WO2017073585A1 - リチウムイオン二次電池およびリチウムイオン二次電池の製造方法 - Google Patents

リチウムイオン二次電池およびリチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
WO2017073585A1
WO2017073585A1 PCT/JP2016/081651 JP2016081651W WO2017073585A1 WO 2017073585 A1 WO2017073585 A1 WO 2017073585A1 JP 2016081651 W JP2016081651 W JP 2016081651W WO 2017073585 A1 WO2017073585 A1 WO 2017073585A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
secondary battery
layer
ion secondary
Prior art date
Application number
PCT/JP2016/081651
Other languages
English (en)
French (fr)
Inventor
尚貴 木村
栄二 關
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680059818.8A priority Critical patent/CN108140876A/zh
Priority to EP16859815.9A priority patent/EP3370293B1/en
Priority to JP2017547812A priority patent/JPWO2017073585A1/ja
Priority to US15/769,641 priority patent/US20180323439A1/en
Publication of WO2017073585A1 publication Critical patent/WO2017073585A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery and a method for producing a lithium ion secondary battery.
  • a lithium ion secondary battery has a positive electrode, a negative electrode, and a separator as main components.
  • the separator is made of a porous resin such as polyethylene or polypropylene, and its function is to pass only lithium ions while insulating the positive electrode and the negative electrode.
  • an active material containing silicon (Si) is expected to increase the energy density.
  • Patent Document 1 discloses silicon oxide (A) represented by SiO x (1.77 ⁇ x ⁇ 1.90) and carbonaceous material.
  • a power storage device composite comprising a conductive material (B) capable of adsorbing and desorbing lithium ions using a material as a raw material is disclosed. According to the said structure, it is supposed that the cycling characteristic fall resulting from an electrode expanding / shrinking, a negative electrode material destroying / pulverizing, and destroying a conductive network can be suppressed.
  • Patent Document 2 contains a carbon material and silicon and / or tin which is a metal that can be alloyed with 1 to 100 parts by mass of lithium with respect to 100 parts by mass of the carbon material on the surface of the current collector.
  • a metal-containing layer having a thickness of 20 to 70 ⁇ m, a carbon material layer on the metal-containing layer, the carbon material of the metal-containing layer containing natural graphite and a carbonaceous material, and the metal-containing layer Discloses a negative electrode for a lithium ion secondary battery, which is obtained by mixing the metal, the natural graphite, and the precursor of the carbonaceous material, followed by heat treatment.
  • the metal-containing layer containing a metal that can be alloyed with a carbon material is provided on the surface of the current collector, and the carbon-containing layer is provided on the metal-containing layer. Even if it is pulverized due to expansion / contraction, the metal does not peel from the metal-containing layer, and the metal-containing layer has a small expansion coefficient compared to the metal and has good adhesion to the current collector. Since the material is contained, even when charging and discharging are repeated, the adhesion of the metal-containing layer with the current collector is not lowered, and the conductivity can be maintained. As a result, the lithium ion described in Patent Document 2 can be maintained. A lithium ion secondary battery produced using a negative electrode for a secondary battery has high discharge capacity and initial charge / discharge efficiency, and has excellent cycle characteristics.
  • Patent Document 3 includes at least insulating fine particles that are stable with respect to an organic electrolyte and an organic binder.
  • a battery separator characterized by the above is disclosed. According to the above configuration, if the separator is formed so that the filling property of the insulating fine particles in the separator is further increased and the glossiness at 60 ° is 5 or more, the structure can be made more dense and uniform, It is said that a highly reliable separator can be constructed.
  • Patent Document 4 discloses a separator for a nonaqueous electrolyte secondary battery comprising a resin base material and a porous heat resistant layer disposed on the base material, the porous heat resistant layer described above. Includes at least an inorganic filler and a hollow body, and the hollow body includes a shell portion made of an acrylic resin and a hollow portion formed therein, and the shell portion includes the shell.
  • a separator for a non-aqueous electrolyte secondary battery is disclosed in which an opening that passes through the portion and spatially connects the hollow portion and the outside is provided. According to the above configuration, by including the hollow body in the porous heat-resistant layer, it is possible to add excellent flexibility, elasticity, and shape retention to the separator, and thus prevent the separator from being crushed.
  • the hollow body is electrochemically stable even in the non-aqueous electrolyte, and the non-aqueous electrolyte can be stored in the hollow portion, so that excellent liquid retention is stably maintained and exhibited over a long period of time. It is supposed to be possible.
  • the present invention prevents a short circuit between positive and negative electrodes, and a lithium ion secondary battery in which all of energy density, cycle characteristics and safety are balanced at a high level, and such a lithium ion secondary battery. It is in providing the manufacturing method of the lithium ion secondary battery which can be manufactured.
  • a lithium ion secondary battery includes a positive electrode, a negative electrode, and a separator provided between the positive electrode and the negative electrode, the negative electrode including a negative electrode active material containing silicon, and the negative electrode active material
  • the material has a hardness of 10 GPa or more and 20 GPa or less
  • the separator has a structure in which a resin layer and a porous layer are laminated.
  • the thickness of the resin layer is 25 ⁇ m or more and 30 ⁇ m or less
  • the thickness of the resin layer is 15 ⁇ m or more and less than 25 ⁇ m
  • the thickness of the porous layer is 5 ⁇ m or more and 20 ⁇ m or less.
  • a lithium ion secondary battery and such a lithium ion secondary battery that prevent a short circuit between positive and negative electrodes and balance all of energy density, cycle characteristics, and safety at a high level.
  • a method for manufacturing a possible lithium ion secondary battery can be provided.
  • FIG. 1 is a sectional view schematically showing an example of a lithium ion battery according to the present invention
  • FIG. 2 is a sectional view schematically showing a part of the positive electrode of FIG.
  • FIG. 1 shows a so-called wound type lithium ion secondary battery.
  • a lithium ion secondary battery 100 a according to the present invention has a positive electrode 1, a negative electrode 2, and a separator 3 provided between the positive electrode 1 and the negative electrode 2.
  • the positive electrode 1 and the negative electrode 2 are wound into a cylindrical shape with a separator 3 interposed therebetween so that they do not come into direct contact with each other to form a wound electrode group.
  • the positive electrode 1 is connected to the positive electrode current collecting lead part 7 via the positive electrode current collecting lead part 5, and the negative electrode 2 is connected to the negative electrode current collecting lead part 8 via the negative electrode current collecting lead part 6.
  • the electrode group constitutes a wound group in which the positive electrode current collecting lead piece 5 and the negative electrode current collecting lead piece 6 are sandwiched, and is accommodated in the battery can 4. Further, a non-aqueous electrolyte (not shown) is injected into the battery can 4.
  • FIG. 2 is a cross-sectional view schematically showing another example of the lithium ion secondary battery according to the present invention.
  • FIG. 1 shows an embodiment in which one positive current collecting lead piece 5 and one negative current collecting lead piece 6 are provided. As shown in FIG. 2, the positive current collecting lead piece 5 and the negative current collecting lead piece 6 are A plurality may be provided.
  • FIG. 3 is a diagram schematically showing an example of the configuration of the positive electrode in FIGS.
  • FIG. 3 is a diagram (development view) showing a state before winding.
  • the positive electrode 1 has a positive electrode mixture layer 13 containing a positive electrode active material applied to the surface of the positive electrode current collector, and a positive electrode mixture uncoated portion 14 where no positive electrode mixture is applied. .
  • a positive electrode current collecting lead 15 is provided in the positive electrode mixture uncoated portion 14.
  • the negative electrode 2 also has the same configuration as the positive electrode 1.
  • the negative electrode mixture layer containing a negative electrode active material applied to the surface of the negative electrode current collector, and a negative electrode mixture uncoated portion where no negative electrode mixture is applied, and the negative electrode mixture uncoated portion has a negative electrode A current collecting lead is provided.
