WO2017073544A1 - 計画装置、計画方法およびプログラム - Google Patents

計画装置、計画方法およびプログラム Download PDF

Info

Publication number
WO2017073544A1
WO2017073544A1 PCT/JP2016/081542 JP2016081542W WO2017073544A1 WO 2017073544 A1 WO2017073544 A1 WO 2017073544A1 JP 2016081542 W JP2016081542 W JP 2016081542W WO 2017073544 A1 WO2017073544 A1 WO 2017073544A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
remaining life
operation plan
life
unit
Prior art date
Application number
PCT/JP2016/081542
Other languages
English (en)
French (fr)
Inventor
田中 徹
彰久 遠藤
祐介 筈井
野村 真澄
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201680060171.0A priority Critical patent/CN108368748B/zh
Priority to KR1020187011818A priority patent/KR102040422B1/ko
Priority to US15/770,795 priority patent/US10969305B2/en
Priority to DE112016005001.1T priority patent/DE112016005001T5/de
Priority to MX2018004833A priority patent/MX2018004833A/es
Publication of WO2017073544A1 publication Critical patent/WO2017073544A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • F01D25/285Temporary support structures, e.g. for testing, assembling, installing, repairing; Assembly methods using such structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L25/00Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/11Purpose of the control system to prolong engine life

