WO2017071116A1 - 废水处理方法和处理系统与分子筛制备方法和制备系统 - Google Patents

废水处理方法和处理系统与分子筛制备方法和制备系统 Download PDF

Info

Publication number
WO2017071116A1
WO2017071116A1 PCT/CN2016/000593 CN2016000593W WO2017071116A1 WO 2017071116 A1 WO2017071116 A1 WO 2017071116A1 CN 2016000593 W CN2016000593 W CN 2016000593W WO 2017071116 A1 WO2017071116 A1 WO 2017071116A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
unit
chamber
wastewater
electrodialysis
Prior art date
Application number
PCT/CN2016/000593
Other languages
English (en)
French (fr)
Inventor
刘中清
罗一斌
周丽娜
舒兴田
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510726164.7A external-priority patent/CN105540945A/zh
Priority claimed from CN201510726250.8A external-priority patent/CN105540743A/zh
Priority claimed from CN201510726216.0A external-priority patent/CN105540762A/zh
Priority claimed from CN201510725846.6A external-priority patent/CN105540944A/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to JP2018522000A priority Critical patent/JP6917369B2/ja
Priority to RU2018119084A priority patent/RU2730338C2/ru
Priority to EP16858567.7A priority patent/EP3369710B1/en
Priority to SG11201803576SA priority patent/SG11201803576SA/en
Publication of WO2017071116A1 publication Critical patent/WO2017071116A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/251Recirculation of permeate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2642Aggregation, sedimentation, flocculation, precipitation or coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2643Crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the invention relates to a method for treating wastewater and a treatment system thereof, and to a method for preparing a molecular sieve and a system for preparing a molecular sieve.
  • the TS-1 molecular sieve is a titanium silicon molecular sieve having an MFI structure. It has excellent selective oxidation performance and high catalytic activity, and exhibits good catalytic activity in organic oxidation reactions such as epoxidation of olefin, cyclohexanone oximation and oxidation of alcohol, and thus is widely used.
  • TS-1 molecular sieves are usually synthesized by a hydrothermal crystallization method using a directing agent.
  • CN1167082A discloses a method for preparing a titanium silicon molecular sieve having an MFI structure, which comprises dissolving a titanium source in an aqueous solution of tetrapropylammonium hydroxide and mixing with a solid silica gel pellet to obtain a reaction mixture, and the reaction mixture is The autoclave was hydrothermally crystallized at 130 to 200 ° C for 1-6 days, and then subjected to filtration, washing, drying and calcination to obtain a titanium silicon molecular sieve having an MFI structure.
  • CN1239015A discloses a preparation method of titanium silicon molecular sieve TS-1 having MFI structure, which first prepares a reaction mixture for synthesizing TS-1 molecular sieve, and the reaction mixture is in a sealed reaction kettle at 110-145. Pre-crystallization at ° C for 0.1-5 hours, then raising the temperature to 150-200 ° C to continue crystallization for 1 hour to 3 days, thereby obtaining a product.
  • CN1239016A discloses a method for preparing a titanium silicon molecular sieve TS-1 having an MFI structure, the method comprising the following steps:
  • the silicon source, the organic amine compound and water are hydrolyzed in a ratio of 0 to 40 ° C for 10 to 300 minutes to obtain a hydrolysis solution of silicon, wherein the organic amine compound is a fatty amine or an alcohol amine compound;
  • the titanium silica gel body obtained in the step (3) is hydrothermally cooled in a conventional manner in a sealed reaction vessel. Crystallize and then recycle the product.
  • titanium silicon molecular sieves such as titanium silica molecular sieve TS-1
  • a quaternary ammonium base such as tetrapropylammonium hydroxide
  • the templating agent has a structure guiding effect, and has a promoting effect on the formation of structural units, cages or pores of the molecular sieve, and is an indispensable raw material for synthesizing titanium silicon molecular sieve by hydrothermal synthesis.
  • the complete preparation process of the molecular sieve (as shown in FIG. 1) is: in the synthesis step, the titanium source, the silicon source, the templating agent and the water are reacted, and the obtained reaction mixture is hydrothermally crystallized. Then, the crystallization mixture is filtered and washed to obtain a molecular sieve product. As shown in Fig. 1, both the filtration and washing processes of the molecular sieve produce waste water, and the amount of waste water generated is high, and usually 1 ton of finished molecular sieve produces 10-20 tons of waste water.
  • the COD value of these wastewaters (potassium dichromate method) is as high as 50,000 or more, sometimes even as high as 100,000 or more.
  • the source of COD is mainly the templating agent tetrapropylammonium hydroxide used in the molecular sieve production process.
  • Organic amines are toxic and hazardous substances, and wastewater containing organic amines (ammonium) must be purified to meet water quality standards (COD values below 60 mg/L) before being discharged.
  • the existing treatment methods for organic amine (ammonium)-containing wastewater mainly include anaerobic oxidation, advanced oxidation, membrane separation, adsorption, and incineration.
  • CN104098228A discloses a method for treating organic amine wastewater, comprising the following steps:
  • the organic amine wastewater is pre-oxidized with Fenton or 03 to decompose toxic and harmful substances, improve the biodegradability of the wastewater, adjust the pre-oxidized wastewater to neutrality, and enter the sedimentation tank for 2-4 hours;
  • the precipitated wastewater is subjected to anaerobic treatment to remove organic matter
  • the anaerobic effluent is introduced into the anoxic-aerobic bioreactor to remove COD and nitrogen from the sewage;
  • the advanced oxidized effluent enters the aerated biological filter to control the residence time, dissolve the oxygen, and further remove the COD, so that the effluent reaches the standard discharge.
  • CN104211250A discloses a method for recovering organic amines from AK sugar industrial wastewater, comprising the steps of:
  • the lime powder is used to neutralize the wastewater, so that the pH value of the water is near neutral.
  • the lime powder is added in portions and stirred vigorously.
  • the neutralized calcium sulfate is removed by suction filtration, and the filtrate is adjusted to a pH of about 8 with soda ash in an evaporation tank.
  • the amine is released, and the fraction of the organic amine is fractionated by a fractionation column, and finally the organic amine is dried by molecular sieve drying and resin adsorption to obtain a recyclable organic amine.
  • CN104230077A discloses a method for treating organic amine wastewater containing phosphorus aluminum silicon, the method comprising the following steps:
  • the phosphorus-aluminum-silicon-containing organic amine wastewater is passed through a de-weighting tower, and the heavy components in the wastewater are concentrated and discharged from the tower kettle into a waste liquid spray drying system, and the light components obtained at the top of the de-weighting tower are brought into lightness.
  • the tower is further purified;
  • the degassing tower waste water is sent back to the molecular sieve crystallization unit for recycling.
  • the water and organic amine obtained from the top of the degassing tower are separated by liquid and liquid, and then the aqueous phase is returned to the de-lighting tower, and the obtained organic amine is purified into the purification tower. After recycling.
  • CN103304430A discloses a process for recovering organic amines from catalyst production wastewater, comprising:
  • the organic amine salt is reduced to an organic amine by anion resin exchange, the reduced organic amine is reused as a raw material for production, and the anion exchange resin is regenerated with NaOH.
  • CN102399032A discloses a method for treating an organic amine industrial wastewater by Fenton oxidation-coagulation, comprising the following steps:
  • the effective component of the catalyst of Fenton-like oxidation is: ferrous sulfate heptahydrate, copper sulfate anhydrous and manganese sulfate monohydrate, and the mass ratio of each component is (5-10):1:(0-5 );
  • sodium hydroxide is added to adjust the pH of the wastewater to 8-10, and a chemical coagulant and a polymer organic flocculant are added to coagulate a part of the suspended solids, colloids and some organic amines in the wastewater.
  • CN102079712A discloses a process for recovering anhydrous organic amines from organic amine salts by using a mixture of calcium oxide or calcium oxide content greater than 50% as a starting material and reacting with an organic amine salt to recover an anhydrous organic amine.
  • CN102151544A discloses an organic wastewater modified bentonite adsorbent, wherein the adsorbent is an adsorbent obtained by modifying an purified sodium or calcium bentonite by using an organic amine in an organic amine waste water as a modifier.
  • the agent is obtained by adding the purified bentonite powder to the organic amine wastewater and stirring at room temperature for 10 to 120 minutes, and then filtering to obtain an organic wastewater modified bentonite filter cake, which is dried and ground at 90-105 ° C to obtain organic wastewater.
  • the bentonite is modified, then placed in a muffle furnace and calcined, and cooled to room temperature.
  • CN103663609A discloses a method for microwave catalytic oxidation treatment of high COD organic wastewater.
  • the method irradiates microwaves on the surface of the microwave catalyst to produce a strong oxidizing group for oxidizing the high COD organic wastewater, and oxidatively decomposing organic substances such as organic amines into CO 2 and water or inorganic acid ions.
  • CN104529034A discloses a method for recovering tetrapropylammonium hydroxide in a catalyst production wastewater, wherein the nanofiltration membrane has a high removal rate for divalent or multivalent ions and organic substances having a molecular weight between 200 and 500, tetrapropyl.
  • Ammonium hydroxide molecules can be effectively separated by nanofiltration.
  • the pH of the wastewater is adjusted to 5-7 with hydrochloric acid with a mass fraction of 10%, the pressure of the nanofiltration unit is adjusted to 20 kg, and the pH-adjusted wastewater is injected into the nanofiltration inlet. After the nanofiltration interception, concentrated water and dilute water are obtained. The ratio of concentrated water to lean water is 1:5.
  • the concentrated water is continuously injected into the nanofiltration device, the pressure is increased to 25 kg, and further concentrated to obtain the concentrated water and the diluted water in the second step.
  • the ratio of concentrated water to dilute water is 1:2. Repeat the previous step for the third operation.
  • the pressure is controlled to 30kg.
  • the ratio of concentrated water to diluted water is 1:1. Finally, all the obtained diluted water is mixed.
  • the water is water after the raw water is concentrated 36 times.
  • CN104773787A discloses a method for reducing the chemical oxygen demand of zeolite molecular sieve production wastewater, comprising adding hydrogen peroxide to the zeolite molecular sieve production wastewater, and oxidatively degrading the organic nitrogen compound in the zeolite molecular sieve production wastewater under ultraviolet light irradiation, the organic
  • the nitrogen-containing compound is one or more of a quaternary ammonium salt, a quaternary ammonium base, and an organic amine.
  • CN104773786A discloses a method for reducing the total organic carbon content of zeolite molecular sieve wastewater, comprising adding hydrogen peroxide to the zeolite molecular sieve production wastewater under ultraviolet light irradiation.
  • the organic nitrogen-containing compound in the zeolitic molecular sieve production wastewater is oxidatively degraded, and the organic nitrogen-containing compound is one or more of a quaternary ammonium salt, a quaternary ammonium base, and an organic amine.
  • the invention provides a wastewater treatment method and a treatment system thereof, wherein the treatment of wastewater containing organic ammonium ions by electrodialysis is effective not only for reducing the content of organic ammonium ions in the wastewater, but also for the organic ammonium ions. Enrichment in electrodialysis lye to achieve recovery of organic ammonium ions.
  • the invention also relates to a process for the preparation of molecular sieves and a system for the preparation of molecular sieves.
  • a method of treating wastewater comprising at least one organic ammonium ion and optionally soluble silica, the method comprising optionally pretreating
  • the wastewater is subjected to electrodialysis to obtain dehydrated water having a reduced content of organic ammonium ions and an alkali solution containing organic ammonium ions, wherein the electrodialysis is carried out in at least one electrodialyser, the membrane stack of the electrodialyser having at least A membrane unit, at least a portion of the membrane unit, comprises a cation exchange membrane.
  • a wastewater treatment system which is a molecular sieve preparation process wastewater containing organic ammonium ions, comprising a wastewater storage unit, an optional pretreatment unit, a common electrodialysis unit, and / or bipolar membrane electrodialysis unit,
  • the wastewater storage unit is configured to receive and store wastewater
  • the optional pretreatment unit is configured to contact wastewater from the wastewater storage unit with at least one precipitating agent to form a colloid of silicon in the wastewater, and then perform solid-liquid separation to obtain a liquid phase and a solid phase;
  • the ordinary electrodialysis unit is configured to perform ordinary electrodialysis of the wastewater or the liquid phase to obtain a first desalinated water having a reduced organic ammonium ion content, and a concentrated liquid containing the organic ammonium ion;
  • the bipolar membrane electrodialysis unit is configured to perform bipolar membrane electrodialysis on the concentrated liquid output from the electrodialysis unit to obtain an acid solution, an alkali solution containing organic ammonium ions, and optionally a second desalinated water.
  • the common electrodialysis unit comprises At least one conventional electrodialyzer having a membrane stack having at least one membrane unit, at least a portion of the membrane unit being a cation exchange membrane and an anion exchange membrane, the cation exchange membrane and the anion exchange membrane being The internal space of the membrane unit is divided into a liquid chamber and a concentration chamber.
  • the bipolar membrane electrodialysis unit comprises at least one bipolar membrane electrodialyzer, and the membrane unit of the bipolar membrane electrodialyzer adopts one of the following modes, Two or three,
  • the membrane in the membrane unit is a bipolar membrane and a cation exchange membrane, the bipolar membrane and the cation exchange membrane separating the internal space of the membrane unit into an alkali chamber and a liquid chamber;
  • the membrane in the membrane unit is a bipolar membrane and an anion exchange membrane, the bipolar membrane and the anion exchange membrane separating the internal space of the membrane unit into an acid chamber and a liquid chamber;
  • the membrane in the membrane unit is a bipolar membrane, an anion exchange membrane, and a cation exchange membrane, the bipolar membrane, the anion exchange membrane, and the cation exchange membrane separating the internal space of the membrane unit into an acid chamber a liquid chamber and an alkali chamber, the liquid chamber being located between the acid chamber and the alkali chamber.
  • a process for the preparation of a molecular sieve which comprises a synthesis step, a crystallization step, a separation washing step and a wastewater treatment step,
  • the raw material is contacted with water, the raw material comprising a silicon source, an organic ammonium base, and optionally a titanium source;
  • the reaction mixture obtained in the synthesis step is crystallized
  • the mixture obtained in the crystallization step is subjected to solid-liquid separation to obtain a solid phase and a crystallization mother liquid, and the solid phase is washed to obtain a molecular sieve and a washing wastewater;
  • the wastewater is subjected to electrodialysis to obtain an alkali solution containing organic ammonium ions and desalinated water having a reduced content of organic ammonium ions, wherein the wastewater is the crystallized mother liquor, the washing wastewater or the crystal A mixed liquid of the mother liquor and the washing wastewater, wherein the wastewater is electrodialyzed by the method of the first aspect of the invention.
  • a molecular sieve preparation system comprising a synthesis unit, a crystallization unit, a separation washing unit, and a wastewater treatment unit,
  • the synthesis unit is for reacting a raw material with water, the raw material comprising a silicon source, an organic ammonium base, and optionally a titanium source;
  • the crystallization unit is used to crystallize the reaction mixture obtained in the synthesis step;
  • the separation washing unit is configured to perform solid-liquid separation of the mixture obtained by the crystallization step, Obtaining a solid phase and a crystallization mother liquor, and washing the solid phase to obtain molecular sieves and washing wastewater;
  • the wastewater treatment unit is configured to electrodialyze the wastewater to obtain an alkali solution containing organic ammonium ions and desalinated water having a reduced content of organic ammonium ions, wherein the wastewater is the crystallization mother liquor, the washing wastewater or the a mixture of a crystallization mother liquor and the washing wastewater, wherein the electrodialysis is carried out in at least one electrodialyser, the membrane stack of the electrodialyzer having at least one membrane unit, at least a portion of the membranes in the membrane unit comprising a cation Exchange membrane.
  • the cation exchange membrane is a styrene type homogeneous cation exchange membrane.
  • the present invention provides another wastewater treatment system which is a process for preparing molecular sieves containing organic ammonium ions, including desalination tanks, intermediate salt tanks, electrodialyzers, and bipolar membranes. a dialyzer, a lye tank, an acid tank, and optionally a desalinated water tank;
  • the membrane in the membrane unit of the electrodialyzer is a cation exchange membrane and an anion exchange membrane, thereby separating the internal space of the membrane unit into a liquid chamber and a concentration chamber; in the membrane unit of the bipolar membrane electrodialyser
  • the membrane is a bipolar membrane, a cation exchange membrane and an anion exchange membrane, thereby separating the internal space of the membrane unit into a liquid chamber, an acid chamber and an alkali chamber, the liquid chamber being located in the acid chamber and the alkali Between rooms;
  • the desalination tank is configured to receive wastewater and communicate with a liquid chamber of an electrodialyzer in the electrodialysis unit to provide water to the liquid chamber, and optionally to receive water from the liquid chamber;
  • the intermediate salt tank is in communication with a concentrating chamber of the electrodialyzer, providing water to the concentrating chamber and receiving effluent from the concentrating chamber, a liquid chamber of the bipolar membrane electrodialyzer and the intermediate salt
  • the tank is connected to receive the concentrated liquid output from the intermediate salt tank as the influent;
  • the lye tank is in communication with the alkali chamber of the bipolar membrane electrodialyser for receiving the alkali solution output from the alkali chamber of the bipolar membrane electrodialyzer and providing water for the alkali chamber of the bipolar membrane electrodialyzer ;
  • the acid tank is connected to the acid chamber of the bipolar membrane electrodialysis device for receiving the acid solution output from the acid chamber of the bipolar membrane electrodialyzer and providing water for the acid chamber of the bipolar membrane electrodialyzer;
  • the desalinated water tank is in communication with the lye tank and the acid tank, and is in communication with the desiccant tank or in communication with a liquid chamber of the electrodialyzer for receiving the first output of the desalination tank Desalination water or first desalinated water for receiving the liquid chamber output of the electrodialyzer while supplying water to the lye tank and the acid tank.
  • the invention adopts electrodialysis to treat wastewater containing organic ammonium ions, which can effectively To reduce the content of organic ammonium ions (especially tetrapropyl organic ammonium ions) in wastewater, and to obtain a concentrated liquid enriched with organic ammonium ions, thereby reducing the content of organic ammonium ions in wastewater, thereby reducing At the same time as the COD value of the wastewater, a concentrated liquid containing organic ammonium ions is recovered.
  • organic ammonium ions especially tetrapropyl organic ammonium ions
  • the method of the invention can treat the wastewater of the molecular sieve production process containing organic ammonium ions, and the recovered concentrated solution containing organic ammonium ions and desalinated water can be recycled, and the whole process basically does not generate effluent wastewater and solid waste, thereby realizing Effective reuse of resources.
  • Figure 1 is a typical process flow for preparing molecular sieves.
  • Figure 2 is an embodiment of the treatment of wastewater using two-chamber ordinary electrodialysis.
  • Figure 3 is an embodiment of the treatment of wastewater using two-chamber bipolar membrane electrodialysis.
  • Figure 4 is an embodiment of the treatment of wastewater using three-chamber bipolar membrane electrodialysis.
  • Fig. 5 is an embodiment of treating wastewater by ordinary electrodialysis-bipolar membrane electrodialysis.
  • Figure 6 is a diagram for explaining a molecular sieve preparation method and a molecular sieve preparation system according to the present invention.
  • Figure 7 is a diagram for explaining one embodiment of electrodialysis involved in the method and system according to the present invention.
  • Figure 8 is a diagram showing a first embodiment of bipolar membrane electrodialysis involved in the method and system of the present invention.
  • Figure 9 is a diagram showing a second embodiment of bipolar membrane electrodialysis involved in the method and system of the present invention.
  • Figure 10 is a diagram showing a third embodiment of bipolar membrane electrodialysis involved in the method and system of the present invention.
  • Figure 11 is a diagram for explaining a preferred embodiment of the molecular sieve preparation method and system according to the present invention.
  • Figure 12 is a further preferred embodiment of a method and system for the preparation of molecular sieves in accordance with the present invention.
  • the invention provides a method of treating wastewater comprising organic ammonium ions.
  • the organic ammonium ion refers to an ion formed by substitution of at least one of four hydrogens in NH 4 + with an organic group.
  • the organoammonium ion can be an organoammonium ion of formula I.
  • R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of H, C 1 -C 5 alkyl and C 6 -C 12 aryl, wherein R 1 , R 2 , R 3 and At least one of R 4 is not H.
  • the C 1 -C 5 alkyl group includes a C 1 -C 5 linear alkyl group and a C 3 -C 5 branched alkyl group, and specific examples thereof include a methyl group, an ethyl group, a n-propyl group, and an isopropyl group.
  • C 6 -C 12 aryl group may include, but are not limited to, phenyl, naphthyl, 4-methylphenyl, 2-methylphenyl, 3-methylphenyl, 4-ethyl Phenyl, 2-ethylphenyl and 3-ethylphenyl.
  • the organoammonium ion is a tetramethylammonium ion, a tetraethylammonium ion, a tetrapropylammonium ion, and a tetrabutylammonium ion.
  • the organoammonium ion is a tetrapropylammonium ion.
  • the organoammonium ion may be derived from an organic ammonium base and/or an organic ammonium salt.
  • the anion of the organic ammonium salt may be a common anion capable of forming a water-soluble salt with an organic ammonium ion, such as a halogen ion, preferably a chloride ion or a bromide ion.
  • the wastewater may be wastewater containing organic ammonium ions of various sources.
  • the wastewater is a molecular sieve preparation process wastewater using an organic ammonium base as a template, such as wastewater generated during the preparation of molecular sieves by a hydrothermal crystallization method using a directing agent.
  • the wastewater may be a crystallization mother liquor of a molecular sieve preparation process using an organic ammonium base, a washing wastewater of a molecular sieve preparation process using an organic ammonium base, or a mixture of the crystallization mother liquor and the washing wastewater.
  • the wastewater may contain impurities such as soluble silica in addition to the organic ammonium base.
  • the organic ammonium base may be an organic ammonium base suitable as a structure directing agent for molecular sieves. Specifically, the organic ammonium base is selected from the compounds of formula II,
  • R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of H, C 1 -C 5 alkyl and C 6 -C 12 aryl, wherein R 1 , R 2 , R 3 and At least one of R 4 is not H.
  • the C 1 -C 5 alkyl group includes a C 1 -C 5 linear alkyl group and a C 3 -C 5 branched alkyl group, and specific examples thereof include a methyl group, an ethyl group, a n-propyl group, and an isopropyl group.
  • C 6 -C 12 aryl group may include, but are not limited to, phenyl, naphthyl, 4-methylphenyl, 2-methylphenyl, 3-methylphenyl, 4-ethyl Phenyl, 2-ethylphenyl and 3-ethylphenyl.
  • the organic ammonium base is tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • the organic ammonium base is tetrapropylammonium hydroxide.
  • the molecular sieve may be a common molecular sieve prepared by a hydrothermal synthesis method using an organic ammonium base as a template, such as at least one of a titanium silica molecular sieve, a BETA molecular sieve, an SSZ-13 molecular sieve, and a Silicate-1.
  • the titanium silicon molecular sieve is a general term for a type of zeolite in which a titanium atom replaces a part of silicon atoms in a lattice skeleton, and may be a titanium-silicon molecular sieve of MFI structure (such as TS-1) or a titanium-silicon molecular sieve of MEL structure (such as TS-2).
  • titanium structure of titanium structure such as Ti-Beta
  • titanium silicon molecular sieve of MWW structure such as Ti-MCM-22
  • titanium silicon molecular sieve of hexagonal structure such as Ti-MCM-41, Ti-SBA-15
  • a MOR-structured titanium-silicon molecular sieve such as Ti-MOR
  • a TUN-structured titanium-silicon molecular sieve such as Ti-TUN
  • other structures of a titanium-silicon molecular sieve such as Ti-ZSM-48.
  • the molecular sieve is a titanium silica molecular sieve, preferably a titanium silica molecular sieve TS-1 and/or a hollow titanium silica molecular sieve.
  • the hollow titanium silicon molecular sieve is a titanium silicon molecular sieve of MFI structure
  • the crystal grain of the titanium silicon molecular sieve is a hollow structure
  • the cavity portion of the hollow structure has a radial length of 5 to 300 nm
  • the benzene adsorption amount is at least 70 mg/g
  • the hollow titanium silicon molecular sieve is commercially available (for example, a molecular sieve of the trade name HTS commercially available from Hunan Jianchang Petrochemical Co., Ltd.), and can also be prepared according to the method disclosed in CN1132699C.
  • the content of the organic ammonium ion in the wastewater is not particularly limited, depending on the source of the wastewater.
  • the concentration of the organic ammonium ion in the wastewater may be above 1000 mg/L, such as above 2000 mg/L, and may even be above 10000 mg/L, such as above 15000 mg/L.
  • the highest content of the organic ammonium ion in the wastewater is not particularly limited.
  • the concentration of the organic ammonium ion in the wastewater may be usually 35,000 mg/L or less, such as 30,000 mg/L or less.
