WO2017071564A1 - 一种三维电极填料及其制备方法 - Google Patents

一种三维电极填料及其制备方法 Download PDF

Info

Publication number
WO2017071564A1
WO2017071564A1 PCT/CN2016/103269 CN2016103269W WO2017071564A1 WO 2017071564 A1 WO2017071564 A1 WO 2017071564A1 CN 2016103269 W CN2016103269 W CN 2016103269W WO 2017071564 A1 WO2017071564 A1 WO 2017071564A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional electrode
mixed clay
iron filings
electrode filler
filler
Prior art date
Application number
PCT/CN2016/103269
Other languages
English (en)
French (fr)
Inventor
许应玉
罗德智
李隽�
赵雪峰
Original Assignee
雅本化学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雅本化学股份有限公司 filed Critical 雅本化学股份有限公司
Publication of WO2017071564A1 publication Critical patent/WO2017071564A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis

Definitions

  • the invention relates to an electrode filler, in particular to a three-dimensional electrode filler and a preparation method thereof.
  • Phenol is an important chemical raw material and has a wide range of uses in the chemical industry. However, due to its carcinogenicity and mutation, it has been listed as a priority pollutant by the US EPA and China. Therefore, any phenol-containing wastewater discharge should be strictly controlled. Removal methods of phenol-containing wastewater and groundwater contaminated by it include activated carbon adsorption, polymeric resin adsorption, steam, air stripping, biodegradation and thermal destruction. Although these methods have high removal efficiency, they have problems such as high energy consumption, high cost, and low recovery efficiency. In recent years, three-dimensional electrolysis technology has become an important industrial wastewater pollution control technology due to its good treatment effect, simple process and wide applicability.
  • Three-dimensional electrolysis technology is one of the electrochemical wastewater treatment technologies.
  • the three-dimensional electrode filler is the core part of the technology.
  • the selection and preparation of the filler material is critical to the removal of pollutants and operational stability. Impact.
  • the three-dimensional electrode fillers are mostly iron-carbon fillers, but a large number of research results show that the fillers have many defects in the application.
  • a passivation film is formed on the surface of the material, and the material is easy to agglomerate, thereby The effective contact between the material and the wastewater is hindered, resulting in low utilization rate of the electrolytic material, which rapidly reduces the treatment effect of the wastewater, and increases the cost of the wastewater treatment.
  • the application of three-dimensional electrolysis technology is greatly limited. Therefore, the development of high-efficiency, stable, and recyclable new three-dimensional electrolytic materials is of great significance for the promotion of three-dimensional electrolysis technology.
  • the present invention provides a three-dimensional electrode filler as a novel three-dimensional electrode filler. It has high stability, corrosion resistance and strength. It has high activity, no secondary pollution to water, and long service life. It provides a good solution for solving the problems of easy packing, short service life and easy corrosion in three-dimensional electrolytic reaction.
  • a new type of three-dimensional electrolytic filler was prepared by calcining with activated carbon and clay as raw materials, which is effective not only in the environment with phenol-containing simulated wastewater as the test object.
  • the COD (chemical oxygen demand) in the sewage is reduced, the biodegradability of the wastewater is improved, and the degradation effect is still good when repeatedly used.
  • a three-dimensional electrode filler, the composition of the three-dimensional electrode filler and the mass percentage of each component are as follows: modified iron filings 10%-25%, activated carbon 35%-50%, and mixed clay 30%-45%;
  • the mixed clay consists of 85%-95% by mass of kaolin and 5%-15% bentonite.
  • the three-dimensional electrode filler is composed of a mass percentage of components: 25% of modified iron filings, 37.5% of activated carbon, and 37.5% of mixed clay;
  • the mixed clay consists of 90% by mass of kaolin and 10% of bentonite.
  • the three-dimensional electrode filler is composed of a mass percentage of 15% of improved iron filings, 45% of activated carbon, and 40% of mixed clay;
  • the mixed clay consisted of 89% by mass of kaolin and 11% of bentonite.
  • the three-dimensional electrode filler is composed of a mass percentage of the following components: 22% of modified iron filings, 44% of activated carbon, and 34% of mixed clay;
  • the mixed clay consisted of 91% by mass of kaolin and 9% of bentonite.