Definitions

  • the present invention relates to a planning device, a planning method and a program for generating an operation plan of parts of a turbine.
  • Patent Document 1 in the rotation plan of the gas turbine high temperature parts, when the remaining life of the high temperature parts does not reach the next scheduled operation period, the surplus time at the time of discarding the high temperature parts by changing the timing of the voluntary inspection timing. Techniques for minimizing lifetime have been disclosed.
  • An object of the present invention is to provide a planning device, a planning method and a program for efficiently operating the components of the turbine without changing the self-inspection timing.
  • the planning apparatus determines the remaining life of the part at the predetermined timing based on the remaining life specifying unit for specifying the remaining life of the part of the turbine and the specified remaining life. And an operation plan generating unit that generates an operation plan indicating the timing at which the part is to be incorporated into the turbine so as to be within the allowable error value.
  • the operation plan generating unit is incorporated into the same turbine at the same timing based on the identified remaining life.
  • the operation plan is generated such that the remaining life of the plurality of parts is within the allowable error value.
  • the planning apparatus is an operation plan generating unit that determines the load of the turbine to be incorporated such that the timing and the inspection time of the turbine coincide.
  • the operation plan generating unit determines that the remaining life of the first part and the remaining life of the second part are at intervals of regular inspection. Incorporating the first part and the second part in the same turbine if the difference between the remaining life of the first part and the remaining life of the second part is within an allowable error value. Generate the above operation plan.
  • the operation plan generating unit is incorporated into the turbine at the inspection time of the turbine based on the specified remaining life.
  • the operation plan is generated such that the remaining life of the component is within the allowable error value.
  • the planning apparatus further comprises a consumption life calculation unit for calculating the consumption life of the part during the periodic inspection interval for a plurality of turbines, The operation showing the number of incorporations into the turbine such that a difference between a sum of products of the number of incorporations into each of the turbines and the consumption life and the remaining life of the parts is within a predetermined value. Generate a plan.
  • the planning method comprises the steps of identifying the remaining life of a turbine component and, based on the specified remaining lifetime, the remaining life of the component at a predetermined timing is a tolerance value And d) generating an operation plan indicating when to incorporate the component into the turbine.
  • a program for specifying a remaining life of parts of a turbine, and a remaining life of the parts at a predetermined timing based on the specified remaining life Function as an operation plan generating unit that generates an operation plan indicating the timing at which the part is incorporated into the turbine so that
  • the planning device generates an operation plan such that the remaining life of the part is within the tolerance value.
  • the planning device can operate the components of the turbine efficiently without changing the self-inspection timing.
  • FIG. 1 is a schematic block diagram showing the configuration of a planning device according to the first embodiment.
  • the planning device 1 according to the first embodiment generates an operation plan of components of a turbine.
  • the parts installed in the turbine under inspection and the parts stored in the warehouse are attached to the turbine for the next operation or stored in the warehouse Information that indicates
  • the planning apparatus 1 according to the first embodiment includes a data collection unit 101, a heat balance calculation unit 102, a consumption life calculation unit 103, a remaining life specification unit 104, a remaining life storage unit 105, an inspection time storage unit 106, and an operation plan generation.
  • the unit 107 includes a power generation amount prediction unit 108, an operation plan generation unit 109, and an output unit 110.
  • the data collection unit 101 collects turbine operation data in real time from a power plant owned by a customer. Specifically, the data collection unit 101 collects operation data from a sensor provided in the turbine for each predetermined collection cycle (for example, 5 minutes). The collection cycle is short enough that the immediacy of monitoring is not lost. Examples of operating data include flow, pressure, temperature, vibration, and other quantities of state.
  • the heat balance calculation unit 102 calculates the heat balance of the turbine based on the operation data collected by the data collection unit 101.
  • Heat balance is the temperature, pressure, enthalpy, flow, and other quantities of state for each part attached to the turbine.
  • the heat balance calculation unit 102 calculates the heat balance by simulation based on the operation data. Examples of simulation methods for heat balance calculation include FEM (Finite Element Method) and CFD (Computational Fluid Dynamics).
  • the consumption life calculation unit 103 calculates the consumption life of each component in the latest collection cycle based on the heat balance calculated by the heat balance calculation unit 102.
  • the consumption life is represented by equivalent operation time.
  • the remaining life specifying unit 104 specifies the remaining life of the component by subtracting the consumption life calculated by the consumption life calculating unit 103 from the remaining life stored by the remaining life storage unit 105.
  • the remaining life storage unit 105 stores the remaining life of each component.
  • the remaining life of the part can be obtained by sequentially subtracting the consumption life calculated by the consumption life calculator 103 from the design life determined for each part.
  • the inspection time storage unit 106 stores a date indicating the inspection time of each turbine provided in each power generation plant. The inspection of the turbine is performed at predetermined intervals.
  • the operation plan generation unit 107 generates an operation plan for each of the parts attached to the turbine and the parts stored in the warehouse at the inspection time of the turbine.
  • the power generation amount prediction unit 108 acquires market power demand information via the network, and predicts the amount of power to be generated by each power plant to be managed.
  • the operation plan generation unit 109 generates an operation plan indicating the load of the turbine.
  • the output unit 110 outputs the operation plan generated by the operation plan generation unit 107 and the operation plan generated by the operation plan generation unit 109. Examples of the output format of the operation plan and the operation plan include display on a display, recording on a storage medium, and printing on a sheet.
  • FIG. 2 is a flow chart showing an operation of each planning cycle of the planning device according to the first embodiment.
  • the planning device 1 executes the processing described below for each collection cycle.
  • the data collection unit 101 collects turbine operation data from sensors provided in the turbine (step S1).
  • the heat balance calculation unit 102 receives the collected operation data as input to calculate the heat balance of the turbine (step S2).
  • the planning device 1 selects the components incorporated in the turbine one by one, and executes the processing from step S4 to step S5 shown below for each of the selected components (step S3).
  • the consumption life calculation unit 103 calculates the consumption life during the latest collection cycle of the selected component (step S4).
  • the remaining life specifying unit 104 subtracts the calculated consumption life from the remaining life stored in association with the selected part by the remaining life storage unit 105 (step S5).
  • the remaining life specifying unit 104 updates the remaining life stored by the remaining life storage unit 105.
  • the planning apparatus 1 can maintain the remaining life of each component stored in the remaining life storage unit 105 in the latest state by executing the processing from step S1 to step S5 for each collection cycle.
  • FIG. 3 is a flowchart showing generation processing of an operation plan by the planning device according to the first embodiment. If it is a turbine inspection period with a current date, the planning device 1 starts an operation plan generation process. First, the operation plan generation unit 107 reads out the remaining life associated with each component incorporated in the turbine to be inspected and each component stored in the warehouse from the remaining life storage unit 105 (step S101). Next, the operation plan generation unit 107 refers to the inspection time storage unit 106, and specifies an interval up to the next inspection time (step S102).
  • the operation plan generation unit 107 determines whether or not there is a part whose read remaining life is less than the interval up to the next inspection period of the turbine to be inspected (step S103).
  • parts whose remaining life is less than the interval until the inspection period will be referred to as aged parts. For example, if the interval of the inspection period is 18000 hours, parts having a remaining life of less than 18000 hours are elderly parts.
  • the operation plan generation unit 107 When there is no aged part (step S103: NO), the operation plan generation unit 107 generates an operation plan of each part according to a predetermined algorithm (step S107). For example, the operation plan generating unit 107 can generate an operation plan of each component so as to minimize the variation in the remaining life of each component. Further, for example, the operation plan generation unit 107 can generate an operation plan so as to rotate a predetermined component group.
  • the operation plan generation unit 107 determines whether there is a combination of elderly parts whose difference in remaining life is within the allowable error value (for example, 100 hours). (Step S104).
  • the combination of aged parts is not limited to the combination of two aged parts, and may be a combination of three or more aged parts.
  • the combination of the first part with 9950 hours of remaining life, the second part with 10000 hours of remaining life, and the third component with 10030 hours of remaining life is an aged part whose difference in remaining life is within 100 hours of the allowable error value. It is a combination of
  • the operation plan generation unit 107 If there is no combination of elderly parts whose difference in remaining life falls within the allowable error value (step S104: NO), the operation plan generation unit 107 generates an operation plan indicating that each elderly part is to be stored in the warehouse. (Step S106). Next, the operation plan generation unit 107 generates an operation plan according to a predetermined algorithm for the remaining parts whose operation plan is undecided (step S107). As a result, the operation plan generating unit 107 can generate an operation plan so that there are no parts reaching the end of life by the next inspection period.
  • step S104 when there is a combination of aged parts whose difference in remaining life falls within the allowable error value (step S104: YES), the operation plan generation unit 107 incorporates the aged parts according to the specified combination into the turbine to be checked.
  • An operation plan indicating that is generated (step S105). Specifically, operation plan generation unit 107 has a remaining life of the first part and the second part shorter than a regular inspection interval, and a difference between the remaining life of the first part and the remaining life of the second part is acceptable.
  • An operation plan is generated that indicates incorporating the first part and the second part into the same turbine if within the error value.
  • the operation plan generation unit 107 generates an operation plan indicating that the remaining old parts whose operation plan is undecided are stored in the warehouse (step S106).
  • the operation plan generation unit 107 generates an operation plan according to a predetermined algorithm for the remaining parts whose operation plan is undecided (step S107). Thereby, the operation plan generation unit 107 can generate the operation plan so that the aged parts related to the combination reach the life almost at the same time by the operation of the turbine to be checked.
  • the operation plan generating unit 109 refers to the generated operation plan and determines whether or not the aged parts are to be incorporated into the turbine to be inspected (step S108).
  • the operation plan generation unit 109 generates an operation plan so that the remaining life of the elderly parts is within the allowable error value at the next periodic inspection ( Step S109). Specifically, the operation plan generation unit 109 generates an operation plan in the following procedure.