  • the wastewater treatment method according to the present invention comprises electrodialysis of the wastewater to obtain a desalinated water having a reduced organic ammonium ion content and a concentrate containing the organic ammonium ion.
  • the electrodialysis is carried out in at least one electrodialyser having a membrane stack having at least one membrane unit, at least a portion of the membrane unit comprising a cation exchange membrane, preferably a homogeneous cation exchange membrane.
  • a cation exchange membrane preferably a homogeneous cation exchange membrane.
  • the homogeneous cation exchange membrane has better electrochemical performance and thus can obtain better electrodialysis effect.
  • the cation exchange membrane is preferably a styrene type homogeneous cation exchange membrane.
  • the inventors of the present invention found that, in the electrodialysis using a styrene-type homogeneous cation exchange membrane, unlike the inorganic ions such as Na + , the migration speed of the organic ammonium ions and the material of the homogeneous cation exchange membrane Closely related, using polyetheretherketone homogeneous cation exchange membrane, perfluoroethylenesulfonic acid homogeneous cation exchange membrane or polysulfone homogeneous cation exchange membrane for electrodialysis, even if a higher voltage is applied to the membrane unit, it can not be obtained well.
  • a material which is preferably a styrene-type homogeneous cation exchange membrane is not particularly limited and may be a conventional selection.
  • it may be a dry film of 1-3 meq/g, preferably a dry film of 1.5-3 meq/g, more preferably a dry film of 1.8-2.6 meq/g, such as a dry film of 2-2.6 meq/g.
  • the styrene type cation exchange membrane may have a membrane resistance of 1 to 15 ⁇ cm 2 , preferably 2 to 12 ⁇ cm 2 .
  • the film surface resistance of the styrene-type homogeneous cation exchange membrane is more preferably 4 to 9 ⁇ cm 2 from the viewpoint of further improving the electrodialysis effect.
  • the assembled form of the membrane unit may be conventional select.
  • the following is exemplified in conjunction with FIG. 2 to FIG. 5, but those skilled in the art can understand that the assembled form of the film unit is not limited to the examples shown in FIG. 2 to FIG. 5, and other assembly forms may be adopted.
  • electrodialysis using at least one membrane unit using a bipolar membrane is referred to as bipolar membrane electrodialysis
  • electrodialysis in which the membrane unit is not subjected to a bipolar membrane is referred to as ordinary electrodialysis
  • ordinary electrodialysis and bipolar membrane are used.
  • Electrodialysis is collectively referred to as electrodialysis.
  • " in all the drawings means that a plurality of film units are provided between the positive electrode and the negative electrode of the electrodialyzer, and these film units have the same film unit structure as that shown in the drawing. And thus not shown.
  • the electrodialysis is a conventional electrodialysis performed in the following manner.
  • the membrane in the membrane unit is a cation exchange membrane 1 and an anion exchange membrane 2
  • the cation exchange membrane 1 and the anion exchange membrane 2 divide the internal space of the membrane unit into a liquid chamber and a concentration chamber.
  • the wastewater enters the liquid chamber, and water (which can be deionized water and/or deuterated water obtained by electrodialysis) enters the concentration chamber.
  • the cation exchange membrane 1 is introduced into the concentrating compartment to obtain dehydrated water having a reduced organic ammonium ion content, and a concentrated liquid rich in organic ammonium ions is obtained.
  • the number of ordinary electrodialyzers using the above-described ordinary electrodialysis can be selected according to the treatment amount and the quality index of the desalinated water, and is not particularly limited.
  • the number of the conventional electrodialyzers may be one or more.
  • the plurality of ordinary electrodialyzers may be connected in series, may be connected in parallel, or may be a combination of series and parallel.
  • the series connection means that a plurality of electrodialyzers are connected together end to end to form a flow path of the fluid, and the desalinated water outputted from the upstream electrodialyzer is then entered into an electrodialyser directly connected thereto downstream. Electrodialysis is continued to achieve multi-stage electrodialysis.
  • the parallel connection means that the plurality of electrodialyzers have the same influent source, and form a tributary which has no logistics connection with each other but has the same source, thereby realizing parallel processing of multiple machines and improving the processing capacity of the apparatus.
  • the combination of series and parallel means that when a plurality of electrodialys are used in combination, parallel and series are used in combination, and as an example of a combination of series and parallel, a plurality of sets of electrodialyzers may be provided, between each group.
  • each group is connected in series, which can achieve multi-stage electrodialysis and obtain high processing capacity.
  • the electrodialysis is bipolar membrane electrodialysis.
  • Bipolar membrane Electrodialysis can be carried out by a conventional method. Specifically, the bipolar membrane electrodialysis is a bipolar membrane electrodialyser performed in one of the following manners.
  • the membrane in the membrane unit is a bipolar membrane 3 and a cation exchange membrane 1, and the bipolar membrane 3 and the cation exchange membrane 1 separate the internal space of the membrane unit into an alkali chamber and a material.
  • Liquid chamber During electrodialysis, the wastewater enters the liquid chamber, and water (which can be deionized water and/or deuterated water obtained by electrodialysis) enters the alkali chamber.
  • the organic ammonium ions in the wastewater in the liquid chamber And other cations enter the alkali chamber through the cation exchange membrane to form an alkali solution; an acid liquid having a reduced organic ammonium ion content (ie, desalinated water) is obtained in the liquid chamber.
  • an acid liquid having a reduced organic ammonium ion content ie, desalinated water
  • the membrane stack of the bipolar membrane electrodialyzer has at least one membrane unit in the membrane unit
  • the membrane is a bipolar membrane 3 and an anion exchange membrane 2, the bipolar membrane 3 and the anion exchange membrane 2 separating the internal space of the membrane unit into an acid chamber and a liquid chamber, the wastewater or the liquid phase Entering the liquid chamber, water enters the acid chamber, and in the electrodialysis process, an alkali liquid containing organic ammonium ions is obtained from the liquid chamber, and an acid liquid is obtained from the acid chamber;
  • the membrane in the membrane unit is a bipolar membrane 3, an anion exchange membrane 2, and a cation exchange membrane 1, and the bipolar membrane 3, the anion exchange membrane 2, and the cation exchange membrane 1
  • the internal space of the unit is divided into an acid chamber, a liquid chamber and an alkali chamber, and the liquid chamber is located between the acid chamber and the alkali chamber.
  • water which can be deionized water and/or deuterated water obtained by electrodialysis
  • the organic ammonium ion and other cations enter the alkali chamber through the cation exchange membrane 1 to form an alkali solution; the anion in the wastewater enters the acid chamber through the anion exchange membrane 2 to form an acid solution; and the organic ammonium ion content is obtained in the liquid chamber. Reduced desalinated water.
  • the first mode, the second mode, and the third mode may be used alone or in combination.
  • mode one or mode two and mode three may be implemented in different film units of the same bipolar membrane electrodialyser, or in different bipolar membrane electrodialyzers.
  • the bipolar membrane electrodialyzers of the first mode or the second mode and the third mode are respectively combined, and the bipolar membrane electrodialyser adopting the mode one or the second mode and the bipolar membrane electrodialyser adopting the third mode can be used.
  • the series connection may also be connected in parallel, and may also be a combination of series and parallel.
  • mode one and mode three may They can be used alone or in combination.
  • the first mode and the third mode may be implemented in different membrane units of the same bipolar membrane electrodialyser, or may be implemented in different bipolar membrane electrodialyzers.
  • the bipolar membrane electrodialyser adopting the first method and the bipolar membrane electrodialyser adopting the third method are combined, and the bipolar membrane electrodialyser adopting the first method and the bipolar membrane electrodialysis using the third method are adopted.
  • the devices may be connected in series or in parallel, or may be a combination of series and parallel.
  • the bipolar membrane electrodialyser adopting the first mode is connected in series with the bipolar membrane electrodialyser adopting the third mode, and more preferably, the bipolar membrane electrodialyser adopting the mode one is located in the bipolar membrane electric battery adopting the third mode.
  • the desalinated water output by the bipolar membrane electrodialyser of the first mode can be used as the influent water to be further diluted in the liquid chamber of the bipolar membrane electrodialyzer adopting the third mode.
  • a plurality of bipolar membrane electrodialyzers adopting mode 1 may be connected in parallel and/or in series with a bipolar membrane electrodialyser adopting mode three.
  • the number of bipolar membrane electrodialyzers adopting mode three may also be There may be multiple, and may be connected in series and/or in parallel with each other.
  • the number of the bipolar membrane electrodialyser using the first method and the bipolar membrane electrodialyser using the third method can be selected according to the treatment amount of the wastewater, and is not particularly limited.
  • the first embodiment is ordinary electrodialysis
  • the second embodiment is bipolar membrane electrodialysis
  • the ordinary electrodialysis can also be used in combination with the bipolar membrane electrodialysis.
  • the ordinary electrodialysis and the bipolar membrane electrodialysis may be connected in series, may be connected in parallel, or may be a combination of series and parallel.
  • the ordinary electrodialysis may be located upstream of the bipolar membrane electrodialysis or downstream of the bipolar membrane electrodialysis.
  • the electrodialysis comprises ordinary electrodialysis and bipolar membrane electrodialysis.
  • the membrane in the common electrodialyzed membrane unit is a cation exchange membrane 1 and an anion exchange membrane 2, and the anion exchange membrane 2 and the cation exchange membrane 1 will be the membrane unit.
  • the internal space is divided into a liquid chamber (referred to as a first liquid chamber in the preferred embodiment) and a concentrating chamber.
  • the membrane in the membrane unit of the bipolar membrane electrodialysis is bipolar membrane 3, anion exchange membrane 2 and cation exchange membrane 1, bipolar membrane 3, anion exchange
  • the membrane 2 and the cation exchange membrane 1 separate the internal space of the membrane unit into An acid chamber, a liquid chamber (referred to as a second liquid chamber in the preferred embodiment), and an alkali chamber, the second liquid chamber being located between the acid chamber and the alkali chamber.
  • the wastewater is electrodialyzed into a first liquid chamber of ordinary electrodialysis to obtain a first desalinated water
  • a first desalinated water herein, for the sake of clarity, in the preferred embodiment,
  • the diluted water obtained by ordinary electrodialysis is referred to as first desalinated water, and the concentrated liquid containing organic ammonium ions;
  • the concentrated liquid is sent to the second liquid chamber of the bipolar membrane electrodialysis for bipolar membrane electricity Dialysis to obtain a second desalinated water
  • the desalinated water obtained by bipolar membrane electrodialysis is referred to as second desalinated water
  • the acid solution and the organic ammonium-containing group Ionic lye.
  • the anion through the anion exchange membrane is usually a conventional inorganic ion, and various anion exchange membranes sufficient for anion to pass can be used.
  • the anion exchange membrane may be a heterogeneous anion exchange membrane or a homogeneous anion exchange membrane.
  • the anion exchange membrane is preferably a homogeneous anion exchange membrane from the viewpoint of further increasing the service life of the anion exchange membrane.
  • the material of the anion exchange membrane is also not particularly limited and may be a conventional choice, and may be, for example, a styrene type anion exchange membrane, a polysulfone anion exchange membrane, a polyetheretherketone anion exchange membrane, and a perfluoroethylenesulfonic acid type anion.
  • a styrene type anion exchange membrane a polysulfone anion exchange membrane, a polyetheretherketone anion exchange membrane, and a perfluoroethylenesulfonic acid type anion.
  • the specific parameters of the anion exchange membrane are also not particularly limited and may be conventionally selected.
  • the anion exchange membrane may have an ion exchange capacity of from 0.5 to 5 meq/g dry film, preferably from 1 to 4 meq/g dry film, more preferably from 2 to 2.5 meq/g dry film.
  • the membrane exchange resistance of the anion exchange membrane may be from 1 to 15 ⁇ cm 2 , preferably from 2 to 12 ⁇ cm 2
  • the type of the bipolar membrane used in the bipolar membrane electrodialysis is not particularly limited and may be a conventional selection and will not be described in detail herein.
  • the magnitude of the voltage applied to the membrane stack applied to the electrodialyser during electrodialysis can be selected in accordance with the manner of electrodialysis.
  • the voltage applied to each membrane unit may be from 0.1 to 5 V, preferably from 0.5 to 4 V, more preferably from 1 to 3 V.
  • the voltage applied to each membrane unit can be from 0.1 to 8 V, preferably from 1 to 6 V, more preferably from 2 to 5 V.
  • the type of the polar liquid used in the anode chamber and the cathode chamber of the electrodialyzer is not particularly limited in performing electrodialysis, and may be a conventional selection.
  • the polar liquid can be obtained by dissolving at least one electrolyte in water.
  • the concentration of the electrolyte may be conventionally selected, and may generally be 0.1 to 50% by weight, preferably 0.1 to 40% by weight, more preferably 0.5 to 25% by weight, still more preferably 1 to 20% by weight, still more preferably 2 to 10% by weight. % by weight, particularly preferably from 2.5 to 5% by weight.
  • the electrolyte may be various electrolytes commonly used in the art, such as inorganic electrolytes and/or organic electrolytes.
  • the electrolyte may be sodium sulfate, sodium nitrate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium nitrate, potassium phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, sodium hydroxide, potassium hydroxide, formic acid.
  • acetic acid, sodium formate, potassium formate and an organic ammonium type electrolyte may be sodium sulfate, sodium nitrate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium nitrate, potassium phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, sodium hydroxide, potassium hydroxide, formic acid.
  • acetic acid sodium formate, potassium formate and an organic ammonium type electrolyte.
  • the organic ammonium type electrolyte may be various water-soluble organic ammonium type electrolytes, preferably one or more of tetramethylammonium chloride, tetramethylammonium bromide, and tetramethylammonium hydroxide.
  • the electrodialysis can be carried out at a normal temperature.
  • the electrodialysis can be carried out at a temperature of 0 to 50 ° C, preferably 5 to 40 ° C, more preferably 10 to 35 ° C.
  • the duration of the electrodialysis may be selected depending on the nature of the wastewater and the composition of the expected desalinated water, and is not particularly limited.
  • wastewater containing organic ammonium ions of various sources can be treated to reduce the COD value of water while obtaining a concentrate (alkali) containing organic ammonium ions.
  • a concentrate alkali
  • recycling requirements For example, when the wastewater treatment method according to the present invention is used to treat wastewater from the preparation process of a molecular sieve using an organic ammonium base as a templating agent, the recovered concentrate (organic solution) containing organic ammonium ions can be recycled for molecular sieves.
  • the synthesis process serves as at least a part of the alkali source, and the desalinated water can be used as a reaction water in the synthesis process, and can also be used in the crystallization step as water for terminating crystallization, and can also be used for washing water.
  • the content of the organic ammonium ion in the desalinated water can be selected according to the intended use of the desalinated water. Specifically, when the wastewater of the molecular sieve preparation process is treated by the method of the present invention, and the obtained desalinated water is recycled for the molecular sieve synthesis process, the crystallization process, and the washing process, it is preferred to obtain the organic ammonium ion in the desalinated water.
  • the concentration is 2000 mg/L or less, more preferably 1700 mg/L or less, further 1000 mg/L or less, still more preferably 550 mg/L or less, particularly preferably 500 mg/L or less, such as 450 mg/L or less, or even 400 mg/L or less.
  • the desalinated water having the above-described organic ammonium ion content can be obtained with a shorter electrodialysis time.
  • a pretreatment step of wastewater in which the wastewater is subjected to solid-liquid separation to obtain a solid phase and a liquid phase, and the liquid phase is obtained. It is sent to the wastewater treatment step for electrodialysis. More preferably, the wastewater is contacted with at least one precipitant to form a colloid of silicon in the wastewater prior to solid-liquid separation of the wastewater, wherein the precipitant is preferably selected from the group consisting of acids, divalent, trivalent and tetravalent metals.
  • the salt is more preferably a tetravalent metal salt such as titanium tetrachloride, titanium oxysulfate or the like. Among them, titanium tetrachloride and titanium oxysulfate can more advantageously obtain desalinated water having a reduced silicon content.
  • the present invention also provides a wastewater treatment system which is a molecular sieve preparation process wastewater containing organic ammonium ions, including a wastewater storage unit, an optional pretreatment unit, and ordinary electrodialysis. Unit and / or bipolar membrane electrodialysis unit.
  • a wastewater treatment system which is a molecular sieve preparation process wastewater containing organic ammonium ions, including a wastewater storage unit, an optional pretreatment unit, and ordinary electrodialysis. Unit and / or bipolar membrane electrodialysis unit.
  • the wastewater storage unit is for receiving and storing wastewater.
  • the waste water storage unit may adopt a hollow container such as a common tank to receive and store waste water.
  • the wastewater treatment system preferably includes the pretreatment unit for contacting wastewater from the wastewater storage unit with at least one precipitating agent to form a colloid after the silicon in the wastewater is subjected to solid-liquid separation. , the liquid phase and the solid phase are obtained.
  • the precipitating agent may be selected from the group consisting of AlCl 3 , polyaluminum, acid and base.
  • the precipitating agent is selected from the group consisting of acid, divalent, trivalent, and tetravalent metal salts, preferably tetravalent metal salts such as titanium tetrachloride, titanyl sulfate, and the like.
  • titanium tetrachloride and titanium oxysulfate can more advantageously obtain desalinated water having a reduced silicon content.
  • the pretreatment unit may include a reactor for contacting the wastewater with a precipitating agent.
  • the pretreatment unit may also comprise a conventional solid-liquid separation device, such as a filtration device, a centrifugal device or a combination of two or more separation devices, preferably comprising a filtration device.
  • the filtering device may employ one or a combination of two or more of various conventional filter media such as a woven fabric, a porous material, a solid particle layer, and a porous film.
  • the porous film may be an organic film, an inorganic film, or a combination of two or more porous films.
  • the inorganic film may be a ceramic film and/or a metal film, and the organic film may be a hollow fiber film.
  • a porous membrane is used as the filter medium. More preferably, an ultrafiltration membrane is used as the filter medium.
  • the pretreatment unit is used to reduce the content of precipitated species (such as silicon) and/or solid matter in the wastewater to avoid the ion exchange membrane and/or ion species in the electrodialysis process. Or the formation of scale on the surface of the bipolar membrane, thereby affecting the electrodialysis effect and shortening the service life of the ion exchange membrane.
  • the pretreatment unit may not be provided when the content of the species that can form a precipitate in the wastewater and the solid matter are low and do not significantly affect electrodialysis.
  • the ordinary electrodialysis unit is used for performing ordinary electrodialysis of the liquid phase output from the wastewater or the pretreatment unit to obtain the first desalinated water with reduced organic ammonium ion content and containing organic A concentrate of ammonium ions.
  • the electrodialyzer used in the ordinary electrodialysis unit electrolyzes the liquid phase output from the solid-liquid separation unit. As shown in FIG.
  • the ordinary electrodialysis is in a common electrodialyser, wherein the membrane stack of the ordinary electrodialyzer has at least one membrane unit, and at least a part of the membrane unit is a cation exchange membrane 1 and an anion exchange membrane 2
  • the cation exchange membrane 1 and the anion exchange membrane 2 divide the internal space of the membrane unit into a liquid chamber and a concentration chamber.
  • the wastewater or the liquid phase obtained by the pretreatment unit enters the liquid chamber, and the water (which may be deionized water and/or desalinated water) enters the concentration chamber.
  • the wastewater or the pretreatment The organic ammonium ions and other cations in the liquid phase obtained by the processing unit enter the concentrating chamber through the cation exchange membrane 1, while the wastewater or the anions in the liquid phase obtained by the pretreatment unit pass through the anion exchange membrane 2 to enter another In a side concentrating compartment (not shown in Fig. 7), a first desalinated water having a reduced organic ammonium ion content is obtained, and at the same time, a concentrated liquid enriched in organic ammonium ions is obtained.
  • the voltage applied to each membrane unit is generally in the range of 0.1 to 5 V, preferably in the range of 0.5 to 4 V, more preferably in the range of 1 to 3 V, for example, 1.5 to 3 V. In the range.
  • the content of the organic ammonium ion in the first desalinated water obtained by ordinary electrodialysis can be selected according to the intended use of the first desalinated water. Specifically, when the first desalinated water is recycled to the molecular sieve synthesis process, the mass content of the organoammonium ions in the first desalinated water is preferably 2000 ppm or less, more preferably 1000 mg/L or less, and even more preferably 600 mg/L. the following.
  • the concentrate obtained by the above conventional electrodialysis is subjected to bipolar membrane electrodialysis to obtain an acid solution, an alkali solution containing an organic ammonium ion, and optionally a second desalinated water.
  • the bipolar membrane electrodialysis unit is configured to perform bipolar membrane electrodialysis on a concentrate output from a common electrodialysis unit to obtain an acid solution, an alkali solution containing organic ammonium ions, and optionally a second desalinated water.
  • the bipolar membrane electrodialyzer used in the bipolar membrane electrodialysis unit performs bipolar membrane electrodialysis on the concentrated liquid output from the ordinary electrodialysis unit.
  • the bipolar membrane electrodialysis can be carried out in a two-chamber bipolar membrane electrodialyzer, or in a three-chamber bipolar membrane electrodialyser, or a two-chamber bipolar membrane electrodialyser and a three-chamber bipolar membrane can be used simultaneously. Electrodialysis unit.
  • the bipolar membrane electrodialysis can be carried out in one, two or three of the following manners.
  • a chamber for receiving a cation penetrating the cation exchange membrane is referred to as an alkali chamber, and a cation concentrate output from the alkali chamber is referred to as a lye;
  • a chamber for receiving an anion penetrating the anion exchange membrane is referred to as an acid chamber, and a cation concentrate output from the acid chamber is referred to as an acid solution.
  • the membrane stack of the electrodialyzer has at least one membrane unit, as shown in Fig. 8, at least part of the membrane unit is a bipolar membrane 3 and a cation exchange membrane 1, and the bipolar membrane 3 and the cation exchange membrane 1 are
  • the internal space of the membrane unit is divided into an alkali chamber and a liquid chamber.
  • the concentrated liquid obtained by the above conventional electrodialysis enters the liquid chamber, and water (which may be deionized water and/or deuterated water obtained by electrodialysis) enters the alkali chamber during the electrodialysis of the bipolar membrane.
  • An acid solution is obtained from the liquid chamber, and an alkali solution containing an organic ammonium ion is obtained from the alkali chamber.
  • the membrane stack of the electrodialyzer has at least one membrane unit, as shown in FIG. 9, at least part of the membrane unit is a bipolar membrane 3 and an anion exchange membrane 2, and the bipolar membrane 3 and the anion exchange membrane 2 are The internal space of the membrane unit is divided into an acid chamber and a liquid chamber.
  • the concentrated liquid obtained by the above conventional electrodialysis enters the liquid chamber, and water (which may be deionized water and/or deuterated water obtained by electrodialysis) enters the acid chamber, and during bipolar membrane electrodialysis, An alkali solution containing an organic ammonium ion is obtained from the liquid chamber, and an acid solution is obtained from the acid chamber.
  • the membrane stack of the electrodialyzer has at least one membrane unit, as shown in FIG. 10, at least part of the membrane unit is a bipolar membrane 3, an anion exchange membrane 2, and a cation exchange membrane 1, a bipolar membrane 3, an anion
  • the exchange membrane 2 and the cation exchange membrane 1 separate the internal space of the membrane unit into an acid chamber, a liquid chamber and an alkali chamber, the liquid chamber being located between the acid chamber and the alkali chamber.
  • the concentrated liquid obtained by the above conventional electrodialysis enters the liquid chamber, and water (which may be deionized water and/or deuterated water obtained by electrodialysis) enters the acid chamber and the alkali chamber, respectively, in electrodialysis
  • water which may be deionized water and/or deuterated water obtained by electrodialysis
  • an acid solution is obtained from the acid chamber
  • an alkali solution containing an organic ammonium ion is obtained from the alkali chamber
  • a second desalinated water is optionally obtained from the liquid chamber.
  • mode 1 or mode 2 and mode 3 may be used singly or in combination.
  • mode 1 or mode 2 and mode 3 may be implemented in different membrane units of the same bipolar membrane electrodialyser, or in different bipolar membrane electrodialyzers.
  • the bipolar membrane electrodialyzers of the mode 1 or the mode 2 and the mode 3 are respectively combined, and the bipolar membrane electrodialyser adopting the mode 1 or the mode 2 and the bipolar membrane electrodialyser adopting the mode 3 can be used.
  • the series connection may also be connected in parallel, and may also be a combination of series and parallel.
  • the series connection means that a plurality of bipolar membrane electrodialyzers are connected end to end to form a fluid flow path, and the desalinated water outputted from the upstream bipolar membrane electrodialyser is directly connected to the downstream.
  • the parallel connection means that the plurality of bipolar membrane electrodialyzers have the same influent source, and form a tributary which has no logistics connection with each other but has the same source, thereby realizing parallel processing of multiple machines and improving the throughput of the device. .