  • a method of preparing a three-dimensional electrode filler comprising the steps of:
  • Step 1 Preparation of improved iron filings, the specific steps of which include:
  • the iron scraps obtained by degreasing treatment and filtration are placed in 5%-20% dilute sulfuric acid for 10-30 min and then filtered;
  • Nickel plating the iron scraps obtained by copper plating are immersed in the nickel plating solution, heated under ultrasonic conditions for 40 to 60 ° C for 40 min, filtered, washed three times with distilled water, dried, and insulated at 600 ° C - 800 ° C for air roasting 4 Hours, improved iron filings;
  • Step 2 uniformly mixing the modified iron filings, activated carbon and mixed clay by 10%-25%, 35%-50% and 30%-45% by mass, adding water to the mixture, and shaking it into a diameter 3-5mm granular;
  • Step 3 The granular iron-carbon filler is vacuum-dried at 60 ° C, placed in a muffle furnace, and calcined under a condition of insulating oxygen for 2-4 hours to obtain a specific surface area of 0.4-1.0 m 2 /g. Three-dimensional electrode packing.
  • the preparation of the nickel plating solution comprises the following steps:
  • Step 1 Prepare 500ml of 3%-6% nickel sulfate solution, and then add sodium citrate 25-40g and triethanolamine 15-20g;
  • Step 2 adding 30-50 g of sodium hypophosphite solid under stirring, stirring and dissolving;
  • Step 3 Adjust to pH 8 with 10% sodium hydroxide solution under stirring;
  • Step 4 Filtration to obtain the nickel plating solution.
  • the present invention has the following advantages compared with the prior art:
  • the surface of the improved iron filings is copper-plated, which greatly improves the ductility of the iron filings
  • the surface of the improved iron filings is nickel-plated, and a stable and corrosion-resistant nickel coating is formed on the surface, which greatly prolongs its service life;
  • the mixed clay is mainly composed of kaolin and bentonite mixed in a certain proportion. After bonding, the bentonite will expand to some extent, and after the calcination, voids of different sizes are formed, which increases the specific surface area of the filler to some extent;
  • the degradation rate is higher than 80%, which is much higher than 50% of the traditional iron-carbon filler
  • the three-dimensional electrode filler of the invention can be repeatedly used, and the three-dimensional electrode filler recovered and reused has a degradation rate of phenol-containing wastewater of more than 70%, and can still achieve a degradation rate higher than 60% after repeated use, effectively Increased utilization of iron-carbon fillers.
  • Fig. 1 is a graph showing the degradation rate of a phenol-containing wastewater with time by a three-dimensional electrode filler and a conventional iron carbon filler according to the present invention.
  • the cooled iron filings were immersed in the configured 1000 mL nickel plating solution, heated under ultrasonic conditions at 50 ° C for 0.5 min for nickel plating, filtered, washed three times with distilled water, dried, and air-fired at 800 ° C for 4 hours to obtain Improve iron filings.
  • the step of disposing the nickel plating solution comprises: preparing 500 ml of a 3% nickel sulfate solution, sequentially adding 20 g of sodium citrate and 11 g of triethanolamine, adding 26 g of sodium hypophosphite solid under stirring, stirring and dissolving, and then using stirring under 10
  • the % sodium hydroxide was adjusted to pH 8 and filtered to obtain a nickel plating solution.
  • the modified iron filings, activated carbon powder and mixed clay obtained by activation treatment and copper plating nickel plating are 2:3:3 ratio, that is, 25% of iron filings, 37.5% of activated carbon and 37.5% of mixed clay. Evenly mixed, wherein the mixed clay consists of 90% kaolin and 10% bentonite. A small amount of water was added to the above mixture, and the mixture was ground into a pellet having a diameter of 3-5 mm, vacuum-dried at 60 ° C, placed in a muffle furnace, and calcined under a condition of oxygen for 4 hours, and cooled to obtain a three-dimensional electrode filler.
  • a graphite plate (surface area 50 cm 2 ) was used as the cathode plate
  • a DSA electrode (surface area 50 cm 2 ) was used as the anode material
  • 1000 mg/L of sodium sulfate was used as the electrolyte
  • the electrode spacing was 7 cm.
  • the time is 60-120 min minutes
  • the current density is 60 mA cm -2
  • the time was 100 min and the phenol degradation rate was 84%.
  • the reaction solution was filtered, and the three-dimensional electrode filler was washed and recovered, and electrolyzed again under the above-mentioned electrolysis conditions for 100 min, and the phenol degradation rate was 80%.
  • the degradation rate of phenol was 79%.