  • the operation plan generation unit 109 allows the remaining life of all the elderly parts to be an allowable error value at the next periodic inspection. Calculate the temperature that falls within. Next, the operation plan generation unit 109 calculates the load of the turbine such that the temperature of the part where the elderly parts are to be incorporated is the calculated temperature. Then, the operation plan generation unit 109 generates an operation plan for operating the turbine with the calculated load.
  • the power generation amount prediction unit 108 acquires market power demand information via the network, and the power plants to be managed generate power.
  • the amount of power to be calculated is predicted (step S110).
  • the operation plan generation unit 109 generates an operation plan of the turbine to be checked so as to satisfy the predicted power amount (step S111). Specifically, the operation plan generation unit 109 calculates the optimal generated power allocation of each power generation plant to be managed, and generates an operation plan of the turbine to be checked based on the generated electrical power allocation.
  • the operation plan generation unit 109 determines the remaining turbines so as to satisfy the generated electric energy predicted by the generated electric energy prediction unit 108. Calculate the share of generated energy for
  • the output unit 110 outputs the operation plan generated by the operation plan generation unit 107 and the operation plan generated by the operation plan generation unit 109 (step S112).
  • the planning device 1 identifies the remaining life of the parts of the turbine, and generates an operation plan so that a plurality of old parts reach the life at the same timing.
  • the life of multiple parts at the same timing can reduce the number of times the turbine is shut down for part replacement, or the frequency of operating the turbine with a partial load so that the life does not reach the end of routine inspection. . Therefore, the planning device 1 can operate the aged parts efficiently without depending on the change of the voluntary inspection timing.
  • the planning device 1 generates an operation plan of the turbine such that the timing when the plurality of old parts reach the end of the life coincides with the inspection time of the turbine.
  • the user can replace the parts that have reached the end of the life at the inspection time, and therefore, stopping the turbine only for the replacement of the parts that have reached the end of the life can be eliminated.
  • the planning device 1 in the case where there are a plurality of turbines having different inspection time intervals and normal operation load, the planning device 1 according to the other embodiment has surplus parts of elderly parts according to the consumption life specified from the interval and load.
  • the operation plan may be determined such that the old parts are incorporated into the turbine whose difference with the life is within the allowable error value.
  • the target turbine to be incorporated may not necessarily be provided in a plant owned by the same customer.
  • the planning device 1 according to the first embodiment generates an operation plan so that the remaining life of a part becomes within the allowable error value at the timing when the remaining life of the other parts becomes within the allowable error value.
  • the planning device 2 according to the second embodiment generates an operation plan so that the remaining life of the component is within the allowable error value at the timing of the periodic inspection of the turbine.
  • FIG. 4 is a schematic block diagram showing the configuration of the planning device according to the second embodiment.
  • the operation plan according to the second embodiment is information indicating, for each component, the type of turbine to which the component is attached and the number of times the component is attached to the turbine. For example, if the turbine to be managed by the planning device 2 is of three types, turbine A, turbine B, and turbine C, the operation plan for a part is the number of times that part is attached to turbine A The number of times it is attached and the number of times that the part is attached to the turbine C is shown.
  • the planning device 2 includes a data collection unit 201, a heat balance calculation unit 202, a heat balance history storage unit 203, a consumption life calculation unit 204, a design life storage unit 205, a remaining life identification unit 206, and an operation plan.
  • a generation unit 207 and an output unit 208 are provided.
  • the data collection unit 201 collects turbine operation data in real time from a power plant owned by a customer.
  • the heat balance calculation unit 202 calculates the heat balance of the turbine based on the operation data collected by the data collection unit 201.
  • the heat balance history storage unit 203 stores the heat balance calculated by the heat balance calculation unit 202 in time series.
  • the consumption life calculation unit 204 calculates the consumption life of each part during the operation based on the heat balance during the interval of the latest inspection time stored in the heat balance history storage unit 203.
  • the design life storage unit 205 stores the design life for each type of part.
  • the remaining life identification unit 206 acquires, from the design life storage unit 205, the design life associated with the component for which the operation plan is to be generated.
  • the operation plan generation unit 207 When a new part is introduced, the operation plan generation unit 207 generates an operation plan so that the part reaches the life at the timing of the periodic inspection of the turbine.
  • the output unit 208 outputs the operation plan generated by the operation plan generation unit
  • FIG. 5 is a flowchart showing generation processing of an operation plan by the planning device according to the second embodiment.
  • the planning device 2 starts generation processing of an operation plan of the part.
  • the remaining life identification unit 206 reads the design life associated with the type of the introduced part from the design life storage unit 205 (step S201). As a result, the remaining life identification unit 206 identifies the remaining life of the introduced component.
  • the consumption life calculation unit 204 selects the turbines to be managed one by one, and executes the processing from step S203 to step S204 shown below for each turbine (step S202).
  • the consumption life calculation unit 204 acquires the heat balance history for the parts of the same type as the introduced parts in the latest interval stored by the heat balance history storage unit 203 (step S203).
  • the consumption life calculation unit 204 The consumption life of the part by the operation during the interval of the selected turbine is calculated based on the acquired heat balance history (step S204).
  • t 0 indicates the remaining life of the introduced component.
  • n shows the number of turbines.
  • a k indicates the number of times of incorporation into the kth turbine.
  • t k denotes the consumption life by the driver between the interval of the turbine of the k.
  • t a indicates a tolerance value. That is, the operation plan generation unit 207 indicates the number of incorporations into each turbine such that the difference between the sum of the product of the number of incorporations into each turbine and the consumption life and the remaining life of the introduced components is within a predetermined value. Generate an operation plan.
  • the plan generation unit 207 generates an operation plan in which the number of integrations into the turbine A is one, the number of integrations into the turbine B is two, and the number of integrations into the turbine C is three.
  • the output unit 208 outputs the generated operation plan (step S206).
  • the planning device 2 identifies the remaining life of the parts of the turbine, and generates an operation plan so that the parts reach the life at the inspection time of a certain turbine. As the parts of the turbine reach the end of their service life, it is not necessary to stop the turbine only for part replacement, and it is not necessary to operate the turbine with a partial load so as not to reach the life before the periodic inspection. Therefore, the planning device 2 can operate the parts efficiently regardless of the change of the voluntary inspection timing.
  • the planning device 2 generates an operation plan of parts for the parts introduced anew. This is because an operation plan has already been decided for parts that have already been introduced.
  • the planning device 2 may review the operation plan again during the operation of the parts that have already been introduced. For example, the operation plan is reviewed if the operating method of at least one turbine has been changed at the time of generation of the operation plan and at the current time.
  • the planning device 2 includes the remaining life storage unit 105 as in the first embodiment, and the remaining life specifying unit 206 acquires the remaining life of the component to be reviewed from the remaining life storage unit 105, The remaining life of the part can be identified.
  • the planning device 1 and the planning device 2 according to the above-described embodiment calculate the remaining life and the consumption life of the part by the equivalent operation time
  • the invention is not limited thereto.
  • the planning device 1 and the planning device 2 according to another embodiment may calculate the remaining life and the consumption life of the part using other parameters such as LMP (Larson-Miller Parameter).
  • LMP is a parameter obtained by the equation (2) shown below.
  • T indicates the thermodynamic temperature of the part.
  • the thermodynamic temperature is equivalent to the Celsius temperature plus 273.15.
  • the temperature of the part is specified by heat balance.
  • t represents the operating time of the turbine at temperature T.
  • C is a constant determined by the material of the part. For example, if the material of the part is low carbon steel or chromium molybdenum steel, the constant C may be twenty. Also, for example, when the material of the part is stainless steel, the constant C may be 15. In this case, the consumption life is calculated by converting the LMP specified based on the actual component temperature and the operation time into the operation time at the rated temperature.
  • the planning device 1 may determine whether the part reaches the end of life due to low cycle fatigue by using a temperature history variable indicating the relationship between the temperature and the number of cycles. In addition, the planning device 1 according to another embodiment may use a plurality of temperature history variables to determine whether a part reaches the life based on a plurality of deterioration events such as creep deformation and low cycle fatigue. .
  • the planning apparatus 1 calculates the remaining life of the whole turbine based on the consumption life of each part which comprises a turbine, it is not restricted to this.
  • the planning apparatus 1 may calculate the remaining life of the entire turbine directly based on the design life of the entire turbine without calculating the consumption life of each part.
  • the consumption life calculation unit 103 and the remaining life specification unit 104 perform the calculation based on the heat balance calculated by the heat balance calculation unit 102
  • the present invention is not limited thereto.
  • at least one of the consumption life calculation unit 103 and the remaining life specification unit 104 may perform the calculation based on the operation data collected by the data collection unit 101.
  • the planning device 1 performs the heat balance calculation unit 102 may not be provided.
  • FIG. 6 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 900 includes a CPU 901, a main storage 902, an auxiliary storage 903, and an interface 904.
  • the above-mentioned plan unit 1 and plan unit 2 are implemented in the computer 900.
  • the operation of each processing unit described above is stored in the auxiliary storage device 903 in the form of a program.
  • the CPU 901 reads a program from the auxiliary storage device 903 and develops the program in the main storage device 902, and executes the above processing according to the program. Further, the CPU 901 secures the storage area corresponding to each storage unit described above in the main storage device 902 according to the program.
  • the auxiliary storage device 903 is an example of a non-temporary tangible medium.
  • Other examples of non-transitory tangible media include magnetic disks connected via an interface 904, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • the program may be for realizing a part of the functions described above.
  • the program may be a so-called difference file (difference program) that realizes the above-described function in combination with other programs already stored in the auxiliary storage device 903.
  • the planning device of the present invention generates an operation plan so that the remaining life of the part is within the allowable error value.
  • the planning device can operate the components of the turbine efficiently without changing the self-inspection timing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