  • the combination of series and parallel means that when a plurality of bipolar membrane electrodialyzers are used in combination, parallel and series mixing are used, and as an example of series and parallel combination, multiple sets of bipolar membrane electrodialysis can be set.
  • Each group is connected in parallel, and each group is connected in series, which can realize multi-stage bipolar membrane electrodialysis and obtain high processing amount.
  • the bipolar membrane electrodialysis is carried out in the above manner 3, so that not only the organic ammonium base can be recovered, but also the acid solution can be obtained at the same time.
  • the acid solution can be recycled.
  • the cation exchange membrane used in the ordinary electrodialysis unit and the bipolar membrane electrodialysis unit may be a heterogeneous or homogeneous cation exchange membrane, preferably a styrene type Phase cation exchange membrane.
  • the styrene-type homogeneous cation exchange membrane has been described in detail above and will not be described in detail herein.
  • the conventional electrodialyzer and the bipolar membrane electrodialyser preferably each include at least one voltage regulating element and at least one current detecting element.
  • the current detecting element is used to detect the current intensity in a common electrodialyser and a bipolar membrane electrodialyzer.
  • the voltage regulating unit is configured to adjust the voltage according to the current intensity measured by the current detecting component so as to be within a range required by the current density processing, for example, within the numerical range described above. Methods for adjusting the voltage to control the current density based on the magnitude of the detected current intensity are well known in the art and will not be described in detail herein.
  • the wastewater treatment system according to the present invention preferably further includes a first circulation unit and/or a second circulation unit for feeding the acid liquid output from the bipolar membrane electrodialysis unit to the pretreatment unit as at least Partially precipitating agent; the second circulating unit is used for feeding the first desalinated water and/or the second desalinated water into a common electrodialysis unit and/or a bipolar membrane electrodialysis unit, as a common electrodialysis water and/or double Polar membrane electrodialysis water.
  • the acid solution can be sent directly to the pretreatment unit or it can be used for the pretreatment unit after concentration and/or dilution.
  • a process for the preparation of a molecular sieve comprising a synthesis step, a crystallization step, a separation washing step and a wastewater treatment step.
  • the feedstock is contacted with water, the feedstock comprising a source of silicon, an organic ammonium base, and optionally a source of titanium.
  • the type of the silicon source of the present invention is not particularly limited and may be a conventional one, and may be, for example, a silica sol and/or an organosilicon compound.
  • the organosilicon compound can be variously hydrolyzed A silicon-containing compound capable of forming silicon dioxide under condensation reaction conditions.
  • the organic silicon source may be one or more selected from the group consisting of silicon-containing compounds represented by Formula III.
  • each of R 5 , R 6 , R 7 and R 8 may be a C 1 -C 4 alkyl group, including a C 1 -C 4 linear alkyl group and a C 3 -C 4 branched alkyl group.
  • each of R 5 , R 6 , R 7 and R 8 may be methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl or tert-butyl.
  • the silicone source may be one or more of tetramethyl orthosilicate, tetraethyl orthosilicate, tetra-n-propyl orthosilicate, and tetra-n-butyl orthosilicate.
  • the feedstock may also contain other materials, such as a source of titanium.
  • the titanium source may be a conventional one and is not particularly limited.
  • the source of titanium may be an inorganic titanium salt and/or an organic titanate, preferably an organic titanate.
  • the inorganic titanium salt may be TiCl 4 , Ti(SO 4 ) 2 or TiOCl 2 ;
  • the organic titanate may be a compound represented by the general formula R 9 4 TiO 4 , wherein R 9 is a C 1 -C 6
  • the alkyl group is preferably a C 2 -C 4 alkyl group.
  • the organic ammonium base may be an organic ammonium base suitable as a structure directing agent for molecular sieves. Specifically, the organic ammonium base is selected from the compounds of formula II,
  • R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of H, C 1 -C 5 alkyl and C 6 -C 12 aryl, wherein R 1 , R 2 , R 3 and At least one of R 4 is not H.
  • the C 1 -C 5 alkyl group includes a C 1 -C 5 linear alkyl group and a C 3 -C 5 branched alkyl group, and specific examples thereof include a methyl group, an ethyl group, a n-propyl group, and an isopropyl group.
  • C 6 -C 12 aryl group may include, but are not limited to, phenyl, naphthyl, 4-methylphenyl, 2-methylphenyl, 3-methylphenyl, 4-ethyl Phenyl, 2-ethylphenyl and 3-ethylphenyl.
  • the organic ammonium base is tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. More preferably, the organic ammonium base is tetrapropylammonium hydroxide.
  • the ratio between the silicon source, the organic ammonium base, the optional titanium source, and the water according to the molecular sieve Depending on the specific type, it can be a regular choice and will not be described in detail in this article.
  • the reaction mixture obtained in the synthesis step is crystallized.
  • the crystallization can be carried out under ordinary conditions. Generally, the crystallization treatment can be carried out in a closed environment.
  • the temperature of the crystallization treatment may be from 110 to 180 °C.
  • the crystallization treatment time may be from 6 to 72 hours.
  • the molecular sieve can also be prepared by referring to conditions known in the art, as long as the molecular sieve is used in the preparation process using an organic ammonium compound (generally an organic ammonium base), for example, CN1167082A, CN1239015A and CN1239016A.
  • an organic ammonium compound generally an organic ammonium base
  • CN1167082A CN1239015A
  • CN1239016A Molecular sieve preparation method.
  • the separation washing step the mixture obtained in the crystallization step is subjected to solid-liquid separation to obtain a solid phase and a crystallization mother liquid, and the solid phase is washed to obtain a molecular sieve and washing wastewater.
  • the method of solid-liquid separation may be a conventional selection such as filtration, centrifugation or a combination of two or more separation methods, and the mixture obtained by the crystallization step is preferably separated by filtration.
  • one or a combination of two or more kinds of common various filter media such as a woven fabric, a porous material, a solid particle layer, and a porous film may be employed.
  • the porous film may be an organic film, an inorganic film, or a combination of two or more porous films.
  • the inorganic film may be a ceramic film and/or a metal film, and the organic film may be a hollow fiber film.
  • a fabric is used as the filter medium.
  • the filtration can be carried out in conventional filtration equipment such as plate and frame filters, belt filters.
  • the wastewater is subjected to electrodialysis to obtain a concentrated solution containing organic ammonium ions and the desalinated water, wherein the wastewater is the crystallization mother liquid and/or the washing wastewater, wherein the first invention of the present invention is used.
  • the method described in the aspect electrodialyzes the wastewater, preferably using electrodialysis as described in connection with Figures 4 and 5, particularly preferably electrodialysis as described in connection with Figure 5.
  • the wastewater is preferably subjected to a pretreatment to remove suspended matter and silicon in the wastewater prior to electrodialysis using the method of the first aspect of the invention.
  • the method of the pretreatment may be a conventional method.
  • at least one precipitant may be added to the wastewater to form a colloidal precipitate of silicon in the wastewater, thereby recovering silicon in the wastewater (recovered silicon may be recycled to the synthesis step as a source of silicon).
  • the precipitating agent may be selected from the group consisting of AlCl 3 , polyaluminum, acid and base.
  • the precipitating agent comprises an acid, a divalent, trivalent or tetravalent metal salt, preferably a tetravalent metal salt such as titanium tetrachloride, titanyl sulfate or the like.
  • a tetravalent metal salt such as titanium tetrachloride, titanyl sulfate or the like.
  • titanium tetrachloride and titanium oxysulfate can more advantageously obtain desalinated water having a reduced silicon content.
  • the base is preferably an inorganic base, more preferably selected from the group consisting of alkali metal hydroxides and aqueous ammonia, further preferably selected from the group consisting of sodium hydroxide, potassium hydroxide and aqueous ammonia, most preferably sodium hydroxide.
  • the base is preferably provided in the form of an aqueous solution, and the concentration of the aqueous solution of the base is not particularly limited, and may be a conventional concentration depending on the specific kind of the base.
  • a flocculant and/or a filter aid may also be added to improve the filtration performance of the silica gel body.
  • At least one acid is added to the wastewater to form a colloidal precipitate of silicon in the wastewater, and solid-liquid separation is performed to pretreat the wastewater.
  • Silica gel is a kind of material that is difficult to filter. When it is filtered by plate and frame filter, it is easy to produce the phenomenon of penetrating or clogging the filter cloth. Therefore, flocculant and/or filter aid are usually used. Compared with the use of AlCl 3 and polymerized aluminum, the use of acid, on the one hand, can make the formed silica gel body have better filtration performance, thereby omitting the demand for flocculant and filter aid; on the other hand, higher silicon can be obtained. Precipitation rate, resulting in higher silicon recovery.
  • the acid is preferably a mineral acid, and specific examples thereof may include, but are not limited to, hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid.
  • the acid is sulfuric acid and/or hydrochloric acid.
  • the acid is provided in the form of an aqueous solution, and the concentration of the aqueous acid solution is not particularly limited, and may be a conventional concentration depending on the specific kind of the acid.
  • the specific amount of the acid may be selected depending on the kind of the acid and the nature of the wastewater to make the silicon in the wastewater form a colloid. Generally, the amount of the acid is such that the pH of the wastewater is in the range of 5-8, preferably such that the pH of the wastewater is in the range of 6-7.
  • the contact time of the wastewater with the at least one acid is sufficient to cause most of the silicon in the wastewater to form a colloid. Generally, the contact time can be from 5 to 24 hours.
  • the wastewater may be contacted with at least one acid at a temperature of from 10 to 95 ° C, preferably from 40 to 85 ° C. In the actual operation, the wastewater can be uniformly mixed with the acid, and then allowed to stand at a temperature of 0-95 ° C, preferably 40-85 ° C for 5-24 hours, so that a better solid-liquid separation can be obtained. effect.
  • the method of solid-liquid separation may be a conventional selection such as filtration, centrifugation or a combination of two or more separation methods, and the colloid-containing mixture is preferably separated by filtration.
  • one or a combination of two or more kinds of common various filter media such as a woven fabric, a porous material, a solid particle layer, and a porous film may be employed.
  • the porous film may be an organic film, an inorganic film, or a combination of two or more porous films.
  • the inorganic film may be a ceramic film and/or a metal film, and the organic film may be a hollow fiber film.
  • the filter medium is a porous membrane. More preferably, the filter medium is an ultrafiltration membrane.
  • the molecular sieve is prepared by the method of the invention, and the amount of waste water generated is small or substantially no waste water is discharged, and at the same time, the recycling of the organic ammonium base and water as a template agent can be realized, and the effective reuse of the waste water is realized. Particularly in the case of electrodialysis described using Figs. 4 and 5, recycling of various components in the wastewater can be achieved.
  • the molecular sieve preparation method according to the present invention preferably further comprises one, two or three of the first circulation step, the second circulation step, and the third circulation step.
  • the desalinated water is recycled for the following steps: a synthesis step as synthesis water; a crystallization step for terminating crystallization; and a separation washing step as wash water.
  • the desalinated water obtained by electrodialysis can be directly recycled.
  • the lye containing the organic ammonium base obtained by electrodialysis is recycled to the synthesis step.
  • the acid solution obtained in the presence of bipolar membrane electrodialysis is recycled to the pretreatment step as at least a precipitant.
  • the present invention provides a molecular sieve preparation system, as shown in Fig. 6, which comprises a synthesis unit, a crystallization unit, a separation washing unit, and a wastewater treatment unit.
  • the synthesis unit is for reacting a feedstock with water comprising a source of silicon, an organic ammonium base, and optionally a source of titanium.
  • the synthesis unit may employ various synthesis reactors commonly used in the art, and is not particularly limited.
  • the crystallization unit is used to crystallize the reaction mixture obtained in the synthesis step.
  • the crystallization reactor can be a conventional choice, such as a crystallization vessel that can withstand internal pressure.
  • the separation washing unit is configured to perform solid-liquid separation of the mixture obtained in the crystallization step to obtain a solid phase and a crystallization mother liquor, and wash the solid phase to obtain a molecular sieve and a washing wastewater.
  • the filter medium may be a combination of one or a combination of two or more of various conventional filter media such as a woven fabric, a porous material, a solid particle layer, and a porous film.
  • the porous film may be an organic film, an inorganic film, or a combination of two or more porous films.
  • the inorganic film may be a ceramic film and/or a metal film, and the organic film may be a hollow fiber film.
  • a fabric is used as the filter medium.
  • the separation washing unit may employ a conventional solid-liquid separation device such as a plate and frame filter or a belt filter.
  • the wastewater treatment unit is configured to electrodialyze wastewater to obtain an alkali solution containing organic ammonium ions and desalinated water, wherein the wastewater is the crystallization mother liquor, Washing wastewater or a mixture of the crystallization mother liquor and the washing wastewater, wherein the electrodialysis is carried out in at least one electrodialyser having a membrane stack having at least one membrane unit, at least a portion of the membrane unit
  • the membrane in the middle comprises a cation exchange membrane, which is preferably a styrene type homogeneous cation exchange membrane.
  • the cation exchange membrane has been described in detail above and will not be described in detail herein.
  • the assembled form of the membrane unit of the electrodialyzer may be conventionally selected, such as one or a combination of two or more of the membrane units described above in connection with FIGS. 2 to 5.
  • the electrodialyser may be an electrodialyser or a combination of two or more electrodialyzers, such as a combination of a common electrodialyser and a bipolar membrane electrodialyser (as already described above), preferably
  • the embodiments described above in connection with Figures 4 and 5 are more preferably the embodiments previously described in connection with Figure 5.
  • the molecular sieve preparation system according to the present invention may further include, in the wastewater treatment unit, a current detecting element for detecting a current intensity of the electrodialysis process, and a voltage regulating element for The current intensity measured by the current detecting element adjusts the voltage applied to each membrane unit so that the current density satisfies the requirements, as described above.
  • the number of current detecting elements and voltage detecting elements can be selected according to the number of electrodialyzers to ensure that the current density in each electrodialyser can meet the requirements, as the range of values described above.
  • the recovered concentrate containing organic ammonium ions (especially the alkali solution obtained by electrodialysis of bipolar membrane) and desalinated water can be recycled.
  • the wastewater treatment unit preferably further comprises a desalinated water delivery conduit and/or a recovered organic ammonium alkali delivery conduit for diluting the wastewater treatment unit for dilution
  • the water is fed to one or both of a synthesis unit (as synthesis water), a crystallization unit (for termination of crystallization), and a separation washing unit (used as wash water) for recovering the organic ammonium base transfer line
  • An alkali solution containing an organic ammonium base obtained by electrodialysis of a bipolar membrane in the wastewater treatment unit is sent to a synthesis unit.
  • the molecular sieve preparation system according to the present invention preferably further includes a pretreatment unit for pretreating the wastewater to remove silicon in the wastewater.
  • the pretreatment unit can be carried out by the pretreatment method described in the previous section of the molecular sieve preparation method, and the silicon-containing solid outputted by the pretreatment unit can be recycled into the synthesis unit for use as a silicon source; the liquid phase output from the pretreatment unit enters Dispose of in the wastewater treatment unit.
  • the molecular sieve preparation system according to the present invention is further packaged When the pretreatment unit is included, it preferably further comprises a recovery acid liquid delivery pipe for feeding the acid liquid obtained by the bipolar membrane electrodialyzer in the wastewater treatment unit to the pretreatment Unit, as at least partially precipitant.
  • the molecular sieve preparation system of the invention can prepare the molecular sieve, can effectively treat the wastewater generated in the preparation process of the molecular sieve, recover the template agent, and at the same time obtain high water recovery and utilization, and has little impact on the environment.
  • the invention provides another wastewater treatment system.
  • the system comprises a desalinated water delivery conduit and/or a recovered organic ammonium base delivery conduit.
  • the desalinated water delivery conduit is configured to send the desalinated water (which may be the first desalinated water and/or the second desalinated water) recovered by the wastewater treatment unit to one, two or three of the following units: molecular sieve preparation a synthesis unit for use as synthesis water; a crystallization unit in molecular sieve preparation for terminating crystallization; a separation washing unit in molecular sieve preparation for use as wash water.
  • the recovered organic ammonium base transport conduit is used to feed the organic ammonium base recovered by the wastewater treatment unit to the synthesis unit.
  • FIG 11 shows a preferred embodiment of the treatment of wastewater from the molecular sieve preparation process using the present invention.
  • the wastewater treatment system includes a desalination tank, an intermediate salt tank, a conventional electrodialyzer, a bipolar membrane electrodialyzer, a lye tank, and an acid tank.
  • the membrane in the membrane unit of the ordinary electrodialyzer is a cation exchange membrane and an anion exchange membrane, thereby dividing the internal space of the membrane unit into a liquid chamber and a concentration chamber (referred to as a concentrate chamber in FIG. 11);
  • the membrane in the membrane unit of the bipolar membrane electrodialyzer is a bipolar membrane, a cation exchange membrane and an anion exchange membrane, thereby separating the internal space of the membrane unit into a liquid chamber (referred to as a salt chamber in FIG. 11), An acid chamber and an alkali chamber, the liquid chamber being located between the acid chamber and the alkali chamber.
  • the desalination tank is configured to receive waste water and communicate with a liquid chamber of the electrodialyzer in the ordinary electrodialysis unit to provide water into the liquid chamber and to receive water from the liquid chamber, that is, ordinary electricity During the dialysis process, the desalting tank forms a liquid passage with the liquid chamber of the ordinary electrodialyzer.
  • the intermediate salt tank is in communication with the concentrating chamber of the ordinary electrodialyzer to provide water for the concentrating chamber and to receive the effluent of the concentrating chamber, the liquid chamber of the bipolar membrane electrodialyzer and the middle
  • the salt tank is connected to receive the concentrated liquid output from the intermediate salt tank as the influent, that is, the ordinary electrodialysis and the bipolar membrane electrodialysis, the intermediate salt tank and the ordinary electrodialyzer concentrating chamber and the bipolar membrane electrodialysis
  • the liquid chamber of the device forms two liquid passages.
  • the lye tank is in communication with the alkali chamber of the bipolar membrane electrodialyser for receiving the alkali solution output from the alkali chamber of the bipolar membrane electrodialyzer and providing water for the alkali chamber of the bipolar membrane electrodialyzer In the bipolar membrane electrodialysis process, the lye tank forms a liquid passage with the alkali chamber of the bipolar membrane electrodialysis unit.
  • the acid tank is connected to the acid chamber of the bipolar membrane electrodialyser for receiving the acid solution output from the acid chamber of the bipolar membrane electrodialyzer and providing water for the acid chamber of the bipolar membrane electrodialyzer, ie During the bipolar membrane electrodialysis process, the acid tank forms a liquid passage with the acid chamber of the bipolar membrane electrodialysis unit.
  • the system further comprises a pre-processing unit located upstream of the desalting tank for contacting the wastewater optionally with at least one precipitating agent to cause After the silicon forms a colloid, solid-liquid separation is performed, and the liquid phase obtained by solid-liquid separation is sent to the desalting tank, and the separated silicon-containing solid phase can be used as a silicon source in the synthesis unit.
  • the precipitating unit can remove precipitable substances (such as silicon) and solid suspended matter in the wastewater to further improve the effects of electrodialysis and bipolar membrane electrodialysis, and further extend the electrodialyzer and the bipolar membrane electrodialyzer. The service life of the membrane.
  • the system further includes an organic ammonium alkali recovery tank, an acid recovery tank, and a desalinated water recovery tank for receiving the alkali liquid output from the alkali liquid tank;
  • the acid A recovery tank is used to receive the acid liquid output from the acid tank;
  • the desalination water tank is for receiving the desalinated water output from the desalination tank.
  • the acid recovery tank is in communication with the pretreatment unit for feeding at least a portion of the acid into the pretreatment unit as a precipitant.
  • the desalinated water tank is in communication with one, two or three of the following units: the synthesis unit for supplying synthesis water to the synthesis unit; the crystallization unit And for providing the crystallization unit with water for stopping crystallization; the separation washing unit for supplying the washing water to the separation washing unit.
  • the alkali recovery tank is connected to the molecular sieve synthesis unit for feeding an alkali solution containing an organic ammonium base to the synthesis unit for use as a raw material for the molecular sieve synthesis process.
  • the following procedure can be employed.
  • the wastewater or the liquid phase output from the pretreatment unit is sent to the desalination tank, and water is introduced into the intermediate salt tank, the alkali liquid tank and the acid tank (which may be deionized water and/or deuterated water obtained by the previous electrodialysis) .
  • the intermediate salt tank which may be deionized water and/or deuterated water obtained by the previous electrodialysis
  • the power supply of the device is subjected to ordinary electrodialysis and bipolar membrane electrodialysis treatment to monitor the composition of the water in the desalting tank.
  • the electrodialysis is stopped and discharged, and when discharging, the first in the tank will be faded.
  • a desalinated water is sent to the desalinated water tank, and the alkali liquid in the alkali liquid tank is sent to the alkali recovery tank, and the acid liquid in the acid liquid tank is sent to the acid recovery tank.
  • the next batch of waste water to be treated is sent to the desalination tank and treated as described above.
  • FIG. 12 shows another preferred embodiment of the molecular sieve preparation system and molecular sieve preparation method according to the present invention.
  • the embodiment shown in FIG. 12 differs from the embodiment shown in FIG. 11 in that, in the embodiment shown in FIG. 12, the desalination tank supplies water only to the liquid chamber of the ordinary electrodialyzer and is carried out during electrodialysis.
  • the effluent from the liquid chamber of the ordinary electrodialyzer directly enters the desalinated water tank.
  • a plurality of bipolar electrodialyzers are preferably employed, and at least a portion of the electrodialyzers are connected together in series, such that the wastewater or the liquid phase from the pretreatment unit is multistaged. Electrodialysis to obtain a desalinated water having a lower organic ammonium ion content.
  • the content of organic ammonium ions in the wastewater and the desalinated water was measured by a titration method, and the COD value of the water was measured by the potassium dichromate method.
  • the content of the remaining ions in wastewater and desalinated water was determined by inductively coupled plasma (ICP).
  • This example treats the washing wastewater derived from the production process of the titanium silicalite TS-1, and the COD value and composition of the wastewater are listed in Table 1.
  • the wastewater was subjected to electrodialysis using hydrochloric acid at a concentration of 3% by weight to adjust the pH of the wastewater to 6.6. Then, the temperature of the wastewater was raised to 55 ° C, the stirring was stopped, and the temperature was allowed to stand at this temperature for 12 hours. Then, it was filtered with an ultrafiltration membrane having a pore diameter of 50 nm, and the liquid phase was collected for electrodialysis.
  • electrodialysis was carried out by the method shown in Fig. 2.
  • the cation exchange membrane used was a styrene-type homogeneous cation exchange membrane purchased from Hebei Guangya Company (ion exchange capacity was 2.51 meq/g dry film, membrane surface resistance) (25 ° C, 0.1 mol / L NaCl aqueous solution, the same below) is 4.59 ⁇ ⁇ cm 2 );
  • the anion exchange membrane used is a homogeneous styrene type anion exchange membrane purchased from Hebei Guangya Company (ion exchange capacity is 2.45 meq) /g dry film, film surface resistance is 9.46 ⁇ ⁇ cm 2 ).
  • the electrodialyzer (film stack size 200 x 400 mm) has a total of 12 membrane units.
  • the polar liquid used in this example was a 3% by weight aqueous solution of Na 2 SO 4 .
  • the wastewater is sent to the liquid chamber of the electrodialyzer, and the waste water, deionized water and polar liquid are respectively fed into the liquid chamber, the concentrating chamber and the polar chamber of the electrodialyzer, and the flow rate of the waste water and the deionized water is stabilized.
  • 70L/h after the flow rate of the polar liquid is stable at 70L/h, the DC power supply is turned on, electrodialysis is performed, and the voltage applied to each membrane unit is 2V, and the temperature of each membrane unit which is kept electrodialyzed by the refrigerator is not higher than 35 °C.
  • a total of 200 minutes of electrodialysis was performed, and dehydrated water was output from the liquid chamber, and a concentrate containing tetrapropylammonium hydroxide was output from the concentration chamber.
  • Example 1 The same amount of wastewater was treated in the same manner as in Example 1, except that the cation exchange membrane used was a FKS homogeneous cation exchange membrane purchased from FuMA-Tech, Germany (ion exchange capacity was 0.9 meq/ g dry film, film surface resistance is 1.77 ⁇ cm 2 ), and the experimental results are listed in Table 1.
  • the cation exchange membrane used was a FKS homogeneous cation exchange membrane purchased from FuMA-Tech, Germany (ion exchange capacity was 0.9 meq/ g dry film, film surface resistance is 1.77 ⁇ cm 2 ), and the experimental results are listed in Table 1.