  • FIG. 4 is a diagram schematically showing an example of the configuration of the positive electrode, the negative electrode, and the separator in FIGS.
  • FIG. 4 is a diagram (development view) showing a state before winding.
  • the illustration of the non-coated portion of the negative electrode and the negative electrode current collecting lead piece 6 is omitted for easy viewing of the drawing.
  • the positive electrode 1, the negative electrode 2, and the separator 3 have a laminated structure as shown in FIG.
  • the present inventors have investigated the short-circuited portion of the lithium ion secondary battery.
  • FIG. 5 is a photograph showing a short-circuit portion (portion overlapping with the positive electrode current collecting lead of the separator) of a conventional lithium ion secondary battery. In FIG. 5, it can be seen that scorching has occurred in the portion where the separator 3 and the positive electrode current collecting lead 15 overlap.
  • the main drawback associated with expansion and contraction in the battery is a safety problem, and it is considered that the positive electrode and the negative electrode are short-circuited due to the expansion of the negative electrode.
  • the separator 3 has a structure in which a resin layer and a porous layer can be laminated to relieve stress during expansion / contraction of the negative electrode, and the hardness of the negative electrode active material, the resin layer, and the porous layer It was found that the above-described short circuit can be prevented by finding the correlation between the film thicknesses of these films and setting them in a predetermined range. The present invention is based on this finding.
  • FIG. 6 to 8 are cross-sectional views schematically showing first to third examples of a separator of a lithium ion secondary battery according to the present invention.
  • the separator 3a basically has a configuration in which a resin layer 31 and a porous layer 32 are laminated.
  • the resin layer 31 is in contact with the negative electrode 2, and the porous layer 32 is in contact with the positive electrode 1.
  • the porous layer 32 is provided on at least the surface of the resin layer 31 on the positive electrode 1 side.
  • the thickness of the porous layer 32 is 2 ⁇ m or more and 10 ⁇ m or less
  • the thickness of the resin layer 31 is When the thickness is 15 ⁇ m or more and less than 25 ⁇ m, the thickness of the porous layer is 5 ⁇ m or more and 20 ⁇ m or less.
  • the separator 3a may be one in which the resin layer 31 and the porous layer 32 are laminated one by one.
  • Layers 32a and 32b may be provided. That is, the porous layer 32b, the resin layer 31, and the porous layer 32a may be laminated in this order.
  • the resin layer 31 may be composed of a plurality of layers, and may have a three-layer structure of resin layers 31a to 31c as shown in FIG. When two or more resin layers 31 or porous layers 32 are provided, the total film thickness of the resin layers 31 or porous layers 32 is set within the above range.
  • the resin layer 31 is not particularly limited, and heat-resistant resins such as polyethylene, polypropylene, polyamide, polyamideimide, polyimide, polysulfone, polyethersulfone, polyphenylsulfone, and polyacrylonitrile are suitable.
  • the porous layer 32 is preferably a porous material that has flexibility and thermal conductivity and allows the electrolytic solution to penetrate.
  • silicon dioxide SiO 2
  • aluminum oxide Al 2 O 3
  • montmorillonite mica
  • zinc oxide ZnO
  • titanium oxide TiO 2
  • barium titanate BaTiO 3
  • zirconium oxide ZrO 2 .
  • SiO 2 and Al 2 O 3 are particularly preferable from the viewpoint of cost.
  • the porosity of the porous layer 32 is preferably 50% or more and 90% or less, and more preferably 80% or more and 90% or less. Since the porous layer 32 according to the present invention is mainly for relieving stress, the porous layer 32 has a higher porosity than that in the case of obtaining heat resistance (for example, Patent Document 4).
  • the positive electrode 1 constituting the lithium ion secondary battery is prepared by applying and drying a positive electrode mixture slurry containing a positive electrode active material on one or both surfaces of a positive electrode current collector (for example, an aluminum foil), and then using a roll press machine or the like. It is produced by compression molding and cutting into a predetermined size.
  • the negative electrode 2 constituting the lithium ion secondary battery is prepared by applying and drying a negative electrode mixture slurry containing a negative electrode active material on one surface or both surfaces of a negative electrode current collector (for example, copper foil), and then pressing a low press machine or the like. It is manufactured by compression molding using a material and cutting into a predetermined size.
  • the positive electrode active material used for the positive electrode 1 is not particularly limited as long as it is a lithium compound capable of occluding and releasing lithium ions.
  • Examples thereof include lithium transition metal composite oxides such as lithium manganese oxide, lithium bart oxide, and lithium nickel oxide. Any one of these or a mixture of two or more of them can be used.
  • a binder polyimide, polyamide, polyvinylidene fluoride (PVDF) and styrene butadiene rubber (SBR) or a mixture thereof
  • a thickener a conductive material, a solvent, and the like are mixed with the positive electrode active material as necessary.
  • a positive electrode mixture slurry is produced.
  • the negative electrode active material used for the negative electrode 2 requires a negative electrode active material containing Si, and in addition to this, one of artificial graphite, natural graphite, non-graphitizable carbons, metal oxides, metal nitrides, activated carbon, and the like.
  • the above may be selected and mixed.
  • the discharge capacity can be changed by changing the mixing ratio.
  • SiO As the negative electrode active material containing Si, SiO can be used. Further, an alloy of Si and a dissimilar metal element containing at least one of aluminum (Al), nickel (Ni), copper (Cu), iron (Fe), titanium (Ti), and manganese (Mn) (Si Alloy) can be used. SiO is preferably SiO x (0.5 ⁇ x ⁇ 1.5). As specific examples of the Si alloy, Si 70 Ti 15 Fe 15 , Si 70 Cu 30, Si 70 Ti 30 and the like are suitable. In addition, the Si alloy is usually in a state where fine particles of metal silicon (Si) are dispersed in each particle of other metal elements, or other metal elements are dispersed in each particle of Si. It is in the state. Other metal elements are preferred.
  • the Si alloy can be produced by mechanically synthesizing by a mechanical alloy method, or by heating and cooling a mixture of Si particles and other metal elements.
  • the atomic ratio of Si to another metal element is desirably 50:50 to 90:10, and more desirably 60:40 to 80:20.
  • Both SiO and Si alloy may be carbon coated.
  • the hardness of the negative electrode active material is 10 GPa or more and 20 GPa or less as described above.
  • the hardness of the negative electrode active material can be measured using a nanoindentation method or the like.
  • a negative electrode mixture slurry is prepared by mixing a negative electrode active material with a binder, a thickener, a conductive material, a solvent, and the like as necessary.
  • electrolyte examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, methyl acetate, ethyl acetate, methyl propionate, tetrahydrofuran, 2-methyl Tetrahydrofuran, 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 3-methyltetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane, 2-methyl -1,3-dioxolane, at least one non-aqueous solvent selected from 4-methyl-1,3-dioxolane, etc., for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 May be a known electro
  • the discharge capacity (negative electrode capacity) of the negative electrode of the lithium ion secondary battery according to the present invention is preferably 600 Ah / kg or more and 1000 Ah / kg or less. If it is less than 600 Ah / kg, a short circuit is unlikely to occur because the expansion amount is small, and if it is greater than 1000 Ah / kg, the cycle life of the battery is remarkably deteriorated, making it difficult to use as a battery. Furthermore, when it is less than 600 Ah / kg, the contribution to high energy density is small.
  • the lithium ion secondary battery according to the present invention is suitable for suppressing the short circuit of the wound battery shown in FIGS. 1 and 2, and at least the surface of the separator 3 in contact with the positive electrode current collecting lead is the separator according to the present invention.
  • the effect of this invention can be acquired by having this structure.
  • Example 1 were fabricated and the battery characteristics were evaluated.
  • the lithium ion secondary batteries (Examples 1 to 15, Comparative Examples 1 to 9 and Reference Examples 1 and 2) shown in FIG. The configuration of the battery is described below.
  • polyethylene was used as the resin layer
  • SiO 2 was used as the porous layer.
  • the film thicknesses of the resin layer and the porous layer are also shown in Table 1 described later.