本発明に係わる計画装置において、余寿命特定部は、タービンの部品の余寿命を特定する。運用計画生成部は、特定された前記余寿命に基づいて、所定のタイミングにおいて前記部品の余寿命が許容誤差値以内になるように、前記部品を前記タービンに組み込むタイミングを示す運用計画を生成する。

Description

計画装置、計画方法およびプログラム
 本発明は、タービンの部品の運用計画を生成する計画装置、計画方法およびプログラムに関する。
 本願は、2015年10月28日に日本に出願された特願2015-211898号について優先権を主張し、その内容をここに援用する。
 特許文献1には、ガスタービン高温部品のローテーション計画において、高温部品の余寿命が次回予定運転期間に満たない場合に、自主点検タイミングの時期を変更することで、高温部品の廃却時における余寿命を最小化する技術が開示されている。
特開2002-195056号公報
 しかしながら、プラントによっては自主点検を実施せずに定期点検のみを実施することがある。この場合、特許文献1に開示された技術によっては、部品の余寿命を最小化することができない可能性がある。
 本発明の目的は、自主点検タイミングの変更によらずにタービンの部品を効率よく運用する計画装置、計画方法およびプログラムを提供することにある。
 本発明の第1の態様によれば、計画装置は、タービンの部品の余寿命を特定する余寿命特定部と、特定された前記余寿命に基づいて、所定のタイミングにおいて前記部品の余寿命が許容誤差値以内になるように、前記部品を前記タービンに組み込むタイミングを示す運用計画を生成する運用計画生成部とを備える。
 本発明の第2の態様によれば、第1の態様に係る計画装置は、前記運用計画生成部が、特定された前記余寿命に基づいて、同一のタイミングにおいて、同一の前記タービンに組み込まれた複数の部品の余寿命が前記許容誤差値以内になるように、前記運用計画を生成する。
 本発明の第3の態様によれば、第2の態様に係る計画装置は、前記タイミングと前記タービンの点検時期とが一致するように、組み込み対象の前記タービンの負荷を決定する運転計画生成部とを備える。
 本発明の第4の態様によれば、第2または第3の態様に係る計画装置は、前記運用計画生成部が、第1部品の余寿命および第2部品の余寿命が定期点検のインターバルより短く、かつ前記第1の部品の余寿命と前記第2部品の余寿命との差が許容誤差値以内である場合に、前記第1部品と前記第2部品とを同一の前記タービンに組み込むことを示す前記運用計画を生成する。
 本発明の第5の態様によれば、第1の態様に係る計画装置は、前記運用計画生成部が、特定された前記余寿命に基づいて、前記タービンの点検時期において、前記タービンに組み込まれた前記部品の余寿命が前記許容誤差値以内になるように、前記運用計画を生成する。
 本発明の第6の態様によれば、第5の態様に係る計画装置は、複数のタービンについて、前記定期点検のインターバルの間における前記部品の消費寿命を算出する消費寿命算出部をさらに備え、前記運用計画生成部が、各前記タービンへの組み込み回数と消費寿命の積の総和と、前記部品の余寿命との差が所定値以内となるように、前記タービンへの組み込み回数を示す前記運用計画を生成する。
 本発明の第7の態様によれば、計画方法は、タービンの部品の余寿命を特定するステップと、特定された前記余寿命に基づいて、所定のタイミングにおいて前記部品の余寿命が許容誤差値以内になるように、前記部品を前記タービンに組み込むタイミングを示す運用計画を生成するステップとを有する。
 本発明の第8の態様によれば、プログラムは、コンピュータを、タービンの部品の余寿命を特定する余寿命特定部、特定された前記余寿命に基づいて、所定のタイミングにおいて前記部品の余寿命が許容誤差値以内になるように、前記部品を前記タービンに組み込むタイミングを示す運用計画を生成する運用計画生成部として機能させる。
 上記態様のうち少なくとも1つの態様によれば、計画装置は、部品の余寿命が許容誤差値以内になるように運用計画を生成する。これにより、計画装置は、自主点検タイミングの変更によらずにタービンの部品を効率よく運用することができる。
第1の実施形態に係る計画装置の構成を示す概略ブロック図である。 第1の実施形態に係る計画装置の収集周期ごとの動作を示すフローチャートである。 第1の実施形態に係る計画装置による運用計画の生成処理を示すフローチャートである。 第2の実施形態に係る計画装置の構成を示す概略ブロック図である。 第2の実施形態に係る計画装置による運用計画の生成処理を示すフローチャートである。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
《第1の実施形態》
 以下、図面を参照しながら第1の実施形態について詳しく説明する。
 図1は、第1の実施形態に係る計画装置の構成を示す概略ブロック図である。
 第1の実施形態に係る計画装置1は、タービンの部品の運用計画を生成する。第1の実施形態に係る部品の運用計画は、点検中のタービンに取り付けられている部品および倉庫に格納されている部品の各部品について、次回の運転のためにタービンに取り付けるか倉庫に格納するかを示す情報である。
 第1の実施形態に係る計画装置1は、データ収集部101、ヒートバランス算出部102、消費寿命算出部103、余寿命特定部104、余寿命記憶部105、点検時期記憶部106、運用計画生成部107、発電電力量予測部108、運転計画生成部109、出力部110を備える。
 データ収集部101は、顧客が所有する発電プラントからリアルタイムにタービンの運転データを収集する。具体的には、データ収集部101は、タービンに設けられたセンサから所定の収集周期(例えば、5分)ごとに、運転データを収集する。収集周期は、監視の即時性が失われない程度に短い周期である。運転データの例としては、流量、圧力、温度、振動、およびその他の状態量が挙げられる。
 ヒートバランス算出部102は、データ収集部101が収集した運転データに基づいて、タービンのヒートバランスを算出する。ヒートバランスとは、タービンに取り付けられた各部品それぞれにおける温度、圧力、エンタルピ、流量、およびその他の状態量である。ヒートバランス算出部102は、運転データに基づくシミュレーションによりヒートバランスを算出する。ヒートバランス算出のためのシミュレーションの手法の例としては、FEM(Finite Element Method)およびCFD(Computational Fluid Dynamics)が挙げられる。
 消費寿命算出部103は、ヒートバランス算出部102が算出したヒートバランスに基づいて、直近の収集周期における各部品の消費寿命を算出する。本実施形態では、消費寿命は等価運転時間によって表される。
 余寿命特定部104は、余寿命記憶部105が記憶する余寿命から、消費寿命算出部103が算出する消費寿命を減算することで、部品の余寿命を特定する。
 余寿命記憶部105は、各部品の余寿命を記憶する。部品の余寿命は、部品ごとに定められる設計寿命から消費寿命算出部103が算出する消費寿命を逐次減算することで得られる。
 点検時期記憶部106は、各発電プラントに設けられる各タービンの点検時期を示す日付を記憶する。タービンの点検は、所定のインターバルごとに実行される。
 運用計画生成部107は、タービンの点検時期に、そのタービンに取り付けられている部品および倉庫に格納されている部品の各部品について、運用計画を生成する。
 発電電力量予測部108は、ネットワークを介して市場電力需要情報を取得し、管理対象の各発電プラントが発電すべき電力量を予測する。
 運転計画生成部109は、タービンの負荷を示す運転計画を生成する。
 出力部110は、運用計画生成部107が生成した運用計画および運転計画生成部109が生成した運転計画を出力する。運用計画および運転計画の出力形式の例としては、ディスプレイへの表示、記憶媒体への記録、およびシートへの印刷が挙げられる。
 ここで、本実施形態に係る計画装置1の動作について説明する。
 図2は、第1の実施形態に係る計画装置の収集周期ごとの動作を示すフローチャートである。
 計画装置1は、収集周期ごとに、以下に示す処理を実行する。
 まずデータ収集部101は、タービンに設けられたセンサからタービンの運転データを収集する(ステップS1)。次に、ヒートバランス算出部102は、収集された運転データを入力としてタービンのヒートバランスを算出する(ステップS2)。
 次に、計画装置1は、タービンに組み込まれた部品を1つずつ選択し、選択された部品について、それぞれ以下に示すステップS4からステップS5の処理を実行する(ステップS3)。
 まず、消費寿命算出部103は、ヒートバランス算出部102が算出したヒートバランスを用いて、選択された部品の直近の収集周期の間における消費寿命を算出する(ステップS4)。次に、余寿命特定部104は、余寿命記憶部105が選択された部品に関連付けて記憶する余寿命から、算出した消費寿命を減算する(ステップS5)。これにより、余寿命特定部104は、余寿命記憶部105が記憶する余寿命を更新する。
 計画装置1は、上記ステップS1からステップS5の処理を収集周期ごとに実行することで、余寿命記憶部105が記憶する各部品の余寿命を最新の状態に保つことができる。
 ここで、本実施形態に係る計画装置による運用計画の生成処理について説明する。
 図3は、第1の実施形態に係る計画装置による運用計画の生成処理を示すフローチャートである。
 現在の日付があるタービンの点検期間である場合、計画装置1は、運用計画の生成処理を開始する。まず、運用計画生成部107は、点検対象のタービンに組み込まれた各部品と、倉庫に格納されている各部品に関連付けられた余寿命を、余寿命記憶部105から読み出す(ステップS101)。次に、運用計画生成部107は、点検時期記憶部106を参照し、次回の点検時期までのインターバルを特定する(ステップS102)。次に、運用計画生成部107は、読み出した余寿命が、点検対象のタービンの次回の点検期間までのインターバル未満となる部品があるか否かを判定する(ステップS103)。以下、余寿命が点検期間までのインターバル未満である部品を、高齢部品とよぶ。例えば、点検期間のインターバルが18000時間である場合、余寿命が18000時間未満の部品は、高齢部品である。
