WO2017073288A1 - ハイブリッド太陽電池モジュール - Google Patents

ハイブリッド太陽電池モジュール Download PDF

Info

Publication number
WO2017073288A1
WO2017073288A1 PCT/JP2016/079881 JP2016079881W WO2017073288A1 WO 2017073288 A1 WO2017073288 A1 WO 2017073288A1 JP 2016079881 W JP2016079881 W JP 2016079881W WO 2017073288 A1 WO2017073288 A1 WO 2017073288A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
solar cell
hybrid module
cell module
power generation
Prior art date
Application number
PCT/JP2016/079881
Other languages
English (en)
French (fr)
Inventor
仲濱秀斉
Original Assignee
日清紡メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡メカトロニクス株式会社 filed Critical 日清紡メカトロニクス株式会社
Priority to KR1020177014918A priority Critical patent/KR101909405B1/ko
Priority to CA2998479A priority patent/CA2998479C/en
Priority to CN201680021646.5A priority patent/CN107592957A/zh
Publication of WO2017073288A1 publication Critical patent/WO2017073288A1/ja
Priority to US15/867,699 priority patent/US10594256B2/en
Priority to PH12018500699A priority patent/PH12018500699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/121Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives by heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S10/754Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1078Fire-resistant, heat-resistant materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1081Water-proofed materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0607Rubber or rubber derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a hybrid solar cell module that simultaneously realizes power generation using sunlight and hot water supply using solar heat.
  • FIG. 6 is an attachment cross-sectional view of the conventional solar system disclosed in Patent Document 1.
  • the solar system described in Patent Document 1 a part of the solar panels 100 arranged on the roof R or the like is selected, and the heat collecting tube 120 and the heat insulating material 130 are provided only on the lower side thereof.
  • the solar hot water panel 110 is installed, and the solar hot water panel 110 can be laid out at an optimal position.
  • the frame 150 of the existing solar panel 100 cannot be used as it is. That is, since the pedestal 160 of the solar hot water panel 110 is separately provided, the panel installation work is complicated.
  • FIG. 7 is an assembly drawing of the integrally formed solar thermoelectric hot water panel shown in Patent Document 2.
  • the solar panel 100, the heat collecting tube 120, and the heat insulating material 130 have an integrated structure, so that a panel having two functions can be installed in a conventional frame. Has an effect.
  • the conventional hybrid panel has a mechanism for producing hot water by “heat conduction” by combining a heat absorption sheet and a copper tube on the back side of the solar cell panel.
  • the conventional method has a structure in which the copper tube and the solar cell module are wrapped with a heat insulating material in order to suppress heat dissipation from the hot water heated by the copper tube.
  • the temperature of the hybrid module may become hot up to around 100 ° C. due to sunlight.
  • the product temperature becomes higher than that of a normal panel, leading to a decrease in power generation performance and a decrease in product life.
  • JP 2013-2709 A Japanese Patent Laid-Open No. 2000-241030
  • the solar panel and the resin pipe through which the liquid passes are integrally coupled, and it is lightweight and inexpensive, can withstand long-term use, and throughout the year.
  • An object of the present invention is to provide a solar light hybrid module capable of supplying hot water with high efficiency.
  • the solar thermal light hybrid module of the first invention for achieving the above object has the following features.
  • An olefin rubber sealing material (A) is disposed on at least one side of the power generation element of the power generation unit,
  • An olefin-based rubber sheet (B) blended with carbon black is disposed on the opposite side of the power generation element,
  • the resin pipe that becomes the water channel of the hot water production department is cross-linked polyethylene or polybutene,
  • the resin tube is sandwiched between the olefin rubber sheets (B), Further, the olefin rubber sheet (B) is disposed in a side portion of the resin tube and a gap between the resin tube and the resin tube.
  • the olefin rubber sealing material (A) is disposed on the surface side of the power generation element of the power generation section, and the olefin rubber sheet (B) is disposed on the opposite surface side of the power generation element. ing. Carbon black is blended in the olefin rubber sheet (B).
  • the wavelength of sunlight is 380-2500 nm, and sunlight passes through the glass.
  • the olefin rubber sheet (B) in the solar heat hybrid hybrid of the present invention contains carbon black.
  • the radiation rate of the olefin-based rubber is 95% or more, and efficiently absorbs electromagnetic waves that have entered the module to generate heat.
  • This heating element (rubber) again emits almost 100% by radiation and emits electromagnetic waves. It emits electromagnetic waves with a wavelength longer than the absorbed wavelength.
  • An electromagnetic wave having a wavelength longer than 2500 nm is confined in the glass of the solar cell module, and the wavelength is increased from near infrared to far infrared (3 ⁇ m to 5 ⁇ m).
  • the rubber member inside the double-sided glass structure, the resin tube, and the water in the resin tube efficiently absorb electromagnetic waves, into the water in the resin tube wrapped in an olefin rubber sheet (heat absorber) containing carbon black. Good heat transfer occurs due to radiation.
  • the olefin rubber sheet (B) is also disposed in the gap between the resin pipes. Therefore, this function of the carbon black in the olefin rubber sheet (B) is highly efficient because water molecules also generate heat by the heat transfer mechanism by radiation.
  • glass is disposed on the front surface side (main light receiving side) and the back surface side. This has the effect of containing sunlight (electromagnetic waves) that has passed through the solar cell module, and contributes to the production of hot water with high efficiency.
  • the solar thermal light hybrid module of the first invention uses a polyethylene tube as a resin tube, and has a property of transmitting far-infrared light. It effectively absorbs water and other liquids in the resin tube while effectively withstanding water pressure. Energy can be transmitted and solar energy can be used effectively.
  • the overall solar energy conversion efficiency of 95% of the hybrid solar cell module of the present invention was realized.
  • a cross-linked polyethylene pipe is used as the resin pipe.
  • the resin tube may be flattened, but when connecting the solar cell modules with the connecting member, the solar thermal light hybrid module
  • the portion of the resin tube exposed from the substrate is heated, the resin tube is restored to its original shape and can be connected without any problem.
  • the inside of the tube is negatively pressured after molding, and the tube is usually crushed.
  • the crosslinked polyethylene tube and the polybutene tube are chemically bonded to the olefin rubber, the tube is not blocked.
  • the solar thermal light hybrid module of the second invention has the following features in the first invention.
  • the olefin rubber sealing material (A) has a thickness of 250 ⁇ m or more and 500 ⁇ m or less.