  • Example 1 The same amount of wastewater was treated in the same manner as in Example 1, except that the cation exchange membrane used was a CM-1 homogeneous cation exchange membrane purchased from Tokuyama Corporation of Japan (ion exchange capacity was 2.3 meq/ g dry film, film surface resistance is 3.35 ⁇ ⁇ cm 2 ).
  • the experimental results are listed in Table 1.
  • Example 1 The same amount of wastewater was treated in the same manner as in Example 1, except that the cation exchange membrane used was a Nafion 115 homogeneous cation exchange membrane purchased from DuPont, USA (ion exchange capacity was 0.89 meq/g). The dry film had a film surface resistance of 0.52 ⁇ cm 2 ). The experimental results are listed in Table 1.
  • Example 1 The same amount of wastewater was treated in the same manner as in Example 1, except that the cation exchange membrane used was a 3361-BW heterogeneous cation exchange membrane purchased from Shanghai Chemical Plant, and the anion exchange membrane used was The model 3362-BW heterogeneous anion exchange membrane purchased from Shanghai Chemical Plant has an initial voltage of 2.3V applied to each membrane unit.
  • the experimental results are listed in Table 1.
  • Example 1 The same amount of wastewater was treated in the same manner as in Example 1, except that the anion exchange membrane used was a homogeneous anion exchange membrane of the type AM-1 purchased from Tokuyam Co., Japan (ion exchange capacity was 2.1 meq). /g dry film, film surface resistance is 5.9 ⁇ cm 2 ). The experimental results are listed in Table 1.
  • Example 1 The same amount of wastewater was treated in the same manner as in Example 1, except that the anion exchange membrane used was a homogeneous styrene type anion exchange membrane (ion exchange capacity of 2.5) purchased from Beijing Tingfu Membrane Technology Development Co., Ltd. Meq/g dry film, film surface resistance is 2.36 ⁇ cm 2 ). The experimental results are listed in Table 1.
  • the crystallization wastewater of the titanium silicon molecular sieve TS-1 production process is treated, and the COD value and composition of the wastewater are listed in Table 2.
  • the wastewater was subjected to a bipolar membrane electrodialysis using hydrochloric acid at a concentration of 3% by weight to adjust the pH of the wastewater to 6.8. Then, the temperature of the wastewater was raised to 55 ° C, the stirring was stopped, and the temperature was allowed to stand at this temperature for 12 hours. Then, it was filtered with an ultrafiltration membrane having a pore diameter of 50 nm, and the liquid phase was collected for bipolar membrane electrodialysis.
  • the bipolar membrane electrodialysis was carried out by the method shown in FIG. 4, and the cation exchange membrane used was a styrene-type homogeneous cation exchange membrane purchased from Hebei Guangya Co., Ltd. (the same as in Example 1); the anion exchange membrane used; It is a homogeneous anion exchange membrane purchased from Hebei Guangya Company (the same as in Example 1); the bipolar membrane is a BP-1 type bipolar membrane purchased from Tokuyama Corporation of Japan.
  • the bipolar membrane electrodialyzer (film stack size 200 x 400 mm) has a total of 20 membrane units.
  • the polar liquid used in this example was a 3% by weight aqueous solution of Na 2 SO 4 .
  • the waste water is sent to the liquid chamber of the bipolar membrane electrodialyzer, and deionized water is sent into the acid chamber and the alkali chamber of the bipolar membrane electrodialyser, and the polar liquid is sent to the polar chamber of the bipolar membrane electrodialyzer.
  • the flow rate of the waste water and the deionized water is stabilized at 100 L/h, and after the flow rate of the liquid liquid is stabilized at 100 L/h, the DC power source is turned on, electrodialysis is performed, and the voltage applied to each membrane unit is 2.5 V, and the refrigerator is turned on.
  • the temperature of each membrane unit maintained by electrodialysis was not higher than 35 °C.
  • Example 4 The same amount of wastewater was treated in the same manner as in Example 4 except that the cation exchange membrane used was a homogeneous cation exchange membrane purchased from Tokuyama Corporation of Japan (ion exchange capacity was 2.3 meq/g dry film, membrane The sheet resistance was 3.35 ⁇ cm 2 ).
  • the experimental results are listed in Table 2.
  • Example 4 The same amount of wastewater was treated in the same manner as in Example 4 except that the cation exchange membrane used was a homogeneous cation exchange membrane purchased from DuPont, USA (ion exchange capacity was 0.89 meq/g dry film, membrane The sheet resistance was 0.52 ⁇ cm 2 ).
  • the experimental results are listed in Table 2.
  • Example 2 The same amount of wastewater was treated in the same manner as in Example 4 except that the cation exchange membrane used was a homogeneous cation exchange membrane purchased from FuMA-Tech, Germany (ion exchange capacity was 0.9 meq/g dry film). The film surface resistance was 1.77 ⁇ cm 2 ). The experimental results are listed in Table 2.
  • Example 4 The same amount of wastewater was treated in the same manner as in Example 4 except that the cation exchange membrane used was a 3361-BW heterogeneous cation exchange membrane purchased from Shanghai Chemical Plant, and the anion exchange membrane was purchased.
  • the Shanghai Chemical Plant model is a 3362-BW heterogeneous anion exchange membrane with a voltage of 3V applied to each membrane unit.
  • the experimental results are listed in Table 2.
  • Table 1 and Table 2 show that in the case of electrodialysis and bipolar membrane electrodialysis using a homogeneous cation exchange membrane, a styrene-type homogeneous cation exchange membrane can be used to obtain better effects, and in the obtained desalinated liquid, The tetrapropylammonium ion content is lower, so that more tetrapropylammonium ions are enriched in the lye.
  • heterogeneous cation exchange membranes are not limited by homogeneous cation exchange membranes during ordinary electrodialysis and bipolar membrane electrodialysis, the electrodialysis effect of heterogeneous cation exchange membranes and bipolar membrane electrodialysis The effect is inferior to the homogeneous styrene type homogeneous cation exchange membrane.
  • This example treats the washing wastewater of the titanium silicon molecular sieve TS-1 production process, and the COD value and composition of the wastewater are listed in Table 3.
  • the wastewater was subjected to a bipolar membrane electrodialysis using hydrochloric acid at a concentration of 2.9% by weight to adjust the pH of the wastewater to 6.3. Then, the temperature of the wastewater was raised to 50 ° C, the stirring was stopped, and the temperature was allowed to stand at this temperature for 10 hours. Then, it was filtered with an ultrafiltration membrane having a pore diameter of 50 nm, and the liquid phase was collected for bipolar membrane electrodialysis.
  • electrodialysis was carried out by the method shown in FIG. 3.
  • the cation exchange membrane used was a styrene-type homogeneous cation exchange membrane purchased from Beijing Tingrun Film Technology Development Co., Ltd. (ion exchange capacity was 2.5 meq/g dry film).
  • the film surface resistance was 8 ⁇ cm 2 );
  • the bipolar film was a BP-1 type bipolar film available from Tokuyama Corporation of Japan.
  • the bipolar membrane electrodialyzer (film stack size 200 x 400 mm) has a total of 20 membrane units.
  • the polar liquid used in this example was a 4% by weight aqueous solution of Na 2 SO 4 .
  • the waste water is sent to the liquid chamber of the bipolar membrane electrodialyzer, and deionized water is sent into the alkali chamber of the bipolar membrane electrodialyzer, and the polar liquid is sent into the polar chamber of the bipolar membrane electrodialyzer, and waits
  • the flow rate of waste water and deionized water is stable at 120L/h, and the flow rate of the liquid liquid is stable at 120L/h.
  • the DC power supply is turned on, and bipolar membrane electrodialysis is performed.
  • the voltage applied to each membrane unit is 2V, and the refrigerator is turned on.
  • the temperature of each membrane unit of the bipolar membrane electrodialysis is not higher than 30 °C.
  • Example 5 The same amount of wastewater was treated in the same manner as in Example 5 except that the anion exchange membrane used was a homogeneous anion exchange membrane of the model AM-1 available from Tokuyam Co., Japan. The experimental results are listed in Table 3.
  • This example treats washing wastewater derived from the production process of titanium silicalite TS-1, and the COD value and composition of the wastewater are listed in Table 4.
  • the pH of the wastewater was adjusted to 6.5 to 7.5 with a titanium tetrachloride aqueous solution having a concentration of 20% by weight.
  • the temperature of the wastewater was raised to 75 ° C, the stirring was stopped, and the temperature was allowed to stand at this temperature for 12 hours.
  • the wastewater is sent to the liquid chamber of the electrodialyzer, and the waste water, deionized water and polar liquid are respectively fed into the liquid chamber, the concentrating chamber and the polar chamber of the electrodialyzer, and the flow rate of the waste water and the deionized water is stabilized.
  • 70L/h after the flow rate of the polar liquid is stable at 70L/h, the DC power supply is turned on, electrodialysis is performed, and the voltage applied to each membrane unit is 1.8V, and the temperature of each membrane unit which is kept electrodialyzed by the refrigerator is not higher than 35 ° C.
  • a total of 150 minutes of electrodialysis was performed, and dehydrated water was output from the liquid chamber, and a concentrate containing tetrapropylammonium hydroxide was output from the concentration chamber.
  • the crystallization mother liquor and the washing wastewater mixture of the titanium silicon molecular sieve TS-1 production process are treated, and the COD value and composition of the wastewater are listed in Table 5.
  • electrodialysis was carried out by the method shown in FIG. 5.
  • the cation exchange membrane used was a styrene-type homogeneous cation exchange membrane purchased from Hebei Guangya Co., Ltd. (the same as in Example 1); the anion exchange membrane used was purchased from A homogeneous styrene-type anion exchange membrane of Hebei Guangya Company (same as in Example 1); a bipolar membrane is a BP-1 type bipolar membrane available from Tokuyama Corporation of Japan.
  • the common electrodialyzer film stack size is 200 ⁇ 400 mm
  • the bipolar membrane electrodialysis unit film stack size is 200 ⁇ 400 mm
  • the polar liquid used in ordinary electrodialysis and bipolar membrane electrodialysis is a 3% by weight aqueous solution of Na 2 SO 4 .
  • This embodiment uses the following procedure to treat wastewater.
  • the wastewater from the molecular sieve preparation process is sent to a 100 L pretreatment tank, and at a ambient temperature (25 ° C), a concentration of 3% by weight of HCl (according to the acid obtained by the previous bipolar membrane electrodialysis) is added with stirring.
  • a concentration of 3% by weight of HCl (according to the acid obtained by the previous bipolar membrane electrodialysis) is added with stirring.
  • the pH of the wastewater to 6.
  • the temperature of the wastewater was raised to 80 ° C, the stirring was stopped, and the temperature was allowed to stand at this temperature for 24 hours.
  • filtration was carried out using an ultrafiltration membrane having a pore diameter of 50 nm to obtain a solid phase and a liquid phase (the yield of the liquid phase was 90% by weight based on the total amount of the wastewater).
  • the filtrate obtained in the step (1) is sent to a liquid chamber of a common electrodialyser, and water is separately fed into the concentrating chamber of the ordinary electrodialyzer (a desalinated water obtained by the previous electrodialysis);
  • the acid chamber and the alkali chamber of the polar membrane electrodialyzer are respectively fed with water (the desalinated water obtained by the previous ordinary electrodialysis), and the concentrated solution obtained by ordinary electrodialysis is sent into the liquid chamber of the bipolar membrane electrodialyzer.
  • the polar liquid is separately fed into the polar chamber of the ordinary electrodialyzer and the bipolar membrane electrodialyzer.
  • the DC power supply of the ordinary electrodialyzer and the bipolar membrane electrodialyzer is turned on for electrodialysis.
  • the voltage applied to each membrane unit is 2V, and the temperature of each membrane unit is kept at a temperature of not higher than 35 °C.
  • the voltage applied to each membrane unit was 2.5 V, and the refrigerator was turned on to maintain the temperature of each membrane unit at not higher than 35 °C.
  • a total of 4 hours of electrodialysis was carried out to obtain the desalinated water output from the liquid chamber of the ordinary electrodialysis and the liquid chamber of the bipolar membrane electrodialyser, and the output from the alkali chamber of the bipolar membrane electrodialyzer An alkali solution of tetrapropylammonium hydroxide, an acid solution output from the acid chamber of the bipolar membrane electrodialyzer.
  • composition of the diluted water (mixture of dilute water obtained by bipolar membrane electrodialysis and ordinary electrodialysis) output from the liquid chamber of the bipolar membrane electrodialyzer and the liquid chamber of the ordinary electrodialysis is measured. Listed in 5.
  • the structural parameters of the prepared titanium silica molecular sieve TS-1 are listed in Table 6, wherein the titanium tetrasilate molecular sieve TS-1 was prepared by the same process using fresh tetrapropylammonium hydroxide and fresh deionized water as a control group, and its structure. The parameters are also listed in Table 6.
  • the results of Examples 1-10 demonstrate that the treatment of wastewater containing organic ammonium ions by the method of the present invention can effectively reduce the content of organic ammonium ions in the wastewater.
  • the results of Examples 1-10 also demonstrate that the treatment of wastewater produced by the molecular sieve preparation process by the method of the present invention enables rational and efficient reuse of various resources in the wastewater, with substantially no effluent and/or waste.
  • the cation exchange membrane used was a styrene-type homogeneous cation exchange membrane purchased from Hebei Guangya Company (same test example 1); the anion exchange membrane used was a homogeneous anion exchange purchased from Hebei Guangya Company.
  • Membrane (same test example 1); bipolar membrane was a BP-1 type bipolar membrane available from Tokuyama Corporation of Japan.
  • the bipolar membrane electrodialysis unit (film stack size 200 ⁇ 400 mm) has 20 membrane units; the electrodialyzer (film stack size 200 ⁇ 400 mm) has 12 membrane units.
  • the polar liquid used was a 3% by weight aqueous solution of Na 2 SO 4 .
  • the wastewater of the molecular sieve preparation process is treated by the following process flow, wherein the liquid phase obtained in the step (1) is treated in the step (2) using the embodiment shown in FIG.
  • the wastewater from the molecular sieve preparation process is sent to a 20 L pretreatment tank, and at a ambient temperature (25 ° C), a concentration of 2.9% by weight of hydrochloric acid (the acid solution obtained by the previous epipolar membrane electrodialysis) is added with stirring.
  • the pH of the wastewater was adjusted to 6.8.
  • the temperature of the wastewater was raised to 55 ° C, the stirring was stopped, and the temperature was allowed to stand at this temperature for 12 hours.
  • filtration was carried out using an ultrafiltration membrane having a pore diameter of 50 nm to obtain a solid phase and a liquid phase (the yield of the liquid phase was 90% by weight based on the total amount of the wastewater).
  • the liquid phase obtained in the step (1) is sent to a desalting tank, and water (which is the desalinated water obtained by the previous electrodialysis) is sent to the intermediate salt tank, and is sent to the acid tank and the alkali tank respectively. Water (the desalinated water obtained by the previous electrodialysis) is sent to the polar liquid tank (not shown in Fig. 11).
  • the composition and COD value of the desalinated water output from the electrodialyzer are listed in Table 7.
  • the concentrations of the acid solution and the alkali solution obtained by electrodialysis of the bipolar membrane are 2.9% by weight and 3.1% by weight, respectively, and the acid solution can be directly sent.
  • the lye can be concentrated to obtain a lye having a concentration of 12% by weight, and then sent to a synthesis unit as an alkali source.
  • composition and COD value of the desalinated water output from the electrodialyzer were listed in Table 7, and the concentrations of the acid solution and the alkali solution obtained by electrodialysis of the bipolar membrane were 3.1% by weight and 3.1% by weight, respectively.
  • the washing liquid of the titanium silicon molecular sieve TS-1 production process and the mixed liquid of the crystallization mother liquid are treated, and the COD value and composition of the wastewater are listed in Table 8.
  • the cation exchange membrane used is a styrene-type homogeneous cation exchange membrane purchased from Beijing Tingrun Film Technology Development Co., Ltd. (the ion exchange capacity is 2.5 meq/g dry film, and the membrane surface resistance is 8 ⁇ cm 2 ).
  • the anion exchange membrane used is a homogeneous anion exchange membrane purchased from Beijing Tingrun Membrane Technology Development Co., Ltd. (ion exchange capacity is 2.5 meq/g dry film, membrane surface resistance is 2.36 ⁇ cm 2 ); bipolar membrane It is a BP-1 type bipolar membrane purchased from Tokuyama Corporation of Japan.
  • the bipolar membrane electrodialyzer (film stack size is 200 ⁇ 400mm) has 10 membrane units; the electrodialyzer (film stack size is 200 ⁇ 400mm) has 12 membrane units; the polar liquid is 5% by weight of Na 2 SO 4 Aqueous solution.
  • the wastewater of the molecular sieve preparation process is treated by the following process, wherein the liquid phases obtained in the step (1) are treated in the manner shown in FIG. 12 in the steps (2) to (3).
  • the wastewater from the molecular sieve preparation process is sent to a 20 L pretreatment tank, and at a ambient temperature (25 ° C), a concentration of 2.2% by weight of hydrochloric acid (the acid obtained by electrodialysis of the previous bipolar membrane) is added with stirring.
  • a concentration of 2.2% by weight of hydrochloric acid (the acid obtained by electrodialysis of the previous bipolar membrane) is added with stirring.
  • the pH of the wastewater to 6.5.
  • the temperature of the wastewater was raised to 75 ° C, the stirring was stopped, and the temperature was allowed to stand at this temperature for 24 hours.
  • filtration was carried out using an ultrafiltration membrane having a pore diameter of 50 nm to obtain a solid phase and a liquid phase (the yield of the liquid phase was 91% by weight with respect to the total amount of the wastewater).
  • the liquid phase obtained in the step (1) is sent to a desalting tank, and water (the desalinated water obtained by electrodialysis of the previous bipolar membrane) is sent to the intermediate salt tank, and is introduced into the acid tank and the lye tank. Water (which is the desalinated water obtained by the previous electrodialysis) is fed separately, and the polar liquid is supplied to the polar liquid tank (not shown in Fig. 12).
  • the DC power supply of the electrodialyzer and the bipolar membrane electrodialyzer is turned on, wherein the voltage regulation of the bipolar membrane electrodialyzer is fixed to 20V; the voltage of the electrodialyzer is adjusted to 25V. A total of 50 minutes of electrodialysis and bipolar membrane electrodialysis were performed.
  • the composition and COD value of the desalinated water outputted by the electrodialyzer are listed in Table 8.
  • the concentrations of the acid solution and the alkali solution obtained by electrodialysis of the bipolar membrane are 2.2% by weight and 2.1% by weight, respectively, and the acid solution can be directly sent.
  • the lye can be concentrated to obtain a lye having a concentration of 10% by weight, and then sent to a synthesis unit as an alkali source.
  • the structural parameters of the prepared titanium silicon molecular sieve TS-1 are listed in Table 9, wherein the titanium silicide molecular sieve TS-1 was prepared by the same process using fresh tetrapropylammonium hydroxide and fresh deionized water as a control group, and its structure. The parameters are also listed in Table 9.
  • Examples 11-13 demonstrate that the treatment of wastewater containing tetrapropylammonium ions by the method of the present invention can effectively reduce the tetrapropylammonium ion content in water and also recover tetrapropylammonium. Alkali.