 高齢部品がない場合(ステップS103:NO)、運用計画生成部107は、所定のアルゴリズムに従って、各部品の運用計画を生成する(ステップS107)。例えば、運用計画生成部107は、各部品の余寿命のばらつきが最小になるように各部品の運用計画を生成することができる。また例えば、運用計画生成部107は、予め定めた部品グループをローテーションするように運用計画を生成することができる。
 他方、高齢部品がある場合(ステップS103:YES)、運用計画生成部107は、余寿命の差が許容誤差値(例えば、100時間)以内となる高齢部品の組み合わせが存在するか否かを判定する(ステップS104)。高齢部品の組み合わせは、2つの高齢部品の組み合わせに限られず、3つ以上の高齢部品の組み合わせであってよい。例えば、余寿命9950時間の第1部品と余寿命10000時間の第2部品と、余寿命10030時間の第3部品の組み合わせは、余寿命の差が許容誤差値である100時間以内となる高齢部品の組み合わせである。
 余寿命の差が許容誤差値以内となる高齢部品の組み合わせが存在しない場合(ステップS104:NO)、運用計画生成部107は、各高齢部品について、倉庫に格納することを示す運用計画を生成する(ステップS106)。次に、運用計画生成部107は、運用計画が未定である残りの部品について、所定のアルゴリズムに従って運用計画を生成する(ステップS107)。これにより、運用計画生成部107は、次回の点検期間までに寿命に至る部品がないように、運用計画を生成することができる。
 他方、余寿命の差が許容誤差値以内となる高齢部品の組み合わせが存在する場合(ステップS104:YES)、運用計画生成部107は、特定した組み合わせに係る高齢部品について、点検対象のタービンに組み込むことを示す運用計画を生成する(ステップS105)。具体的には、運用計画生成部107は、第1部品および第2部品の余寿命が定期点検のインターバルより短く、かつ第1の部品の余寿命と第2部品の余寿命との差が許容誤差値以内である場合に、第1部品と第2部品とを同一のタービンに組み込むことを示す運用計画を生成する。
 次に、運用計画生成部107は、運用計画が未定である残りの高齢部品について、倉庫に格納することを示す運用計画を生成する(ステップS106)。次に、運用計画生成部107は、運用計画が未定である残りの部品について、所定のアルゴリズムに従って運用計画を生成する(ステップS107)。これにより、運用計画生成部107は、点検対象のタービンの運用によって、組み合わせに係る高齢部品が略同時に寿命に至るように、運用計画を生成することができる。
 運用計画生成部107が運用計画を生成すると、運転計画生成部109は、生成された運用計画を参照し、点検対象のタービンに高齢部品が組み込まれるか否かを判定する(ステップS108)。点検対象のタービンに高齢部品が組み込まれる場合(ステップS108:YES)、運転計画生成部109は、次回の定期点検時に高齢部品の余寿命が許容誤差値以内になるように運転計画を生成する(ステップS109)。具体的には、運転計画生成部109は、以下の手順で運転計画を生成する。まず運転計画生成部109は、高齢部品の余寿命を示す等価運転時間と定期点検のインターバルの間の等価運転時間とに基づいて、次回の定期点検時にすべての高齢部品の余寿命が許容誤差値以内となる温度を算出する。次に、運転計画生成部109は、高齢部品が組み込まれる部位の温度が、算出された温度となるようなタービンの負荷を算出する。そして、運転計画生成部109は、算出した負荷でタービンを運転させる運転計画を生成する。
 他方、点検対象のタービンに高齢部品が組み込まれない場合(ステップS108:NO)、発電電力量予測部108は、ネットワークを介して市場電力需要情報を取得し、管理対象の各発電プラントが発電すべき電力量を予測する(ステップS110)。次に、運転計画生成部109は、予測した電力量を満たすように、点検対象のタービンの運転計画を生成する(ステップS111)。具体的には、運転計画生成部109は、管理対象の各発電プラントの最適な発電電力量分担を算出し、当該発電電力量分担に基づいて点検対象のタービンの運転計画を生成する。このとき、一部のタービンがステップS109によって生成された運転計画に基づいて運転される場合、運転計画生成部109は、発電電力量予測部108が予測した発電電力量を満たすように残りのタービンの発電電力量分担を算出する。
 そして、出力部110は、運用計画生成部107が生成した運用計画と運転計画生成部109が生成した運転計画とを出力する(ステップS112)。
 このように、本実施形態に係る計画装置1は、タービンの部品の余寿命を特定し、同一のタイミングにおいて複数の高齢部品が寿命に至るように運用計画を生成する。同一のタイミングで複数の部品が寿命に至ることにより、部品交換のためにタービンを停止する回数、または定期点検までに寿命に至らないようにタービンを部分負荷で運転する頻度を低減することができる。したがって、計画装置1は、自主点検タイミングの変更によらずに高齢部品を効率よく運用することができる。
 また、本実施形態に係る計画装置1は、複数の高齢部品が寿命に至るタイミングとタービンの点検時期とが一致するように、タービンの運転計画を生成する。これにより、利用者は、寿命に至った部品の交換を点検時期に行うことができるため、寿命に至った部品の交換のみのためにタービンを停止することをなくすことができる。なお、他の実施形態に係る計画装置1は、タービンに高齢部品が組み込まれているか否かによって運転計画を変更しなくても良い。例えば、定期点検の時期より前の時点において、自主点検を設定することで、自主点検のタイミングで寿命に至った部品を交換してもよい。また例えば、他の実施形態に係る計画装置1は、点検時期のインターバルおよび通常運転の負荷が異なる複数のタービンが存在する場合、インターバルおよび負荷から特定される消費寿命と組み合わせに係る高齢部品の余寿命との差が許容誤差値以内となるタービンに、その高齢部品を組み込むように運用計画を決定しても良い。このとき、組み込みの対象のタービンは、必ずしも同一の顧客が所有するプラントに設けられたものでなくてもよい。
《第2の実施形態》
 第1の実施形態に係る計画装置1は、他の部品の余寿命が許容誤差値以内となるタイミングにおいて、ある部品の余寿命が許容誤差値以内となるように、運用計画を生成する。
これに対し、第2の実施形態に係る計画装置2は、タービンの定期点検のタイミングにおいて、部品の余寿命が許容誤差値以内となるように、運用計画を生成する。
 図4は、第2の実施形態に係る計画装置の構成を示す概略ブロック図である。
 第2の実施形態に係る運用計画は、各部品について、当該部品が取り付けられるタービンの種類と、そのタービンに取り付けられる回数とを示す情報である。例えば、計画装置2の管理対象のタービンがタービンA、タービンB、タービンCの3種類である場合、ある部品についての運用計画は、その部品がタービンAに取り付けられる回数、その部品がタービンBに取り付けられる回数、およびその部品がタービンCに取り付けられる回数を示す。
 第2の実施形態に係る計画装置2は、データ収集部201、ヒートバランス算出部202、ヒートバランス履歴記憶部203、消費寿命算出部204、設計寿命記憶部205、余寿命特定部206、運用計画生成部207、出力部208を備える。
 データ収集部201は、顧客が所有する発電プラントからリアルタイムにタービンの運転データを収集する。ヒートバランス算出部202は、データ収集部201が収集した運転データに基づいて、タービンのヒートバランスを算出する。ヒートバランス履歴記憶部203は、ヒートバランス算出部202が算出したヒートバランスを時系列に記憶する。
消費寿命算出部204は、ヒートバランス履歴記憶部203が記憶する直近の点検時期のインターバルの間におけるヒートバランスに基づいて、インターバルの間の運転による各部品の消費寿命を算出する。設計寿命記憶部205は、部品の種別ごとに設計寿命を記憶する。余寿命特定部206は、運用計画の生成対象の部品に関連付けられた設計寿命を、設計寿命記憶部205から取得する。運用計画生成部207は、新たな部品が導入された場合に、当該部品がタービンの定期点検のタイミングにおいて寿命に至るように、運用計画を生成する。出力部208は、運用計画生成部207が生成した運用計画を出力する。
 ここで、本実施形態に係る計画装置による運用計画の生成処理について説明する。
 図5は、第2の実施形態に係る計画装置による運用計画の生成処理を示すフローチャートである。
 新たなタービンの部品が導入されると、計画装置2は、当該部品の運用計画の生成処理を開始する。まず、余寿命特定部206は、設計寿命記憶部205から、導入された部品の種別に関連付けられた設計寿命を読み出す(ステップS201)。これにより、余寿命特定部206は、導入された部品の余寿命を特定する。
 次に、消費寿命算出部204は、管理対象のタービンを1つずつ選択し、タービンごとに、以下に示すステップS203からステップS204の処理を実行する(ステップS202)。
 消費寿命算出部204は、ヒートバランス履歴記憶部203が記憶する直近のインターバルにおける、導入された部品と同じ種別の部品についてのヒートバランス履歴を取得する(ステップS203)次に、消費寿命算出部204は、取得したヒートバランス履歴に基づいて、選択されたタービンのインターバルの間の運転による部品の消費寿命を算出する(ステップS204)。
 消費寿命算出部204がすべてのタービンについて、導入された部品と同じ種別の部品の消費寿命を算出すると、運用計画生成部207は、以下に示す式(1)を満たす各タービンの組み込み回数aを算出し、当該組み込み回数を示す運用計画を生成する(ステップS205)。
Figure JPOXMLDOC01-appb-M000001
                  