  • the olefin-based rubber sealing material (A) is disposed between the solar cell panel and the rubber material layer on the surface side of the power generation element of the solar light hybrid module.
  • the thickness is 250 ⁇ m or more and 500 ⁇ m or less. If the thickness is less than 250 ⁇ m, the power generation element (solar cell) in the solar cell module may be broken. When the thickness exceeds 500 ⁇ m, the transparency is deteriorated, the amount of transmitted sunlight is reduced, and there is a possibility that the power generation performance of the solar cell module is lowered and the efficiency of hot water production is lowered.
  • the solar thermal light hybrid module of the third invention has the following characteristics in the first invention.
  • the olefin rubber sheet (B) is acetylene black, kettin black, or carbon nanotube, alone or in a blend of two, and is added in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of the olefin rubber sheet.
  • the olefin rubber sheet (B) used in the solar cell module is one of acetylene black, kettin black, and carbon nanotube, or a blend of two types. Therefore, since it has high thermal conductivity and has a function of converting near infrared light into far infrared light, the energy utilization efficiency of sunlight can be remarkably improved.
  • the solar thermal light hybrid module of the fourth invention has the following characteristics in the first invention.
  • the glass has a thickness of 0.8 mm to 4.0 mm.
  • the glass on the front side and the back side used in the solar thermal hybrid module has a thickness of 0.8 mm or greater and 4.0 mm or less. Preferably, it is 2.0 mm or more and 3.2 mm or less. If the thickness is less than 0.8 mm, the glass may be broken during the production of the solar cell module. If the thickness exceeds 4.0 mm, the weight of the solar thermal light hybrid module may be excessive.
  • the solar thermal light hybrid module of the fifth invention has the following features in the first invention.
  • the thickness of the solar cell module having the double-sided glass structure is 10 mm or more and 40 mm or less.
  • the thickness of the solar thermal light hybrid module of the present invention is 10 mm or more and 40 mm or less.
  • the thickness is less than 10 mm, there is a possibility that the function of producing hot water of the solar thermal light hybrid solar cell of the present invention cannot be sufficiently exhibited. If the thickness exceeds 40 mm, the weight becomes excessive and the installation workability may be significantly reduced.
  • the solar light hybrid module of the sixth invention has the following features in the first invention.
  • the length of the resin tube is 20 m or more and 100 m or less.
  • the length of the resin tube in the solar cell module is 20 m or more and 100 m or less, preferably 30 m or more and 60 m or less. If the length of the resin tube exceeds 100 m, the workability of the winding process is reduced, and the corresponding solar cell panel becomes too large, so that such a large solar cell panel is not actually produced. On the other hand, if the length of the resin tube is less than 20 m, the heat collecting performance is lowered, the target hot water may not be obtained, and the weight of the module becomes heavier, and the installation workability is remarkably lowered.
  • the manufacturing method of the solar thermal optical hybrid module of the seventh invention for achieving the above object has the following characteristics.
  • the solar power hybrid module according to any one of the first to sixth aspects of the invention is manufactured by simultaneously laying up the power generation unit, the olefinic rubber sheet (B), and the hot water manufacturing unit, and simultaneously press molding under vacuum heating.
  • the member of the power generation unit including the olefin-based sealing material (A) of the solar light hybrid module, the olefin rubber sheet (B), and the member of the hot water production unit are laid up (laminated) at the same time, and the laminating apparatus
  • the solar thermal light hybrid module of the present invention can be manufactured by putting it in and press-pressing it under vacuum heating.
  • a solar thermal hybrid module can be produced by a laminating apparatus which is a production apparatus for solar cells, and the production efficiency can be significantly improved.
  • FIG. 1 It is a perspective view of the solar thermal light hybrid module of this invention. It is sectional drawing of the solar thermal light hybrid module of this invention. It is explanatory drawing of arrangement
  • the solar thermal light hybrid module of the present invention is hereinafter abbreviated as “solar cell module”.
  • FIG. 1 is a perspective view of a solar cell module of the present invention
  • FIG. 2 is a cross-sectional view of the solar cell module of the present invention
  • FIG. 3 is a plan view of a plane parallel to the solar cell module 10 including the straight line MN of the solar cell module of the present invention, and is an explanatory diagram of the arrangement of resin pipes of the solar cell module of the present invention.
  • This solar cell module 10 includes a solar panel 20 (power generation unit) including solar cells 21 that are power generation elements, and a hot water manufacturing unit having a resin pipe 31 on the back side of the solar panel 20. These are bonded together by a rubber material 50 and integrally bonded.
  • a liquid such as water or antifreeze is poured into the resin pipe 31 and the temperature of the liquid poured into the resin pipe interior 30 is increased by using solar heat taken in by the solar panel 20.
  • the liquid is replaced with a silicone tube or a fluorine tube, oil can be considered.
  • water in the water supply system should be heated with a heat exchanger. When the desired temperature is not reached, a hot water can be produced comfortably and economically with a boiler cooking system.
  • the heat received by the solar cell module of the present invention is quickly transmitted to the resin pipe 31, an increase in the temperature of the solar cell 21 that is a power generation portion is suppressed, and the power generation efficiency of the hybrid solar cell is improved. To do.
  • the hybrid solar cell module 10 includes a surface glass 22 of the solar cell panel 20 on the light receiving surface side and a back glass 51 on the back surface side, and the resin pipe 31 is enclosed by a rubber material layer 50.
  • a rubber material layer 50 an olefin rubber sheet (B) is used as the rubber material layer 50.
  • the olefin rubber sheet (B) can contain a material having an adhesive function, and the resin pipe 31 and the rubber material 50 can be integrally bonded by heat received in the laminating process described later. Structurally, the apex portion of the resin pipe 31 is in contact with the back sheet 24 and the back side glass 51 of the solar cell panel 20 (power generation portion).
  • an olefin-based sealing material (A) is used as the sealing material 23 (23a / 23b).
  • an olefin-based sealing material is used as the sealing material 23 (23a / 23b).
  • an olefin-based sealing material filed by the applicant as Japanese Patent Application No. 2014-34405 on February 25, 2014 may be used.
  • a copper tube has been used as a heat collecting tube for absorbing such solar heat.
  • the resin pipe 31 having the characteristics of being excellent in corrosion resistance and being difficult to dissipate heat is adopted.
