,可以看出,减小space 间隙的宽度Lsy将提高磁场增益因子。
图12为磁场增益因子随gap间隙长度的变化,可以看出,增加gap间隙的长度Lgx能够提高磁场增益因子,但是gap间隙的长度Lgx在大于60um之后,提高作用不明显。
图13表示磁场增益因子随梳齿宽度Ly的变化,可以看出,增加梳齿宽度Ly将大大提高磁场增益因子。
图14表示磁场增益因子随梳座长度Lex的变化,可以看出,增加梳齿的长度Lex,将提高磁场增益因子。
根据计算结果,为了得到高灵敏度的推挽式磁电阻传感器,叉指结构软磁通量引导器在设计上要求,梳齿宽度Ly的范围为20-200um,所述space间隙宽度Lsy的范围为6-200um;space间隙长度Lsx的范围为10-200um,所述gap间隙长度Lgx的范围为20-500um;所述梳座长度Lex的范围为20-2000um,所述梳齿数量N的范围为2≤N≤10。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化,本发明中的实施也可以进行不同组合变化,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,包括衬底、位于所述衬底之上的两个梳状软磁通量集中器,一个梳状软磁通量集中器包括梳座和N个长度×宽度为Lx×Ly的矩形梳齿,另一个梳状软磁通量集中器包括梳座和N-1个长度×宽度为Lx×Ly的矩形梳齿,N为大于1的整数,两个梳状软磁通量集中器的梳齿相互交叉形成叉指结构,一个梳状软磁通量集中器的梳齿与另一个梳状软磁通量集中器的梳座之间沿X方向形成gap间隙,所述gap间隙长度为Lgx,相邻所述梳齿之间形成space间隙,所述space间隙分为沿+Y方向形成的标号分别为2m-1的奇space间隙和2m的偶space间隙,所述space间隙长度为Lsx,宽度为Lsy,其中m为整数,且0<m<N;
    还包括推磁电阻传感单元串和挽磁电阻传感单元串,所述推磁电阻传感单元串和挽磁电阻传感单元串分别位于所述奇space间隙和所述偶space间隙内且平行于X方向,所述推磁电阻传感单元串电连接成推臂,所述挽磁电阻传感单元串电连接成挽臂,所述推臂和挽臂电连接成推挽式磁电阻传感单元电桥,所述推磁电阻传感单元串包括多个推磁电阻传感单元,所述挽磁电阻传感单元串包括多个挽磁电阻传感单元,所述推磁电阻传感单元和挽磁电阻传感单元磁性钉扎层磁化方向同为+Y或-Y方向,X或-X方向外磁场B(x-ext)与Y或-Y方向所述space间隙处磁场分量By的磁场增益系数ANS=By/B(x-ext)大于1。
  2. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述梳座为矩形,其长为Lex,宽为Ley。
  3. 根据权利要求2所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,还包括两个矩形软磁通量集中器,所述矩形软磁通量集中器长和宽分别平行于X和Y方向,且分别放置于距离所述叉指结构+Y端和-Y端相同距离的两个位置处。
  4. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述梳座为瓶塞状,包括一个矩形以及一个梯形,所述梯形的短底边与所述梳齿相连,所述梯形的长底边为所述梯形与所述矩形的公共边。
  5. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述推磁电阻传感单元串和挽磁电阻传感单元串所在的所述奇space间隙和偶space间隙标号之和为2N+1,即对于任一个标号为2m-1的所述推磁电阻传感单元串,存在着另一个标号为2(N-m+1)的所述挽磁电阻传感单元串,对于任何一个标号为2m的所述挽磁电阻传感单元串,存在着另一个标号为2(N-m)+1的所述推磁电阻传感单元串。
  6. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述的磁场增益系数ANS通过增加所述梳齿宽度Ly或减小所述space间隙宽度Lsy来提高。
  7. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述的磁场增益系数ANS通过减小所述space间隙长度Lsx或增加所述gap间隙长度Lgx来提高。
  8. 根据权利要求2或3所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述的磁场增益系数ANS通过增加所述梳座长宽比、增加Lex、减小Ley或减小所述梳齿数量N来提高。
  9. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述梳齿宽度Ly范围为20-200um,所述space间隙宽度Lsy范围为6-200um。
  10. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述space间隙长度Lsx范围为10-200um,所述gap间隙长度Lgx范围为20-500um。
  11. 根据权利要求2所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述梳座的长度Lex范围为20-2000um,所述梳齿数量N的范围为2≤N≤10。
  12. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述推磁电阻传感单元和挽磁电阻传感单元为TMR传感单元,其中钉扎层方向平行于Y轴方向,自由层方向平行于X轴方向。
  13. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,没有外加磁场时,所述推磁电阻传感单元和挽磁电阻传感单元通过永磁偏置、双交换作用、形状各向异性或者任意结合来使磁性自由层的磁化方向与磁性钉扎层的磁化方向垂直。
  14. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述推挽式磁电阻传感单元电桥为半桥、全桥或者准桥。
  15. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述推臂上的推磁电阻传感单元和所述挽臂上的挽磁电阻传感单元的数量相同。
  16. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述梳状软磁通量集中器的材料为包含Fe、Ni、Co元素中的一种或多种的软磁合金。
  17. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述衬底材料为玻璃或者硅片,且所述衬底上含有ASIC集成电路。
  18. 根据权利要求1所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述衬底材料为玻璃或者硅片,且所述衬底与ASIC芯片相连接。
  19. 根据权利要求17所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述ASIC集成电路为CMOS、BiCMOS、Bipolar、BCDMOS或者SOI。
  20. 根据权利要求18所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述ASIC芯片包含有偏移电路、增益电路、校准电路、温度补偿电路和逻辑电路中的任一种或多种应用电路。
  21. 根据权利要求20所述的一种高灵敏度单芯片推挽式TMR磁场传感器,其特征在于,所述逻辑电路为数字开关电路或者旋转角度计算电路。
PCT/CN2016/104000 2015-11-03 2016-10-31 一种高灵敏度单芯片推挽式tmr磁场传感器 WO2017076252A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16861520.1A EP3373022A4 (en) 2015-11-03 2016-10-31 MAGNETIC FIELD SENSOR TMR OF PUSH-PULL TYPE WITH HIGH SENSITIVITY SINGLE CHIP
US15/773,368 US11169225B2 (en) 2015-11-03 2016-10-31 TMR high-sensitivity single-chip push-pull bridge magnetic field sensor
JP2018522777A JP6852906B2 (ja) 2015-11-03 2016-10-31 Tmr高感度シングルチップ・ブッシュプル・ブリッジ磁場センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510736394.1 2015-11-03
CN201510736394.1A CN105259518A (zh) 2015-11-03 2015-11-03 一种高灵敏度单芯片推挽式tmr磁场传感器