Abstract

一种废水处理方法,包括将废水进行电渗析处理,得到有机铵根离子含量降低的淡化水以及含有有机铵根离子的碱液,电渗析过程使用的电渗析器具有至少一个膜单元,至少部分膜单元包括阳离子交换膜(1),回收的碱液以及得到的淡化水可以循环使用。还公开了一种废水处理系统,分子筛的制备方法以及分子筛制备系统。

Description

废水处理方法和处理系统与分子筛制备方法和制备系统 技术领域
本发明涉及废水的处理方法及其处理系统,本发明还涉及分子筛的制备方法和分子筛的制备系统。
背景技术
TS-1分子筛是一种具有MFI结构的钛硅分子筛。它具有优良的选择氧化性能和较高的催化活性,在烯烃的环氧化、环己酮肟化以及醇的氧化等有机氧化反应中显示出良好的催化活性,因而被广泛应用。
TS-1分子筛通常采用导向剂水热晶化法合成。
CN1167082A公开了一种具有MFI结构的钛硅分子筛的制备方法,该方法是将钛源溶于四丙基氢氧化铵水溶液中,并与固体硅胶小球混合均匀得到反应混合物,将该反应混合物在高压釜中于130-200℃水热晶化1-6天,然后进行过滤、洗涤、干燥和焙烧,从而得到具有MFI结构的钛硅分子筛。
CN1239015A公开了一种具有MFI结构的钛硅分子筛TS-1的制备方法,该方法是先制备一种用于合成TS-1分子筛的反应混合物,将该反应混合物在密封反应釜中于110-145℃预晶化0.1-5小时,然后升高温度至150-200℃继续晶化1小时至3天,从而得到产品。
CN1239016A公开了一种具有MFI结构的钛硅分子筛TS-1的制备方法,该方法包括以下步骤:
(1)将硅源、有机胺化合物和水按比例在0-40℃的温度下水解10-300分钟,得到硅的水解溶液,其中,有机胺化合物为脂肪胺类或者醇胺类化合物;
(2)将钛源、异丙醇、有机碱和水按比例混合均匀,于0-40℃的温度下水解5-90分钟,得到钛的水解溶液,所述有机碱为四丙基氢氧化铵、或者为四丙基氢氧化铵与醇胺类化合物所组成的混合物;
(3)将步骤(2)所得的钛的水解溶液与步骤(1)所得的硅的水解溶液按照比例在50-100℃的温度下混合并搅拌反应0.5-6小时,得到钛硅胶体;
(4)将步骤(3)所得钛硅胶体在密封反应釜中按常规方法水热 晶化,然后回收产品。
可见,在钛硅分子筛(如钛硅分子筛TS-1)的合成过程中,通常使用季铵碱(如四丙基氢氧化铵)作为模板剂。模板剂具有结构导向作用,对分子筛的结构单元、笼或孔道的形成具有促进作用,是水热合成法合成钛硅分子筛不可或缺的原料。
在实际生产过程中,分子筛的完整制备工艺流程(如图1所示)为:在合成步骤中,将钛源、硅源、模板剂以及水进行反应,将得到的反应混合物进行水热晶化,然后将晶化混合物进行过滤和洗涤,进而得到分子筛产品。如图1所示,分子筛的过滤和洗涤过程均产生废水,而且产生的废水量高,通常1吨成品分子筛产生10-20吨废水。这些废水的COD值(重铬酸钾法)高达5万以上,有时甚至高达10万以上,其COD的来源主要为分子筛生产过程中使用的模板剂四丙基氢氧化铵。
有机胺(铵)属于有毒有害物质,含有机胺(铵)的废水必须进行净化,使水质达标(COD值为60mg/L以下)之后才能排放。现有的含有机胺(铵)废水的处理方法主要包括厌氧氧化法、高级氧化法、膜分离法、吸附法和焚烧法等。
CN104098228A公开了一种有机胺废水的处理方法,包括以下步骤:
A、预氧化
将有机胺废水用Fenton或者03进行预氧化,分解有毒有害物质,提高废水的可生化性,将预氧化后废水调节至中性,进入沉淀池沉淀2-4小时;
B、厌氧
将经过沉淀的废水进行厌氧处理,去除有机物;
C、缺氧-好氧生物反应器
将厌氧出水进入缺氧-好氧生物反应器,去除污水中的COD和氮;
D、强化混凝
对缺氧-好氧生物反应器出水进行强化混凝,去除生化出水的疏水性有机物质;
E、高级氧化
对强化混凝后的出水进行高级氧化,产生具有强氧化能力的羟基自由基,使大分子难降解有机物氧化成低毒或无毒的小分子物质;
F、生物法深度处理
高级氧化出水进入曝气生物滤池,控制停留时间、溶解氧、进一步去除COD,使出水达标排放。
CN104211250A公开了一种从AK糖工业废水中回收有机胺的方法,包括以下步骤:
采用石灰粉中和废水,使水质的pH值达到近中性,石灰粉分次加入并剧烈搅拌,抽滤除去中和后的硫酸钙,滤液在蒸发罐中用纯碱将pH调至8左右,使胺释出,再用分馏塔分馏收集有机胺的馏分,最后将有机胺通过分子筛干燥和树脂吸附脱水,得到可重复利用的有机胺。
CN104230077A公开了一种含磷铝硅的有机胺废水处理方法,该方法包括以下步骤:
(1)将含磷铝硅的有机胺废水经过脱重塔,将废水中的重组分浓缩后从塔釜排出,进入废液喷雾干燥系统,脱重塔塔顶得到的轻组分进入脱轻塔进一步提纯;
(2)脱轻塔塔釜废水送回分子筛晶化单元循环使用,脱轻塔塔顶得到的水和有机胺经过液液分离后,水相返回脱轻塔,得到的有机胺进入精制塔提纯后,回收利用。
CN103304430A公开了一种从催化剂生产废水中回收有机胺的工艺,包括:
(1)废水中催化剂回收,废水中含有少量微粒状的分子筛经过微滤器拦截后回收;
(2)有机胺吸附工艺,将废水中有机胺用阳离子树脂吸附后用酸再生成有机胺盐;
(3)有机胺盐通过阴离子树脂交换还原成有机胺,还原的有机胺作为生产原料回用,阴离子交换树脂用NaOH再生。
CN102399032A公开了一种类Fenton氧化-混凝处理有机胺类工业废水的方法,包括以下步骤:
(1)调节废水pH到3-5,调节温度至20-40℃;
(2)添加催化剂,类Fenton氧化的催化剂有效成分为:七水合硫酸亚铁、无水硫酸铜和一水合硫酸锰,各组分的质量比为(5-10)∶1∶(0-5);
(3)加入质量百分浓度为30%的H2O2,氧化反应时间1-4小时;
(4)氧化结束以后加氢氧化钠调节废水的pH到8-10,加入化学混凝剂和高分子有机絮凝剂,将废水中的部分悬浮固体、胶体、部分有机胺类一同混凝下来。
CN102079712A公开了一种从有机胺盐回收无水有机胺的方法,该方法采用氧化钙或者氧化钙含量大于50%的混合物为原料,与有机胺盐搅拌反应回收无水有机胺。
CN102151544A公开了一种有机废水改性膨润土吸附剂,其中,该吸附剂为利用有机胺类废水中的有机胺作为改性剂,对已提纯的钠基或钙基膨润土进行改性而得到的吸附剂,是将提纯的膨润土粉料加入到有机胺类废水中常温搅拌10-120分钟,然后过滤,得到有机废水改性膨润土滤饼,在90-105℃条件下烘干、研磨,得有机废水改性膨润土,然后将其置入马弗炉中焙烧,冷却至常温后而得到的。
CN103663609A公开了一种微波催化氧化处理高COD有机废水的方法。该方法将微波辐射在微波催化剂的表面来产生强氧化性基团用于氧化处理高COD有机废水,使其中的有机胺等有机物氧化降解为CO2和水或无机酸根离子。
CN104529034A公开了一种回收催化剂生产废水中四丙基氢氧化铵的方法,纳滤膜对二价或多价离子及分子量介于200-500之间的有机物有较高脱除率,四丙基氢氧化铵分子可通过纳滤进行有效地分离,用质量分数为10%的盐酸调节废水pH为5-7,调节纳滤装置压力为20kg,将调节好pH的废水注入纳滤进水口,经纳滤拦截后获得浓水与稀水,浓水和稀水比例为1∶5,浓水继续注入纳滤装置,将压力增大到25kg,进一步浓缩获得第二步的浓水与稀水,浓水与稀水比例为1∶2,重复上一步进行第三次操作,压力控制为30kg,获得的浓水与稀水比例为1∶1,最终将所有得到的稀水混合,获得的浓水为原水浓缩36倍之后的水。
CN104773787A公开了一种降低沸石分子筛生产废水的化学耗氧量的方法,包括向沸石分子筛生产废水中加入双氧水,在紫外光照射下将沸石分子筛生产废水中的有机含氮化合物氧化降解,所述有机含氮化合物为季铵盐、季铵碱和有机胺的一种或几种。
CN104773786A公开了一种降低沸石分子筛废水的总有机碳含量的方法,包括向沸石分子筛生产废水中加入双氧水,在紫外光照射下 将沸石分子筛生产废水中的有机含氮化合物氧化降解,所述有机含氮化合物为季铵盐、季铵碱和有机胺中的一种或几种。
但是,上述方法存在设备投资大,运行费用高,处理效果不稳定,易产生二次污染等缺点,因此对于有机胺含量较高的废水的处理,鲜有成功运行的工业化实例。
发明内容
本发明提供了废水处理方法及其处理系统,其中采用电渗析的方法对含有机铵根离子的废水进行处理,不仅能有效地降低废水中的有机铵根离子含量,而且能将有机铵根离子富集在电渗析碱液中,实现有机铵根离子的回收。本发明还涉及分子筛的制备方法和分子筛的制备系统。
根据本发明的第一个方面,本发明提供了一种废水的处理方法,所述废水含有至少一种有机铵根离子和任选的可溶性二氧化硅等杂质,该方法包括将任选预处理的废水进行电渗析,得到有机铵根离子含量降低的淡化水以及含有有机铵根离子的碱液,其中所述电渗析在至少一个电渗析器中进行,所述电渗析器的膜堆具有至少一个膜单元,至少部分膜单元中的膜包括阳离子交换膜。
根据本发明第二个方面,本发明提供了一种废水处理系统,所述废水为含有有机铵根离子的分子筛制备过程废水,包括废水贮存单元、任选的预处理单元、普通电渗析单元和/或双极膜电渗析单元,
所述废水贮存单元用于接纳并贮存废水;
所述任选的预处理单元用于将来自于废水贮存单元的废水与至少一种沉淀剂接触,以使所述废水中的硅形成胶体后,进行固液分离,得到液相和固相;
所述普通电渗析单元用于将废水或者所述液相进行普通电渗析,得到有机铵根离子含量降低的第一淡化水、以及含有有机铵根离子的浓缩液;
所述双极膜电渗析单元用于将电渗析单元输出的所述浓缩液进行双极膜电渗析,得到酸液、含有有机铵根离子的碱液以及任选的第二淡化水。
在该废水处理系统的一种实施方案中,所述普通电渗析单元包括 至少一个普通电渗析器,所述普通电渗析器的膜堆具有至少一个膜单元,至少部分膜单元中的膜为阳离子交换膜和阴离子交换膜,所述阳离子交换膜所和述阴离子交换膜将所述膜单元的内部空间分隔成料液室和浓缩室。
在该废水处理系统的一种实施方案中,所述双极膜电渗析单元包括至少一种双极膜电渗析器,所述双极膜电渗析器的膜单元采用以下方式中的一种、两种或三种,
方式1:膜单元中的膜为双极膜和阳离子交换膜,所述双极膜和所述阳离子交换膜将所述膜单元的内部空间分隔成碱室和料液室;
方式2:膜单元中的膜为双极膜和阴离子交换膜,所述双极膜和所述阴离子交换膜将所述膜单元的内部空间分隔成酸室和料液室;
方式3:膜单元中的膜为双极膜、阴离子交换膜以及阳离子交换膜,所述双极膜、所述阴离子交换膜以及所述阳离子交换膜将所述膜单元的内部空间分隔成酸室、料液室和碱室,所述料液室位于所述酸室和所述碱室之间。
根据本发明第三个方面,本发明提供了一种分子筛的制备方法,该方法包括合成步骤、晶化步骤、分离洗涤步骤和废水处理步骤,
在所述合成步骤中,将原料与水接触反应,所述原料含有硅源、有机铵碱以及任选的钛源;
在所述晶化步骤中,将合成步骤得到的反应混合物进行晶化;
在分离洗涤步骤中,将晶化步骤得到的混合物进行固液分离,得到固相和晶化母液,并对所述固相进行洗涤,得到分子筛和洗涤废水;
在废水处理步骤中,将废水进行电渗析,得到含有有机铵根离子的碱液以及有机铵根离子含量降低的淡化水,所述废水为所述晶化母液、所述洗涤废水或者所述晶化母液和所述洗涤废水的混合液,其中,采用本发明第一个方面所述的方法对所述废水进行电渗析。
根据本发明的第四个方面,本发明提供了一种分子筛制备系统,该系统包括合成单元、晶化单元、分离洗涤单元以及废水处理单元,
所述合成单元用于将原料与水接触反应,所述原料含有硅源、有机铵碱以及任选的钛源;
所述晶化单元用于将合成步骤得到的反应混合物进行晶化;
所述分离洗涤单元用于将晶化步骤得到的混合物进行固液分离, 得到固相和晶化母液,并对所述固相进行洗涤,得到分子筛和洗涤废水;
所述废水处理单元用于将废水进行电渗析,得到含有有机铵根离子的碱液以及有机铵根离子含量降低的淡化水,所述废水为所述晶化母液、所述洗涤废水或者所述晶化母液和所述洗涤废水的混合液,其中,所述电渗析在至少一个电渗析器中进行,所述电渗析器的膜堆具有至少一个膜单元,至少部分膜单元中的膜包括阳离子交换膜。优选地,所述阳离子交换膜为苯乙烯型均相阳离子交换膜。
根据本发明第五个方面,本发明提供了另一种废水处理系统,所述废水为含有有机铵根离子的分子筛制备过程废水,包括淡化罐、中间盐罐、电渗析器、双极膜电渗析器、碱液罐、酸液罐以及任选的淡化水罐;
所述电渗析器的膜单元中的膜为阳离子交换膜和阴离子交换膜,从而将所述膜单元的内部空间分隔成料液室和浓缩室;所述双极膜电渗析器的膜单元中的膜为双极膜、阳离子交换膜和阴离子交换膜,从而将所述膜单元的内部空间分隔成料液室、酸室和碱室,所述料液室位于所述酸室和所述碱室之间;
所述淡化罐用于接纳废水,并与所述电渗析单元中的电渗析器的料液室连通,为所述料液室提供进水,并任选地接纳所述料液室的出水;
所述中间盐罐与所述电渗析器的浓缩室连通,为所述浓缩室提供进水并接纳所述浓缩室的出水,所述双极膜电渗析器的料液室与所述中间盐罐连通,以接纳从所述中间盐罐输出的浓缩液作为进水;
所述碱液罐与所述双极膜电渗析器的碱室连通,用于接纳双极膜电渗析器的碱室输出的碱液,并为双极膜电渗析器的碱室提供进水;
所述酸液罐与双极膜电渗析器的酸室连通,用于接纳双极膜电渗析器的酸室输出的酸液,并为双极膜电渗析器的酸室提供进水;
所述淡化水罐与所述碱液罐和所述酸液罐连通,并与所述淡化罐连通或者与所述电渗析器的料液室连通,用于接纳所述淡化罐输出的第一淡化水或者用于接纳所述电渗析器的料液室输出的第一淡化水,同时向所述碱液罐和所述酸液罐提供水。
本发明采用电渗析对含有有机铵根离子的废水进行处理,能有效 地降低废水中的有机铵根离子(特别是四丙基有机铵根离子)含量,而且还能得到富集了有机铵根离子的浓液,在实现降低废水的有机铵根离子含量,进而降低废水的COD值的同时,回收含有有机铵根离子的浓液。采用本发明的方法对含有机铵根离子的分子筛生产过程废水进行处理,回收的含有有机铵根离子的浓液和淡化水可以循环使用,整个过程基本不产生外排废水和固体废料,实现了资源的有效再利用。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。
图1为制备分子筛的一种典型工艺流程。
图2为采用两室普通电渗析对废水进行处理的一种实施方式。
图3为采用两室双极膜电渗析对废水进行处理的一种实施方式。
图4为采用三室双极膜电渗析对废水进行处理的一种实施方式。
图5为采用普通电渗析-双极膜电渗析对废水进行处理的一种实施方式。
图6用于说明根据本发明的分子筛制备方法和分子筛制备系统。
图7用于说明根据本发明的方法和系统中涉及的电渗析一种实施方式。
图8用于说明根据本发明的方法和系统中涉及的双极膜电渗析的第一种实施方式。
图9用于说明根据本发明的方法和系统中涉及的双极膜电渗析的第二种实施方式。
图10用于说明根据本发明的方法和系统中涉及的双极膜电渗析的第三种实施方式。
图11用于说明根据本发明的分子筛制备方法和系统的一种优选实施方式。
图12用于根据本发明的分子筛制备方法和系统的另一种优选实施方式。
附图标记说明
1:阳离子交换膜             2:阴离子交换膜
3:双极膜
具体实施方式
根据本发明的第一个方面,本发明提供了一种废水的处理方法,所述废水含有有机铵根离子。所述有机铵根离子是指NH4 +中的四个氢中的至少一个被有机基团取代而形成的离子。一般地,所述有机铵根离子可以为式I所示的有机铵根离子,
Figure PCTCN2016000593-appb-000001
式I中,R1、R2、R3和R4各自独立地选自H,C1-C5的烷基和C6-C12的芳基,其中R1、R2、R3和R4中至少一个不是H。所述C1-C5的烷基包括C1-C5的直链烷基和C3-C5的支链烷基,其具体实例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基和新戊基。所述C6-C12的芳基的具体实例可以包括但不限于:苯基、萘基、4-甲基苯基、2-甲基苯基、3-甲基苯基、4-乙基苯基、2-乙基苯基和3-乙基苯基。
优选地,所述有机铵根离子为四甲基铵离子、四乙基铵离子、四丙基铵离子和四丁基铵离子。作为一个优选实例,所述有机铵根离子为四丙基铵离子。
所述有机铵根离子可以来源于有机铵碱和/或有机铵盐。所述有机铵盐的阴离子可以为常见的能与有机铵根离子形成水溶性盐的阴离子,如卤素离子,优选为氯离子或溴离子。
所述废水可以为各种来源的含有有机铵根离子的废水。优选地,所述废水为采用有机铵碱作为模板剂的分子筛制备过程废水,如采用导向剂的水热晶化法制备分子筛的过程中产生的废水。具体地,所述废水可以为采用有机铵碱的分子筛制备过程的晶化母液、采用有机铵碱的分子筛制备过程的洗涤废水或者所述晶化母液和所述洗涤废水的混合液。在一种实施方式中,所述废水除含有有机铵碱外,还可以含有可溶性二氧化硅等杂质。
所述有机铵碱可以为适于作为分子筛的结构导向剂的有机铵碱。具体地,所述有机铵碱选自式II所示的化合物,
Figure PCTCN2016000593-appb-000002
式II中,R1、R2、R3和R4各自独立地选自H,C1-C5的烷基和C6-C12的芳基,其中R1、R2、R3和R4中至少一个不是H。所述C1-C5的烷基包括C1-C5的直链烷基和C3-C5的支链烷基,其具体实例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基和新戊基。所述C6-C12的芳基的具体实例可以包括但不限于:苯基、萘基、4-甲基苯基、2-甲基苯基、3-甲基苯基、4-乙基苯基、2-乙基苯基和3-乙基苯基。
优选地,所述有机铵碱为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵和四丁基氢氧化铵。作为一个优选实例,所述有机铵碱为四丙基氢氧化铵。
所述分子筛可以为常见的各种以有机铵碱作为模板剂通过水热合成法制备的分子筛,如钛硅分子筛、BETA分子筛、SSZ-13分子筛和Silicate-1中的至少一种。所述钛硅分子筛是钛原子取代晶格骨架中一部分硅原子的一类沸石的总称,可以为MFI结构的钛硅分子筛(如TS-1)、MEL结构的钛硅分子筛(如TS-2)、BEA结构的钛硅分子筛(如Ti-Beta)、MWW结构的钛硅分子筛(如Ti-MCM-22)、六方结构的钛硅分子筛(如Ti-MCM-41、Ti-SBA-15)、MOR结构的钛硅分子筛(如Ti-MOR)、TUN结构的钛硅分子筛(如Ti-TUN)和其它结构的钛硅分子筛(如Ti-ZSM-48)中的一种或两种以上。
作为一个优选实例,所述分子筛为钛硅分子筛,优选为钛硅分子筛TS-1和/或空心钛硅分子筛。所述空心钛硅分子筛为MFI结构的钛硅分子筛,该钛硅分子筛的晶粒为空心结构,该空心结构的空腔部分的径向长度为5-300纳米,且该钛硅分子筛在25℃、P/P0=0.10、吸附时间为1小时的条件下测得的苯吸附量为至少70毫克/克,该钛硅分子筛的低温氮吸附的吸附等温线和脱附等温线之间存在滞后环。所述空心钛硅分子筛可以商购得到(例如商购自湖南建长石化股份有限公司 的牌号为HTS的分子筛),也可以根据CN1132699C中公开的方法制备得到。
所述废水中有机铵根离子的含量没有特别限定,随废水的来源而定。一般地,所述废水中有机铵根离子的浓度可以在1000mg/L以上,如2000mg/L以上,甚至可以为10000mg/L以上,如15000mg/L以上。所述废水中有机铵根离子的最高含量没有特别限定。所述废水中有机铵根离子的浓度通常可以为35000mg/L以下,如30000mg/L以下。
根据本发明的废水处理方法,包括将废水进行电渗析,从而得到有机铵根离子含量降低的淡化水以及含有有机铵根离子的浓缩液。
所述电渗析在至少一个电渗析器中进行,所述电渗析器的膜堆具有至少一个膜单元,至少部分膜单元包括阳离子交换膜,所述阳离子交换膜优选为均相阳离子交换膜。与非均相阳离子交换膜相比,均相阳离子交换膜具有更好的电化学性能,因此能获得更好的电渗析效果。
根据本发明的废水处理方法,所述阳离子交换膜优选为苯乙烯型均相阳离子交换膜。本发明的发明人在研究过程中发现,在采用苯乙烯型均相阳离子交换膜进行电渗析时,与诸如Na+的无机离子不同,有机铵根离子的迁移速度与均相阳离子交换膜的材质密切相关,采用聚醚醚酮均相阳离子交换膜、全氟乙烯磺酸均相阳离子交换膜或者聚砜均相阳离子交换膜进行电渗析,即使给膜单元施加较高的电压,也无法获得良好的电渗析效果,得到的淡化水中有机铵根离子的含量仍然较高;但是,采用苯乙烯型均相阳离子交换膜,则能获得很好的电渗析效果,有机铵根离子富集在浓缩液(碱液)中,得到的淡化水中有机铵根离子的含量明显降低。
根据本发明的方法,通过选择材质优选为苯乙烯型均相阳离子交换膜实现有机铵根离子的有效分离,对于苯乙烯型均相阳离子交换膜的离子交换容量没有特别限定,可以为常规选择,例如可以为1-3meq/g干膜,优选为1.5-3meq/g干膜,更优选为1.8-2.6meq/g干膜,如2-2.6meq/g干膜。根据本发明的方法,所述苯乙烯型阳离子交换膜的膜面电阻可以为1-15Ω·cm2,优选为2-12Ω·cm2。根据本发明的方法,从进一步提高电渗析效果的角度出发,所述苯乙烯型均相阳离子交换膜的膜面电阻更优选为4-9Ω·cm2
根据本发明的废水处理方法,所述膜单元的组装形式可以为常规 选择。以下结合图2至图5进行示例性说明,但是本领域技术人员可以理解的是,所述膜单元的组装形式并不局限于图2至图5示出的实例,还可以采用其它的组装形式。本发明中,将至少一个膜单元采用双极膜的电渗析称为双极膜电渗析,将膜单元均不采用双极膜的电渗析称为普通电渗析,将普通电渗析和双极膜电渗析统称为电渗析。还需要说明的是,所有附图中的“...”表示在电渗析器的正极和负极之间设置有多个膜单元,这些膜单元具有与图中示出的结构相同的膜单元结构,因而未被示出。
在本发明的第一种实施方式中,所述电渗析为按以下方式进行的普通电渗析。如图2所示,所述膜单元中的膜为阳离子交换膜1和阴离子交换膜2,阳离子交换膜1和阴离子交换膜2将所述膜单元的内部空间分隔成料液室和浓缩室。在进行电渗析时,废水进入料液室,水(可以为去离子水和/或电渗析得到的淡化水)进入浓缩室中,在电场的作用下,废水中的有机铵根离子以及其它阳离子透过阳离子交换膜1进入浓缩室中,从而得到有机铵根离子含量降低的淡化水,同时得到富集了有机铵根离子的浓缩液。
在该第一种实施方式中,采用上述普通电渗析的普通电渗析器的数量可以根据处理量以及淡化水的质量指标进行选择,没有特别限定。一般地,所述普通电渗析器的数量可以为一个或多个。在所述普通电渗析器的数量为多个时,多个普通电渗析器可以串联连接,也可以并联连接,还可以为串联和并联的组合。
本发明中,串联连接是指多个电渗析器以首尾相接的方式连接在一起构成流体的流动路线,位于上游的电渗析器输出的淡化水接着进入下游与其直接相接的电渗析器中继续进行电渗析,从而实现多级电渗析。本发明中,并联连接是指多个电渗析器的进水来源相同,构成相互之间没有物流联系但具有相同来源的支流的形式,从而实现多机并行处理,提高装置的处理量。本发明中,串联和并联组合使用,是指将多个电渗析器组合使用时,将并联与串联混用,作为串联和并联组合使用的一个实例,可以设置多组电渗析器,每组之间为并联连接,每组内为串联连接,这样既能实现多级电渗析,又能获得较高的处理量。
在第二种实施方式中,所述电渗析为双极膜电渗析。所述双极膜 电渗析可以采用常规方法进行。具体地,所述双极膜电渗析为采用以下方式之一进行的双极膜电渗析器。
方式一:如图3所示,所述膜单元中的膜为双极膜3和阳离子交换膜1,双极膜3和阳离子交换膜1将所述膜单元的内部空间分隔成碱室和料液室。进行电渗析时,废水进入料液室,水(可以为去离子水和/或电渗析得到的淡化水)进入碱室中,在电场的作用下,料液室内的废水中的有机铵根离子以及其它阳离子通过阳离子交换膜进入碱室中,形成碱液;在料液室中得到有机铵根离子含量降低的酸液(即,淡化水)。