 
 tは、導入された部品の余寿命を示す。nは、タービンの個数を示す。aは、第kのタービンへの組み込み回数を示す。tは、第kのタービンのインターバル間の運転による消費寿命を示す。tは、許容誤差値を示す。
 つまり、運用計画生成部207は、各タービンへの組み込み回数と消費寿命の積の総和と導入された部品の余寿命との差が所定値以内となるように、各タービンへの組み込み回数を示す運用計画を生成する。例えば、インターバルにおけるタービンAの消費寿命が10000時間、タービンBの消費寿命が10300時間、タービンCの消費寿命が9800時間であり、新たに導入された部品の余寿命が60000時間である場合、運用計画生成部207は、タービンAへの組み込み回数を1回、タービンBへの組み込み回数を2回、タービンCへの組み込み回数を3回とする運用計画を生成する。
 運用計画生成部207が運用計画を生成すると、出力部208は、生成された運用計画を出力する(ステップS206)。
 このように、本実施形態に係る計画装置2は、タービンの部品の余寿命を特定し、あるタービンの点検時期において部品が寿命に至るように運用計画を生成する。タービンの部品が点検時期に寿命に至ることにより、部品交換のみのためにタービンを停止する必要がなくなり、さらに定期点検までに寿命に至らないようにタービンを部分負荷で運転する必要がなくなる。したがって、計画装置2は、自主点検タイミングの変更によらずに部品を効率よく運用することができる。
 なお、本実施形態に係る計画装置2は、新たに導入された部品について、部品の運用計画を生成する。これは、既に導入されている部品については、すでに運用計画が決まっているためである。他方、他の実施形態に係る計画装置2は、既に導入されている部品について、運用の途中で再度運用計画を見直してもよい。例えば、運用計画の生成時と現在とで、少なくとも1つのタービンの運転方法が変更されている場合に、運用計画が見直される。この場合、計画装置2は、第1の実施形態のように余寿命記憶部105を備え、余寿命特定部206が余寿命記憶部105から見直し対象の部品の余寿命を取得することで、当該部品の余寿命を特定することができる。
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 例えば、上述した実施形態に係る計画装置1および計画装置2は、部品の余寿命および消費寿命を等価運転時間によって計算するが、これに限られない。例えば、他の実施形態に係る計画装置1および計画装置2は、部品の余寿命および消費寿命を、LMP(Larson-Miller Parameter)などの他のパラメータを用いて計算してもよい。
 LMPは、以下に示す式(2)により求められるパラメータである。
 LMP=T(logt+C) ・・・(2)
 Tは、部品の熱力学温度を示す。熱力学温度は、セルシウス温度に273.15を加算した値と等価である。部品の温度は、ヒートバランスによって特定される。tは、温度Tでのタービンの運転時間を示す。Cは、部品の材料により定められる定数である。例えば部品の材料が低炭素鋼またはクロムモリブデン鋼である場合、定数Cは20であってよい。また例えば部品の材料がステンレス鋼である場合、定数Cは15であってよい。
 この場合、消費寿命は、実際の部品温度と運転時間とに基づいて特定されるLMPを定格温度での運転時間に換算することにより、算出される。
 また他の実施形態に係る計画装置1は、温度とサイクル数との関係を示す温度履歴変数を用いることで、低サイクル疲労によりパーツが寿命に至るか否かを判定してもよい。また他の実施形態に係る計画装置1は、複数の温度履歴変数を用いて、クリープ変形および低サイクル疲労など、複数の劣化事由に基づいてパーツが寿命に至るか否かを判定してもよい。
 また上述した実施形態では、計画装置1がタービンを構成する各パーツの消費寿命に基づいて、タービン全体の余寿命を算出するが、これに限られない。例えば、他の実施形態に係る計画装置1は、パーツごとの消費寿命の算出を行わずに、タービン全体の設計寿命に基づいて直接的にタービン全体の余寿命を算出してもよい。
 また上述した実施形態では、消費寿命算出部103および余寿命特定部104が、ヒートバランス算出部102が算出したヒートバランスに基づいて計算を行うが、これに限られない。例えば、他の実施形態では、消費寿命算出部103および余寿命特定部104の少なくとも1つが、データ収集部101が収集した運転データに基づいて計算を行ってもよい。
 特に、他の実施形態において、消費寿命算出部103および余寿命特定部104のいずれもが、データ収集部101が収集した運転データに基づいて計算を行う場合、計画装置1は、ヒートバランス算出部102を備えなくてもよい。
 図6は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、インタフェース904を備える。
 上述の計画装置1および計画装置2は、コンピュータ900に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置902に確保する。
 なお、少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の媒体の一例である。一時的でない有形の媒体の他の例としては、インタフェース904を介して接続される磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。
 また、当該プログラムは、前述した機能の一部を実現するためのものであっても良い。
さらに、当該プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 本発明の計画装置は、部品の余寿命が許容誤差値以内になるように運用計画を生成する。これにより、計画装置は、自主点検タイミングの変更によらずにタービンの部品を効率よく運用することができる。
1 計画装置
101 データ収集部
102 ヒートバランス算出部
103 消費寿命算出部
104 余寿命特定部
105 余寿命記憶部
106 点検時期記憶部
107 運用計画生成部
108 発電電力量予測部
109 運転計画生成部
110 出力部
2 計画装置
201 データ収集部
202 ヒートバランス算出部
203 ヒートバランス履歴記憶部
204 消費寿命算出部
205 設計寿命記憶部
206 余寿命特定部
207 運用計画生成部
208 出力部
900 コンピュータ
901 CPU
902 主記憶装置
903 補助記憶装置
904 インタフェース