  • the cooled iron filings were immersed in the configured 1000 mL nickel plating solution, heated under ultrasonic conditions for 50 min for 50 min, filtered, washed three times with distilled water, dried, and air-fired at 800 ° C for 4 hours to improve. Iron filings.
  • the step of disposing the nickel plating solution includes: disposing the nickel plating solution: preparing 500 ml of a 5% nickel sulfate solution, sequentially adding 30 g of sodium citrate and 18 g of triethanolamine; adding 42 g of sodium hypophosphite solid under stirring; The mixture was dissolved by stirring, and then adjusted to pH 8 with 10% sodium hydroxide under stirring, and filtered to obtain a nickel plating solution.
  • the modified iron filings, activated carbon powder and mixed clay obtained by activation treatment and copper plating nickel plating are adjusted in a ratio of 1:3:2.5, that is, 15% of iron filings, 45% of activated carbon, and 40% of mixed clay. Evenly mixed, wherein the mixed clay consists of 89% kaolin and 11% bentonite. A small amount of water was added to the above mixture, and the mixture was ground into a pellet having a diameter of 3-5 mm, vacuum-dried at 60 ° C, placed in a muffle furnace, and calcined under a condition of oxygen for 4 hours, and cooled to obtain a three-dimensional electrode filler.
  • a graphite plate (surface area 50 cm 2 ) was used as the cathode plate
  • a DSA electrode (surface area 50 cm 2 ) was used as the anode material
  • 1000 mg/L of sodium sulfate was used as the electrolyte
  • the electrode spacing was 7 cm.
  • the time is 60-120 min minutes
  • the current density is 60 mA cm -2
  • the time was 100 min and the phenol degradation rate was 78%.
  • the reaction solution was filtered, and the three-dimensional electrode filler was washed and recovered, and electrolyzed again under the above electrolysis conditions for 100 min, and the phenol degradation rate was 76%.
  • the third time this step was repeated, the degradation rate of phenol was 72%.
  • the cooled iron filings were immersed in the configured 1000 mL nickel plating solution, heated under ultrasonic conditions for 40 min for 40 min, filtered, washed three times with distilled water, dried, and air-fired at 700 ° C for 4 hours to improve. Iron filings.
  • the step of disposing the nickel plating solution comprises: preparing 500 ml of a 5% nickel sulfate solution, sequentially adding 30 g of sodium citrate and 18 g of triethanolamine; adding 42 g of sodium hypophosphite solid under stirring, stirring and dissolving, and then stirring with 10
  • the % sodium hydroxide was adjusted to pH 8 and filtered to obtain a nickel plating solution.
  • the modified iron filings, activated carbon powder and mixed clay obtained by activation treatment and copper plating nickel plating are modified in a ratio of 2:4:3, that is, 22% of iron filings, 44% of activated carbon and 34% of mixed clay. Evenly mixed, wherein the mixed clay consists of 91% kaolin and 9% bentonite. A small amount of water was added to the above mixture, and the mixture was ground into a pellet having a diameter of 3-5 mm, vacuum-dried at 60 ° C, placed in a muffle furnace, and calcined under a condition of oxygen for 4 hours, and cooled to obtain a three-dimensional electrode filler.
  • a graphite plate (surface area 50 cm 2 ) was used as the cathode plate
  • a DSA electrode (surface area 50 cm 2 ) was used as the anode material
  • 1000 mg/L of sodium sulfate was used as the electrolyte
  • the electrode spacing was 7 cm.
  • the time is 60-120 min minutes
  • the current density is 60 mA cm -2
  • the time was 100 min and the phenol degradation rate was 85%.
  • the reaction solution was filtered, and the three-dimensional electrode filler was washed and recovered, and electrolyzed again under the above electrolysis conditions for 100 min, and the phenol degradation rate was 85%.
  • the degradation rate of phenol was 81%.
  • the invention greatly prolongs the service life of the iron carbon filler by electroplating a stable nickel coating on the surface of the iron filings.
  • 1 is a perspective view of a three-dimensional electrode filler and a conventional iron carbon filler according to the present invention.
  • the three-dimensional electrode packing recovered and reused has a degradation rate of more than 70% for phenol-containing wastewater, and can still achieve a degradation rate higher than 60% after repeated use, effectively improving the utilization rate of iron-carbon filler and reducing wastewater. The cost of processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种三维电极填料,其组分及各组分质量百分比如下:改良铁屑10%-25%、活性炭35%-50%以及混合黏土30%-45%;混合黏土由质量百分比为85%-95%的高岭土和5%-15%的膨润土组成。一种制备三维电极填料的方法,将铁屑进行包括除油、除锈在内的活化处理、镀铜处理以及镀镍处理,得到改良铁屑;将经过镀镍处理的改良铁屑与一定比例的粉末状活性炭、混合黏土以一定比例均匀混合,制成直径5~10mm的颗粒状填料,烘干,隔绝氧气条件下于600℃下焙烧2小时,冷却得到三维电极填料。