方式二:可以大约参考如图9所示(其中的“浓缩液”表示“所述废水或者所述液相”),双极膜电渗析器的膜堆具有至少一个膜单元,膜单元中的膜为双极膜3和阴离子交换膜2,所述双极膜3和所述阴离子交换膜2将所述膜单元的内部空间分隔成酸室和料液室,所述废水或者所述液相进入所述料液室,水进入所述酸室,在电渗析过程中,由所述料液室得到含有有机铵根离子的碱液,由所述酸室得到酸液;
方式三:如图4所示,所述膜单元中的膜为双极膜3、阴离子交换膜2以及阳离子交换膜1,双极膜3、阴离子交换膜2以及阳离子交换膜1将所述膜单元的内部空间分隔成酸室、料液室和碱室,料液室位于酸室和碱室之间。进行电渗析时,废水进入料液室,水(可以为去离子水和/或电渗析得到的淡化水)分别进入酸室和碱室中,在电场的作用下,料液室内的废水中的有机铵根离子以及其它阳离子通过阳离子交换膜1进入碱室中,形成碱液;废水中的阴离子通过阴离子交换膜2进入酸室中,形成酸液;在料液室中得到有机铵根离子含量降低的淡化水。
上述方式一、方式二和方式三可以单独使用,也可以组合使用。优选将方式一或方式二与方式三组合使用时,方式一或方式二以及方式三可以在同一双极膜电渗析器的不同膜单元中实施,也可以在不同的双极膜电渗析器中实施。优选地,将分别采用方式一或方式二以及方式三的双极膜电渗析器组合,此时采用方式一或方式二的双极膜电渗析器与采用方式三的双极膜电渗析器可以串联连接,也可以并联连接,还可以为串联和并联的组合。
在该第二种实施方式中的一种实施方式中,方式一和方式三可以 单独使用,也可以组合使用。在将方式一和方式三组合使用时,方式一和方式三可以在同一双极膜电渗析器的不同膜单元中实施,也可以在不同的双极膜电渗析器中实施。优选地,将分别采用方式一的双极膜电渗析器和采用方式三的双极膜电渗析器组合,此时采用方式一的双极膜电渗析器与采用方式三的双极膜电渗析器可以串联连接,也可以并联连接,还可以为串联和并联的组合。优选地,将采用方式一的双极膜电渗析器与采用方式三的双极膜电渗析器串联连接,更优选使得采用方式一的双极膜电渗析器位于采用方式三的双极膜电渗析器的上游,这样可以将采用方式一的双极膜电渗析器输出的淡化水作为进水送入采用方式三的双极膜电渗析器的料液室中进一步进行淡化。可以将多个采用方式一的双极膜电渗析器并联和/或串联之后与采用方式三的双极膜电渗析器串联,此时,采用方式三的双极膜电渗析器的数量也可以为多个,相互之间可以为串联和/或并联。采用方式一的双极膜电渗析器和采用方式三的双极膜电渗析器的数量各自可以根据废水的处理量进行选择,没有特别限定。
以上描述的两种实施方式中,第一种实施方式为普通电渗析,第二种实施方式为双极膜电渗析。
根据本发明的废水处理方法,还可以将所述普通电渗析与所述双极膜电渗析组合使用。在将所述普通电渗析与所述双极膜电渗析组合使用时,普通电渗析与双极膜电渗析可以为串联连接,也可以为并联连接,还可以为串联与并联的组合。在将普通电渗析与双极膜电渗析串联连接时,所述普通电渗析可以位于所述双极膜电渗析的上游,也可以位于所述双极膜电渗析的下游。
在本发明的一种优选的实施方式中,所述电渗析包括普通电渗析和双极膜电渗析。
在该优选的实施方式中,如图5所示,所述普通电渗析的膜单元中的膜为阳离子交换膜1和阴离子交换膜2,阴离子交换膜2和阳离子交换膜1将所述膜单元的内部空间分隔成料液室(在该优选的实施方式中被称为第一料液室)和浓缩室。
在该优选的实施方式中,如图5所示,所述双极膜电渗析的膜单元中的膜为双极膜3、阴离子交换膜2和阳离子交换膜1,双极膜3、阴离子交换膜2以及阳离子交换膜1将所述膜单元的内部空间分隔成 酸室、料液室(在该优选的实施方式中被称为第二料液室)和碱室,第二料液室位于酸室和碱室之间。
在该优选的实施方式中,所述废水进入普通电渗析的第一料液室中进行电渗析,得到第一淡化水(本文中,出于清楚的目的,将该优选的实施方式中,由普通电渗析得到的淡化水称为第一淡化水)、含有有机铵根离子的浓缩液;将所述浓缩液送入所述双极膜电渗析的第二料液室中进行双极膜电渗析,得到第二淡化水(本文中,出于清楚的目的,将该优选的实施方式中,由双极膜电渗析得到的淡化水称为第二淡化水)、酸液以及含有有机铵根离子的碱液。
根据本发明的废水处理方法,电渗析(包括普通电渗析和双极膜电渗析)过程中,通过阴离子交换膜的阴离子通常为常规的无机离子,可以采用各种足以使阴离子通过的阴离子交换膜。具体地,所述阴离子交换膜可以为非均相阴离子交换膜,也可以为均相阴离子交换膜。从进一步提高阴离子交换膜的使用寿命的角度出发,所述阴离子交换膜优选为均相阴离子交换膜。所述阴离子交换膜的材质也没有特别限定,可以为常规选择,例如可以为苯乙烯型阴离子交换膜、聚砜型阴离子交换膜、聚醚醚酮型阴离子交换膜和全氟乙烯磺酸型阴离子交换膜中的一种或两种以上的组合。根据本发明的方法,对于阴离子交换膜的具体参数也没有特别限定,可以为常规选择。例如,所述阴离子交换膜的离子交换容量可以为0.5-5meq/g干膜,优选为1-4meq/g干膜,更优选为2-2.5meq/g干膜。所述阴离子交换膜的膜面电阻可以为1-15Ω·cm2,优选为2-12Ω·cm2
根据本发明的废水处理方法,双极膜电渗析中使用的双极膜的种类没有特别限定,可以为常规选择,本文不再详述。
根据本发明的废水处理方法,在电渗析的过程中调节施加给电渗析器的膜堆的电压的大小可以根据电渗析的方式进行选择。一般地,对于普通电渗析,给每个膜单元施加的电压可以为0.1-5V,优选为0.5-4V,更优选为1-3V。对于双极膜电渗析,给每个膜单元施加的电压可以为0.1-8V,优选为1-6V,更优选为2-5V。
根据本发明的废水处理方法,在进行电渗析时,电渗析器的阳极室和阴极室所使用的极液的种类没有特别限定,可以为常规选择。一般地,所述极液可以通过将至少一种电解质溶解于水中而获得。所述 电解质的浓度可以为常规选择,一般可以为0.1-50重量%,优选为0.1-40重量%,更优选为0.5-25重量%,进一步优选为1-20重量%,更进一步优选为2-10重量%,特别优选为2.5-5重量%。所述电解质可以为本领域常用的各种电解质,如无机电解质和/或有机电解质。具体地,所述电解质可以为硫酸钠、硝酸钠、磷酸钠、磷酸氢钠、磷酸二氢钠、硝酸钾、磷酸钾、磷酸氢钾、磷酸二氢钾、氢氧化钠、氢氧化钾、甲酸、乙酸、甲酸钠、甲酸钾和有机铵型电解质中的一种或两种以上。所述有机铵型电解质可以为各种水溶性有机铵型电解质,优选为四甲基氯化铵、四甲基溴化铵和四甲基氢氧化铵中的一种或两种以上。
根据本发明的废水处理方法,所述电渗析可以在常规温度下进行。一般地,所述电渗析可以在0-50℃、优选5-40℃、更优选10-35℃的温度下进行。所述电渗析的持续时间可以根据废水的性质以及预期的淡化水的组成进行选择,没有特别限定。
根据本发明的废水处理方法,可以对各种来源的含有机铵根离子的废水进行处理,以在获得含有有机铵根离子的浓缩液(碱液)的同时,降低水的COD值,使其满足排放标准和/或满足循环使用要求。例如,在根据本发明的废水处理方法用于对采用有机铵碱作为模板剂的分子筛的制备过程废水进行处理时,回收的含有有机铵根离子的浓缩液(碱液)可以循环用于分子筛的合成过程作为至少部分碱源,淡化水可以用于合成过程作为反应水,也可以用于晶化步骤作为终止晶化的用水,还可以用于洗涤水。
根据本发明的废水处理方法,对于淡化水中有机铵根离子的含量,可以根据淡化水的预期使用场合进行选择。具体地,在采用本发明的方法对分子筛制备过程废水进行处理,并将得到的淡化水循环用于分子筛的合成过程、晶化过程以及洗涤过程时,优选使得到的淡化水中,有机铵根离子的浓度为2000mg/L以下,更优选为1700mg/L以下,进一步为1000mg/L以下,更进一步优选为550mg/L以下,特别优选为500mg/L以下,如450mg/L以下,甚至400mg/L以下。根据本发明的废水处理方法,能以更短的电渗析时间获得具有上述有机铵根离子含量的淡化水。
在根据本发明的废水处理方法中优选包括废水的预处理步骤,在预处理步骤中,将废水进行固液分离,得到固相和液相,将所述液相 送入废水处理步骤中进行电渗析。更优选地在将废水进行固液分离之前,将废水与至少一种沉淀剂接触,以使废水中的硅形成胶体,其中所述沉淀剂优选选自酸、二价、三价和四价金属盐,更优选四价金属盐,如四氯化钛、硫酸氧钛等。其中,四氯化钛、硫酸氧钛能够更有利地得到硅含量降低的淡化水。
根据本发明的第二个方面,本发明还提供了一种废水处理系统,所述废水为含有有机铵根离子的分子筛制备过程废水,包括废水贮存单元、任选的预处理单元、普通电渗析单元和/或双极膜电渗析单元。
所述废水贮存单元用于接纳并贮存废水。所述废水贮存单元可以采用常见的罐等中空容器来接纳并贮存废水。
根据本发明的废水处理系统,优选包括所述预处理单元,用于将来自于废水贮存单元的废水与至少一种沉淀剂接触,以使所述废水中的硅形成胶体后,进行固液分离,得到液相和固相。所述沉淀剂可以选自AlCl3、聚合铝、酸和碱。在一种实施方式中,所述沉淀剂选自酸、二价、三价和四价金属盐,优选四价金属盐,如四氯化钛、硫酸氧钛等。其中,四氯化钛、硫酸氧钛能够更有利地得到硅含量降低的淡化水。
所述预处理单元可以包括反应器,用于使废水与沉淀剂接触反应。
所述预处理单元还可以包括常规的固液分离装置,如过滤装置、离心装置或者两种以上分离装置的组合,优选包括过滤装置。所述过滤装置可以采用常见的各种过滤介质,如织物、多孔材料、固体颗粒层和多孔膜中的一种或两种以上的组合。所述多孔膜可以为有机膜、无机膜或者两种以上多孔膜的组合。所述无机膜可以为陶瓷膜和/或金属膜,所述有机膜可以为中空纤维膜。优选地,以多孔膜作为过滤介质。更优选地,以超滤膜作为过滤介质。
根据本发明的废水处理系统,所述预处理单元用于降低废水中可形成沉淀的物种(如硅)和/或固体物质的含量,以避免这些物种在电渗析过程中在离子交换膜和/或双极膜表面形成结垢,从而影响电渗析效果并缩短离子交换膜的使用寿命。本领域技术人员可以理解的是,当在废水中可形成沉淀的物种的含量和固体物质较低,不会对电渗析产生明显影响时,可以不设置所述预处理单元。
所述普通电渗析单元用于将废水或者预处理单元输出的液相进行普通电渗析,得到有机铵根离子含量降低的第一淡化水以及含有有机 铵根离子的浓缩液。所述普通电渗析单元所采用的电渗析器将固液分离单元输出的液相进行电渗析。如图7所示,所述普通电渗析在普通电渗析器中,所述普通电渗析器的膜堆具有至少一个膜单元,至少部分膜单元中的膜为阳离子交换膜1和阴离子交换膜2,所述阳离子交换膜1和阴离子交换膜2将所述膜单元的内部空间分割成料液室和浓缩室。
在进行普通电渗析时,废水或者由预处理单元得到的液相进入料液室,水(可以为去离子水和/或淡化水)进入浓缩室中,在电场的作用下,废水或者由预处理单元得到的液相中的有机铵根离子以及其它阳离子透过阳离子交换膜1进入浓缩室中,同时废水或者由预处理单元得到的液相中的阴离子则透过阴离子交换膜2进入另一侧浓缩室(图7中未示出)中,从而得到有机铵根离子含量降低的第一淡化水,同时得到富集了有机铵根离子的浓缩液。
在进行普通电渗析的过程中,给每个膜单元施加的电压一般在0.1-5V的范围内,优选在0.5-4V的范围内,更优选在1-3V的范围内,例如在1.5-3V的范围内。
由普通电渗析得到的第一淡化水中的有机铵根离子含量可以根据第一淡化水预期用途进行选择。具体地,在将所述第一淡化水循环用于分子筛合成过程时,所述第一淡化水中有机铵根离子的质量含量优选为2000ppm以下,更优选为1000mg/L以下,更优选为600mg/L以下。
由上述普通电渗析得到的浓缩液进行双极膜电渗析,得到酸液、含有有机铵根离子的碱液以及任选的第二淡化水。
所述双极膜电渗析单元用于将普通电渗析单元输出的浓缩液进行双极膜电渗析,得到酸液、含有有机铵根离子的碱液以及任选的第二淡化水。所述双极膜电渗析单元所采用的双极膜电渗析器将普通电渗析单元输出的浓缩液进行双极膜电渗析。所述双极膜电渗析可以在两室双极膜电渗析器中进行,也可以在三室双极膜电渗析器中进行,还可以同时使用两室双极膜电渗析器和三室双极膜电渗析器。
具体地,所述双极膜电渗析可以按照以下方式中的一种、两种或三种进行。本发明中,将双极膜电渗析中,用于接纳穿透阳离子交换膜的阳离子的腔室称为碱室,由碱室输出的阳离子浓缩液称为碱液; 将双极膜电渗析中,用于接纳穿透阴离子交换膜的阴离子的腔室称为酸室,由酸室输出的阳离子浓缩液称为酸液。
方式1:电渗析器的膜堆具有至少一个膜单元,如图8所示,至少部分膜单元中的膜为双极膜3和阳离子交换膜1,双极膜3和阳离子交换膜1将所述膜单元的内部空间分隔成碱室和料液室。由上述普通电渗析得到的所述浓缩液进入所述料液室,水(可以为去离子水和/或电渗析得到的淡化水)进入所述碱室,在双极膜电渗析过程中,由所述料液室得到酸液,由所述碱室得到含有有机铵根离子的碱液。
方式2:电渗析器的膜堆具有至少一个膜单元,如图9所示,至少部分膜单元中的膜为双极膜3和阴离子交换膜2,双极膜3和阴离子交换膜2将所述膜单元的内部空间分隔成酸室和料液室。由上述普通电渗析得到的所述浓缩液进入所述料液室,水(可以为去离子水和/或电渗析得到的淡化水)进入所述酸室,在双极膜电渗析过程中,由所述料液室得到含有有机铵根离子的碱液,由所述酸室得到酸液。
方式3:电渗析器的膜堆具有至少一个膜单元,如图10所示,至少部分膜单元中的膜为双极膜3、阴离子交换膜2以及阳离子交换膜1,双极膜3、阴离子交换膜2以及阳离子交换膜1将所述膜单元的内部空间分隔成酸室、料液室和碱室,所述料液室位于所述酸室和所述碱室之间。由上述普通电渗析得到的所述浓缩液进入所述料液室,水(可以为去离子水和/或电渗析得到的淡化水)分别进入所述酸室和所述碱室,在电渗析过程中,由所述酸室得到酸液,由所述碱室得到含有有机铵根离子的碱液,任选地由所述料液室得到第二淡化水。
上述方式1、方式2和方式3可以单独使用,也可以组合使用。优选将方式1或方式2与方式3组合使用时,方式1或方式2以及方式3可以在同一双极膜电渗析器的不同膜单元中实施,也可以在不同的双极膜电渗析器中实施。优选地,将分别采用方式1或方式2以及方式3的双极膜电渗析器组合,此时采用方式1或方式2的双极膜电渗析器与采用方式3的双极膜电渗析器可以串联连接,也可以并联连接,还可以为串联和并联的组合。
本发明中,串联连接是指多个双极膜电渗析器以首尾相接的方式连接在一起构成流体的流动路线,位于上游的双极膜电渗析器输出的淡化水接着进入下游直接相接的双极膜电渗析器中继续进行双极膜电 渗析,从而实现多级双极膜电渗析。本发明中,并联连接是指多个双极膜电渗析器的进水来源相同,构成相互之间没有物流联系但具有相同来源的支流的形式,从而实现多机并行处理,提高装置的处理量。本发明中,串联和并联组合使用,是指将多个双极膜电渗析器组合使用时,将并联与串联混用,作为串联和并联组合使用的一个实例,可以设置多组双极膜电渗析器,每组之间为并联连接,每组内为串联连接,这样既能实现多级双极膜电渗析,又能获得较高的处理量。
优选地,所述双极膜电渗析采用上述方式3进行,这样不仅能回收有机铵碱,而且能同时得到酸液。可以将所述酸液循环使用。
根据本发明第二方面的废水处理系统,所述普通电渗析单元和所述双极膜电渗析单元中使用的阳离子交换膜可以为非均相或均相阳离子交换膜,优选为苯乙烯型均相阳离子交换膜。所述苯乙烯型均相阳离子交换膜在前文已经进行了详细的说明,此处不再详述。
根据本发明的该废水处理系统,普通电渗析器和双极膜电渗析器优选各自包括至少一个电压调节元件和至少一个电流检测元件。所述电流检测元件用于检测普通电渗析器和双极膜电渗析器内的电流强度。所述电压调节单元用于根据所述电流检测元件测定的电流强度对电压进行调整,以使电流密度处理要求的范围之内,例如前文所述的数值范围之内。根据检测到的电流强度的大小,来调节电压可以控制电流密度的方法是本领域所公知的,本文不再详述。
根据本发明的该废水处理系统,优选还包括第一循环单元和/或第二循环单元,所述第一循环单元用于将双极膜电渗析单元输出的酸液送入预处理单元作为至少部分沉淀剂;所述第二循环单元用于将第一淡化水和/或第二淡化水送入普通电渗析单元和/或双极膜电渗析单元中,作为普通电渗析用水和/或双极膜电渗析用水。所述酸液可以直接送入预处理单元,也可以经浓缩和/或稀释之后用于预处理单元。
根据本发明的第三个方面,本发明提供了一种分子筛的制备方法,该方法包括合成步骤、晶化步骤、分离洗涤步骤和废水处理步骤。
在所述合成步骤中,将原料与水接触反应,所述原料含有硅源、有机铵碱以及任选的钛源。
本发明对于硅源的种类没有特别限定,可以为常规选择,例如可以为硅溶胶和/或有机硅化合物。所述有机硅化合物可以为各种在水解 缩合反应条件下能够形成二氧化硅的含硅化合物。具体地,所述有机硅源可以为选自式III所示的含硅化合物中的一种或多种,
Figure PCTCN2016000593-appb-000003
式III中,R5、R6、R7和R8各自可以为C1-C4的烷基,包括C1-C4的直链烷基和C3-C4的支链烷基,例如:R5、R6、R7和R8各自可以为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基。
具体地,所述有机硅源可以为正硅酸四甲酯、正硅酸四乙酯、正硅酸四正丙酯和正硅酸四正丁酯中的一种或多种。
根据制备的分子筛的种类,所述原料还可以含有其它物质,如钛源。所述钛源可以为常规选择,没有特别限定。例如,所述钛源可以为无机钛盐和/或有机钛酸酯,优选为有机钛酸酯。所述无机钛盐可以是TiCl4、Ti(SO4)2或者TiOCl2;所述有机钛酸酯可以为通式R9 4TiO4表示的化合物,其中,R9为C1-C6的烷基,优选为C2-C4的烷基。
所述有机铵碱可以为适于作为分子筛的结构导向剂的有机铵碱。具体地,所述有机铵碱选自式II所示的化合物,
Figure PCTCN2016000593-appb-000004
式II中,R1、R2、R3和R4各自独立地选自H,C1-C5的烷基和C6-C12的芳基,其中R1、R2、R3和R4中至少一个不是H。所述C1-C5的烷基包括C1-C5的直链烷基和C3-C5的支链烷基,其具体实例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基和新戊基。所述C6-C12的芳基的具体实例可以包括但不限于:苯基、萘基、4-甲基苯基、2-甲基苯基、3-甲基苯基、4-乙基苯基、2-乙基苯基和3-乙基苯基。
优选地,所述有机铵碱为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵和四丁基氢氧化铵。更优选地,所述有机铵碱为四丙基氢氧化铵。
所述硅源、有机铵碱、任选的钛源以及水之间的比例根据分子筛 的具体种类而定,可以为常规选择,本文不再详述。
在所述晶化步骤中,将合成步骤得到的反应混合物进行晶化。所述晶化可以在常规条件下进行。一般地,所述晶化处理可以在密闭环境中进行。所述晶化处理的温度可以为110-180℃。所述晶化处理的时间可以为6-72小时。
根据本发明的分子筛的制备方法,也可以参照本领域已知的条件制备分子筛,只要该分子筛在制备过程中采用有机铵化合物(一般为有机铵碱)即可,例如CN1167082A、CN1239015A以及CN1239016A中公开的分子筛制备方法。
在分离洗涤步骤中,将晶化步骤得到的混合物进行固液分离,得到固相和晶化母液,并对所述固相进行洗涤,得到分子筛和洗涤废水。所述固液分离的方法可以为常规选择,如过滤、离心或者两种以上分离方法的组合,优选采用过滤的方法将晶化步骤得到的混合物进行分离。在进行过滤时,可以采用常见的各种过滤介质,如织物、多孔材料、固体颗粒层和多孔膜中的一种或两种以上的组合。所述多孔膜可以为有机膜、无机膜或者两种以上多孔膜的组合。所述无机膜可以为陶瓷膜和/或金属膜,所述有机膜可以为中空纤维膜。优选采用织物作为过滤介质。所述过滤可以在常见的过滤设备中进行,如板框式过滤机、带式过滤机。
在废水处理步骤中,将废水进行电渗析,得到含有有机铵根离子的浓缩液以及淡化水,所述废水为所述晶化母液和/或所述洗涤废水,其中,采用本发明第一个方面所述的方法对所述废水进行电渗析,优选采用结合图4和图5描述的电渗析,特别优选结合图5描述的电渗析。
所述废水在采用本发明第一个方面所述的方法进行电渗析之前,优选进行预处理,以脱除所述废水中的悬浮物以及硅元素。所述预处理的方法可以为常规方法。例如:可以向废水中添加至少一种沉淀剂,以使所述废水中的硅元素形成胶体沉淀,从而回收废水中的硅(回收的硅可以循环至合成步骤中,作为硅源)。所述沉淀剂可选自AlCl3、聚合铝、酸和碱。在一种实施方式中,所述沉淀剂包括酸、二价、三价或四价金属盐,优选四价金属盐,如四氯化钛、硫酸氧钛等。其中,四氯化钛、硫酸氧钛能够更有利地得到硅含量降低的淡化水。所述碱优 选为无机碱,更优选选自碱金属氢氧化物和氨水,进一步优选选自氢氧化钠、氢氧化钾和氨水,最优选为氢氧化钠。所述碱优选以水溶液的形式提供,碱的水溶液的浓度没有特别限定,根据碱的具体种类可以为常规浓度。为提高过滤性能,还可以添加絮凝剂和/或助滤剂,从而改善硅胶体的过滤性能。
在本发明的一种优选的实施方式中,向所述废水中添加至少一种酸,以使废水中的硅形成胶体沉淀,并进行固液分离,从而对废水进行预处理。
硅胶体是一种比较难过滤的物质,采用板框式过滤机进行过滤时,易于产生穿滤或堵塞滤布的现象,因而通常使用絮凝剂和/或助滤剂。与采用AlCl3和聚合铝相比,采用酸,一方面能使形成的硅胶体具有更好的过滤性能,从而省略对于絮凝剂和助滤剂的需求;另一方面还能获得更高的硅沉淀率,从而获得更高的硅回收率。
所述酸优选为无机酸,其具体实例可以包括但不限于盐酸、硫酸、硝酸和磷酸。优选地,所述酸为硫酸和/或盐酸。所述酸以水溶液的形式提供,酸的水溶液的浓度没有特别限定,根据酸的具体种类可以为常规浓度。
所述酸的具体用量可以根据酸的种类以及废水的性质进行选择,以能使所述废水中的硅形成胶体为准。一般地,所述酸的用量使得废水的pH值在5-8的范围内,优选使得废水的pH值在6-7的范围内。
所述废水与至少一种酸的接触时间足以使废水中的大部分硅形成胶体为淮。一般地,接触时间可以为5-24小时。所述废水与至少一种酸可以在10-95℃的温度下、优选40-85℃的温度下进行接触。在实际操作过程中,可以将废水与所述酸混合均匀后,在0-95℃的温度下、优选40-85℃的温度下静置5-24小时,这样能获得更好的固液分离效果。
在预处理中,所述固液分离的方法可以为常规选择,如过滤、离心或者两种以上分离方法的组合,优选采用过滤的方法将含胶体的混合物进行分离。在进行过滤时,可以采用常见的各种过滤介质,如织物、多孔材料、固体颗粒层和多孔膜中的一种或两种以上的组合。所述多孔膜可以为有机膜、无机膜或者两种以上多孔膜的组合。所述无机膜可以为陶瓷膜和/或金属膜,所述有机膜可以为中空纤维膜。优选 地,所述过滤介质为多孔膜。更优选地,所述过滤介质为超滤膜。
采用本发明的方法制备分子筛,产生的废水的量少或者基本没有废水排放,同时还能实现作为模板剂的有机铵碱和水的循环利用,实现了废水的有效再利用。特别是在采用图4和图5描述的电渗析时,能实现废水中各个组分的循环再利用。
根据本发明的分子筛制备方法,优选还包括第一循环步骤、第二循环步骤和第三循环步骤中的一者、两者或三者。
在第一循环步骤中,将所述淡化水循环用于以下步骤:合成步骤,作为合成用水;晶化步骤,用于终止晶化;分离洗涤步骤,作为洗涤水。电渗析得到的淡化水可以直接循环使用。
在第二循环步骤中,将电渗析得到的含有有机铵碱的碱液循环用于合成步骤。
在第三循环步骤中,将存在双极膜电渗析的情况下得到的酸液循环用于预处理步骤,作为至少沉淀剂。
根据本发明的第四个方面的方法,本发明提供了一种分子筛制备系统,如图6所示,该系统包括合成单元、晶化单元、分离洗涤单元以及废水处理单元。
所述合成单元用于将原料与水接触反应,所述原料含有硅源、有机铵碱以及任选的钛源。所述合成单元可以采用本领域常用的各种合成反应器,没有特别限定。
所述晶化单元用于将合成步骤得到的反应混合物进行晶化。晶化反应器可以为常规选择,如可以承受内压力的晶化釜。