  • polyethylene and polybutene are suitable.
  • the water pressure resistance of the resin pipe 31 is 25 ° C. and 0.2 MPa or more. This is because the hybrid solar cell module 10 swells in the out-of-plane direction and there is a risk of destroying the hybrid solar cell module 10 if there is no such water pressure resistance.
  • the resin pipe 31 is arranged in a spiral shape with respect to one solar thermal hybrid module 10.
  • the length of the resin pipe used for one solar thermal hybrid module 10 is 20 m or more and 100 m or less.
  • one resin pipe 31 is arranged in a spiral shape, but a configuration in which two or three resin pipes 31 are arranged in parallel in a spiral shape is also possible.
  • resin pipes may be arranged in contact with each other.
  • the inflow port 32 and the outflow port 33 such as water, are provided in the surface of the solar cell module of this invention.
  • the resin pipe 31 By laminating an aluminum sheet that does not adhere to the rubber material (B) in the vicinity of the inlet and outlet of the resin pipe 31 of the solar cell module, and removing the aluminum sheet after molding, it is almost perpendicular to the cross-linked rubber material. It is also possible to use the resin pipe 31 as a drawer inlet 32 and outlet 33.
  • FIG. 4 shows a state where the hybrid solar cell module of the present invention is actually installed.
  • a case where four solar cell modules 10 (1), 10 (2), 10 (3), and 10 (4) are installed will be described.
  • the inflow port 32 and the outflow port 33 can be drawn out substantially at right angles to the back glass 51 side as described above. Thereby, the solar cell module of the present invention can be spread without gaps as shown in FIG.
  • the inflow port 32 (1) of the solar cell module 10 (1) and the outflow port 33 (2) of the solar cell module 10 (2) are connected by a connection pipe 34.
  • the solar cell module 10 (2) and the solar cell module 10 (3), and the solar cell module 10 (3) and the solar cell module 10 (4) are connected by the connection pipe 34.
  • connection pipe 34 has a connection portion 35 at the inlet 32 and the outlet 33 of each solar cell module. As described above, the inlet 32 and the outlet 33 of each solar cell module are connected as shown in FIG. Therefore, the piping of the connection portion is arranged at the bottom of the solar cell module. Connection work can be performed by conventional known techniques, and installation work is also easy. Moreover, it is possible to install solar cell modules without gaps, and space saving is possible.
  • the following effects are exhibited by using a crosslinked polyethylene tube as a resin tube used in the solar cell module. That is, in order to press-press when producing the solar thermal hybrid module of the present invention, the resin tube is flattened flat, but when connecting the solar cell modules with the connecting member, the solar thermal hybrid module When the exposed portion of the resin tube is heated, the resin tube is restored to its original shape and can be connected without any problem. There is no problem such as water leakage from the connecting portion while using the solar thermal light hybrid module of the present invention.
  • the solar cell module 10 according to the present invention can be manufactured by press-pressing in a vacuum atmosphere with a laminating apparatus.
  • Constituent members (surface glass 22, sealing material 23a, solar battery cell 21, sealing material 23b, backsheet 24) of solar cell panel 20 (power generation unit), olefin rubber sheet (heat absorbing material) 50, resin pipe 31, the olefin rubber sheet (heat absorbing material) 50 and the back glass 51 are laminated and manufactured by a vacuuming process and a pressurizing process of a laminating apparatus. Therefore, in the pressurizing step, there is a possibility that the resin pipe 31 may be crushed when the occupied area is reduced. For this reason, the resin pipe 31 needs a predetermined area (length).
  • Example 1 Using Nisshinbo Mechatronics Co., Ltd. PVL-1537, laying up in the order of material (1) to material (8) under the molding conditions of vacuum time (10 minutes), press temperature 160 ° C, press time 25 minutes, usually The solar cell module production procedure performed by those skilled in the art.
  • the resin tube was pressed using an aluminum mold having a height of 19 mm in order to reduce crushing.
  • the electrode was taken out between the front glass and the back glass, and the electrode part was sandwiched between the materials (4) and simultaneously molded. After the solar cell module was molded as described above, it was soldered to a junction box manufactured by Onamba.
  • the aluminum frame was attached and the solar cell module of Example 1 was obtained.
  • Olefin rubber sheet (heat absorbing material) Blended with Mitsui Chemicals EPDM (100 parts by weight), acetylene black (50 parts by weight), paraffin oil P380 (10 parts by weight), DCP (3.5 parts by weight) (corresponding to rubber material 50 in FIG. 2) Element)
  • Resin pipe 7A cross-linked polyethylene resin pipe manufactured by Inoac Corp. The total length of the resin pipe was 7 m.
  • Olefin rubber sheet (heat absorbing material) same as material (5)
  • Back glass Tempered glass (2.5t)
  • Example 2 The thickness of the material (4) of Example 1 is set to 300 ⁇ m, and carbon black contained in the heat-absorbing material of the materials (5) and (7) is acetylene black (35 parts by weight) and ketine black (15 parts by weight).
  • the solar cell module of Example 2 was obtained in the same manner as in Example 1 except that the length of the resin pipe of the material (6) was 50 m.
  • Example 1 The material (2) of Example 1 is EVA (450 ⁇ m), the sealing material portion of the material (4) is EVA (600 ⁇ m), and the carbon black contained in the heat-absorbing material of the materials (5) and (7) was the Asahi # 60 (60 parts by weight), and the solar cell module of Comparative Example 1 was obtained in the same manner as in Example 1 except that the length of the resin pipe of the material (6) was 10 m.
  • Example 2 The material (2) of Example 1 is EVA (450 ⁇ m), the sealing material portion of the material (4) is EVA (600 ⁇ m), and the materials (5) and (7) are made of carbon black contained in the heat absorbing material.
  • a solar cell module of Comparative Example 2 was obtained in the same manner as in Example 1 except that 50 parts by weight of drawsil (manufactured by Dexa) was set to 50 parts by weight and the length of the resin pipe of the material (6) was 40 m. .
  • Heat collection performance The heat collection performance of the solar cell modules prepared in Example 1, Example 2, Comparative Example 1 and Comparative Example 2 was evaluated as follows. The evaluation was performed under the condition that the amount of solar radiation was 600 (W / m 2 ) or more and the weather was sunny at a water amount of 200 L / Hr. The amount of solar radiation was measured with an IV checker manufactured by Eihiro Seiki. Moreover, the temperature rise of the water in a solar cell module measured the temperature difference of raw
  • required the amount of heat collection, and converted it into (W / m ⁇ 2 >). The heat collection efficiency (%) of the solar cell module was calculated by the following formula. The evaluation results are shown in Table 1. Heat collection efficiency (%) [ ⁇ Amount of heat (W / m 2 ) ⁇ / ⁇ Amount of solar radiation (W / m 2 ) ⁇ ] ⁇ 100