  • the negative electrode was prepared by preparing a negative electrode mixture slurry, coating on the current collector foil, and pressing.
  • the negative electrode slurry was prepared by using acetylene black as a conductive material in addition to the negative electrode active material and the binder described above, and the weight ratio was prepared in order 92: 5: 3, so that the viscosity was 5000 to 8000 mPa, and the solid content ratio was made while mixing NMP as a solvent so that the ratio was 70% or more and 90% or less.
  • the value of the viscosity of the slurry in the present invention is the viscosity at the time when 600 seconds have elapsed after stirring the slurry at 0.5 rpm.
  • a planetary mixer was used for slurry preparation.
  • the copper foil was coated with a desktop comma coater. As with the positive electrode described later, coating was performed so that a negative electrode mixture uncoated portion where a negative electrode active material mixture was not applied was formed on a part of the copper foil.
  • the current collector foil is a stainless steel foil, a copper foil containing at least one kind selected from zirconium, silver, and tin in copper having a purity of 99.9% or more, and a copper foil having a purity of 99.99% or more. Each type was used.
  • the coating amount of the negative electrode was adjusted so that the positive electrode / negative electrode capacity ratio was 1.0 when the positive electrode coating amount of 240 g / m 2 was used.
  • the drying temperature was primarily dried through a drying furnace at 100 ° C.
  • this electrode was vacuum-dried (secondary drying) for 1 h at 300 ° C., and the density was adjusted by a roll press. The density was pressed so that the pores of the electrode were about 20 to 40%, the negative electrode containing Si and SiO was produced at a density of 1.4 g / cm 3 , and the negative electrode containing Si alloy was produced at a density of 2.3 g / cm 3. It was fabricated at about cm 3 .
  • Fig. 2 shows the positive electrode with lead produced.
  • the positive electrode has a positive electrode mixture layer 13 and a positive electrode mixture uncoated portion 14 to which no positive electrode mixture layer is applied. Welding.
  • the positive electrode current collecting lead 15 having a thickness of 0.05 mm was used. The effect of the present invention is particularly obtained when the thickness of the positive electrode current collecting lead 15 is 0.05 mm or more.
  • An aluminum foil was used as the positive electrode current collector foil, and a positive electrode mixture layer was formed on both sides of the aluminum foil.
  • the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1
  • a conductive material made of a carbon material and PVDF are used as a binder (binder), and the weight ratio is 90: 5: 5
  • a positive electrode slurry was prepared. The coating amount was 240 g / m 2 .
  • the positive electrode mixture uncoated portion 14 where the positive electrode mixture was not applied was formed on a part of the aluminum foil. That is, the aluminum foil is exposed in the positive electrode mixture uncoated portion 14.
  • the positive electrode was adjusted to 3.5 g / cm 3 so as to have a density by a roll press after the positive electrode mixture layer was dried.
  • the prepared positive and negative electrodes were wound through a separator and inserted into a battery can.
  • the negative electrode current collecting lead piece 6 was collected on the negative electrode current collecting lead portion 8 made of nickel and ultrasonically welded, and the negative electrode current collecting lead portion 8 was welded to the bottom of the can.
  • the positive electrode current collecting lead piece 5 was ultrasonically welded to the aluminum positive electrode current collecting lead portion 7 and then the aluminum positive electrode current collecting lead portion 7 was resistance welded to the battery lid 9. After injecting the electrolytic solution, the battery lid 9 was sealed with caulking of the battery can 4 to obtain a battery.
  • a gasket 12 was inserted between the upper end of the can and the battery lid 9. In this way, a 1 Ah class battery was manufactured.
  • the battery was charged at a constant voltage of 4.2 V and a current of 1/3 CA for 2 hours.
  • Discharge is a constant current discharge at a voltage of 2.0 V and a current of 1/3 CA
  • energy (Wh) is calculated from the discharge capacity (Ah) and average voltage (V)
  • energy density (Wh / kg) is calculated from the quotient of the cell weight.
  • the cycle capacity retention rate was calculated from the quotient of the capacity at the 100th cycle and the capacity at the 1st cycle when the above charge / discharge conditions were carried out for 100 cycles. The measurement results are shown in Table 2 described later.
  • the lithium ion secondary batteries according to the present invention achieved high levels in all of energy density, cycle characteristics, and safety.
  • Examples 1 to 11 use Si 70 Ti 15 Fe 15 as a negative electrode active material containing Si, and use an active material mixed with graphite at a ratio of 50% by mass.
  • the thickness of the resin layer and the thickness of the porous layer are changed. In any case, it can be seen that the short-circuit rate in 10 cells is 0%, which has high safety, and has high energy density and high cycle characteristics.
  • Examples 12 and 13 were obtained by changing the negative electrode active material containing Si of Example 3, and using Si 70 Cu 30 and Si 70 Ti 30 instead of Si 70 Ti 15 Fe 15 of Example 3. is there. It can be seen that Examples 12 and 13 also have high safety, high energy density, and high cycle characteristics.
  • Example 14 and 15 The graphite mixing ratio of Example 3 is changed, and the negative electrode capacity can be changed by changing the mixing ratio.
  • Comparative Examples 1 to 9 in which the configuration of the lithium ion secondary battery is outside the scope of the present invention, cannot satisfy all of the energy density, cycle characteristics and safety.
  • Si alloy (mixed with 50% by mass of graphite), which is an active material containing Si used in Examples, SiO (mixed with 50% by mass of graphite) used in Comparative Example, Si (mixed with 50% by mass of graphite)
  • Si alloy was 1.2 times
  • the SiO was 1.2 times
  • the Si was about 3 times that of the graphite.
  • the amount of expansion is the difference between the thickness of the negative electrode mixture layer of 100% SOC (State Of Charge) (counter electrode Li potential 0.01 V) and 0% SOC (counter electrode Li potential 1.5 V).
  • the resin layer and the porous layer of the separator are outside the scope of the present invention, and the amount of the negative electrode active material containing Si is small. Although the amount of the negative electrode active material containing Si is small, short-circuiting is difficult, but high energy density cannot be achieved.
  • the negative electrode active material containing Si is SiO, and the electrode density is as low as 1.4 g / cm 3 compared with the electrode density of 2.3 g / cm 3 of the Si alloy. %, The irreversible capacity is as large as 16%, so that high energy density cannot be expected. Since SiO tends to be soft, it has been found that even when the expansion coefficient is the same, short-circuiting is difficult.
  • the thicknesses of the resin layer and the porous layer of the separator satisfy the provisions of the present invention, but since the negative electrode active material containing Si is Si, the discharge capacity and energy density of the negative electrode are low, and the cycle It turned out that the characteristic was also bad, and it turned out that it cannot be used as a battery. As a result of disassembling the battery, peeling of the negative electrode mixture layer was observed. This can be considered as a phenomenon caused by a large expansion amount.
  • the resin layer is one polyethylene layer, but instead of this resin layer, a three-layer structure as shown in FIG. 8 (a polyethylene layer 31b is provided between the polypropylene layers 31a and 31c). Even when the resin layer is used, or when the porous layer of Al 2 O 3 is used instead of the porous layer of SiO 2 in the above embodiment, the same effect as in the above embodiment can be obtained. Have confirmed.
  • a short circuit of a battery is prevented, and a method of manufacturing a lithium ion secondary battery and a lithium ion secondary battery in which energy density, cycle characteristics, and safety are all balanced at a high level. It was shown that it is possible to provide
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 1 Positive electrode, 2 ... Negative electrode, 3, 3a, 3b, 3c ... Separator, 31, 31a, 31b, 31c ... Resin layer, 32, 32a, 32b ... Porous layer, 4 ... Battery can, 5 ... Positive electrode current collection lead 6, negative electrode current collecting lead, 7, positive current collecting lead, 8, negative current collecting lead, 9, battery cover, 10, burst valve, 11, positive terminal, 12, gasket, 13, positive electrode Agent layer, 14 ... positive electrode mixture uncoated portion, 15 ... positive electrode current collecting lead, 16 ... negative electrode material mixture layer, 40 ... portion where separator and positive electrode current collecting lead overlap.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