所述分离洗涤单元用于将晶化步骤得到的混合物进行固液分离,得到固相和晶化母液,并对所述固相进行洗涤,得到分子筛和洗涤废水。所述分离洗涤单元中,过滤介质可以采用常见的各种过滤介质,如织物、多孔材料、固体颗粒层和多孔膜中的一种或两种以上的组合。所述多孔膜可以为有机膜、无机膜或者两种以上多孔膜的组合。所述无机膜可以为陶瓷膜和/或金属膜,所述有机膜可以为中空纤维膜。优选采用织物作为过滤介质。所述分离洗涤单元可以采用常规的固液分离装置,如板框式过滤机、带式过滤机。
如图6所示,所述废水处理单元用于将废水进行电渗析,得到含有有机铵根离子的碱液以及淡化水,所述废水为所述晶化母液、所述 洗涤废水或者所述晶化母液和所述洗涤废水的混合液,其中,所述电渗析在至少一个电渗析器中进行,所述电渗析器的膜堆具有至少一个膜单元,至少部分膜单元中的膜包括阳离子交换膜,所述阳离子交换膜优选为苯乙烯型均相阳离子交换膜。所述阳离子交换膜在前文已经进行了详细的说明,此处不再详述。
所述电渗析器的膜单元的组装形式可以为常规选择,如前文结合图2至图5所述的膜单元中的一种或两种以上的组合。所述电渗析器可以为一种电渗析器,也可以为两种以上电渗析器的组合,如将普通电渗析器与双极膜电渗析器(如前面已经描述的)组合使用,优选为前文结合图4和图5所述的实施方式,更优选为前文结合图5描述的实施方式。
根据本发明的分子筛制备系统,在废水处理单元中,还可以包括电流检测元件以及电压调节元件,所述电流检测元件用于检测电渗析过程的电流强度,所述电压调节元件用于根据所述电流检测元件测定的电流强度对给每个膜单元施加的电压进行调整,以使电流密度满足要求,如前文所述的数值范围。所述电流检测元件以及电压检测元件的数量可以根据电渗析器数量进行选择,以能确保每一个电渗析器内的电流密度均能满足要求,如前文所述的数值范围为准。
如图6所示,根据本发明的分子筛制备系统,回收的含有有机铵根离子的浓缩液(特别是双极膜电渗析得到的碱液)以及淡化水可以循环使用。由此,根据本发明的分子筛制备系统,所述废水处理单元优选还包括淡化水输送管道和/或回收有机铵碱输送管道,所述淡化水输送管道用于将所述废水处理单元回收的淡化水送入合成单元(作为合成用水)、晶化单元(用于终止晶化)和分离洗涤单元(用作洗涤水)中的一者、两者或三者,所述回收有机铵碱输送管道用于将所述废水处理单元中由双极膜电渗析得到的含有有机铵碱的碱液送入合成单元中。
根据本发明的分子筛制备系统,优选还包括预处理单元,用于将废水进行预处理,以脱除废水中的硅。所述预处理单元可以采用前文分子筛制备方法部分所述的预处理方法进行,预处理单元输出的含硅固体可以循环送入合成单元中,用作硅源;预处理单元输出的液相则进入废水处理单元中进行处理。在根据本发明的分子筛制备系统还包 括所述预处理单元时,优选还包括回收酸液输送管道,所述回收酸液输送管道用于将所述废水处理单元中的双极膜电渗析器得到的酸液送入所述预处理单元,作为至少部分沉淀剂。
采用本发明的分子筛制备系统制备分子筛,能有效地对分子筛制备过程中产生的废水进行处理,回收模板剂,同时还能获得较高的水回收利用率,对环境的影响小。
根据本发明的第五个方面的方法,本发明提供了另一种废水处理系统。
根据本发明的该另一种废水处理系统,该系统包括淡化水输送管道和/或回收有机铵碱输送管道。所述淡化水输送管道用于将所述废水处理单元回收的淡化水(可以为第一淡化水和/或第二淡化水)送入以下单元中的一者、两者或三者:分子筛制备中的合成单元,用作合成用水;分子筛制备中的晶化单元,用于终止晶化;分子筛制备中的分离洗涤单元,用作洗涤水。所述回收有机铵碱输送管道用于将所述废水处理单元回收的有机铵碱送入合成单元。
图11示出了采用本发明对分子筛制备过程废水进行处理的一种优选的实施方式。图11所述的实施方式中,废水处理系统包括淡化罐、中间盐罐、普通电渗析器、双极膜电渗析器、碱液罐、酸液罐。
所述普通电渗析器的膜单元中的膜为阳离子交换膜和阴离子交换膜,从而将所述膜单元的内部空间分隔成料液室和浓缩室(图11中称为浓液室);所述双极膜电渗析器的膜单元中的膜为双极膜、阳离子交换膜和阴离子交换膜,从而将所述膜单元的内部空间分隔成料液室(图11中称为盐室)、酸室和碱室,所述料液室位于所述酸室和所述碱室之间。
所述淡化罐用于接纳废水,并与所述普通电渗析单元中的电渗析器的料液室连通,为所述料液室提供进水并接纳所述料液室的出水,即普通电渗析过程中淡化罐与普通电渗析器的料液室形成一条液体通路。所述中间盐罐与所述普通电渗析器的浓缩室连通,为所述浓缩室提供进水并接纳所述浓缩室的出水,所述双极膜电渗析器的料液室与所述中间盐罐连通,以接纳从所述中间盐罐输出浓缩液作为进水,即普通电渗析和双极膜电渗析过程中,中间盐罐分别与普通电渗析器的浓缩室以及双极膜电渗析器的料液室形成两条液体通路。
所述碱液罐与所述双极膜电渗析器的碱室连通,用于接纳双极膜电渗析器的碱室输出的碱液,并为双极膜电渗析器的碱室提供进水,即双极膜电渗析过程中,碱液罐与双极膜电渗析器的碱室形成一条液体通路。所述酸液罐与双极膜电渗析器的酸室连通,用于接纳双极膜电渗析器的酸室输出的酸液,并为双极膜电渗析器的酸室提供进水,即双极膜电渗析过程中,酸液罐与双极膜电渗析器的酸室形成一条液体通路。
优选地,如图11所示,该系统还包括预处理单元,所述预处理单元位于所述淡化罐的上游,用于将废水任选地与至少一种沉淀剂接触,以使废水中的硅形成胶体后,进行固液分离,将固液分离得到的液相送入所述淡化罐中,分离出的含硅固相则可以作为合成单元中的硅源。通过设置预处理单元可以将废水中的可沉淀物质(如硅)以及固体悬浮物除去,以进一步提高电渗析和双极膜电渗析的效果,并进一步延长电渗析器和双极膜电渗析器中的膜的使用寿命。
优选地,如图11所示,该系统还包括有机铵碱回收罐、酸回收罐以及淡化水回收罐,所述有机铵碱回收罐用于接纳从碱液罐输出的碱液;所述酸回收罐用于接纳从酸液罐输出的酸液;所述淡化水罐用于接纳从淡化罐输出的淡化水。
优选地,如图11所示,所述酸回收罐与所述预处理单元连通,用于将至少部分酸液送入所述预处理单元中作为沉淀剂。
优选地,如图11所示,所述淡化水罐与以下单元中的一者、两者或三者连通:所述合成单元,用于向所述合成单元提供合成用水;所述晶化单元,用于向所述晶化单元提供终止晶化用水;所述分离洗涤单元,用于向所述分离洗涤单元提供洗涤水。
优选地,如图11所示,将碱回收罐与分子筛合成单元连通,用于将含有有机铵碱的碱液送入所述合成单元中,以用作分子筛合成过程原料。
采用图11所示的实施方式对预处理单元输出的液相进行处理时,可以采用以下流程进行。将废水或者预处理单元输出的液相送入淡化罐中,在中间盐罐、碱液罐和酸液罐中送入水(可以为去离子水和/或前一次电渗析得到的淡化水)。开启普通电渗析器和双极膜电渗析器的进水,并将调节至预定流量,然后接通普通电渗析器和双极膜电渗析 器的电源,进行普通电渗析和双极膜电渗析处理,对淡化罐中的水的组成进行监测,待组成满足要求时,停止电渗析并出料,出料时,将淡化罐中的第一淡化水送入淡化水罐中,将碱液罐中的碱液送入碱回收罐中,将酸液罐中的酸液送入酸回收罐中。出料完成后,向淡化罐中送入下一批待处理废水,并按上述操作进行处理。
图12示出了根据本发明分子筛制备系统和分子筛制备方法的另一种优选的实施方式。图12所示的实施方式与图11所示的实施方式的区别在于:图12所示的实施方式中,淡化罐仅为普通电渗析器的料液室提供进水并在电渗析过程中进行补充,普通电渗析器的料液室的出水直接进入淡化水罐。在图12所示的实施方式中,优选采用多个双极电渗析器,并且至少将部分电渗析器以串联的形式连接在一起,这样将废水或者来自于预处理单元的液相进行多级电渗析,从而得到有机铵根离子含量更低的淡化水。
以下结合实施例详细说明本发明,但并不因此限制本发明的保护范围。
以下实施例和对比例中,采用滴定的方法测定废水和淡化水中的有机铵根离子的含量,采用重铬酸钾法测定水的COD值。采用电感耦合等离子体法(ICP)法测定废水和淡化水中其余离子的含量。
以下实施例和对比例中,采用电流表测定电渗析过程中的电流强度。
实施例1
本实施例对来源于钛硅分子筛TS-1生产过程的洗涤废水进行处理,该废水的COD值以及组成在表1中列出。废水在进行电渗析之前,用浓度为3重量%的盐酸,以将废水的pH值调节为6.6。然后,将废水的温度升高至55℃,停止搅拌,并在该温度下静置12小时。然后用孔径为50nm的超滤膜进行过滤,收集液相进行电渗析。
本实施例采用图2所示的方法进行电渗析,采用的阳离子交换膜为购自河北光亚公司的苯乙烯型均相阳离子交换膜(离子交换容量为2.51meq/g干膜,膜面电阻(25℃,0.1mol/L NaCl水溶液,下同)为4.59Ω.cm2);采用的阴离子交换膜为购自河北光亚公司的均相苯乙烯型阴离子交换膜(离子交换容量为2.45meq/g干膜,膜面电阻为 9.46Ω·cm2)。电渗析器(膜堆尺寸为200×400mm)共有12个膜单元。
本实施例中使用的极液为3重量%的Na2SO4水溶液。
将废水送入电渗析器的料液室中,分别向电渗析器的料液室、浓缩室和极室中送入废水、去离子水和极液,待废水和去离子水的流量稳定为70L/h,极液的流量稳定为70L/h后,开启直流电源,进行电渗析,施加给每个膜单元的电压为2V,开启制冷机保持电渗析各膜单元的温度为不高于35℃。共进行200分钟的电渗析,从料液室输出淡化水,从浓缩室输出含有四丙基氢氧化铵的浓缩液。
对淡化水的组成进行测定,结果在表1中列出。
对比例1
采用与实施例1相同的方法对等量的废水进行处理,不同的是,使用的阳离子交换膜为购自德国FuMA-Tech公司的型号为FKS均相阳离子交换膜(离子交换容量为0.9meq/g干膜,膜面电阻为1.77Ω·cm2),实验结果在表1中列出。
对比例2
采用与实施例1相同的方法对等量的废水进行处理,不同的是,使用的阳离子交换膜为购自日本Tokuyama公司的型号为CM-1均相阳离子交换膜(离子交换容量为2.3meq/g干膜,膜面电阻为3.35Ω·cm2)。实验结果在表1中列出。
对比例3
采用与实施例1相同的方法对等量的废水进行处理,不同的是,使用的阳离子交换膜为购自美国杜邦公司的型号为Nafion 115均相阳离子交换膜(离子交换容量为0.89meq/g干膜,膜面电阻为0.52Ω·cm2)。实验结果在表1中列出。
对比例4
采用与对比例3相同的方法对等量的废水进行处理,不同的是,施加给每个膜单元的初始电压为3V。实验结果在表1中列出。
对比例5
采用与实施例1相同的方法对等量的废水进行处理,不同的是,使用的阳离子交换膜为购自上海化工厂的型号为3361-BW非均相阳离子交换膜,使用的阴离子交换膜为购自上海化工厂的型号为3362-BW的非均相阴离子交换膜,施加给每个膜单元的初始电压为2.3V。实验结果在表1中列出。
实施例2
采用与实施例1相同的方法对等量的废水进行处理,不同的是,使用的阴离子交换膜为购自日本Tokuyam公司的型号为AM-1的均相阴离子交换膜(离子交换容量为2.1meq/g干膜,膜面电阻为5.9Ω·cm2)。实验结果在表1中列出。
实施例3
采用与实施例1相同的方法对等量的废水进行处理,不同的是,使用的阴离子交换膜为购自北京廷润膜技术开发公司的均相苯乙烯型阴离子交换膜(离子交换容量为2.5meq/g干膜,膜面电阻为2.36Ω·cm2)。实验结果在表1中列出。
表1
项目 COD值(mg/L) 四丙基铵离子(mg/L)
废水 65409 20520.4
实施例1 2123 486.5
对比例1 62375 19370.6
对比例2 58117 18105
对比例3 61729 19282.1
对比例4 60117 18928
对比例5 56018 17513.1
实施例2 1998 451.1
实施例3 2035 459.9
实施例4
本实施例对钛硅分子筛TS-1生产过程的晶化废水进行处理,该废水的COD值以及组成在表2中列出。废水在进行双极膜电渗析前,用浓度为3重量%的盐酸,以将废水的pH值调节为6.8。然后,将废水的温度升高至55℃,停止搅拌,并在该温度下静置12小时。然后用孔径为50nm的超滤膜进行过滤,收集液相进行双极膜电渗析。
本实施例采用图4所示的方法进行双极膜电渗析,采用的阳离子交换膜为购自河北光亚公司的苯乙烯型均相阳离子交换膜(同实施例1);采用的阴离子交换膜为购自河北光亚公司的均相阴离子交换膜(同实施例1);双极膜为购自日本Tokuyama公司的型号为BP-1的双极膜。双极膜电渗析器(膜堆尺寸为200×400mm)共有20个膜单元。
本实施例中使用的极液为3重量%的Na2SO4水溶液。
将废水送入双极膜电渗析器的料液室中,向双极膜电渗析器的酸室和碱室中送入去离子水,将极液送入双极膜电渗析器的极室中,待废水和去离子水的流量稳定为100L/h,极液的流量稳定为100L/h后,开启直流电源,进行电渗析,施加给每个膜单元的电压为2.5V,开启制冷机保持电渗析各膜单元的温度为不高于35℃。共进行100分钟的电渗析,从料液室输出淡化水,从碱室输出含有四丙基氢氧化铵的碱液,从酸室输出酸液。对淡化水的组成进行测定,结果在表2中列出。
对比例6
采用与实施例4相同的方法对等量的废水进行处理,不同的是,使用的阳离子交换膜为购自日本Tokuyama公司的均相阳离子交换膜(离子交换容量为2.3meq/g干膜,膜面电阻为3.35Ω·cm2)。实验结果在表2中列出。
对比例7
采用与实施例4相同的方法对等量的废水进行处理,不同的是,使用的阳离子交换膜为购自美国杜邦公司的均相阳离子交换膜(离子交换容量为0.89meq/g干膜,膜面电阻为0.52Ω·cm2)。实验结果在表2中列出。
对比例8
采用与实施例4相同的方法对等量的废水进行处理,不同的是,使用的阳离子交换膜为购自德国FuMA-Tech公司的均相阳离子交换膜(离子交换容量为0.9meq/g干膜,膜面电阻为1.77Ω·cm2)。实验结果在表2中列出。
对比例9
采用与对比例8相同的方法对等量的废水进行处理,不同的是,施加给每个膜单元的电压为3.5V。实验结果在表2中列出。
对比例10
采用与实施例4相同的方法对等量的废水进行处理,不同的是,使用的阳离子交换膜为购自上海化工厂的型号为3361-BW非均相阳离子交换膜,阴离子交换膜为购自上海化工厂的型号为3362-BW非均相阴离子交换膜,施加给每个膜单元的电压为3V。实验结果在表2中列出。
表2
项目 COD值(mg/L) 四丙基铵离子(mg/L)
废水 85219 26358.1
实施例4 1690 371.5
对比例6 79213 24589.1
对比例7 81395 25208.3
对比例8 84051 26092.8
对比例9 82981 25562.1
对比例10 76924 23969.9
表1和表2的结果表明,在采用均相阳离子交换膜进行电渗析和双极膜电渗析时,采用苯乙烯型均相阳离子交换膜,能获得较好的效果,获得的淡化液中,四丙基铵根离子的含量更低,使得更多的四丙基铵根离子被富集在碱液中。尽管在进行普通电渗析和双极膜电渗析时,非均相阳离子交换膜的种类并没有如均相阳离子交换膜的限制,但是非均相阳离子交换膜的电渗析效果和双极膜电渗析效果不及均相苯乙烯型均相阳离子交换膜。
实施例5
本实施例对钛硅分子筛TS-1生产过程的洗涤废水进行处理,该废水的COD值以及组成在表3中列出。废水在进行双极膜电渗析之前,用浓度为2.9重量%的盐酸,以将废水的pH值调节为6.3。然后,将废水的温度升高至50℃,停止搅拌,并在该温度下静置10小时。然后用孔径为50nm的超滤膜进行过滤,收集液相进行双极膜电渗析。
本实施例采用图3所示的方法进行电渗析,采用的阳离子交换膜为购自北京廷润膜技术开发有限公司的苯乙烯型均相阳离子交换膜(离子交换容量为2.5meq/g干膜,膜面电阻为8Ω·cm2);双极膜为购自日本Tokuyama公司的型号为BP-1的双极膜。双极膜电渗析器(膜堆尺寸为200×400mm)共有20个膜单元。
本实施例中使用的极液为4重量%的Na2SO4水溶液。
将废水送入双极膜电渗析器的料液室中,向双极膜电渗析器的碱室中送入去离子水,将极液送入双极膜电渗析器的极室中,待废水和去离子水的流量稳定为120L/h,极液的流量稳定为120L/h后,开启直流电源,进行双极膜电渗析,施加给每个膜单元的电压为2V,开启制冷机保持双极膜电渗析各膜单元的温度为不高于30℃。共进行50分钟的电渗析,从而得到从料液室输出的淡化水,从碱室输出的含有四丙基氢氧化铵的碱液,从酸室输出酸液。对淡化水的组成进行测定,结果在表3中列出。
实施例6
采用与实施例5相同的方法对等量的废水进行处理,不同的是,施加给每个膜单元的初始电压为1.8V,在废水处理量相同的条件下,双极膜电渗析的持续时间为1小时。实验结果在表3中列出。
实施例7
采用与实施例5相同的方法对等量的废水进行处理,不同的是,施加给每个膜单元的电压为2.5V。实验结果在表3中列出。
实施例8
采用与实施例5相同的方法对等量的废水进行处理,不同的是,使用的阴离子交换膜为购自日本Tokuyam公司的型号为AM-1的均相阴离子交换膜。实验结果在表3中列出。
表3
项目 COD值(mg/L) 四丙基铵离子(mg/L)
废水 65409 20520.4
实施例5 1253 265.4
实施例6 2195 530.7
实施例7 1003 212.3
实施例8 1637 362.6
实施例9:
本实施例对来源于钛硅分子筛TS-1生产过程的洗涤废水进行处理,该废水的COD值以及组成在表4中列出。废水在进行电渗析之前,用浓度为20重量%的四氯化钛水溶液,将废水的pH值调节为6.5~7.5。然后,将废水的温度升高至75℃,停止搅拌,并在该温度下静置12小时。然后用孔径为50nm的超滤膜进行过滤,收集液相进行电渗析。
本实施例其他条件同实施例1。将废水送入电渗析器的料液室中,分别向电渗析器的料液室、浓缩室和极室中送入废水、去离子水和极液,待废水和去离子水的流量稳定为70L/h,极液的流量稳定为70L/h后,开启直流电源,进行电渗析,施加给每个膜单元的电压为1.8V,开启制冷机保持电渗析各膜单元的温度为不高于35℃。共进行150分钟的电渗析,从料液室输出淡化水,从浓缩室输出含有四丙基氢氧化铵的浓缩液。
对淡化水的组成进行测定,结果在表4中列出。
表4
Figure PCTCN2016000593-appb-000005
实施例10
本实施例对钛硅分子筛TS-1生产过程的晶化母液和洗涤废水混合液进行处理,该废水的COD值以及组成在表5中列出。
本实施例采用图5所示的方法进行电渗析,采用的阳离子交换膜为购自河北光亚公司的苯乙烯型均相阳离子交换膜(同实施例1);采用的阴离子交换膜为购自河北光亚公司的均相苯乙烯型阴离子交换膜(同实施例1);双极膜为购自日本Tokuyama公司的型号为BP-1的双极膜。普通电渗析器(膜堆尺寸为200×400mm)共有12个膜单元,双极膜电渗析器(膜堆尺寸为200×400mm)共有12个膜单元。
本实施例中,普通电渗析和双极膜电渗析使用的极液均为3重量%的Na2SO4水溶液。
本实施例采用以下流程对废水进行处理。
(1)将分子筛制备过程废水送入100L的预处理罐中,在环境温度(25℃)下,伴随搅拌加入浓度为3重量%的HCl(为前一次双极膜电渗析得到的酸液),以将废水的pH值调节为6。然后,将废水的温度升高至80℃,停止搅拌,并在该温度下静置24小时。然后用孔径为50nm的超滤膜进行过滤,得到固相和液相(相对于废水的总量,液相的收率为90重量%)。
(2)将步骤(1)得到的滤液送入普通电渗析器的料液室中,在普通电渗析器的浓缩室中分别送入水(为前一次电渗析得到的淡化水);向双极膜电渗析器的酸室和碱室中分别送入水(为前一次普通电渗析得到的淡化水),将普通电渗析得到的浓缩液送入双极膜电渗析器的料液室中。将极液分别送入普通电渗析器和双极膜电渗析器的极室中。待废水和去离子水的流量稳定为80L/h,极液的流量稳定为80L/h后,开启普通电渗析器和双极膜电渗析器的直流电源,进行电渗析。
其中,在普通电渗析器中,施加给每个膜单元的电压为2V,开启制冷机保持各膜单元的温度为不高于35℃。
在双极膜电渗析器中,施加给每个膜单元的电压为2.5V,开启制冷机保持各膜单元的温度为不高于35℃。
共进行4h的电渗析,从而得到从普通电渗析的料液室以及双极膜电渗析器的料液室输出的淡化水,从双极膜电渗析器的碱室输出的含 有四丙基氢氧化铵的碱液,从双极膜电渗析器的酸室输出的酸液。
对从双极膜电渗析器的料液室和普通电渗析的料液室输出的淡化水(为双极膜电渗析和普通电渗析得到的淡化水的混合物)的组成进行测定,结果在表5中列出。
(3)将双极膜电渗析得到的碱液浓缩成浓度为10-15重量%后、与普通电渗析和双极膜电渗析器输出的淡化水一起用于制备钛硅分子筛TS-1(采用CN1167082A实例1公开的方法制备)。
制备的钛硅分子筛TS-1的结构参数在表6中列出,其中,以新鲜四丙基氢氧化铵和新鲜去离子水采用相同的工艺制备钛硅分子筛TS-1作为对照组,其结构参数也在表6中列出。
表5
项目 COD值(mg/L) 四丙基铵离子(mg/L)
废水 63258 19635.9
实施例10 1650 362.6
表6
Figure PCTCN2016000593-appb-000006
*:根据RIPP 139-90中规定的方法测定;
**:BET法
实施例1-10的结果证实,采用本发明的方法对含有有机铵根离子的废水进行处理,能有效地降低废水中的有机铵根离子含量。实施例1-10的结果还证实,采用本发明的方法对分子筛制备过程产生的废水进行处理,能实现废水中各种资源的合理有效再利用,基本没有外排废水和/或废物。
实施例11
本实施例对钛硅分子筛TS-1生产过程的洗涤废水进行处理,该废 水的COD值以及组成在表7中列出。
本实施例中,采用的阳离子交换膜为购自河北光亚公司的苯乙烯型均相阳离子交换膜(同测试例1);采用的阴离子交换膜为购自河北光亚公司的均相阴离子交换膜(同测试例1);双极膜为购自日本Tokuyama公司的型号为BP-1的双极膜。双极膜电渗析器(膜堆尺寸为200×400mm)共有20个膜单元;电渗析器(膜堆尺寸为200×400mm)共有12个膜单元。使用的极液为3重量%的Na2SO4水溶液。
本实施例采用以下工艺流程对分子筛制备过程废水进行处理,其中,步骤(2)采用图11所示的实施方式对步骤(1)得到的液相进行处理。
(1)将分子筛制备过程废水送入20L的预处理罐中,在环境温度(25℃)下,伴随搅拌加入浓度为2.9重量%的盐酸(为前一次极膜电渗析得到的酸液),以将废水的pH值调节为6.8。然后,将废水的温度升高至55℃,停止搅拌,并在该温度下静置12小时。然后用孔径为50nm的超滤膜进行过滤,得到固相和液相(相对于废水的总量,液相的收率为90重量%)。
(2)将步骤(1)得到的液相送入淡化罐中,向中间盐罐中送入水(为前一次电渗析得到的淡化水),向酸液罐和碱液罐中分别送入水(为前一次电渗析得到的淡化水),向极液罐(图11中未示出)送入极液。
开启电渗析器和双极膜电渗析器各室的进水循环泵,并将电渗析器的料液室和浓缩室的流量调节为70L/h,将双极膜电渗析器的料液室、酸室和碱室的流量调节为60L/h,将电渗析器和双极膜电渗析器的极液室的流量调节为70L/h。
开启电渗析器和双极膜电渗析器的直流电源,其中,将双极膜电渗析器的电压调节固定为50V;将电渗析器的电压调节为20V。
共进行60分钟的电渗析和双极膜电渗析。其中,电渗析器输出的淡化水的组成和COD值在表7中列出,双极膜电渗析得到的酸液和碱液的浓度分别为2.9重量%和3.1重量%,酸液可以直接送入预处理步骤中作为沉淀剂,碱液可以经浓缩得到浓度为12重量%的碱液后,送入合成单元中作为碱源。
实施例12
采用与实施例11相同的方法对等量的废水进行处理,不同的是,在步骤(2)中,将电渗析器的电压调节为30V。
其中,电渗析器输出的淡化水的组成和COD值在表7中列出,双极膜电渗析得到的酸液和碱液的浓度分别为3.1重量%和3.1重量%。
表7
项目 COD值(mg/L) 四丙基铵根离子(mg/L)
废水 65409 20520.4
实施例11 2238 548.4
实施例12 1953 442.3
实施例13