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Sealing Material Composition (AREA)

Abstract

太陽光発電と同時に高効率で温水の供給を行うことができる太陽熱光ハイブリッドモジュールを提供する。 太陽光を利用した発電と、太陽熱を利用して前記樹脂製パイプ内を通過する液体の温度上昇とを同時に実現できる太陽熱光ハイブリッドモジュールを、太陽光の受光面側及び反受講面側にガラスを設け、温水製造部と発電部を備えた構成とした。発電部は、発電素子の少なくとも一面側にオレフィン系ゴム封止材(A)を配置し、その反対面側にカーボンブラックを配合したオレフィン系ゴムシート(B)を配置した。また温水製造部は、水路となる樹脂管が架橋ポリエチレン或いはポリブテンであり、その樹脂管をオレフィンゴムシート(B)で挟み込み、樹脂管の側部、及び前記樹脂管と樹脂管の隙間に前記オレフィンゴムシート(B)を配置する構成とした。

Description

ハイブリッド太陽電池モジュール
 本発明は、太陽光を利用した発電と太陽熱を利用した温水供給を同時に実現するハイブリッド太陽電池モジュールに関する。
 太陽光発電は、自然エネルギーを活用する有効な発電システムとして広く浸透している。しかし、太陽光発電を実施するためには、広い受光面を必要とするため、その広い面積をさらに有効活用するために、太陽光発電に付加価値を設けることが検討されている。そのような付加価値の一つとして、太陽光発電システムに、温水供給システムを付加することが提案されている(特許文献1及び2参照)。
 図6は、特許文献1に示された従来のソーラーシステムの取付断面図である。ここで、特許文献1に記載のソーラーシステムは、屋根R等の上に並べられた太陽光パネル100の中から一部のパネルを選択し、その下側のみに集熱管120や断熱材130を有するソーラー温水パネル110を設置するもので、ソーラー温水パネル110を最適な位置にレイアウトすることができるという効果を奏している。しかし、太陽光パネル100とソーラー温水パネル110は別々に製造されるため、既存の太陽光パネル100のフレーム150をそのまま用いることができない。つまり、ソーラー温水パネル110の台座160を別途設けることになるため、パネルの設置作業が煩雑である。
 図7は、特許文献2に示された一体形成される太陽光熱電温水パネルの組立図である。特許文献2に記載の太陽光熱発電温水パネルでは、太陽光パネル100と集熱管120及び断熱材130を一体の構造としているため、従来のフレームに二つの機能を有するパネルを設置することができるという効果を奏している。
 しかし、特許文献2ではほとんど検討されていないが、集熱管120には相当の耐水圧性能や長期間の耐久性が要求され、また、蓄熱性やパネル全体の強度などを十分に検討しなければ、一年中を通して、十分な温水を供給することは難しい。
 さらに従来のハイブリッドパネルは、太陽電池のパネルの裏側部分に熱吸収シートと銅管を組み合わせて、「熱伝導」により、温水を製造する仕組みであった。従来の方法は、銅管で温められた温水からの放熱を抑えるため、断熱材で、銅管、太陽電池モジュールを包み込む構造となっていた。ところが、断熱材の保温効果のため、太陽光により、ハイブリッドモジュールの温度が100℃近傍まで暑くなることがある。また、通水しても、通常のパネルより製品温度が高く成り、発電性能の低下と製品寿命の低下を招来していた。
特開2013-2709号公報 特開2000-241030号公報
 このような実情に鑑み、本発明では、太陽光パネルと液体が通過する樹脂製パイプとを一体的に結合し、軽量かつ安価で、さらに長期間の使用に耐えられ、また、一年中を通して温水を高効率で供給することができる太陽熱光ハイブリッドモジュールを提供することを目的とする。
 上記目的を達成するための第1発明の太陽熱光ハイブリッドモジュールは、以下の特徴を有する。
 太陽電池モジュールの表面側と裏面側にガラスを設けた太陽電池モジュールであって、
 温水製造部と発電部を備え、
 前記発電部の発電素子の少なくとも一面側にオレフィン系ゴム封止材(A)を配置し、
 前記発電素子の反対面側にカーボンブラックを配合したオレフィン系ゴムシート(B)を配置し、
 前記温水製造部の水路となる樹脂管が架橋ポリエチレン或いはポリブテンであり、
 前記樹脂管を前記オレフィン系ゴムシート(B)で挟み込み、
 さらに、前記樹脂管の側部、及び前記樹脂管と樹脂管の隙間に前記オレフィンゴムシート(B)を配置する。
 第1発明のハイブリッド太陽電池モジュールは、その発電部の発電素子の表面側にオレフィン系ゴム封止材(A)を配置し、発電素子の反対面側にオレフィン系ゴムシート(B)を配置している。オレフィン系ゴムシート(B)にはカーボンブラックが配合されている。このような構成により太陽光の熱エネルギーが有効に樹脂管内の水等に伝えられ、発電しながら高効率で温水が製造される。以下その作用について説明する。
 両面ガラス構造の太陽電池モジュールにおいて、太陽光の波長は380~2500nmであり、太陽光はガラスを通過する。本発明の太陽熱光ハイブリッドジュール内のオレフィン系ゴムシート(B)はカーボンブラックを含有している。そのオレフィン系ゴムの輻射率は、95%以上であり、モジュール内に侵入した電磁波を効率良く吸収して、発熱する。この発熱体(ゴム)は、再度、放射により、ほぼ100%放射し、電磁波を放射する。吸収した波長よりも長波長の電磁波を放射する。2500nmより長波長の電磁波は、太陽電池モジュールのガラス内に閉じ込められ、近赤外から遠赤外(3μmから5μm)に長波長化する。またガラス面に反射されてとじ込められる。これによって、両面ガラス構造内部のゴム部材、樹脂管、樹脂管内の水は、効率よく電磁波を吸収し、カーボンブラック配合のオレフィン系ゴムシート(熱吸収体)に包まれた樹脂管内の水等へ輻射により良好な熱移動が起こる。
 本発明においては、オレフィン系ゴムシート(B)は、樹脂管の隙間にも配置している。従って、オレフィン系ゴムシート(B)内のカーボンブラックのこの機能により、輻射による熱伝達機構によって水分子も発熱することで高効率である。
 また第1発明の太陽熱光ハイブリッドモジュールは、表面側(主受光側)と裏面側にガラスを配置している。これにより太陽電池モジュール内に透過した太陽光(電磁波)の封じ込め効果があり、高効率で温水を製造することに寄与している。
 更に第1発明の太陽熱光ハイブリッドモジュールは、樹脂管としてポリエチレン管を使用しており、遠赤外光を透過する性質があり、樹脂管内に水等の液体に、水圧に耐えながら有効に太陽光のエネルギーが伝達され太陽光のエネルギーを有効利用することができる。
 以上の第1発明の太陽熱光ハイブリッドモジュールの構成により、本発明のハイブリッド太陽電池モジュールの総合太陽エネルギー変換効率95%を実現した。
 また第1発明において樹脂管として架橋ポリエチレン管を使用している。本発明の太陽熱光ハイブリッドモジュールを製造する際に加圧プレスするために、樹脂管は扁平状に潰れてしまうこともあるが、太陽電池モジュール同士を接続部材で接続する際に、太陽熱光ハイブリッドモジュールから露出した樹脂管の部分を加熱すると、樹脂管は元の形状に復元し問題無く接続することが可能である。本発明の太陽熱光ハイブリッドモジュールを使用中に接続部からの水漏れ等の問題は皆無である。また、成形後に管内部が負圧となり、管が潰れることが常であるが、架橋ポリエチレン管、ポリブテン管はオレフィンゴムと化学的に結合しているため、管の閉塞は無い。
 第2発明の太陽熱光ハイブリッドモジュールは、第1発明において以下の特徴を有する。
 前記オレフィン系ゴム封止材(A)の厚みが、250μm以上500μm以下である。