電池の短絡を防止し、エネルギー密度、サイクル特性および安全性の全てを高いレベルでバランスさせたリチウムイオン二次電池およびリチウムイオン二次電池の製造方法を提供する。本発明に係るリチウムイオン二次電池は、正極と、負極と、前記正極および前記負極の間に設けられたセパレータ(3a)と、を有し、前記負極はシリコンを含む負極活物質を含み、前記負極活物質の硬さは10GPa以上20GPa以下であり、前記セパレータ(3a)は樹脂層(31)と多孔質層(32)とが積層された構成を有し、前記樹脂層(31)の厚さが25μm以上30μm以下の場合、前記多孔質層(32)の厚さが2μm以上10μm以下であり、前記樹脂層(31)の厚さが15μm以上25μm未満の場合、前記多孔質層(32)の厚さが5μm以上20μm以下であることを特徴とする。

Description

リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
 本発明は、リチウムイオン二次電池およびリチウムイオン二次電池の製造方法に関する。
 地球温暖化や枯渇燃料の問題から電気自動車(Electric Vehicle;EV)が各自動車メーカーで開発され、その電源として高エネルギー密度を有するリチウムイオン二次電池の使用が求められている。一般に、リチウムイオン二次電池は、主要な構成部材として正極、負極およびセパレータを有する。セパレータは、ポリエチレンやポリプロピレン等の多孔質樹脂で構成され、その機能は、正極と負極を絶縁しながらリチウムイオンのみを通すことである。また、負極に関しては、近年、高エネルギー密度化のためにシリコン(Si)を含む活物質が期待されている。しかしながら、純Siだけでは充放電に伴う体積変化が大きいため、SiOの中にSiを閉じ込めたSiOや、TiやFeなどの金属材料中にSiを閉じ込めたSi合金などを用いることにより、充放電に伴う体積変化を抑制する検討がなされている。
 負極の膨張・収縮に伴う電池特性の低下を抑制する技術として、例えば、特許文献1には、SiO(1.77≦x≦1.90)で示される酸化珪素(A)と、炭素質材料を原材料とするリチウムイオンの吸脱着可能な導電性物質(B)とからなることを特徴とする蓄電デバイス用複合体が開示されている。上記構成によると、電極が膨張・収縮し、負極材料が破壊・粉化して導電ネットワークが破壊されることに起因するサイクル特性低下を抑制することができるとされている。
 また、特許文献2には、集電体の表面に、炭素材料と、炭素材料100質量部に対して1~100質量部のリチウムと合金化可能な金属であるシリコンおよび/またはスズとを含有する厚みが20~70μmの金属含有層を有し、該金属含有層の上に、炭素材料層を有し、上記金属含有層の炭素材料が天然黒鉛および炭素質物を含み、かつ上記金属含有層が上記金属、上記天然黒鉛および上記炭素質物の前駆体を混合後、加熱処理して得られたものであることを特徴とするリチウムイオン二次電池用負極が開示されている。上記構成によると、集電体の表面に、炭素材料と合金化可能な金属を含有する金属含有層を有し、該金属含有層の上に炭素材料層を有するため、該金属が充放電に伴う膨張・収縮により微粉化しても、該金属が金属含有層から剥離することがなく、また、金属含有層には、該金属に比べ膨張率が小さく、集電体との密着性のよい炭素材料を含有しているため、充放電を繰返しても、金属含有層の集電体との密着性が低下せず、導電性を維持することができ、その結果、特許文献2記載のリチウムイオン二次電池用負極を用いて作製したリチウムイオン二次電池は、放電容量と初期充放電効率が高く、優れたサイクル特性を有するとされている。
 一方、リチウムイオン二次電池には、高い安全性・信頼性が要求される。リチウムイオン二次電池の信頼性を高める技術として、例えば特許文献3には、少なくとも、有機電解液に対して安定な絶縁性微粒子と有機バインダとで構成されており、60゜の光沢度が5以上であることを特徴とする電池用セパレータが開示されている。上記構成によると、セパレータ中の絶縁性微粒子の充填性をより高めて、60゜の光沢度が5以上となるようにセパレータを形成すれば、その構造をより緻密かつ均一にすることができ、信頼性の高いセパレータを構成できるとされている。
 また、特許文献4には、樹脂製の基材と、該基材上に配置された多孔質耐熱層と、を備えた非水電解質二次電池用のセパレータであって、上記多孔質耐熱層は、少なくとも無機フィラーと中空体とを含み、上記中空体は、アクリル系樹脂で構成された殻部と、その内部に形成された中空部と、を有し、上記殻部には、該殻部を貫通して前記中空部と外部とを空間的につなぐ開口部が設けられている、非水電解質二次電池用のセパレータが開示されている。上記構成によると、多孔質耐熱層内に上記中空体を含むことでセパレータに優れた柔軟性や弾力性、形状保持性を付加することができ、このため、該セパレータが潰れることを防止することができるとされている。例えば、電池の拘束力や充放電の繰り返しによってセパレータに加わり得る応力(圧力)による影響を受け難く、該セパレータの形状(典型的には厚み)を安定的に保持することが可能となる。これにより、非水電解質二次電池の正負極間の距離を適切に保つことができ、微小な内部短絡や自己放電による容量低下を防止することができる。また、過充電時にはガス発生剤を好適に反応させることができる。さらに、上記中空体は非水電解質中でも電気化学的に安定であり、且つ、中空部に非水電解質を溜めこむことができるため、長期に渡って優れた保液性を安定的に維持発揮することができるとされている。
特許第5058494号 特開2006‐59704号公報 特開2008‐210782号公報 特開2015‐106511号公報
 近年、リチウムイオン二次電池に対する高いエネルギー密度、高いサイクル特性および高い安全性の要求は、ますます高まっている。上述したように、リチウムイオン二次電池を高エネルギー密度化するためにSiを含む活物質を使用する場合、膨張・収縮時の大きな応力が問題となる。一般に、電池の膨張・収縮に伴う一番大きな問題は、安全性の低下である。すなわち、負極の膨張・収縮時に発生する応力によって正負極が短絡すると考えられている。したがって、Siを含む活物質を使用する場合、膨張・収縮時の大きな応力による短絡を防止するための対策が必須となるが、上述した特許文献1~4では短絡防止の点については近年要求されている高いレベルを実現するためには十分ではない可能性がある。
 したがって、本発明は、上記事情に鑑み、正負極の短絡を防止し、エネルギー密度、サイクル特性および安全性の全てを高いレベルでバランスさせたリチウムイオン二次電池およびそのようなリチウムイオン二次電池を製造することが可能なリチウムイオン二次電池の製造方法を提供することにある。
 本発明に係るリチウムイオン二次電池は、正極と、負極と、前記正極および前記負極の間に設けられたセパレータと、を有し、上記負極はシリコンを含む負極活物質を含み、上記負極活物質の硬さは10GPa以上20GPa以下であり、上記セパレータは樹脂層と多孔質層とが積層された構成を有し、上記樹脂層の厚さが25μm以上30μm以下の場合、上記多孔質層の厚さが2μm以上10μm以下であり、上記樹脂層の厚さが15μm以上25μm未満の場合、上記多孔質層の厚さが5μm以上20μm以下であることを特徴とする。
 本発明によれば、正負極の短絡を防止し、エネルギー密度、サイクル特性および安全性の全てを高いレベルでバランスさせたリチウムイオン二次電池およびそのようなリチウムイオン二次電池を製造することが可能なリチウムイオン二次電池の製造方法を提供することができる。
本発明に係るリチウムイオン二次電池の一例を模式的に示す断面図である。 本発明に係るリチウムイオン二次電池の他の例を模式的に示す断面図である。 図1および2における正極の構成の一例を模式的に示す図である。 図1および2における正極、負極およびセパレータの構成の一例を模式的に示す図である。 従来のセパレータの焦げ付き発生部を示す写真である。 本発明に係るリチウムイオン二次電池のセパレータの第1の例を模式的に示す断面図である。 本発明に係るリチウムイオン二次電池のセパレータの第2の例を模式的に示す断面図である。 本発明に係るリチウムイオン二次電池のセパレータの第3の例を模式的に示す断面図である。
 以下、図面を参照しながら本発明の実施形態を説明する。図1は本発明に係るリチウムイオン電池の一例を模式的に示す断面図であり、図2は図1の正極の一部を模式的に示す断面図である。図1はいわゆる捲回式のリチウムイオン二次電池を示している。図1に示すように、本発明に係るリチウムイオン二次電池100aは、正極1と、負極2と、正極1および負極2の間に設けられたセパレータ3を有している。正極1及び負極2は、これらが直接接触しないようにセパレータ3を挟み込んだ状態で円筒状に捲回されて捲回電極群を形成している。正極1は正極集電リード片5を介して正極集電リード部7に接続されており、負極2は負極集電リード片6を介して負極集電リード部8に接続されている。電極群は、正極集電リード片5および負極集電リード片6が挟み込まれた捲回群を構成し、電池缶4に収容されている。また、電池缶4の内部には、非水電解液(図示せず)が注入されている。
 図2は本発明に係るリチウムイオン二次電池の他の例を模式的に示す断面図である。図1は正極集電リード片5および負極集電リード片6が1本ずつ設けられている態様であるが、図2に示すように、正極集電リード片5および負極集電リード片6が複数本で設けられていてもよい。
 図3は図1および2における正極の構成の一例を模式的に示す図である。図3は捲回前の状態を示す図(展開図)である。図3に示すように、正極1は、正極集電体の表面に塗布された正極活物質を含む正極合剤層13と、正極合剤が塗布されていない正極合剤未塗布部14を有する。正極合剤未塗布部14には正極集電リード15が設けられている。また、負極2も正極1と同様の構成を有する。すなわち、負極集電体の表面に塗布された負極活物質を含む負極合剤層と、負極合剤が塗布されていない負極合剤未塗布部を有し、負極合剤未塗布部には負極集電リードが設けられている。