Claims (8)

  1.  タービンの部品の余寿命を特定する余寿命特定部と、
     特定された前記余寿命に基づいて、所定のタイミングにおいて前記部品の余寿命が許容誤差値以内になるように、前記部品を前記タービンに組み込むタイミングを示す運用計画を生成する運用計画生成部と
     を備える計画装置。
  2.  前記運用計画生成部が、特定された前記余寿命に基づいて、同一のタイミングにおいて、同一の前記タービンに組み込まれた複数の部品の余寿命が前記許容誤差値以内になるように、前記運用計画を生成する
     請求項1に記載の計画装置。
  3.  前記タイミングと前記タービンの点検時期とが一致するように、組み込み対象の前記タービンの負荷を決定する運転計画生成部と
     を備える請求項2に記載の計画装置。
  4.  前記運用計画生成部が、第1部品の余寿命および第2部品の余寿命が定期点検のインターバルより短く、かつ前記第1の部品の余寿命と前記第2部品の余寿命との差が許容誤差値以内である場合に、前記第1部品と前記第2部品とを同一の前記タービンに組み込むことを示す前記運用計画を生成する
     請求項2または請求項3に記載の計画装置。
  5.  前記運用計画生成部が、特定された前記余寿命に基づいて、前記タービンの点検時期において、前記タービンに組み込まれた前記部品の余寿命が前記許容誤差値以内になるように、前記運用計画を生成する
     請求項1に記載の計画装置。
  6.  複数のタービンについて、前記定期点検のインターバルの間における前記部品の消費寿命を算出する消費寿命算出部をさらに備え、
     前記運用計画生成部が、各前記タービンへの組み込み回数と消費寿命の積の総和と、前記部品の余寿命との差が所定値以内となるように、前記タービンへの組み込み回数を示す前記運用計画を生成する
     請求項5に記載の計画装置。
  7.  タービンの部品の余寿命を特定するステップと、
     特定された前記余寿命に基づいて、所定のタイミングにおいて前記部品の余寿命が許容誤差値以内になるように、前記部品を前記タービンに組み込むタイミングを示す運用計画を生成するステップと
     を有する計画方法。
  8.  コンピュータを、
     タービンの部品の余寿命を特定する余寿命特定部、
     特定された前記余寿命に基づいて、所定のタイミングにおいて前記部品の余寿命が許容誤差値以内になるように、前記部品を前記タービンに組み込むタイミングを示す運用計画を生成する運用計画生成部
     として機能させるためのプログラム。
PCT/JP2016/081542 2015-10-28 2016-10-25 計画装置、計画方法およびプログラム WO2017073544A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680060171.0A CN108368748B (zh) 2015-10-28 2016-10-25 计划装置、计划方法以及记录介质
KR1020187011818A KR102040422B1 (ko) 2015-10-28 2016-10-25 계획 장치, 계획 방법 및 기록 매체에 저장된 프로그램
US15/770,795 US10969305B2 (en) 2015-10-28 2016-10-25 Turbine system with planning device generating usage plan of components, and planning method
DE112016005001.1T DE112016005001T5 (de) 2015-10-28 2016-10-25 Planungsvorrichtung, planungsverfahren und programm
MX2018004833A MX2018004833A (es) 2015-10-28 2016-10-25 Dispositivo de planificacion, metodo de planificacion y programa.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-211898 2015-10-28
JP2015211898A JP6710039B2 (ja) 2015-10-28 2015-10-28 計画装置、計画方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2017073544A1 true WO2017073544A1 (ja) 2017-05-04

Family

ID=58631493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081542 WO2017073544A1 (ja) 2015-10-28 2016-10-25 計画装置、計画方法およびプログラム

Country Status (7)