Description

一种三维电极填料及其制备方法 技术领域
本发明涉及电极填料,特别涉及一种三维电极填料及其制备方法。
背景技术
苯酚是一种重要的化工原料,在化学工业中具有广泛的用途,但是由于其具有致癌性和突变性,被美国EPA和我国列为优先污染物。因此,任何含苯酚废水的排放都应该受到严格控制。含苯酚废水和被其污染地下水的去除方法包括活性炭吸附、聚合树脂吸附,蒸汽、空气剥离,生物降解及热破坏等。这些方法虽然去除效率较高,但存在能源消耗大、成本高及回收效率低等问题。近些年来,三维电解技术由于处理效果好、工艺简单、适用性广泛等特点而日益成为重要的工业废水污染控制技术。
三维电解技术是电化学污水处理技术中的一种,在三维电解技术中,三维电极填料是该技术的核心部分,填料材料的选择和制备,对污染物的去除效果和运行稳定性具有关键性的影响。目前三维电极填料以铁碳填料居多,但大量研究结果表明,该填料在应用中存在诸多缺陷,这种电解材料在运行一段时间后,材料表面会形成钝化膜,同时材料易结块,从而阻碍材料与废水的有效接触,导致电解材料利用率低,使废水的处理效果迅速下降,增加了废水处理的成本。大大限制了三维电解技术的应用。因此,开发高效能、稳定、可重复回收利用的新型三维电解材料对于推广三维电解技术具有重要意义。
发明内容
为了克服现有技术中所存在的缺陷,本发明提供一种三维电极填料来作为一种新型的三维电极填料。它具有稳定性高、耐腐蚀、强度大、 活性高、对水无二次染污、使用寿命长的特点,为解决三维电解反应中填料易板结、使用寿命短、易腐蚀等问题提供了很好的方案。通过对工业废铁屑的镀铜镀锌处理,以其与活性炭和黏土为原料,经过焙烧制备了一种新型的三维电解填料,在以含酚类模拟废水为试验对象的环境下,不仅有效的降低了污水中的COD(化学需氧量),提高了废水的可生化性,而且多次重复利用时依然有很好的降解效果。
本发明的一种三维电极填料及其制备方法通过以下技术方案实现:
一种三维电极填料,所述三维电极填料的组分及各组分质量百分比如下:改良铁屑10%-25%、活性炭35%-50%以及混合黏土30%-45%;以及
所述混合黏土由质量百分比为85%-95%的高岭土和5%-15%的膨润土组成。
进一步地,所述三维电极填料由质量百分比如下的组分组成:改良铁屑25%、活性炭37.5%以及混合黏土37.5%;以及
所述混合黏土由质量百分比为90%的高岭土和10%的膨润土组成。
进一步地,所述三维电极填料由质量百分比如下的组分组成:改良铁屑15%、活性炭45%以及混合黏土40%;以及
所述混合黏土由质量百分比为89%的高岭土和11%的膨润土组成。
进一步地,所述三维电极填料由质量百分比如下的组分组成:改良铁屑22%、活性炭44%以及混合黏土34%;以及
所述混合黏土由质量百分比为91%的高岭土和9%的膨润土组成。
一种制备三维电极填料的方法,包括以下步骤:
步骤一:制备改良铁屑,其具体步骤包含:
除油,将0.5-2mm的铁屑放入5%-15%的氢氧化钠溶液中,在50℃-80℃下加热并超声处理40min-100min后过滤;
除锈,将经除油处理并过滤所得铁屑置于5%-20%的稀硫酸中浸泡10-30min后过滤;
镀铜,将经除锈处理并过滤所得铁屑置于3%-7%的硫酸铜溶液中,在40-60℃下加热反应60min,过滤,干燥,于500℃下隔绝氧气下焙烧 4小时;以及
镀镍,将经镀铜处理所得铁屑浸泡于镀镍液中,在超声条件下加热40~60℃40min,过滤,用蒸馏水洗涤3次,干燥,于600℃-800℃下隔绝空气焙烧4小时,得到改良铁屑;
步骤二:将所述改良铁屑、活性炭以及混合黏土10%-25%、35%-50%以及30%-45%的质量百分比均匀混合,在该混合物中添加水,将其摇制成直径3-5mm的颗粒状;
步骤三:将所述颗粒状铁碳填料60℃真空烘干,放入马弗炉中,在隔绝氧的条件下加热焙烧2-4小时,制得比表面积为0.4-1.0m2/g的三维电极填料。
进一步地,所述镀镍液的制备包括以下步骤:
步骤一:配制500ml的3%-6%的硫酸镍溶液,依次加入柠檬酸钠25~40g、三乙醇胺15~20g;
步骤二:在搅拌条件下加入30~50g次磷酸钠固体,搅拌溶解;
步骤三:在搅拌下用10%氢氧化钠溶液调节至pH为8;以及
步骤四:过滤,得到所述镀镍液。
由于采用以上技术方案,本发明与现有技术相比具有如下优点:
1.改良铁屑表面采用镀铜工艺,大大改善了铁屑的延展性;
2.改良铁屑表面采用镀镍工艺,在表面形成了稳定、耐腐蚀的镍涂层,大大延长了其使用寿命;
3.混合黏土主要由高岭土和膨润土按一定比例混合而成,在黏合之后膨润土会有一定的膨胀,煅烧之后形成大小不一的空隙,在一定程度上增加了填料的比表面积;
4.采用本发明的方法制备的三维电极填料处理含苯酚废水200min后,降解率高于80%,远高于传统铁碳填料的50%;
5.本发明的三维电极填料可以反复利用,回收再利用的三维电极填料对含苯酚废水的降解率高于70%,经多次反复使用后依然可实现高于60%的降解率,有效地提高了铁碳填料的利用率。
附图说明
图1为依据本发明的三维电极填料与传统铁碳填料对含苯酚废水的降解率随时间变化的曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
将直径为0.5-2mm的铁屑200g放入15%的氢氧化钠溶液中,在60℃下加热并超声处理40min后过滤,以便除油。所得固体用10%的稀硫酸浸泡30min后过滤,以便除锈。上述除油和除锈处理统称为对铁屑进行活化处理。将活化后的铁屑置于5%的硫酸铜溶液中,在60℃下加热反应60min,过滤,干燥,随后在500℃隔绝氧气下焙烧4小时。将冷却过的铁屑浸泡于配置好的1000mL镀镍液中,在超声条件下加热50℃)镀镍40min,过滤,用蒸馏水洗涤3次,干燥,于800℃下隔绝空气焙烧4小时,得到改良铁屑。其中配置镀镍液的步骤包括:配制500ml的3%的硫酸镍溶液,依次加入柠檬酸钠20g、三乙醇胺11g,在搅拌条件下加入次磷酸钠固体26g,搅拌溶解,然后在搅拌下用10%氢氧化钠调节至pH为8,过滤,得到镀镍液。