 図4は図1および2における正極、負極およびセパレータの構成の一例を模式的に示す図である。図4は捲回前の状態を示す図(展開図)である。なお、図4では、図面を見やすくするために負極の未塗布部および負極集電リード片6の図示を省略している。正極1、負極2およびセパレータ3は、図4に示すように積層された構成を有している。本発明者らは、リチウムイオン二次電池の安全性を向上すべく、リチウムイオン二次電池の短絡箇所について調査を行った。その結果、負極活物質にSiを含む従来のリチウムイオン二次電池では、セパレータ3の正極集電リード15と重なる部分40において、電池の短絡が発生することを見出した。図5は従来のリチウムイオン二次電池の短絡箇所(セパレータの正極集電リードと重なる部分)を示す写真である。図5において、セパレータ3と正極集電リード15とが重なる部分において、焦げ付きが発生していることがわかる。
 一般に、電池における膨張収縮に伴う一番の欠点は、安全性の問題であり、負極の膨張に伴い、位置がずれて正負極が短絡することと考えられているが、本発明者らは、これ以外にも短絡要因があることを見出した。具体的には、ある硬さ以上のSiを含む負極活物質を有する負極を用いた電池は、高エネルギー密度化および長寿命化が可能である一方で、一般に用いられている樹脂セパレータの場合、セパレータが圧迫され、短絡しやすいことを見出した。
 そこで、本発明者らは、上記短絡を防止すべく、リチウムイオン二次電池の構成について鋭意検討を行った。その結果、セパレータ3として、樹脂層と多孔質層とを積層して負極の膨張・収縮時の応力を緩和することが可能な構成とし、さらに負極活物質の硬さ、樹脂層および多孔質層の膜厚の相関を見出し、これらをそれぞれ所定の範囲にすることで上述した短絡を防止可能であることを見出した。本発明は、該知見に基づくものである。
 以下、本発明に係るリチウムイオン二次電池のセパレータ3の構成について詳述する。図6~8は本発明に係るリチウムイオン二次電池のセパレータの第1の例から第3の例を模式的に示す断面図である。図6に示すように、セパレータ3aは、基本的には樹脂層31と多孔質層32が積層された構成を有する。樹脂層31は負極2と接触し、多孔質層32は正極1と接触する。多孔質層32は、樹脂層31の少なくとも正極1側の面に設けられる。そして、負極活物質の硬さを10GPa以上20GPa以下とし、樹脂層31の厚さが25μm以上30μm以下の場合、多孔質層32の厚さを2μm以上10μm以下とし、樹脂層31の厚さが15μm以上25μm未満の場合、多孔質層の厚さを5μm以上20μm以下とする。このような構成とすることで、負極の膨張・収縮による応力をセパレータ3aが吸収し、電池の短絡を防止することができる。
 図6に示すように、セパレータ3aは、樹脂層31と多孔質層32が一層ずつ積層されているものであってもよいが、図7に示すように樹脂層31の両側の面に多孔質層32a,32bが設けられていてもよい。すなわち、多孔質層32b、樹脂層31および多孔質層32aがこの順で積層されているものであってもよい。また、樹脂層31は複数層からなるものであってもよく、図8に示すように樹脂層31a~31cの三層構造としていてもよい。樹脂層31または多孔質層32をそれぞれ2層以上設ける場合、樹脂層31または多孔質層32の合計膜厚が上記範囲に収まるようにする。
 樹脂層31は、特に限定は無いが、例えばポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンおよびポリアクリロニトリルなどの耐熱性樹脂が好適である。
 多孔質層32は、柔軟性および熱伝導性を有し、電解液が浸透する多孔質材料が好ましい。例えば、二酸化ケイ素(SiO)、酸化アルミニウム(Al)、モンモリロナイト、雲母、酸化亜鉛(ZnO)、酸化チタン(TiO)、チタン酸バリウム(BaTiO)および酸化ジルコニウム(ZrO)などが好ましい。この中でも、SiOおよびAlがコストの観点で特に好ましい。
 多孔質層32の気孔率は、50%以上90%以下が好ましく、80%以上90%以下がさらに好ましい。本発明に係る多孔質層32は、主に応力を緩和するためのものであるため、耐熱性を求める場合の気孔率(例えば、特許文献4)よりも高い気孔率を有している。
 以下に、本発明に係るリチウムイオン二次電池のセパレータ3以外の構成について説明する。リチウムイオン二次電池を構成する正極1は、正極集電体(例えばアルミニウム箔)の片面または両面に正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、ロールプレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。同様に、リチウムイオン二次電池を構成する負極2は、負極集電体(例えば銅箔)の片面または両面に負極活物質を含む負極合剤スラリーを塗布・乾燥させた後、ロープレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。
 正極1に用いられる正極活物質は、リチウムイオンの吸蔵及び放出をすることができるリチウム化合物であれば特に限定されない。例えば、リチウムマンガン酸化物、リチウムバルト酸化物、リチウムニッケル酸化物等のリチウム遷移金属複合酸化物等が挙げられる。これらいずれかの単独または2種以上の混合物を用いることができる。正極活物質に対して、バインダ(ポリイミド、ポリアミド、ポリフッ化ビニリデン(PVDF)およびスチレンブタジエンゴム(SBR)またはこれらの混合物など)、増粘剤、導電材、溶媒等を必要に応じて混合して正極合剤スラリーが作製される。
 負極2に用いられる負極活物質は、Siを含む負極活物質を必須とし、この他に人造黒鉛、天然黒鉛、難黒鉛化炭素類、金属酸化物、金属窒化物および活性炭等のうちから1種以上を選んで混合したものであってもよい。これらの混合比率を変えることで放電容量を変えることができる。これらの混合比(混合質量比)は、Siを含む負極活物質:黒鉛=20:80~70:30であることが好ましい。Siを含む負極活物質の混合比がこれより小さいと高いエネルギー密度を達成することができず、また、これより大きいと負極の膨張が大きくなり過ぎて高いサイクル特性を得ることができなくなる。
 Siを含む負極活物質としては、SiOを用いることができる。また、Siと、アルミニウム(Al)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、チタン(Ti)およびマンガン(Mn)のいずれか1種類以上を含む異種金属元素との合金(Si合金)を用いることができる。SiOは、SiO(0.5≦x≦1.5)が好ましい。また、Si合金の具体例として、Si70Ti15Fe15、Si70Cu30およびSi70Ti30などが好適である。なお、Si合金は、通常、金属ケイ素(Si)の微細な粒子が他の金属元素の各粒子中に分散された状態となっているか、または他の金属元素がSiの各粒子中に分散された状態となっている。他の金属元素は、ものが好ましい。Si合金の作製方法は、メカニカルアロイ法により機械的に合成するか、またはSi粒子と他の金属元素との混合物を加熱、冷却することで行うことができる。Si合金の組成は、Siと他の金属元素の原子比率が50:50~90:10が望ましく、より望ましくは60:40~80:20である。
 SiOおよびSi合金はともにカーボンコートしてあってもよい。負極活物質の硬さは、上述したとおり10GPa以上20GPa以下とする。負極活物質の硬さは、ナノインデンテーション法などを用いて測定することができる。負極活物質に対して、バインダ、増粘剤、導電材、溶媒等を必要に応じて混合して負極合剤スラリーが作製される。
 電解液には、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ‐ブチロラクトン、γ‐バレロラクトン、メチルアセテート、エチルアセテート、メチルプロピオネート、テトラヒドロフラン、2‐メチルテトラヒドロフラン、1,2‐ジメトキシエタン、1‐エトキシ‐2‐メトキシエタン、3‐メチルテトラヒドロフラン、1,2‐ジオキサン、1,3‐ジオキサン、1,4‐ジオキサン、1,3‐ジオキソラン、2‐メチル‐1,3‐ジオキソラン、4‐メチル‐1,3‐ジオキソラン等より少なくとも1種以上選ばれた非水溶媒に、例えば、LiPF、LiBF、LiClO、LiN(CSO等より少なくとも1種以上選ばれたリチウム塩を溶解させた有機電解液あるいはリチウムイオンの伝導性を有する固体電解質あるいはゲル状電解質あるいは溶融塩など電池で使用される既知の電解質を用いることができる。
 電池缶4および電池蓋9としては、アルミニウムやステンレス鋼が好ましく用いられる。
 本発明に係るリチウムイオン二次電池の負極の放電容量(負極容量)は、600Ah/kg以上1000Ah/kg以下が好ましい。600Ah/kg未満の場合、膨張量が少ないため短絡は生じにくく、また、1000Ah/kgより大きい場合、電池のサイクル寿命が著しく悪化するため、電池として利用しにくいためである。さらに、600Ah/kg未満の場合、高エネルギー密度化への寄与が小さい。
 本発明に係るリチウムイオン二次電池は、図1および2に示す捲回式電池の短絡を抑制するのに好適であり、セパレータ3の少なくとも正極集電リードと接触する面が本発明に係るセパレータの構成を有することで本発明の効果を得ることができる。
 図1に示すリチウムイオン二次電池(実施例1~15、比較例1~9および参考例1~2)を作製し、電池特性を評価した。以下に電池の構成について記載する。
 (1)リチウムイオン二次電池の作製
 正極活物質は、全てLiNi0.8Co0.1Mn0.1を用いた。Siを含む負極活物質として、実施例1~15ではSi70Ti15Fe15、Si70Cu30またはSi70Ti30を用いた。比較例1~9ではSi70Ti15Fe15またはSiOを用いた。参考例1~2ではSi70Ti15Fe15またはSi(純Si)を用いた。Siを含む負極活物質と黒鉛を所定の混合比で混合したものを負極活物質とした。なお、いずれのSiを含む負極活物質も10nm程度の厚みでカーボンコートしたものを用いた。実施例1~15、比較例1~9および参考例1~2の負極活物質の構成を後述する表1に示す。