Publications (1)

Publication Number Publication Date
WO2017076252A1 true WO2017076252A1 (zh) 2017-05-11

Family

ID=55099281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104000 WO2017076252A1 (zh) 2015-11-03 2016-10-31 一种高灵敏度单芯片推挽式tmr磁场传感器

Country Status (5)

Country Link
US (1) US11169225B2 (zh)
EP (1) EP3373022A4 (zh)
JP (1) JP6852906B2 (zh)
CN (1) CN105259518A (zh)
WO (1) WO2017076252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169225B2 (en) 2015-11-03 2021-11-09 MultiDimension Technology Co., Ltd. TMR high-sensitivity single-chip push-pull bridge magnetic field sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6390728B2 (ja) 2017-02-22 2018-09-19 Tdk株式会社 磁気センサとその製造方法
CN107037382B (zh) * 2017-04-05 2023-05-30 江苏多维科技有限公司 一种预调制磁电阻传感器
CN107064829B (zh) * 2017-05-04 2023-02-21 江苏多维科技有限公司 一种单芯片高灵敏度磁电阻线性传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1529967A (en) * 1977-04-28 1978-10-25 Bicc Ltd Magnetic cores
CN2300108Y (zh) * 1997-07-28 1998-12-09 崔凤来 多单元组合式霍尔检零强电流测量仪
CN103575960A (zh) * 2013-10-29 2014-02-12 河北工业大学 巨磁阻效应电流传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN204347226U (zh) * 2015-01-07 2015-05-20 江苏多维科技有限公司 一种单芯片具有校准/重置线圈的z轴线性磁电阻传感器
CN104880682A (zh) * 2015-06-09 2015-09-02 江苏多维科技有限公司 一种交叉指状y轴磁电阻传感器
CN204740335U (zh) * 2015-06-09 2015-11-04 江苏多维科技有限公司 一种交叉指状y轴磁电阻传感器
CN105259518A (zh) * 2015-11-03 2016-01-20 江苏多维科技有限公司 一种高灵敏度单芯片推挽式tmr磁场传感器
CN205353331U (zh) * 2015-11-03 2016-06-29 江苏多维科技有限公司 一种高灵敏度单芯片推挽式tmr磁场传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195945B1 (en) * 2004-09-15 2007-03-27 United States Of America As Represented By The Secretary Of The Army Minimizing the effect of 1/ƒ noise with a MEMS flux concentrator
US7046002B1 (en) * 2004-11-26 2006-05-16 The United States Of America As Represented By The Secretary Of The Army Magnetic sensor with variable sensitivity
EP2788780A1 (en) * 2011-12-05 2014-10-15 Advanced Microsensors Corporation Magnetic field sensing apparatus and methods
JP6126348B2 (ja) * 2012-09-27 2017-05-10 旭化成エレクトロニクス株式会社 磁気センサ及びその磁気検出方法
US9341684B2 (en) * 2013-03-13 2016-05-17 Plures Technologies, Inc. Magnetic field sensing apparatus and methods
JP5876583B2 (ja) * 2013-03-26 2016-03-02 旭化成エレクトロニクス株式会社 磁気センサ及びその磁気検出方法
CN103412269B (zh) * 2013-07-30 2016-01-20 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN103645449B (zh) * 2013-12-24 2015-11-25 江苏多维科技有限公司 一种用于高强度磁场的单芯片参考桥式磁传感器