将经过活化处理以及镀铜镀镍处理得到的改良铁屑、活性炭粉、混合黏土按2:3:3的比例——即质量百分比改良铁屑25%、活性炭37.5%以及混合黏土37.5%——均匀混合,其中,混合黏土由90%的高岭土和10%的膨润土组成。在上述混合物中加入少量的水,摇制成直径3-5mm的颗粒状,60℃真空烘干,放入马弗炉中,隔绝氧的条件下加热焙烧4小时,冷却得到三维电极填料。
为了检验三维电极填料处理含苯酚废水的能力,以石墨板(表面积50cm2)为阴极板,DSA电极(表面积50cm2)为阳极材料,1000mg/L的硫酸钠为电解质,电极间距为7cm,电解时间为60~120min分钟,电流密度:60mA cm-2,在40℃的温度下,使用本实施例所得三维电极填料 降解浓度为2500mg/L的苯酚化合物水溶液,在pH=8的条件下,电解时间为100min,苯酚降解率为84%。将反应液过滤,洗涤回收三维电极填料,再次以上述电解条件电解反应100min,苯酚降解率为80%。第三次重复此步骤时,苯酚的降解率为79%。
实施例2
将直径为0.5-2mm的铁屑200g放入10%的氢氧化钠溶液中,在60℃下加热并超声处理40min后过滤,以便除油。所得固体用10%的稀硫酸浸泡30min后过滤,以便除锈。上述除油和除锈处理统称为对铁屑进行活化处理。将活化后的铁屑置于5%的硫酸铜溶液中,在60℃下加热反应60min,过滤,干燥,随后在500℃隔绝氧气下焙烧4小时。将冷却过的铁屑浸泡于配置好的1000mL镀镍液中,在超声条件下加热50℃镀镍40min,过滤,用蒸馏水洗涤3次,干燥,于800℃下隔绝空气焙烧4小时,得到改良铁屑。其中配置镀镍液的步骤包括:其中配置镀镍液的步骤包括:配制500ml的5%的硫酸镍溶液,依次加入柠檬酸钠30g、三乙醇胺18g;在搅拌条件下加入42g次磷酸钠固体,搅拌溶解,然后在搅拌下用10%氢氧化钠调节至pH为8,过滤,得到镀镍液。
将经过活化处理以及镀铜镀镍处理得到的改良铁屑、活性炭粉、混合黏土按1:3:2.5的比例——即质量百分比改良铁屑15%、活性炭45%以及混合黏土40%——均匀混合,其中,混合黏土由89%的高岭土和11%的膨润土组成。在上述混合物中加入少量的水,摇制成直径3-5mm的颗粒状,60℃真空烘干,放入马弗炉中,隔绝氧的条件下加热焙烧4小时,冷却得到三维电极填料。
为了检验三维电极填料处理含苯酚废水的能力,以石墨板(表面积50cm2)为阴极板,DSA电极(表面积50cm2)为阳极材料,1000mg/L的硫酸钠为电解质,电极间距为7cm,电解时间为60~120min分钟,电流密度:60mA cm-2,在40℃的温度下,使用本实施例所得三维电极填料降解浓度为2500mg/L的苯酚化合物水溶液,在pH=8的条件下,电解时间为100min,苯酚降解率为78%。将反应液过滤,洗涤回收三维电极填料,再次以上述电解条件电解反应100min,苯酚降解率为76%。第三次 重复此步骤时,苯酚的降解率为72%。
实施例3
将直径为0.5-2mm的铁屑200g放入10%的氢氧化钠溶液中,在60℃下加热并超声处理40min后过滤,以便除油。所得固体用10%的稀硫酸浸泡30min后过滤,以便除锈。上述除油和除锈处理统称为对铁屑进行活化处理。将活化后的铁屑置于5%的硫酸铜溶液中,在60℃下加热反应60min,过滤,干燥,随后在500℃隔绝氧气下焙烧4小时。将冷却过的铁屑浸泡于配置好的1000mL镀镍液中,在超声条件下加热40℃镀镍40min,过滤,用蒸馏水洗涤3次,干燥,于700℃下隔绝空气焙烧4小时,得到改良铁屑。其中配置镀镍液的步骤包括:配制500ml的5%的硫酸镍溶液,依次加入柠檬酸钠30g、三乙醇胺18g;在搅拌条件下加入42g次磷酸钠固体,搅拌溶解,然后在搅拌下用10%氢氧化钠调节至pH为8,过滤,得到镀镍液。
将经过活化处理以及镀铜镀镍处理得到的改良铁屑、活性炭粉、混合黏土按2:4:3的比例——即质量百分比改良铁屑22%、活性炭44%以及混合黏土34%——均匀混合,其中,混合黏土由91%的高岭土和9%的膨润土组成。在上述混合物中加入少量的水,摇制成直径3-5mm的颗粒状,60℃真空烘干,放入马弗炉中,隔绝氧的条件下加热焙烧4小时,冷却得到三维电极填料。
为了检验三维电极填料处理含苯酚废水的能力,以石墨板(表面积50cm2)为阴极板,DSA电极(表面积50cm2)为阳极材料,1000mg/L的硫酸钠为电解质,电极间距为7cm,电解时间为60~120min分钟,电流密度:60mA cm-2,在40℃的温度下,使用本实施例所得三维电极填料降解浓度为2500mg/L的苯酚化合物水溶液,在pH=8的条件下,电解时间为100min,苯酚降解率为85%。将反应液过滤,洗涤回收三维电极填料,再次以上述电解条件电解反应100min,苯酚降解率为85%。第三次重复此步骤时,苯酚的降解率为81%。
本发明通过在铁屑表面电镀上了稳定的镍涂层,大大延长了铁碳填料的使用寿命。图1为依据本发明的三维电极填料与传统铁碳填料对含 苯酚废水的降解率随时间变化的曲线图。如图所示,采用本发明的三维电极填料处理含苯酚废水200min后,可以使苯酚的降解率达到80%以上,远高于传统铁碳填料的50%。回收再利用的三维电极填料对含苯酚废水的降解率高于70%,经多次反复使用后依然可实现高于60%的降解率,有效地提高了铁碳填料的利用率,降低了废水处理的成本。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Figure PCTCN2016103269-appb-000001