 セパレータは、樹脂層としてポリエチレンを用い、多孔質層としてSiOを用いた。樹脂層および多孔質層の膜厚を後述する表1に併記する。
 電解液には1MLiPFの電解質を用い、EC:EMC=1:3vol%の溶媒に溶かしたものを用いた。
 負極は、負極合剤スラリーを作製後、集電箔の上に塗工し、プレスすることで作製した。負極スラリーは、前述の負極活物質とバインダ以外に、アセチレンブラックを導電材として用い、その重量比率は順に92:5:3で作製し、粘度が5000~8000mPaとなるように、また固形分比が70%以上90%以内となるように、溶媒のNMPを混合しながら作製した。なお、本発明における上記スラリーの粘度の値は、0.5rpmでスラリーを撹拌し、600秒経過した時点の粘度である。また、スラリー作製にはプラネタリミキサを用いた。
 得られた負極スラリーを用いて、銅箔上に卓上コンマコータで塗工した。後述する正極同様、銅箔の一部に負極活物質合剤の塗工されない負極合剤未塗布部が形成されるように塗工した。
 集電箔は、ステンレス箔、純度99.9%以上の銅に異種元素(ジルコニウム、銀、スズの中から少なくとも1種類以上)を含有した銅箔、純度99.99%以上の銅箔の3種類をそれぞれ用いた。
 塗工量は正極の塗工量240g/mを用いた際に正極と負極の容量比が1.0になるように、それぞれ負極塗工量を調節した。乾燥温度は100℃の乾燥炉を通して1次乾燥した。なお、本電極は300℃で1h真空乾燥(二次乾燥)し、ロールプレスで密度を調整した。密度は、電極の空孔が20~40%程度となるように、プレスし、SiおよびSiOを含む負極は密度1.4g/cmで作製し、Si合金を含む負極は密度2.3g/cm程度で作製した。
 図2に作製したリード付正極を示す。正極は、図3に示すように正極合剤層13と正極合剤層が塗布されていない正極合剤未塗布部14を有し、未塗布部にはAlの正極集電リード15を超音波溶接している。正極集電リード15は厚さ0.05mmのものを用いた。正極集電リード15の厚さが0.05mm以上の場合、本願発明の効果が特に得られる。
 正極集電箔としてアルミニウム箔を用い、アルミニウム箔の両面に正極合剤層を形成した。正極合剤には、正極活物質のLiNi0.8Co0.1Mn0.1、炭素材料からなる導電材およびPVDFをバインダ(結着材)とし、その重量比率を90:5:5として正極スラリーを作製した。塗工量は240g/mとした。アルミニウム箔への正極合剤の塗工時には、正極スラリーの粘度をN‐メチル‐2‐ピロリドンの分散溶媒で調整した。このとき、上述したように、アルミニウム箔の一部に正極合剤の塗布されない正極合剤未塗布部14が形成されるように塗工した。すなわち、正極合剤未塗布部14では、アルミニウム箔が露出している。正極は、正極合剤層の乾燥後、ロールプレスで密度がとなるように3.5g/cm調整した。
 作成した正極と負極とをセパレータを介して捲回し、電池缶に挿入した。負極集電リード片6はニッケルの負極集電リード部8に集めて超音波溶接し、負極集電リード部8を缶底溶接した。一方、正極集電リード片5はアルミニウムの正極集電リード部7に超音波溶接した後、アルミニウムの正極集電リード部7を電池蓋9に抵抗溶接した。電解液を注入後、電池缶4のカシメにより電池蓋9を封口し、電池を得た。なお、缶の上端と電池蓋9の間にはガスケット12を挿入した。このようにして1Ah級の電池を製造した。
 (2)負極活物質の硬さ測定
 ナノインデンテーション法にて硬さを測定した。装置は、Keysight Technologies社製 Nano Indenter XP/DCMを用いた。押し込み深さ200nmで、Siを含む活物質の10個の粒子の平均値を算出した。測定結果を後述する表2に示す。
 (3)電池特性評価
 (i)負極の容量測定
 単極Li金属を用いた際の10mAh級モデルセルを作製し、対極Li基準で、下限電圧0.01Vで、0.1CAの定電流充電、2時間の定電圧充電を行い、15分間休止後、上限電圧1.5Vまで、0.1CAの定電流放電を行い、この際の放電電流値(A)×放電時間(h)÷活物質重量(kg)から、放電容量(Ah/kg)を算出した。本発明では、負極の放電容量が600Ah/kg以上1000Ah/kg以下のリチウムイオン二次電池を作製した。測定結果を後述する表2に示す。
 (ii)エネルギー密度、サイクル特性(容量維持率)および安全性(短絡率)測定
 作製したセルを用いて、電圧4.2V、電流1/3CA、の定電流充電後、2時間定電圧充電させた。そ放電は電圧2.0V、電流1/3CAで定電流放電させた。これを3サイクル行い、電圧3.7V、電流1/3CA、の定電流充電後、2時間定電圧充電させ、1週間放置し、放置後に、3.4V以下となっていたものを短絡と定義し、10セル中の短絡本数を短絡発生率として算出した。
 その後、エネルギー密度を算出するために、電圧4.2V、電流1/3CA、の定電流充電後、2時間定電圧充電させた。放電は電圧2.0V、電流1/3CAで定電流放電させ、放電容量(Ah)と平均電圧(V)からエネルギー(Wh)を算出し、セル重量との商からエネルギー密度(Wh/kg)を算出した。さらに、上記、充放電条件を100サイクル実施した際の100サイクル目の容量と1サイクル目の容量との商から、サイクル容量維持率を算出した。測定結果を後述する表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および2に示すように、本発明に係るリチウムイオン二次電池(実施例1~115)は、エネルギー密度、サイクル特性および安全性の全てにおいて高いレベルを達成していることがわかる。
 より具体的には、実施例1~11は、Siを含む負極活物質として、Si70Ti15Fe15を用い、黒鉛と50質量%の比で混合した活物質を用いたものであり、セパレータの樹脂層の膜厚および多孔質層の膜厚を変化させたものである。いずれも、10セル中の短絡率は0%で高い安全性を有し、かつ高エネルギー密度かつ高サイクル特性を有することがわかる。
 実施例12および13は実施例3のSiを含む負極活物質を変えたものであり、実施例3のSi70Ti15Fe15に代えてSi70Cu30およびSi70Ti30を用い
たものである。実施例12おおび13においても高い安全性を有し、かつ高エネルギー密度かつ高サイクル特性であることがわかる。
 実施例14および15実施例3の黒鉛の混合比率を変えたものであり、混合比率を変えることで負極容量を変えることができる。
 一方、リチウムイオン二次電池の構成が本発明の範囲外である比較例1~9は、いずれもエネルギー密度、サイクル特性および安全性の全てを十分満足させることができないものであることがわかる。
 より具体的は、比較例1~7はセパレータの樹脂層および多孔質層の膜厚が本発明の規定外のものであり、短絡しやすく、高い安全性を達成できないことがわかる。電池を解体調査した結果、正極の集電リード部と負極合剤層の間のセパレータに黒点と呼ばれるコゲが観察された。これは、負極の膨張量が大きく、膨張・収縮時の応力によって電極部材がずれることにより発生したものであると容易に考察できる。なお、実施例で用いたSiを含む活物質であるSi合金(黒鉛50質量%混合のもの)、比較例で用いたSiO(黒鉛50質量%混合のもの)、Si(黒鉛50質量%混合のもの)および黒鉛のそれぞれの膨張量を測定したところ、黒鉛に対し、Si合金は1.2倍、SiOも1.2倍、Siは3倍程度であった。膨張量は、100%SOC(State Of Charge)(対極Li電位0.01V)と0%SOC(対極Li電位1.5V)の負極合剤層厚さの差分である。
 比較例6は、セパレータの樹脂層と多孔質層が本発明の規定外であり、さらにSiを含む負極活物質の量が少ない。Siを含む負極活物質の量が少ないことで短絡しにくいが、高エネルギー密度化を達成することができない。
 比較例8は負極活物質が黒鉛のみであって、Siを含む負極活物質を含まないため、高エネルギー密度化が期待できない。
 比較例9はSiを含む負極活物質がSiOであって、Si合金の電極密度2.3g/cmに比べ、電極密度が1.4g/cmと低いことや、Si合金の不可逆容量8%に比べ、不可逆容量が16%と大きいために、高エネルギー密度化が期待できない。なお、SiOは粒子が柔らかい傾向であるために、同じ膨張率であっても短絡しにくいことがわかった。
 参考例1は、セパレータの樹脂層と多孔質層の膜厚は本発明の規定を満たしているが、Siを含む負極活物質の量が多いためにサイクル特性が著しく悪化しており、実用化することができない。
 参考例2は、セパレータの樹脂層と多孔質層の膜厚は本発明の規定を満たしているが、Siを含む負極活物質がSiであるため、負極の放電容量およびエネルギー密度が低く、サイクル特性も悪いことが分かり、電池として利用できないことがわかった。電池を解体調査した結果、負極合剤層の剥離がみられた。これは膨張量が大きいために生じた現象と考察できる。
 なお、上記実施例では樹脂層をポリエチレンの1層としたが、この樹脂層に代えて図8に示すような3層構造(ポリプロピレン層31a,31cの間にポリエチレン層31bが設けられたもの)の樹脂層を採用した場合や、上記実施例におけるSiOの多孔質層に代えてAlの多孔質層を採用した場合であっても、上記実施例と同様の効果が得られることを確認している。
 以上説明したように、本発明によれば、電池の短絡を防止し、エネルギー密度、サイクル特性および安全性の全てを高いレベルでバランスさせたリチウムイオン二次電池およびリチウムイオン二次電池の製造方法を提供することが可能であることが示された。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…正極、2…負極、3,3a,3b,3c…セパレータ、31,31a,31b,31c…樹脂層、32,32a,32b…多孔質層、4…電池缶、5…正極集電リード片、6…負極集電リード片、7…正極集電リード部、8…負極集電リード部、9…電池蓋、10…破裂弁、11…正極端子部、12…ガスケット、13…正極合剤層、14…正極合剤未塗布部、15…正極集電リード、16…負極合剤層、40…セパレータと正極集電リードとが重なり合う部分。