 第2発明においては、太陽熱光ハイブリッドモジュールの発電素子の表面側に太陽電池パネルとゴム素材層の間にオレフィン系ゴム封止材(A)が配置されている。その厚さは、250μm以上500μm以下である。厚さが250μm未満になると、太陽電池モジュール内の発電素子(太陽電池セル)が割れてしまう虞がある。厚さが500μmを超えると、透明度が悪化し太陽光の透過量が減少し太陽電池モジュールの発電性能の低下及び温水製造の効率が低下する虞がある。
 第3発明の太陽熱光ハイブリッドモジュールは、第1発明において以下の特徴を有する。
 前記オレフィンゴムシート(B)がアセチレンブラック、ケッチンブラック、カーボンナノチューブのうち、単独、もしくは2種類ブレンドし、オレフィンゴムシートの100重量部に対し20重量部から100重量部添加している。
 第3発明のハイブリッド太陽電池モジュールを用いれば、太陽電池モジュール内に使用するオレフィン系ゴムシート(B)はアセチレンブラック、ケッチンブラック、カーボンナノチューブのうち、単独、もしくは2種類ブレンドしたものである。従って高熱伝導性を有し、また近赤外光を遠赤外光に変換する機能を有しているので、太陽光のエルギー利用効率を格段に向上させることができる。
 第4発明の太陽熱光ハイブリッドモジュールは、第1発明において以下の特徴を有する。
 前記ガラスの厚みが0.8mm以上4.0mm以下である。
 第4発明においては、太陽熱光ハイブリッドモジュールに使用する表面側と裏面側のガラスは、その厚さを0.8mm以上4.0mm以下である。好ましくは、2.0mm以上3.2mm以下である。厚さが0.8mm未満になると、太陽電池モジュールを製造中にガラスが割れてしまう虞がある。厚さが4.0mmを超えると、太陽熱光ハイブリッドモジュールの重量が過大になる虞がある。
 第5発明の太陽熱光ハイブリッドモジュールは、第1発明において以下の特徴を有する。
 前記両面ガラス構造の太陽電池モジュールの厚みが10mm以上40mm以下である。
 第5発明においては、本発明の太陽熱光ハイブリッドモジュールの厚さは10mm以上40mm以下としている。厚さが10mm未満になると、本発明の太陽熱光ハイブリッド太陽電池の温水製造の機能を十分に発揮することができない虞がある。厚さが40mmを上回ると、重量が過大になり設置作業性が著しく低下する虞がある。
 第6発明の太陽熱光ハイブリッドモジュールは、第1発明において以下の特徴を有する。
 前記樹脂管の長さが20m以上100m以下である。
 第6発明において、太陽電池モジュール内の樹脂管の長さを20m以上100m以下、好ましくは30m以上60m以下としている。樹脂管の長さが100mを上回ると巻き工程の作業性が低下し、また、それに対応する太陽電池モパネルが大きくなりすぎるため、実際にはその様な大きな太陽電池パネルは作製しない。他方樹脂管の長さが20mを下回ると集熱性能が低下し、目的の温水が得られない虞があること、更にモジュールの重量が重くなり、設置作業性が著しく低下するため好ましくない。
 上記目的を達成するための第7発明の太陽熱光ハイブリッドモジュールの製造方法は、以下の特徴を有する。
 第1発明から第6発明に記載の太陽熱光ハイブリッドモジュールの発電部とオレフィン系ゴムシート(B)、温水製造部を同時にレイアップし、同時に真空加熱下でプレス成形することによって製造する。
 第7発明によれば、太陽熱光ハイブリッドモジュールのオレフィン系封止材(A)を含む発電部の部材とオレフィンゴムシート(B)、温水製造部の部材を同時にレイアップ(積層)し、ラミネート装置に投入し真空加熱下で加圧プレスすることにより本発明の太陽熱光ハイブリッドモジュールを製造することができる。本発明の製造方法によれば、太陽電池の製造装置であるラミネート装置により太陽熱光ハイブリッドモジュールを製造することができ、その製造効率を格段に向上させることができる。
本発明の太陽熱光ハイブリッドモジュールの斜視図である。 本発明の太陽熱光ハイブリッドモジュールの断面図である。 本発明の太陽熱光ハイブリッドモジュールの樹脂製パイプの配置の説明図である。 本発明の太陽熱光ハイブリッドモジュールの接続方法の説明図である。 本発明の太陽熱光ハイブリッドモジュールの太陽電池セルの配設状態の説明図である。 従来のソーラーシステムの取付断面図である。 従来の一体形成される太陽光熱電温水パネルの組立図である。
 以下、本発明の実施形態を、添付図面を参照しながら説明する。尚以下の説明において本発明の太陽熱光ハイブリッドモジュールは、以降「太陽電池モジュール」と略称する。
 図1は、本発明の太陽電池モジュールの斜視図であり、図2は本発明の太陽電池モジュールの断面図である。また図3は本発明の太陽電池モジュールの直線MNを含む太陽電池モジュール10に平行な平面の平面図であり、本発明の太陽電池モジュールの樹脂製パイプの配置の説明図である。この太陽電池モジュール10は、発電素子である太陽電池セル21を備えた太陽光パネル20(発電部)と、その太陽光パネル20の裏側に樹脂製パイプ31を有した温水製造部を備えており、これらをゴム素材50によって接着して一体的に結合したものである。そして、この樹脂製パイプ31に水や不凍液などの液体を流し込み、太陽光パネル20が取り込んだ太陽熱を利用して、樹脂製パイプ内部30に流し込まれた液体の温度を上昇させることを目的とするものである。液体の種類としては、シリコーンチューブやフッ素チューブに置き換えれば、油等も考えられるが、通常は、水の場合には、温水を供給することになるので、浴場施設のような温水を大量に必要とする施設だけで利用するのではなく、一般家庭でも利用することができる。不凍液を使用する場合は、熱交換機にて、上水道系の水を温水とする。希望の温度に満たない場合は、ボイラーで追い炊きするシステムで、快適に、経済的に温水を製造できる。また本発明の太陽電池モジュールが受けた受熱が迅速に樹脂製パイプ31に伝わるので、発電部分である太陽電池セル21の温度上昇が抑制され、ハイブリッド太陽電池の発電効率が向上するという効果も発現する。
 このハイブリッド太陽電池モジュール10は、受光面側には太陽電池パネル20の表面ガラス22、裏面側に裏面ガラス51を備えて、樹脂製パイプ31はゴム素材層50により内包した構成となっている。ゴム素材層50としては、オレフィン系ゴムシート(B)を用いている。オレフィン系ゴムシート(B)に接着機能を有する素材を含有させ、後述するラミネート加工において受ける熱により樹脂製パイプ31とゴム素材50を一体的に接着することができる。尚構造的には、樹脂製パイプ31の頂点部分は太陽電池パネル20(発電部分)のバックシート24及び裏面側ガラス51と接触している。樹脂パイプ31がオレフィン系ゴムシート(B)と接触しているので、太陽電池パネル20側からの太陽熱が高効率で樹脂パイプ31内の水等に伝わる。このオレフィン系ゴムシート(B)が熱吸収材の役目を果たしている。このように表面側ガラス22と裏面側ガラス51で内包する構成にすることで、蓄熱効果を高め、さらに太陽熱光ハイブリッドモジュール10全体の強度を高めることができる。なお、太陽光パネル20の表面ガラス22と太陽電池セル21及びバックシート24の接着及び封止には封止材23(23a・23b)が用いられている。この封止材23(23a・23b)としては、オレフィン系封止材(A)を使用している。またこの封止材としては、出願人が2014年2月25日において特願2014-34405として出願したオレフィン系封止材を使用しても良い。
 従来、このような太陽熱を吸収する集熱管としては、銅製のものが用いられてきた。しかし、太陽光パネル20と一体化する場合には、長期間の使用に耐えられなければならないことと、銅製の場合には放熱が早いため、特に温水を必要とする冬場には十分な蓄熱ができず、温水を供給するという効果を果たすことが難しくなる。そこで、本発明では、耐蝕性に優れ、かつ、放熱しにくいという特徴を持つ樹脂製パイプ31を採用することとしている。樹脂製パイプ31の素材としては、ポリエチレン、とポリブテンが好適である。