Claims (6)

  1. 一种三维电极填料,其特征在于,所述三维电极填料的组分及各组分质量百分比如下:改良铁屑10%-25%、活性炭35%-50%以及混合黏土30%-45%;以及
    所述混合黏土由质量百分比为85%-95%的高岭土和5%-15%的膨润土组成。
  2. 根据权利要求1所述的三维电极填料,其特征在于,所述三维电极填料由质量百分比如下的组分组成:改良铁屑25%、活性炭37.5%以及混合黏土37.5%;以及
    所述混合黏土由质量百分比为90%的高岭土和10%的膨润土组成。
  3. 根据权利要求1所述的三维电极填料,其特征在于,所述三维电极填料由质量百分比如下的组分组成:改良铁屑15%、活性炭45%以及混合黏土40%;以及
    所述混合黏土由质量百分比为89%的高岭土和11%的膨润土组成。
  4. 根据权利要求1所述的三维电极填料,其特征在于,所述三维电极填料由质量百分比如下的组分组成:改良铁屑22%、活性炭44%以及混合黏土34%;以及
    所述混合黏土由质量百分比为91%的高岭土和9%的膨润土组成。
  5. 一种制备三维电极填料的方法,其特征在于,包括以下步骤:
    步骤一:制备改良铁屑,其具体步骤包含:
    除油,将0.5-2mm的铁屑放入5%-15%的氢氧化钠溶液中,在50℃-80℃下加热并超声处理40min-100min后过滤;
    除锈,将经除油处理并过滤所得铁屑置于5%-20%的稀硫酸中浸泡10-30min后过滤;
    镀铜,将经除锈处理并过滤所得铁屑置于3%-7%的硫酸铜溶液中,在40-60℃下加热反应60min,过滤,干燥,于500℃下隔绝氧气下焙烧4小时;以及
    镀镍,将经镀铜处理所得铁屑浸泡于镀镍液中,在超声条件下加热 40~60℃处理40min,过滤,用蒸馏水洗涤3次,干燥,于600℃-800℃下隔绝空气焙烧4小时,得到改良铁屑;
    步骤二:将所述改良铁屑、活性炭以及混合黏土10%-25%、35%-50%以及30%-45%的质量百分比均匀混合,在该混合物中添加水,将其摇制成直径3-5mm的颗粒状;
    步骤三:将所述颗粒状铁碳填料60℃真空烘干,放入马弗炉中,在隔绝氧的条件下加热焙烧2-4小时,制得比表面积为0.4-1.0m2/g的三维电极填料。
  6. 根据权利要求5所述的方法,其特征在于,所述镀镍液的制备包括以下步骤:
    步骤一:配制500ml的3%-6%的硫酸镍溶液,依次加入柠檬酸钠20~35g、三乙醇胺10~15g;
    步骤二:在搅拌条件下加入25~45g次磷酸钠固体,搅拌溶解;
    步骤三:在搅拌下用10%氢氧化钠溶液调节至pH为8;以及
    步骤四:过滤,得到所述镀镍液。
PCT/CN2016/103269 2015-10-27 2016-10-25 一种三维电极填料及其制备方法 WO2017071564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510705791.2A CN105198048B (zh) 2015-10-27 2015-10-27 一种三维电极填料及其制备方法
CN201510705791.2 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017071564A1 true WO2017071564A1 (zh) 2017-05-04