Claims (15)

  1.  正極と、負極と、前記正極および前記負極の間に設けられたセパレータと、を有し、
     前記負極はシリコンを含む負極活物質を含み、前記負極活物質の硬さは10GPa以上20GPa以下であり、
     前記セパレータは樹脂層と多孔質層とが積層された構成を有し、前記樹脂層の厚さが25μm以上30μm以下の場合、前記多孔質層の厚さが2μm以上10μm以下であり、前記樹脂層の厚さが15μm以上25μm未満の場合、前記多孔質層の厚さが5μm以上20μm以下であることを特徴とするリチウムイオン二次電池。
  2.  前記負極は、負極集電体と、前記負極集電体の表面に設けられ、前記負極活物質を含む負極合剤層とを有し、前記正極は、正極集電体と、前記正極集電体の表面に設けられた正極合剤層および正極合剤未塗布部とを有し、
     前記正極合剤未塗布部に正極集電リードが設けられ、前記正極、前記負極、前記セパレータおよび前記正極集電リードが捲回された捲回群を有し、前記正極集電リードが前記セパレータを介して前記負極合剤層と対向するよう構成されており、
     前記セパレータの少なくとも前記正極集電リードと接触する面が前記樹脂層および前記多孔質層を有することを特徴とする請求項1記載のリチウムイオン二次電池。
  3.  前記シリコンを含む負極活物質は、シリコンと、アルミニウム、ニッケル、銅、鉄、チタンおよびマンガンのうちのいずれか1種類以上の異種金属元素との合金であり、前記シリコンと前記異種金属元素の質量比が50:50~90:10であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  4.  前記シリコンを含む負極活物質は、シリコンと、アルミニウム、ニッケル、銅、鉄、チタンおよびマンガンのうちのいずれか1種類以上の異種金属元素との合金および黒鉛からなり、前記合金と前記黒鉛の混合質量比が20:80~70:30であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  5.  前記負極の放電容量が600Ah/kg以上1000Ah/kg以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  6.  前記多孔質層が、二酸化ケイ素、酸化アルミニウム、モンモリロナイト、雲母、酸化亜鉛、酸化チタン、チタン酸バリウムおよび酸化ジルコニウムのうちの少なくとも1種であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  7.  前記樹脂層は、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンおよびポリアクリロニトリルのうちの少なくとも1種であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  8.  前記樹脂層の両側の面に前記多孔質層が設けられていることを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  9.  前記樹脂層が、ポリプロピレンからなる第1の層、ポリエチレンからなる第2の層およびポリプロピレンからなる第3の層がこの順で積層された構成を有することを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  10.  前記合金が、Si70Ti15Fe15、Si70Cu30またはSi70Ti30であることを特徴とする請求項3記載のリチウムイオン二次電池。
  11.  正極と、負極と、前記正極および前記負極の間に設けられたセパレータと、を積層する工程を有し、
     前記負極はシリコンを含む負極活物質を含み、前記負極活物質の硬さは10GPa以上20GPa以下であり、
     前記セパレータは樹脂層と多孔質層とが積層された構成を有し、前記樹脂層の厚さが25μm以上30μm以下の場合、前記多孔質層の厚さを2μm以上10μm以下とし、前記樹脂層の厚さが15μm以上25μm未満の場合、前記多孔質層の厚さを5μm以上20μm以下とすることを特徴とするリチウムイオン二次電池の製造方法。
  12.  前記リチウムイオン二次電池は、負極集電体と、前記負極集電体の表面に設けられ、前記負極活物質を含む負極合剤層とを有する前記負極と、正極集電体と、前記正極集電体の表面に設けられた正極合剤層および正極合剤未塗布部とを有する前記正極と、前記正極合剤未塗布部に設けられた正極集電リードと、を有し、前記正極集電リードが前記セパレータを介して前記負極合剤層と対向するよう前記負極、前記正極、前記セパレータを捲回し、前記セパレータの少なくとも前記正極集電リードと接触する面が前記樹脂層および前記多孔質層を有することを特徴とする請求項11記載のリチウムイオン二次電池の製造方法。
  13.  前記多孔質層が、二酸化ケイ素、酸化アルミニウム、モンモリロナイト、雲母、酸化亜鉛、酸化チタン、チタン酸バリウムおよび酸化ジルコニウムのうちの少なくとも1種であり、
     前記樹脂層は、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンおよびポリアクリロニトリルのうちの少なくとも1種であることを特徴とする請求項11または12に記載のリチウムイオン二次電池の製造方法。
  14.  前記樹脂層の両側の面に前記多孔質層を設けることを特徴とする請求項11または12に記載のリチウムイオン二次電池の製造方法。
  15.  前記樹脂層を、ポリプロピレンからなる第1の層、ポリエチレンからなる第2の層およびポリプロピレンからなる第3の層がこの順で積層された構成とすることを特徴とする請求項11または12に記載のリチウムイオン二次電池の製造方法。
PCT/JP2016/081651 2015-10-26 2016-10-26 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法 WO2017073585A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680059818.8A CN108140876A (zh) 2015-10-26 2016-10-26 锂离子二次电池以及锂离子二次电池的制造方法
EP16859815.9A EP3370293B1 (en) 2015-10-26 2016-10-26 Lithium ion secondary battery and method for producing lithium ion secondary battery
JP2017547812A JPWO2017073585A1 (ja) 2015-10-26 2016-10-26 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
US15/769,641 US20180323439A1 (en) 2015-10-26 2016-10-26 Lithium Ion Secondary Battery and Method for Producing Lithium Ion Secondary Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015209866 2015-10-26
JP2015-209866 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017073585A1 true WO2017073585A1 (ja) 2017-05-04