 なお、樹脂製パイプ31の耐水圧性能としては、25℃で、0.2MPa以上が必要となる。これだけの耐水圧性能がなければ、ハイブリッド太陽電池モジュール10は面外方向に膨らみ、ハイブリッド太陽電池モジュール10を破壊する恐れがあるためである。
 また、図3に示すように、1枚の太陽熱光ハイブリッドモジュール10に対し、樹脂製パイプ31は、スパイラル状に配設されている。1枚の太陽熱光ハイブリッドモジュール10に使用する前記樹脂製パイプの長さは20m以上100m以下としている。図3では、1本の樹脂パイプ31をスパイラル状に配設しているが、2本または3本を並列にしてスパイラル状に配設する構成も可能である。更に図2のように樹脂製パイプを接触させて配置しても良い。このような形態で樹脂パイプ31を配設することにより、太陽熱の樹脂パイプ31への吸熱量を増やすことができ、高効率で温水を製造することができる。また図3では本発明の太陽電池モジュールの面内に水等の流入口32と流出口33を設けている。これを太陽電池モジュールの樹脂パイプ31の流入口と流出口の近傍にゴム材(B)と接着しないアルミシートを積層し、成形後にこのアルミシートを取り除くことによって、架橋ゴム材と一緒にほぼ直角に樹脂パイプ31を引き出し流入口32と流出口33とすることも可能である。
 図4は、本発明のハイブリッド太陽電池モジュールを実際に設置した状態を示したものである。4枚の太陽電池モジュール10(1)・10(2)・10(3)・10(4)が設置される場合で説明する。流入口32と流出口33を上述のように裏面ガラス51側にほぼ直角に引き出すことができる。これにより本発明の太陽電池モジュールを図4のように隙間なく敷き詰めることができる。太陽電池モジュール10(1)の流入口32(1)と太陽電池モジュール10(2)の流出口33(2)を接続用パイプ34で接続する。以下同様に、太陽電池モジュール10(2)と太陽電池モジュール10(3)、太陽電池モジュール10(3)と太陽電池モジュール10(4)を接続用パイプ34で接続する。接続用パイプ34は、各太陽電池モジュールの流入口32と流出口33で、接続部35を有する。以上、図4に示すように各太陽電池モジュールの流入口32と流出口33が接続される。従って接続部の配管は太陽電池モジュールの底部に配置されることになる。従来の公知技術により接続作業は可能となり、設置作業も容易である。また隙間なく太陽電池モジュールを設置することが可能であり省スペース化が可能である。
 また本発明では、太陽電池モジュール内に使用する樹脂管として架橋ポリエチレン管を使用することにより以下の効果が発現する。すなわち、本発明の太陽熱光ハイブリッドモジュールを製造する際に加圧プレスするために、樹脂管は扁平状に潰れてしまうが、太陽電池モジュール同士を接続部材で接続する際に、太陽熱光ハイブリッドモジュールから露出した樹脂管の部分を加熱すると、樹脂管は元の形状に復元し問題無く接続することが可能である。本発明の太陽熱光ハイブリッドモジュールを使用中に接続部からの水漏れ等の問題は皆無である。
 以下に本発明の太陽電池モジュールの製造方法について簡単に説明する。 本発明に係る太陽電池モジュール10は、ラミネート装置により真空雰囲気において加圧プレスして製造することができる。太陽電池パネル20(発電部)の構成部材(表面ガラス22・封止材23a・太陽電池セル21・封止材23b・バックシート24)、オレフィン系ゴムシート(熱吸収材)50、樹脂製パイプ31、オレフィン系ゴムシート(熱吸収材)50、及び裏面ガラス51を積層配置し、ラミネート装置の真空引工程及び加圧工程により製造される。従って、加圧工程において、樹脂製パイプ31の占有面積が少なくなると潰れてしまう恐れがある。このため樹脂製パイプ31は、所定の面積(長さ)が必要である。
 [実施例1]
 日清紡メカトロニクス株式会社製PVL-1537を用いて、真空時間(10分)、プレス温度160℃、プレス時間25分の成型条件で、素材(1)から素材(8)の順番でレイアップし、通常の当業者が行う太陽電池モジュール生産の手順で成型した。なお、樹脂管が潰れを少なくすために高さ19mmのアルミ金型を用いて、プレスした。電極は、表面ガラスと裏面ガラスの間から取り出し、電極部は、素材(4)で挟んで、同時成型した。以上のように太陽電池モジュールを成型後、オーナンバ社製ジャンクションボックスとはんだ接合した。アルミフレームを取り付け、実施例1の太陽電池モジュールを得た。以下素材(1)から素材(8)の説明である。
(1)表面ガラス:強化ガラス(2.5t)
(2)オレフィンゴム封止材(透明オレフィン封止材):菱江化学販売 厚み300μm(図2の封止材23aに相当する部材)
(3)JAソーラ社製単結晶セルを接続したストリング 36直
(4)白オレフィンゴム封止材:菱江化学販売 厚み350μm/バックシート(リンテック社製)リプレ(図2の封止材23bとバックシート24に相当する部材)
(5)オレフィン系ゴムシート(熱吸収材)
三井化学社製EPDM(100重量部)、アセチレンブラック(50重量部)、パラフィン油P380(10重量部)、DCP(3.5重量部)を配合したもの
(図2のゴム素材50に相当する部材)
(6)樹脂製パイプ:イノアック社製7A架橋ポリエチレン樹脂管
樹脂管の長さは、7A管を合計46m使用した。
(7)オレフィン系ゴムシート(熱吸収材):素材(5)と同一
(8)裏面ガラス:強化ガラス(2.5t)
 [実施例2]
 実施例1の素材(4)の厚さを300μmとし、素材(5)と素材(7)の熱熱吸収材に含まれるカーボンブラックをアセチレンブラック(35重量部)とケッチンブラック(15重量部)とし、素材(6)の樹脂管の使用長さを50mとした以外は全て実施例1と同様にして実施例2の太陽電池モジュールを得た。
 [比較例1]
 実施例1の素材(2)をEVA(450μm)とし、素材(4)の封止材部分をEVA(600μm)とし、素材(5)と素材(7)の熱熱吸収材に含まれるカーボンブラックを旭#60(60重量部)とし、素材(6)の樹脂管の使用長さを10mとしたこと以外は全て実施例1と同様にして比較例1の太陽電池モジュールを得た。
 [比較例2]
 実施例1の素材(2)をEVA(450μm)とし、素材(4)の封止材部分をEVA(600μm)とし、素材(5)と素材(7)は熱吸収材に含まれるカーボンブラックをドローシル(デクサ社製)ウルトラ360を50重量部とし、素材(6)の樹脂管の使用長さを40mとしたこと以外は全て実施例1と同様にして比較例2の太陽電池モジュールを得た。
 [セル割れ]
 実施例1、実施例2、比較例1及び比較例2で作成した太陽電池モジュールに存在する割れについて以下の指標で評価した。その評価結果を表1に示す。
<評価点>
 評価点 3点:セル割れは無い。
 評価点 2点:セル3枚について1箇所セル割れが認められる。
 評価点 1点:無数にセル割れが認められる。
 [集熱性能]
 実施例1、実施例2、比較例1及び比較例2で作成した太陽電池モジュールの集熱性能を以下のように評価した。水量200L/Hrにおいて、日射量が600(W/m)以上で天候が晴れの状況で評価した。日射量は、英弘精機製のIVチェッカで測定した。また太陽電池モジュール内の水の温度上昇は、原水温度と温水の温度差を測定し、1分間溜まった水量を正確に測定し、集熱量を求め(W/m)に換算した。太陽電池モジュールの集熱効率(%)を以下の式にて算出した。その評価結果を表1に示す。
集熱効率(%)=[{熱量(W/m)}/{日射量(W/m)}]×100
 10 ハイブリッド太陽電池モジュール
 20 太陽光パネル
 21 太陽電池セル
 22 表面ガラス
 23(23a・23b) 封止材
 24 バックシート
 30 パイプ内部
 31 樹脂製パイプ
 32 流入口
 33 流出口
 34 接続用パイプ
 35 接続部
 50 ゴム素材
 51 裏面ガラス