Family

ID=54946083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103269 WO2017071564A1 (zh) 2015-10-27 2016-10-25 一种三维电极填料及其制备方法

Country Status (2)

Country Link
CN (1) CN105198048B (zh)
WO (1) WO2017071564A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039421A (zh) * 2019-12-12 2020-04-21 江苏京源环保股份有限公司 一种基于电化学的循环水在线除垢装置及除垢方法
CN111892175A (zh) * 2020-07-31 2020-11-06 江苏省农业科学院 一种多孔炭强化微生物挂膜载体材料的制备方法及应用
CN113087109A (zh) * 2021-03-25 2021-07-09 渤瑞环保股份有限公司 一种炼厂加氢催化剂再利用的铁碳材料、制备方法及应用
CN113104939A (zh) * 2021-04-15 2021-07-13 北京科技大学 一种利用冶金尘泥制备微电解活性焦填料的方法
CN115231712A (zh) * 2022-08-05 2022-10-25 盛世生态环境股份有限公司 人工湿地植物炭基铁碳微电解填料的制备方法及应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198048B (zh) * 2015-10-27 2018-01-02 雅本化学股份有限公司 一种三维电极填料及其制备方法
CN106809921B (zh) * 2017-01-17 2020-04-17 广西大学 一种高岭土基三维粒子电极的制备方法
CN106809922B (zh) * 2017-01-23 2019-04-19 五邑大学 一种多元金属微电解填料的制备方法
CN106757174B (zh) * 2017-02-23 2020-08-21 黄芃 一种电沉积制备金属粉末的方法
CN106882885A (zh) * 2017-03-07 2017-06-23 南昌大学 一种三维电极耦合铁碳微电解污水处理工艺
CN107032457A (zh) * 2017-04-13 2017-08-11 齐鲁工业大学 膨润土负载纳米零价铁在三维电极技术中的应用、造纸废水处理方法及粒子电极制备方法
CN110282704B (zh) * 2019-05-07 2022-03-04 广东省测试分析研究所(中国广州分析测试中心) 一种用于水处理的电化学改性填料
CN112794409A (zh) * 2020-12-28 2021-05-14 赵培棉 一种三维电极生物膜反应器
CN112723798B (zh) * 2020-12-30 2023-09-22 黑晶科技(嘉兴)有限公司 一种地质聚合物粒子三维电极的制备方法
CN113582297A (zh) * 2021-07-29 2021-11-02 北京林业大学 一种镍铁双元素负载的颗粒电极的制备方法及应用
CN113716655B (zh) * 2021-09-10 2022-11-22 吉林建筑大学 一种镍铁双金属三维电极粒子填料及其制备方法与应用
CN114409028B (zh) * 2022-02-11 2024-04-16 中海油天津化工研究设计院有限公司 一种用于废水处理的三维粒子电极及其制备方法
CN115893594A (zh) * 2022-12-08 2023-04-04 辽宁大学 一种负载锡、锑的改性活性炭粒子电极的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365218A (en) * 1976-11-25 1978-06-10 Agency Of Ind Science & Technol Electrolytic method for recovering silver from photographic spent solution
CN102001729A (zh) * 2009-09-03 2011-04-06 湖州四方格林自动化技术有限公司 含重金属废水的电解处理方法
CN103641207A (zh) * 2013-11-08 2014-03-19 华南理工大学 一种含锌电镀废水复合电解槽处理方法
CN104556307A (zh) * 2013-10-09 2015-04-29 中国石油化工股份有限公司 一种复合型微电解填料及其制备方法
CN105198048A (zh) * 2015-10-27 2015-12-30 雅本化学股份有限公司 一种三维电极填料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110160A (ja) * 1997-06-20 1999-01-19 Nec Corp 電解酸化水処理方法
CN101817574B (zh) * 2010-04-16 2012-06-13 吉林大学 规整化铁碳微电解填料制备方法
CN102040263B (zh) * 2010-11-17 2011-12-21 北京航空航天大学 一种微电解填料的改性方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365218A (en) * 1976-11-25 1978-06-10 Agency Of Ind Science & Technol Electrolytic method for recovering silver from photographic spent solution
CN102001729A (zh) * 2009-09-03 2011-04-06 湖州四方格林自动化技术有限公司 含重金属废水的电解处理方法
CN104556307A (zh) * 2013-10-09 2015-04-29 中国石油化工股份有限公司 一种复合型微电解填料及其制备方法
CN103641207A (zh) * 2013-11-08 2014-03-19 华南理工大学 一种含锌电镀废水复合电解槽处理方法
CN105198048A (zh) * 2015-10-27 2015-12-30 雅本化学股份有限公司 一种三维电极填料及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039421A (zh) * 2019-12-12 2020-04-21 江苏京源环保股份有限公司 一种基于电化学的循环水在线除垢装置及除垢方法
CN111892175A (zh) * 2020-07-31 2020-11-06 江苏省农业科学院 一种多孔炭强化微生物挂膜载体材料的制备方法及应用
CN111892175B (zh) * 2020-07-31 2022-07-19 江苏省农业科学院 一种多孔炭强化微生物挂膜载体材料的制备方法及应用
CN113087109A (zh) * 2021-03-25 2021-07-09 渤瑞环保股份有限公司 一种炼厂加氢催化剂再利用的铁碳材料、制备方法及应用
CN113104939A (zh) * 2021-04-15 2021-07-13 北京科技大学 一种利用冶金尘泥制备微电解活性焦填料的方法
CN113104939B (zh) * 2021-04-15 2022-07-05 北京科技大学 一种利用冶金尘泥制备微电解活性焦填料的方法
CN115231712A (zh) * 2022-08-05 2022-10-25 盛世生态环境股份有限公司 人工湿地植物炭基铁碳微电解填料的制备方法及应用