Family

ID=58630171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081651 WO2017073585A1 (ja) 2015-10-26 2016-10-26 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法

Country Status (5)

Country Link
US (1) US20180323439A1 (ja)
EP (1) EP3370293B1 (ja)
JP (1) JPWO2017073585A1 (ja)
CN (1) CN108140876A (ja)
WO (1) WO2017073585A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110915038A (zh) * 2017-07-18 2020-03-24 日本制铁株式会社 负极活性物质材料、负极及电池
CN116103614A (zh) * 2022-11-24 2023-05-12 广东金晟新能源股份有限公司 一种氟化锌改性多孔锂金属复合负极材料及其制备方法与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992614B2 (ja) * 2018-03-12 2022-01-13 トヨタ自動車株式会社 正極、リチウムイオン二次電池、および正極の製造方法
CN109755546B (zh) * 2019-03-08 2020-07-14 湖南宸宇富基新能源科技有限公司 一种锂离子动力电池用硅基复合材料的制备方法
CN112151748B (zh) * 2020-10-15 2021-11-02 宁德新能源科技有限公司 负极、电化学装置和电子装置
US20220285723A1 (en) * 2021-03-05 2022-09-08 Enevate Corporation Method And System For Safety Of Silicon Dominant Anodes
CN115101713B (zh) * 2022-08-26 2022-11-11 蜂巢能源科技股份有限公司 一种锂离子电池极片及电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319634A (ja) * 2000-04-10 2001-11-16 Celgard Inc 高エネルギー充電型リチウム電池用セパレーター
WO2006106782A1 (ja) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. リチウム二次電池
JP2007220451A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびリチウム二次電池
WO2012029699A1 (ja) * 2010-09-02 2012-03-08 東レ株式会社 複合多孔質膜及びその製造方法
WO2012036127A1 (ja) * 2010-09-14 2012-03-22 日立マクセルエナジー株式会社 非水二次電池
WO2015107910A1 (ja) * 2014-01-20 2015-07-23 ソニー株式会社 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126813B2 (ja) * 2006-05-22 2013-01-23 パナソニック株式会社 非水電解質二次電池
CN101604767A (zh) * 2008-06-13 2009-12-16 三星Sdi株式会社 电极组件及包括该电极组件的二次电池
KR101749508B1 (ko) * 2013-03-18 2017-06-21 삼성에스디아이 주식회사 리튬 이차 전지용 전극 활물질, 이를 포함한 리튬 이차 전지용 전극 및 이를 구비한 리튬 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319634A (ja) * 2000-04-10 2001-11-16 Celgard Inc 高エネルギー充電型リチウム電池用セパレーター
WO2006106782A1 (ja) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. リチウム二次電池
JP2007220451A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびリチウム二次電池
WO2012029699A1 (ja) * 2010-09-02 2012-03-08 東レ株式会社 複合多孔質膜及びその製造方法
WO2012036127A1 (ja) * 2010-09-14 2012-03-22 日立マクセルエナジー株式会社 非水二次電池
WO2015107910A1 (ja) * 2014-01-20 2015-07-23 ソニー株式会社 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370293A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110915038A (zh) * 2017-07-18 2020-03-24 日本制铁株式会社 负极活性物质材料、负极及电池
CN110915038B (zh) * 2017-07-18 2022-09-16 日本制铁株式会社 负极活性物质材料、负极及电池
CN116103614A (zh) * 2022-11-24 2023-05-12 广东金晟新能源股份有限公司 一种氟化锌改性多孔锂金属复合负极材料及其制备方法与应用
CN116103614B (zh) * 2022-11-24 2023-09-15 广东金晟新能源股份有限公司 一种氟化锌改性多孔锂金属复合负极材料及其制备方法与应用

Also Published As

Publication number Publication date
CN108140876A (zh) 2018-06-08
JPWO2017073585A1 (ja) 2018-06-14
EP3370293A4 (en) 2019-05-15
EP3370293B1 (en) 2020-01-01
US20180323439A1 (en) 2018-11-08
EP3370293A1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
WO2017073585A1 (ja) リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
JP4541324B2 (ja) 非水電解質二次電池
CN106030864B (zh) 非水电解质二次电池用负极
TWI311827B (en) Positive electrode active material and non-aqueous electrolyte secondary cell
JP4061586B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP6960526B2 (ja) マイクロカプセルを含むアンダーコート層を備えた正極及びリチウムイオン二次電池
JP5358905B2 (ja) 二次電池用負極、二次電池およびそれらの製造方法
US9620767B2 (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for manufacturing the same
JP6470070B2 (ja) 正極及び非水電解質電池
JP6466161B2 (ja) リチウムイオン電池用負極材料
WO2017077986A1 (ja) リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
JP5412843B2 (ja) 電池
WO2018008260A1 (ja) 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
JP2018181539A (ja) リチウムイオン二次電池用負極
JP6476094B2 (ja) リチウムイオン二次電池
JP2002319386A (ja) 非水電解質二次電池
JP2011086503A (ja) リチウムイオン二次電池およびリチウムイオン二次電池用負極
JP2019164965A (ja) リチウムイオン二次電池
JP2002279956A (ja) 非水電解質電池
JP2005268206A (ja) 正極合剤、非水電解質二次電池およびその製造方法
JP2011119139A (ja) 非水電解質電池
JP7003775B2 (ja) リチウムイオン二次電池
WO2017163557A1 (ja) リチウムイオン二次電池
JP5013508B2 (ja) 非水電解液二次電池
JP2017107762A (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547812

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15769641

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859815

Country of ref document: EP