 
Figure JPOXMLDOC01-appb-T000001

 

Claims (7)

  1.  太陽電池モジュールの表面側と裏面側にガラスを設けた太陽電池モジュールであって、
     温水製造部と発電部を備え、
     前記発電部の発電素子の少なくとも一面側にオレフィン系ゴム封止材(A)を配置し、
     前記発電素子の反対面側にカーボンブラックを配合したオレフィン系ゴムシート(B)を配置し、
     前記温水製造部の水路となる樹脂管が架橋ポリエチレン或いはポリブテンであり、
     前記樹脂管を前記オレフィンゴムシート(B)で挟み込み、
     さらに、前記樹脂管の側部、及び前記樹脂管と樹脂管の隙間に前記オレフィンゴムシート(B)を配置したこと特徴とする太陽熱光ハイブリッドモジュール。
  2.  前記オレフィンゴム封止材の厚みが、250μm以上500μm以下であることを特徴とする請求項1に記載の太陽熱光ハイブリッドモジュール。
  3.  前記オレフィンゴムシート(B)がアセチレンブラック、ケッチンブラック、カーボンナノチューブのうち、単独、もしくは2種類ブレンドし、オレフィンゴムシートの100重量部に対し20重量部から100重量部添加していることを特徴とする請求項1に記載の太陽熱光ハイブリッドモジュール。
  4.  前記ガラスの厚みが0.8mm以上4.0mm以下であることを特徴とする請求項1に記載の太陽熱光ハイブリッドモジュール。
  5.  前記両面ガラス構造の太陽電池モジュールの厚みが10mm以上40mm以下である請求項1に記載の太陽熱光ハイブリッドモジュール。
  6.  前記樹脂管の長さが20m以上100m以下であることを特徴とする請求項1に記載の太陽熱光ハイブリッドモジュール。
  7.  請求項1から請求項6に記載の太陽熱光ハイブリッドモジュールの発電部とオレフィンゴムシート(B)、温水製造部を同時にレイアップし、同時に真空加熱下でプレス成形することによって製造することを特徴とする太陽熱光ハイブリッドモジュールの製造方法。
PCT/JP2016/079881 2015-10-27 2016-10-07 ハイブリッド太陽電池モジュール WO2017073288A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177014918A KR101909405B1 (ko) 2015-10-27 2016-10-07 하이브리드 태양전지 모듈
CA2998479A CA2998479C (en) 2015-10-27 2016-10-07 Photovoltaic thermal collector
CN201680021646.5A CN107592957A (zh) 2015-10-27 2016-10-07 混合型太阳电池模块
US15/867,699 US10594256B2 (en) 2015-10-27 2018-01-11 Photovoltaic thermal collector
PH12018500699A PH12018500699A1 (en) 2015-10-27 2018-03-27 Photovoltaic thermal collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015211290A JP6100864B1 (ja) 2015-10-27 2015-10-27 ハイブリッド太陽電池モジュール
JP2015-211290 2015-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/867,699 Continuation US10594256B2 (en) 2015-10-27 2018-01-11 Photovoltaic thermal collector

Publications (1)

Publication Number Publication Date
WO2017073288A1 true WO2017073288A1 (ja) 2017-05-04

Family

ID=58363216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079881 WO2017073288A1 (ja) 2015-10-27 2016-10-07 ハイブリッド太陽電池モジュール

Country Status (8)

Country Link
US (1) US10594256B2 (ja)
JP (1) JP6100864B1 (ja)
KR (1) KR101909405B1 (ja)
CN (2) CN107592957A (ja)
CA (1) CA2998479C (ja)
PH (1) PH12018500699A1 (ja)
TW (1) TWI622265B (ja)
WO (1) WO2017073288A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947789B1 (ko) * 2017-05-19 2019-02-13 연태훈 하이브리드 태양광 시스템
CN111276556B (zh) * 2018-11-16 2022-02-18 光之科技(北京)有限公司 一种仿天然石材的太阳电池组件及其制备方法
JP2020128844A (ja) * 2019-02-08 2020-08-27 日清紡メカトロニクス株式会社 温水器及びその温水器を使用した太陽電池モジュール
JP6895490B2 (ja) * 2019-07-23 2021-06-30 吉男 松川 ハイブリッドソーラーパネル装置
WO2021061673A1 (en) * 2019-09-27 2021-04-01 Hillery Thomas Kemp Fluid cooling of photovoltaic cells and desalination using heat extracted therefrom
CN111397223A (zh) * 2020-04-07 2020-07-10 江西省科学院能源研究所 一种平板型光伏热水组件及其生产工艺方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164953A (ja) * 1982-03-25 1983-09-29 Mitsui Petrochem Ind Ltd 太陽熱集熱器
JP2004176982A (ja) * 2002-11-26 2004-06-24 Sekisui Chem Co Ltd 太陽電池組込み集熱ハイブリッドモジュール
WO2006038508A1 (ja) * 2004-10-06 2006-04-13 Tama-Tlo, Ltd. 太陽電池システムおよび熱電気複合型太陽電池システム
JP2011190991A (ja) * 2010-03-15 2011-09-29 Tokyo Gas Co Ltd 集熱器一体型の太陽電池モジュール