CN103630855B (zh) * 2013-12-24 2016-04-13 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN104197828B (zh) * 2014-08-20 2017-07-07 江苏多维科技有限公司 一种单芯片偏轴磁电阻z‑x角度传感器和测量仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1529967A (en) * 1977-04-28 1978-10-25 Bicc Ltd Magnetic cores
CN2300108Y (zh) * 1997-07-28 1998-12-09 崔凤来 多单元组合式霍尔检零强电流测量仪
CN103575960A (zh) * 2013-10-29 2014-02-12 河北工业大学 巨磁阻效应电流传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN204347226U (zh) * 2015-01-07 2015-05-20 江苏多维科技有限公司 一种单芯片具有校准/重置线圈的z轴线性磁电阻传感器
CN104880682A (zh) * 2015-06-09 2015-09-02 江苏多维科技有限公司 一种交叉指状y轴磁电阻传感器
CN204740335U (zh) * 2015-06-09 2015-11-04 江苏多维科技有限公司 一种交叉指状y轴磁电阻传感器
CN105259518A (zh) * 2015-11-03 2016-01-20 江苏多维科技有限公司 一种高灵敏度单芯片推挽式tmr磁场传感器
CN205353331U (zh) * 2015-11-03 2016-06-29 江苏多维科技有限公司 一种高灵敏度单芯片推挽式tmr磁场传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373022A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169225B2 (en) 2015-11-03 2021-11-09 MultiDimension Technology Co., Ltd. TMR high-sensitivity single-chip push-pull bridge magnetic field sensor

Also Published As

Publication number Publication date
US20180321334A1 (en) 2018-11-08
CN105259518A (zh) 2016-01-20
EP3373022A4 (en) 2019-07-10
JP2018534571A (ja) 2018-11-22
JP6852906B2 (ja) 2021-03-31
EP3373022A1 (en) 2018-09-12
US11169225B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
JP5409088B2 (ja) 歯車回転速度の測定方法および歯車回転速度検出器
US10060941B2 (en) Magnetoresistive gear tooth sensor
JP6403326B2 (ja) 電流センサ
CN104880682B (zh) 一种交叉指状y轴磁电阻传感器
JP6474822B2 (ja) 高感度プッシュプルブリッジ磁気センサ
WO2015058632A1 (zh) 一种用于高强度磁场的推挽桥式磁传感器
WO2017076252A1 (zh) 一种高灵敏度单芯片推挽式tmr磁场传感器
JP6118416B2 (ja) 磁気センサ
WO2015096744A1 (zh) 一种用于高强度磁场的单芯片参考桥式磁传感器
JP2014516406A (ja) 単一チップブリッジ型磁界センサおよびその製造方法
WO2012097673A1 (zh) 独立封装的桥式磁场传感器
CN105093139B (zh) 一种推挽式x轴磁电阻传感器
JP2007024598A (ja) 磁気センサ
RU2436200C1 (ru) Магниторезистивный датчик
CN204758807U (zh) 一种推挽式x轴磁电阻传感器
CN205353331U (zh) 一种高灵敏度单芯片推挽式tmr磁场传感器
CN204740335U (zh) 一种交叉指状y轴磁电阻传感器
JP2005069744A (ja) 磁気検出素子
JP2012105060A (ja) 磁気アイソレータ
JP4984962B2 (ja) 磁気式角度センサ
RU2483393C1 (ru) Магниторезистивный преобразователь
JP2014006126A (ja) 磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018522777

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 15773368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016861520

Country of ref document: EP