Also Published As

Publication number Publication date
CN105198048B (zh) 2018-01-02
CN105198048A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2017071564A1 (zh) 一种三维电极填料及其制备方法
CN109607699B (zh) 一种铁碳微电解填料及其制备方法
CN103539229B (zh) 一种去除多种有机化合物的粒子电极及其制备方法
CN103253741B (zh) 利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法
CN103539227B (zh) 含CuO中间层的负载Ag掺杂MnO2-CeO2活性氧化铝粒子电极的制备工艺
CN102040263B (zh) 一种微电解填料的改性方法
CN102385962B (zh) 一种三维电极反应器的绝缘粒子及制备与应用方法
CN109402678B (zh) 电解铜箔电解液中铅离子的去除方法
CN104261518B (zh) 一种锰炭催化内电解填料及其制备方法与应用
CN104961201A (zh) 水处理用铁碳微电解陶粒填料的制备方法
CN109437446A (zh) 一种锌-镍合金电镀废水处理工艺
CN110002546B (zh) 一种活化(Cu-Fe-Ce)/Al2O3纳米粒子电极的制备及其应用
CN113526752A (zh) 一种焦磷酸镀铜废水中铜、磷资源回收利用方法
Deng et al. Selective recovery of copper from electroplating sludge by integrated EDTA mixed with citric acid leaching and electrodeposition
CN107840415A (zh) 一种利用酸洗铁泥制备铁碳微电解填料的方法
CN106745538B (zh) 一种从次磷酸盐废水中回收单质磷的方法
CN108609694B (zh) 铁碳微电解填料的制备方法
CN109179801B (zh) 一种三价铬电镀废液的处理方法
CN108689455B (zh) 一种铁碳微电解填料及其使用方法
CN103553188B (zh) 用于高浓度有机废水处理的电催化粒子电极材料及制备工艺
CN103551164B (zh) 对含氮硫氧杂环化合物具有高效催化降解功能的电催化剂及制备方法
CN104150568B (zh) 一种催化微电解材料及其制备方法
CN114249390A (zh) 一种磷酸钴镍活性炭基颗粒电极的制备方法
CN113307262B (zh) 一种高度石墨化生物炭基材料的制备方法及其应用
CN112158920B (zh) 适用于外冷水处理的阳极材料、制备方法以及处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16858999

Country of ref document: EP

Kind code of ref document: A1