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1179681A (en) * 1966-07-05 1970-01-28 Mini Of Technology Heat Exchanger Apparatus
US4714734A (en) * 1985-02-26 1987-12-22 Bridgestone Corp. Rubber compounds
US5001192A (en) * 1988-01-06 1991-03-19 The Dow Chemical Company Polymeric polyblend composition
JPH0814669A (ja) * 1994-06-24 1996-01-19 Ig Tech Res Inc ソーラーパネル
JPH10281563A (ja) * 1997-04-07 1998-10-23 Sekisui Chem Co Ltd 光熱ハイブリッドパネル及びその製造方法
JPH11108467A (ja) * 1997-10-07 1999-04-23 Mitsubishi Electric Corp 太陽エネルギ利用装置
JP2000227256A (ja) * 1999-02-02 2000-08-15 Sekisui Chem Co Ltd 光熱ハイブリッドパネルとソーラーシステム付き住宅
JP2000241030A (ja) 1999-02-22 2000-09-08 Naohisa Matsumoto 太陽光熱発電温水パネル
JP2001152631A (ja) * 1999-09-13 2001-06-05 Sekisui Chem Co Ltd 光熱ハイブリッドパネルおよびこれを備える建物
JP2002147865A (ja) * 2000-11-15 2002-05-22 Toyox Co Ltd 太陽電池用熱交換パネルユニット
JP3828447B2 (ja) * 2002-03-27 2006-10-04 株式会社クラレ アクリル系重合体組成物
WO2007129985A1 (en) * 2006-05-08 2007-11-15 Grenzone Pte Ltd Integrated photovoltaic solar thermal panel
US20080083176A1 (en) * 2006-10-06 2008-04-10 Davis Energy Group, Inc. Roofing panel
JP2008151490A (ja) * 2006-12-20 2008-07-03 Electric Power Dev Co Ltd 太陽光発電集熱ユニット
US20120097217A1 (en) * 2009-05-15 2012-04-26 Huiming Yin Functionally Graded Solar Roofing Panels and Systems
JP5755405B2 (ja) * 2009-11-02 2015-07-29 恵和株式会社 太陽電池モジュール裏面用放熱シート及びこれを用いた太陽電池モジュール
KR101009688B1 (ko) 2010-04-15 2011-01-19 이앤에이치(주) 태양에너지 전도를 최적화한 하이브리드형 모듈
US20110271999A1 (en) * 2010-05-05 2011-11-10 Cogenra Solar, Inc. Receiver for concentrating photovoltaic-thermal system
JP2012253164A (ja) * 2011-06-02 2012-12-20 Toyo Aluminium Kk 太陽電池用裏面保護シートとそれを備えた太陽電池モジュール
JP5890970B2 (ja) 2011-06-15 2016-03-22 田島応用化工株式会社 ソーラーシステム
TWI487127B (zh) * 2011-12-21 2015-06-01 Ind Tech Res Inst 太陽能電池模組
US20140261634A1 (en) * 2013-03-12 2014-09-18 Fafco Incorporated Combination solar thermal and photovoltaic module
DE202013102248U1 (de) * 2013-05-23 2013-06-06 Hans Thoma Solarmodul
CN104639038A (zh) * 2013-11-13 2015-05-20 西安博昱新能源有限公司 一种同时利用太阳光能和热能的光伏光热复合组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164953A (ja) * 1982-03-25 1983-09-29 Mitsui Petrochem Ind Ltd 太陽熱集熱器
JP2004176982A (ja) * 2002-11-26 2004-06-24 Sekisui Chem Co Ltd 太陽電池組込み集熱ハイブリッドモジュール
WO2006038508A1 (ja) * 2004-10-06 2006-04-13 Tama-Tlo, Ltd. 太陽電池システムおよび熱電気複合型太陽電池システム
JP2011190991A (ja) * 2010-03-15 2011-09-29 Tokyo Gas Co Ltd 集熱器一体型の太陽電池モジュール

Also Published As

Publication number Publication date
KR101909405B1 (ko) 2018-12-19
CA2998479C (en) 2019-04-09
KR20170141185A (ko) 2017-12-22
JP6100864B1 (ja) 2017-03-22
TW201729532A (zh) 2017-08-16
CA2998479A1 (en) 2017-05-04
US20180138858A1 (en) 2018-05-17
JP2017085760A (ja) 2017-05-18
US10594256B2 (en) 2020-03-17
TWI622265B (zh) 2018-04-21
PH12018500699A1 (en) 2018-10-15
CN107592957A (zh) 2018-01-16
CN112039433A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
JP6100864B1 (ja) ハイブリッド太陽電池モジュール
CN103591708B (zh) 一种热管式光伏光热构件
EP1873843A2 (en) Photovoltaic plant
JP6474632B2 (ja) ハイブリッド太陽電池モジュール
EP2608278A1 (en) Solar cell module
KR101803832B1 (ko) 액체식 pvt 컬렉터
WO2017054232A1 (zh) 太阳能热水器
CN102201478A (zh) 光伏光热一体化系统(stpv)
CN101866972A (zh) 太阳能电池与散热器一体化组件
US20130269755A1 (en) Solar glass thermoelectric integrated device
KR101891236B1 (ko) 태양광열 모듈 및 그 제조방법
CN102569454A (zh) 背板材料、使用背板材料的光伏组件及其制造方法
WO2014132197A2 (en) Encapsulation materials and design of an integrated photovoltaic and thermal module (pvt)
CN203839391U (zh) 太阳能光伏光热复合组件
JP2020128844A (ja) 温水器及びその温水器を使用した太陽電池モジュール
CN109631354A (zh) 外置式碲化镉薄膜电池太阳能光伏光热平板集热器
JP6552893B2 (ja) ハイブリッド太陽電池モジュール
CN201000896Y (zh) 水冷式光伏发电系统
CN206004615U (zh) 光伏光热一体化组件
CN204809240U (zh) 太阳能光热光电一体化组件
KR101966213B1 (ko) 태양열 흡수효율증가용 표면코팅을 갖는 pv모듈 및 집열모듈 복합 시스템
KR100992011B1 (ko) 태양에너지 복사를 최적화한 하이브리드형 모듈
CN206004616U (zh) 光伏光热一体化组件
CN205828402U (zh) 聚光紧凑型太阳能光伏光热联用组件
CN104901623A (zh) 高效能光伏光热一体化组件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177014918

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2998479

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12018500699

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859525

Country of ref document: EP

Kind code of ref document: A1