Country Link
US (1) US10969305B2 (ja)
JP (1) JP6710039B2 (ja)
KR (1) KR102040422B1 (ja)
CN (1) CN108368748B (ja)
DE (1) DE112016005001T5 (ja)
MX (1) MX2018004833A (ja)
WO (1) WO2017073544A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6792939B2 (ja) * 2015-10-28 2020-12-02 三菱パワー株式会社 タービン分析装置、タービン分析方法およびプログラム
JP7315315B2 (ja) 2018-10-02 2023-07-26 一般財団法人電力中央研究所 運転支援システム、運転支援装置、運転支援方法およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158207A (en) * 1999-02-25 2000-12-12 Alliedsignal Inc. Multiple gas turbine engines to normalize maintenance intervals
JP2002195056A (ja) * 2000-12-22 2002-07-10 Central Res Inst Of Electric Power Ind ガスタービン高温部品の廃却損最小化方法及びシステム及びガスタービン保守最適化支援プログラムを記録したコンピュータ読取可能な記録媒体
JP2006146928A (ja) * 2004-11-19 2006-06-08 United Technol Corp <Utc> 保守計画方法およびコンピュータ支援システム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202136A (ja) * 1985-03-06 1986-09-06 Hitachi Ltd 高温ボルトの寿命管理方法
CA2272918A1 (en) * 1996-11-27 1998-06-04 Sundstrand Corporation Method of maintaining components subject to fatigue failure
JP2000297443A (ja) * 1999-04-15 2000-10-24 Komatsu Ltd 建設機械の情報管理装置
JP2001303909A (ja) * 2000-04-21 2001-10-31 Toshiba Corp 蒸気タービン部材のライフサイクル保守管理方法および装置
SE517970C2 (sv) * 2000-07-20 2002-08-13 Volvo Articulated Haulers Ab Förfarande för att uppskatta en livslängdsreducerande skada på ett i drift belastat objekt,jämte datorprogramprodukt
JP3801071B2 (ja) 2001-02-27 2006-07-26 株式会社日立製作所 発電設備の運転・保全計画支援システム
US6853930B2 (en) 2001-02-27 2005-02-08 Hitachi, Ltd. System for aiding the preparation of operation and maintenance plans for a power generation installation
JP3801063B2 (ja) 2001-02-27 2006-07-26 株式会社日立製作所 発電設備の運転・保全計画支援システム
JP4918816B2 (ja) * 2002-04-02 2012-04-18 株式会社日立製作所 ローテーション計画装置
US20040240600A1 (en) * 2003-05-30 2004-12-02 Siemens Westinghouse Power Corporation Positron annihilation for inspection of land based industrial gas turbine components
JP2005240776A (ja) * 2004-02-27 2005-09-08 Central Res Inst Of Electric Power Ind 部品運用計画作成方法
JP4718923B2 (ja) * 2004-07-28 2011-07-06 財団法人電力中央研究所 部品ローテーション計画の作成方法および作成装置並びに作成用プログラム
US8327538B2 (en) * 2005-10-17 2012-12-11 General Electric Company Methods to facilitate extending gas turbine engine useful life
US7505844B2 (en) * 2005-11-18 2009-03-17 General Electric Company Model-based iterative estimation of gas turbine engine component qualities
US7467841B2 (en) * 2006-09-07 2008-12-23 Kabushiki Kaisha Toshiba Maintenance scheduling system, maintenance scheduling method and image forming apparatus
US8116990B2 (en) * 2007-10-19 2012-02-14 Ashok Koul Method and system for real-time prognosis analysis and usage based residual life assessment of turbine engine components and display
US8431917B2 (en) * 2010-12-22 2013-04-30 General Electric Company System and method for rotary machine online monitoring
IN2013MN02382A (ja) * 2011-05-20 2015-06-12 Romax Technology Ltd
EP2697695B1 (de) * 2011-06-03 2019-05-08 Siemens Aktiengesellschaft Verfahren zur rechnergestützten generierung eines datengetriebenen modells eines technischen systems, insbesondere einer gasturbine oder windturbine
US20150220875A1 (en) * 2012-06-13 2015-08-06 Hitachi, Ltd. Method and system of managing replacement timing interval of maintenance part
US9317249B2 (en) * 2012-12-06 2016-04-19 Honeywell International Inc. Operations support systems and methods for calculating and evaluating turbine temperatures and health
JP6245738B2 (ja) * 2013-11-05 2017-12-13 三菱日立パワーシステムズ株式会社 蒸気タービンの起動制御装置及び起動方法
JP6180896B2 (ja) * 2013-11-15 2017-08-16 三菱日立パワーシステムズ株式会社 発電プラントの起動制御装置及び起動制御方法
US10626748B2 (en) * 2014-12-08 2020-04-21 General Electric Company System and method for predicting and managing life consumption of gas turbine parts
US20160231716A1 (en) * 2015-02-10 2016-08-11 General Electric Company System of systems optimizing control for achieving performance and risk outcomes in physical and business operations of connected and interrelated industrial systems
JP2015211898A (ja) 2015-07-17 2015-11-26 株式会社藤商事 遊技機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158207A (en) * 1999-02-25 2000-12-12 Alliedsignal Inc. Multiple gas turbine engines to normalize maintenance intervals
JP2002195056A (ja) * 2000-12-22 2002-07-10 Central Res Inst Of Electric Power Ind ガスタービン高温部品の廃却損最小化方法及びシステム及びガスタービン保守最適化支援プログラムを記録したコンピュータ読取可能な記録媒体
JP2006146928A (ja) * 2004-11-19 2006-06-08 United Technol Corp <Utc> 保守計画方法およびコンピュータ支援システム

Also Published As

Publication number Publication date
MX2018004833A (es) 2018-08-01
KR102040422B1 (ko) 2019-11-04
US10969305B2 (en) 2021-04-06
KR20180054848A (ko) 2018-05-24
CN108368748B (zh) 2020-12-18
CN108368748A (zh) 2018-08-03
US20180313720A1 (en) 2018-11-01
DE112016005001T5 (de) 2018-07-26
JP6710039B2 (ja) 2020-06-17
JP2017082680A (ja) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6069498B2 (ja) 機械部品の寿命消費を決定する方法及びシステム
CN108463622B (zh) 设施分析装置、设施分析方法以及记录介质
JP4512074B2 (ja) エネルギー需要予測方法、予測装置、プログラム及び記録媒体
JP6812169B2 (ja) エネルギー需要設備の運用に関する計画作成装置及び計画作成方法
JP5902055B2 (ja) 負荷量予測装置および負荷量予測方法
WO2017073544A1 (ja) 計画装置、計画方法およびプログラム
CN108350752B (zh) 涡轮机分析装置及分析方法、以及计算机可读取记录介质
CN108463616B (zh) 设备分析装置、设备分析方法及非暂时性计算机可读介质
CN109983484B (zh) 设备状态估计装置、设备状态估计方法以及记录介质
JP4664842B2 (ja) エネルギープラントの最適運用システムと方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859774

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/004833

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20187011818

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15770795

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005001

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859774

Country of ref document: EP

Kind code of ref document: A1