本实施例对钛硅分子筛TS-1生产过程的洗涤废水和晶化母液的混合液进行处理,该废水的COD值以及组成在表8中列出。
本实施例中,采用的阳离子交换膜为购自北京廷润膜技术开发有限公司的苯乙烯型均相阳离子交换膜(离子交换容量为2.5meq/g干膜,膜面电阻为8Ω·cm2);采用的阴离子交换膜为购自北京廷润膜技术开发有限公司的均相阴离子交换膜(离子交换容量为2.5meq/g干膜,膜面电阻为2.36Ω·cm2);双极膜为购自日本Tokuyama公司的型号为BP-1的双极膜。双极膜电渗析器(膜堆尺寸为200×400mm)共有10个膜单元;电渗析器(膜堆尺寸为200×400mm)共有12个膜单元;极液为5重量%的Na2SO4水溶液。
本实施例采用以下工艺流程对分子筛制备过程废水进行处理,其中,步骤(2)至(3)采用图12所示的方式对步骤(1)得到的液相进行处理。
(1)将分子筛制备过程废水送入20L的预处理罐中,在环境温度(25℃)下,伴随搅拌加入浓度为2.2重量%的盐酸(为前一次双极膜电渗析得到的酸液),以将废水的pH值调节为6.5。然后,将废水的温度升高至75℃,停止搅拌,并在该温度下静置24小时。然后用孔径为50nm的超滤膜进行过滤,得到固相和液相(相对于废水的总量,液相的收率为91重量%)。
(2)将步骤(1)得到的液相送入淡化罐中,向中间盐罐中送入水(为前一次双极膜电渗析得到的淡化水),向酸液罐和碱液罐中分别送入水(为前一次电渗析得到的淡化水),向极液罐(图12中未示出)送入极液。
开启电渗析器和双极膜电渗析器各室的进水循环泵,并将电渗析器的料液室和浓缩室的流量调节为70L/h,将双极膜电渗析器的料液室、酸室和碱室的流量调节为70L/h,将电渗析器和双极膜电渗析器的极液室的流量调节为70L/h。
开启电渗析器和双极膜电渗析器的直流电源,其中,将双极膜电渗析器的电压调节固定为20V;将电渗析器的电压调节为25V。共进行50分钟的电渗析和双极膜电渗析。
其中,电渗析器输出的淡化水的组成和COD值在表8中列出,双极膜电渗析得到的酸液和碱液的浓度分别为2.2重量%和2.1重量%,酸液可以直接送入预处理步骤中作为沉淀剂,碱液可以经浓缩得到浓度为10重量%的碱液后,送入合成单元中作为碱源。
(3)将双极膜电渗析得到的碱液浓缩成浓度为10重量%后、与电渗析器输出的淡化水一起用于制备钛硅分子筛TS-1(采用CN1167082A实例1公开的方法制备)。
制备的钛硅分子筛TS-1的结构参数在表9中列出,其中,以新鲜四丙基氢氧化铵和新鲜去离子水采用相同的工艺制备钛硅分子筛TS-1作为对照组,其结构参数也在表9中列出。
表8
项目 COD值(mg/L) 四丙基铵根离子(mg/L)
废水 65409 20520.4
实施例13 2387 601.5
表9
Figure PCTCN2016000593-appb-000007
*:根据《石油化工分析方法(RIPP实验方法)》(杨翠定等,科学出版社,1990)第414-415页记载的方法来测定分子筛的相对结晶度;
**:BET法
实施例11-13的结果证实,采用本发明的方法对含有四丙基铵根离子的废水进行处理,能有效地降低水中的四丙基铵根离子含量,同时还能回收得到四丙基铵碱。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (35)

  1. 一种废水的处理方法,所述废水含有至少一种有机铵根离子和任选的可溶性二氧化硅等杂质,该方法包括将所述任选预处理的废水进行电渗析,得到有机铵根离子含量降低的淡化水以及含有有机铵根离子的浓缩液,其中所述电渗析在至少一个电渗析器中进行,所述电渗析器的膜堆具有至少一个膜单元,至少部分膜单元中的膜包括阳离子交换膜。
  2. 根据权利要求1所述的方法,其中该方法包括预处理步骤,在预处理步骤中,将废水进行固液分离,得到固相和液相,将所述液相送入废水处理步骤中进行电渗析。
  3. 根据权利要求2所述的方法,其中,在将废水进行固液分离之前,将废水与至少一种沉淀剂接触,以使废水中的硅形成胶体,其中所述沉淀剂优选选自酸、二价、三价和四价金属盐,更优选四价金属盐,如四氯化钛、硫酸氧钛等。
  4. 根据权利要求1-3任一项所述的方法,其中,所述阳离子交换膜为苯乙烯型均相阳离子交换膜。
  5. 根据权利要求4中任意一项所述的方法,其中,所述苯乙烯型均相阳离子交换膜的膜面电阻为1-15Ω·cm2,优选为3-12Ω·cm2,更优选为4-9Ω·cm2
  6. 根据权利要求4所述的方法,其中,所述苯乙烯型均相阳离子交换膜的离子交换容量为1-5meq/g干膜,优选为1.5-3meq/g干膜,更优选为1.8-2.6meq/g干膜。
  7. 根据权利要求1-6任一项所述的方法,其中,所述电渗析为按以下方式进行的普通电渗析:所述膜单元中的膜为阴离子交换膜和阳离子交换膜,所述阴离子交换膜和所述阳离子交换膜将所述膜单元的内部空间分隔成料液室和浓缩室,所述废水进入所述料液室,水进入所述浓缩室,在电渗析过程中,由所述料液室得到所述淡化水,由所述浓缩室得到作为所述碱液的浓缩液。
  8. 根据权利要求1-6之一所述的方法,其中,所述电渗析为双极膜电渗析,所述双极膜电渗析优选按照以下方式中的一种、两种或三种进行,
    方式一:双极膜电渗析器的膜堆具有至少一个膜单元,膜单元中的膜为双极膜和阳离子交换膜,所述双极膜和所述阳离子交换膜将所述膜单元的内部空间分隔成碱室和料液室,所述废水或者所述液相进入所述料液室,水进入所述碱室,在电渗析过程中,由所述料液室得到酸液,由所述碱室得到含有有机铵根离子的碱液;
    方式二:双极膜电渗析器的膜堆具有至少一个膜单元,膜单元中的膜为双极膜和阴离子交换膜,所述双极膜和所述阴离子交换膜将所述膜单元的内部空间分隔成酸室和料液室,所述废水或者所述液相进入所述料液室,水进入所述酸室,在电渗析过程中,由所述料液室得到含有有机铵根离子的碱液,由所述酸室得到酸液;
    方式三:双极膜电渗析器的膜堆具有至少一个膜单元,膜单元中的膜为双极膜、阴离子交换膜以及阳离子交换膜,所述双极膜、所述阴离子交换膜以及所述阳离子交换膜将所述膜单元的内部空间分隔成酸室、料液室和碱室,所述料液室位于所述酸室和所述碱室之间,所述废水或者所述液相进入所述料液室,水分别进入所述酸室和所述碱室,在电渗析过程中,由所述料液室得到淡化水,由所述酸室得到酸液,由所述碱室得到含有有机铵根离子的碱液。
  9. 根据权利要求1-8之一所述的方法,其中将所述浓缩液进行双极膜电渗析,得到酸液、含有有机铵根离子的碱液以及第二淡化水。
  10. 根据权利要求1-6任一项所述的方法,其中,所述电渗析包括普通电渗析和双极膜电渗析,所述普通电渗析的膜单元中的膜为阴离子交换膜和阳离子交换膜,所述阴离子交换膜和所述阳离子交换膜将所述膜单元的内部空间分隔成料液室和浓缩室;
    所述双极膜电渗析的膜单元中的膜为双极膜、阴离子交换膜和所述阳离子交换膜,所述双极膜、所述阴离子交换膜以及所述阳离子交换膜将所述膜单元的内部空间分隔成酸室、料液室和碱室,所述料液室位于所述酸室和所述碱室之间;
    所述废水在普通电渗析中进行电渗析,得到第一淡化水以及有机铵根离子含量增加的浓缩液,所述浓缩液在所述双极膜电渗析中进行双极膜电渗析,得到酸液、所述碱液以及第二淡化水。
  11. 根据权利要求1-10中任一项所述的方法,其中,在电渗析过程中,给普通电渗析的每个膜单元施加的电压为0.1-5V,优选为0.5-4V, 更优选为1-3V;和/或给双极膜电渗析的每个膜单元施加的电压为0.1-8V,优选为1-6V,更优选为2-5V。
  12. 根据权利要求1-11中任一项所述的方法,其中,所述电渗析的条件使得得到的淡化水中有机铵根离子的含量为2000mg/L以下,优选为1000mg/L以下,更优选为500mg/L以下。
  13. 根据权利要求1-12中任一项所述的方法,其中,所述废水中有机铵根离子的浓度为1000-35000mg/L,优选2000-30000mg/L,更优选10000-30000mg/L。
  14. 根据权利要求1-13中任一项所述的方法,其中,所述有机铵根离子为式I所示的有机铵根离子,
    Figure PCTCN2016000593-appb-100001
    式I中,R1、R2、R3和R4各自独立地选自H,C1-C5的烷基和C6-C12的芳基,其中R1、R2、R3和R4中至少一个不是H;
    优选地,所述有机铵根离子为四丙基铵离子。
  15. 根据权利要求1-14中任意一项所述的方法,其中,所述废水为采用有机铵碱的分子筛制备过程废水,优选为采用有机铵碱的分子筛制备过程的晶化步骤中的晶化母液,采用有机铵碱的分子筛制备过程的洗涤步骤中的洗涤废水,或者所述晶化母液和所述洗涤废水的混合液;并且所述分子筛优选为钛硅分子筛、BETA分子筛、SSZ-13分子筛和Silicate-1中的至少一种。
  16. 根据权利要求15所述的方法,其中,所述有机铵碱选自式II所示的化合物,
    Figure PCTCN2016000593-appb-100002
    式II中,R1、R2、R3和R4各自独立地选自H,C1-C5的烷基和C6-C12的芳基,其中R1、R2、R3和R4中至少一个不是H;
    优选地,所述有机铵碱为四丙基氢氧化铵。
  17. 一种废水处理系统,所述废水为含有有机铵根离子的分子筛制备过程废水,包括废水贮存单元、任选的预处理单元、普通电渗析单元和/或双极膜电渗析单元,
    所述废水贮存单元用于接纳并贮存废水;
    所述任选的预处理单元用于将来自于废水贮存单元的废水与至少一种沉淀剂接触,以使所述废水中的硅形成胶体后,进行固液分离,得到液相和固相;
    所述普通电渗析单元用于将废水或者所述液相进行普通电渗析,得到有机铵根离子含量降低的第一淡化水、以及含有有机铵根离子的浓缩液;
    所述双极膜电渗析单元用于将普通电渗析单元输出的所述浓缩液进行双极膜电渗析,得到酸液、含有有机铵根离子的碱液以及任选的第二淡化水。
  18. 根据权利要求17所述的系统,其中,所述普通电渗析单元包括至少一个普通电渗析器,所述普通电渗析器的膜堆具有至少一个膜单元,至少部分膜单元中的膜为阳离子交换膜和阴离子交换膜,所述阳离子交换膜和所述阴离子交换膜将所述膜单元的内部空间分隔成料液室和浓缩室。
  19. 根据权利要求17或18所述的系统,其中,所述双极膜电渗析单元包括至少一种双极膜电渗析器,所述双极膜电渗析器的膜单元采用以下方式中的一种、两种或三种,
    方式1:膜单元中的膜为双极膜和阳离子交换膜,所述双极膜和所述阳离子交换膜将所述膜单元的内部空间分隔成碱室和料液室;
    方式2:膜单元中的膜为双极膜和阴离子交换膜,所述双极膜和所述阴离子交换膜将所述膜单元的内部空间分隔成酸室和料液室;
    方式3:膜单元中的膜为双极膜、阴离子交换膜以及阳离子交换膜,所述双极膜、所述阴离子交换膜以及所述阳离子交换膜将所述膜单元的内部空间分隔成酸室、料液室和碱室,所述料液室位于所述酸室和所述碱室之间。
  20. 根据权利要求17-19中任意一项所述系统,其中,该系统还包括第一循环单元和/或第二循环单元,
    所述第一循环单元用于将双极膜电渗析单元输出的酸液送入预处 理单元作为至少部分沉淀剂;
    所述第二循环单元用于将第一淡化水和/或第二淡化水送入普通电渗析单元和/或双极膜电渗析单元中,作为普通电渗析用水和/或双极膜电渗析用水。
  21. 一种废水处理系统,所述废水为含有有机铵根离子的分子筛制备过程废水,包括淡化罐、中间盐罐、普通电渗析器、双极膜电渗析器、碱液罐、酸液罐以及任选的淡化水罐;
    所述普通电渗析器的膜单元中的膜为阳离子交换膜和阴离子交换膜,从而将所述膜单元的内部空间分隔成料液室和浓缩室;所述双极膜电渗析器的膜单元中的膜为双极膜、阳离子交换膜和阴离子交换膜,从而将所述膜单元的内部空间分隔成料液室、酸室和碱室,所述料液室位于所述酸室和所述碱室之间;
    所述淡化罐用于接纳废水,并与所述普通电渗析单元中的普通电渗析器的料液室连通,为所述料液室提供进水,并任选地接纳所述料液室的出水;
    所述中间盐罐与所述电渗析器的浓缩室连通,为所述浓缩室提供进水并接纳所述浓缩室的出水,所述双极膜电渗析器的料液室与所述中间盐罐连通,以接纳从所述中间盐罐输出的浓缩液作为进水;
    所述碱液罐与所述双极膜电渗析器的碱室连通,用于接纳双极膜电渗析器的碱室输出的碱液,并为双极膜电渗析器的碱室提供进水;
    所述酸液罐与双极膜电渗析器的酸室连通,用于接纳双极膜电渗析器的酸室输出的酸液,并为双极膜电渗析器的酸室提供进水;
    所述淡化水罐与所述碱液罐和所述酸液罐连通,并与所述淡化罐连通或者与所述电渗析器的料液室连通,用于接纳所述淡化罐输出的第一淡化水或者用于接纳所述电渗析器的料液室输出的第一淡化水,同时向所述碱液罐和所述酸液罐提供水。
  22. 根据权利要求21所述的系统,其中,该系统还包括预处理单元,所述预处理单元位于所述淡化罐的上游,用于将废水与至少一种沉淀剂接触,以使废水中的硅形成胶体后进行固液分离,将固液分离得到的液相送入所述淡化罐中。
  23. 根据权利要求21或22所述的系统,其中,该系统还包括有机铵碱回收罐以及酸回收罐,
    所述有机铵碱回收罐用于接纳从碱液罐输出的碱液;
    酸回收罐用于接纳从酸液罐输出的酸液。
  24. 根据权利要求21-23中任意一项所述的系统,其中,所述酸回收罐与所述预处理单元连通,用于将至少部分酸液送入所述预处理单元中作为沉淀剂;
    所述有机铵碱回收罐与所述合成单元连通,用于将含有有机铵碱的碱液送入所述合成单元中;
    所述淡化水罐与以下单元中的一者、两者或三者连通:所述合成单元,用于向所述合成单元提供合成用水;所述晶化单元,用于向所述晶化单元提供终止晶化用水;所述分离洗涤单元,用于向所述分离洗涤单元提供洗涤水,其中所述合成单元,晶化单元和分离洗涤单元是指在分子筛制备过程中所具有的单元。
  25. 根据权利要求18-24中任意一项所述的系统,其中,所述阳离子交换膜为苯乙烯型均相阳离子交换膜。
  26. 根据权利要求25所述的系统,其中,所述苯乙烯型均相阳离子交换膜的膜面电阻为1-15Ω·cm2,优选为3-12Ω·cm2,更优选为4-9Ω·cm2,和/或所述苯乙烯型均相阳离子交换膜的离子交换容量为1-5meq/g干膜,优选为1.5-3meq/g干膜,更优选为1.8-2.6meq/g干膜。
  27. 一种分子筛的制备方法,该方法包括合成步骤、晶化步骤、分离洗涤步骤和废水处理步骤,
    在所述合成步骤中,将原料与水接触反应,所述原料含有硅源、有机铵碱以及任选的钛源;
    在所述晶化步骤中,将合成步骤得到的反应混合物进行晶化;
    在分离洗涤步骤中,将晶化步骤得到的混合物进行固液分离,得到固相和晶化母液,并对所述固相进行洗涤,得到分子筛和洗涤废水;
    在废水处理步骤中,将废水进行电渗析,得到含有有机铵根离子的碱液以及有机铵根离子含量降低的淡化水,所述废水为所述晶化母液、所述洗涤废水或者所述晶化母液和所述洗涤废水的混合液,其中,采用权利要求1-16中任意一项所述的方法对所述废水进行处理。
  28. 根据权利要求27所述的方法,其中,该方法还包括第一循环步骤、第二循环步骤和第三循环步骤中的一者、两者或三者,
    在第一循环步骤中,将所述淡化水循环用于以下步骤之一:合成 步骤,作为合成用水;晶化步骤,用于终止晶化;洗涤步骤,用作洗涤水;
    在第二循环步骤中,将电渗析得到的碱液循环用于合成步骤;
    在第三循环步骤中,将存在双极膜电渗析的情况下得到的酸液循环用于预处理步骤,作为至少部分沉淀剂。
  29. 一种分子筛制备系统,该系统包括合成单元、晶化单元、分离洗涤单元以及废水处理单元,
    所述合成单元用于将原料与水接触反应,所述原料含有硅源、有机铵碱以及任选的钛源;
    所述晶化单元用于将合成步骤得到的反应混合物进行晶化;
    所述分离洗涤单元用于将晶化步骤得到的混合物进行固液分离,得到固相和晶化母液,并对所述固相进行洗涤,得到分子筛和洗涤废水;
    所述废水处理单元用于将废水进行电渗析,得到含有有机铵根离子的碱液以及有机铵根离子含量降低的淡化水,所述废水为所述晶化母液、所述洗涤废水或者所述晶化母液和所述洗涤废水的混合液,其中,所述电渗析在至少一个电渗析器中进行,所述电渗析器的膜堆具有至少一个膜单元,至少部分膜单元中的膜包括阳离子交换膜。
  30. 根据权利要求29所述的系统,其中,所述电渗析器为至少一个普通电渗析器,所述普通电渗析器的膜单元中的膜按以下方式组合:所述膜单元中的膜为阴离子交换膜和阳离子交换膜,所述阴离子交换膜和所述阳离子交换膜将所述膜单元的内部空间分隔成料液室和浓缩室,所述料液室接纳所述废水。
  31. 根据权利要求29所述的系统,其中,所述电渗析器为至少一个双极膜电渗析器,所述双极膜电渗析器的膜单元采用以下方式中的一种、两种或三种,
    方式1:膜单元中的膜为双极膜和阳离子交换膜,所述双极膜和所述阳离子交换膜将所述膜单元的内部空间分隔成碱室和料液室;
    方式2:膜单元中的膜为双极膜和阴离子交换膜,所述双极膜和所述阴离子交换膜将所述膜单元的内部空间分隔成酸室和料液室;
    方式3:膜单元中的膜为双极膜、阴离子交换膜以及阳离子交换膜,所述双极膜、所述阴离子交换膜以及所述阳离子交换膜将所述膜单元 的内部空间分隔成酸室、料液室和碱室,所述料液室位于所述酸室和所述碱室之间。
  32. 根据权利要求29所述的系统,其中,所述废水处理单元包括至少一个普通电渗析器和至少一个双极膜电渗析器,
    所述普通电渗析器的膜单元中的膜为阴离子交换膜和所述阳离子交换膜,所述阴离子交换膜和所述阳离子交换膜将所述膜单元的内部空间分隔成料液室和浓缩室;
    所述双极膜电渗析器的膜单元中的膜为双极膜、阴离子交换膜和所述阳离子交换膜,所述双极膜、所述阴离子交换膜以及所述阳离子交换膜将所述膜单元的内部空间分隔成酸室、料液室和碱室,所述料液室位于所述酸室和所述碱室之间;
    所述普通电渗析器用于将废水进行电渗析,得到第一淡化水以及有机铵根离子含量增加的浓缩液,所述双极膜电渗析器用于将所述浓缩液进行双极膜电渗析,得到酸液、含有有机铵根离子的碱液以及第二淡化水。
  33. 根据权利要求29-32中任意一项所述的系统,其中,该系统还包括预处理单元,所述预处理单元用于将废水与至少一种沉淀剂接触,以使废水中的至少部分硅形成胶体,并进行固液分离,得到含硅固相和液相,并将所述液相送入所述废水处理单元中进行电渗析。
  34. 根据权利要求29-33中任意一项所述的系统,其中,所述废水处理单元还包括淡化水输送管道、回收有机铵碱输送管道以及回收酸液输送管道中的一者、两者或三者,
    所述淡化水输送管道用于将所述废水处理单元回收的淡化水送入以下单元之一:所述合成单元,用作合成用水;所述晶化单元,用作终止结晶用水;所述分离洗涤单元,用作洗涤水;
    所述回收有机铵碱输送管道用于将所述废水处理单元中双极膜电渗析器得到的含有有机铵碱的碱液送入所述合成单元;
    所述回收酸液输送管道用于将所述废水处理单元中的双极膜电渗析器得到的酸液送入所述预处理单元,作为至少部分沉淀剂。
  35. 根据权利要求29-34中任意一项所述的系统,所述阳离子交换膜为苯乙烯型均相阳离子交换膜。
PCT/CN2016/000593 2015-10-30 2016-10-28 废水处理方法和处理系统与分子筛制备方法和制备系统 WO2017071116A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018522000A JP6917369B2 (ja) 2015-10-30 2016-10-28 廃水の処理方法および処理システム、並びに、分子篩の作製方法および作製システム
RU2018119084A RU2730338C2 (ru) 2015-10-30 2016-10-28 Способ обработки сточных вод и система для их обработки, а также способ получения молекулярного сита и система для его получения
EP16858567.7A EP3369710B1 (en) 2015-10-30 2016-10-28 Wastewater treatment method, wastewater treatment system, molecular sieve manufacturing method and manufacturing system
SG11201803576SA SG11201803576SA (en) 2015-10-30 2016-10-28 Method for wastewater treatment and the treatment system thereof, and method for the preparation of a molecular sieve and the preparation system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201510726164.7A CN105540945A (zh) 2015-10-30 2015-10-30 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN201510726250.8A CN105540743A (zh) 2015-10-30 2015-10-30 一种废水的处理方法和一种分子筛的制备方法以及一种分子筛制备系统
CN201510726216.0A CN105540762A (zh) 2015-10-30 2015-10-30 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN201510726216.0 2015-10-30
CN201510726164.7 2015-10-30
CN201510726250.8 2015-10-30
CN201510725846.6 2015-10-30
CN201510725846.6A CN105540944A (zh) 2015-10-30 2015-10-30 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统

Publications (1)

Publication Number Publication Date
WO2017071116A1 true WO2017071116A1 (zh) 2017-05-04

Family

ID=58631175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000593 WO2017071116A1 (zh) 2015-10-30 2016-10-28 废水处理方法和处理系统与分子筛制备方法和制备系统

Country Status (5)

Country Link
EP (1) EP3369710B1 (zh)
JP (1) JP6917369B2 (zh)
RU (1) RU2730338C2 (zh)
SG (2) SG10201911200UA (zh)
WO (1) WO2017071116A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518056A (zh) * 2020-05-23 2020-08-11 安徽金禾实业股份有限公司 一种安赛蜜结晶废液的处理利用方法
CN112299553A (zh) * 2020-10-26 2021-02-02 济南大学 一种解决电催化曝气生物滤池阴极结垢的方法
CN113009794A (zh) * 2021-03-05 2021-06-22 苏州晶洲装备科技有限公司 一种光阻剥离液废液循环利用系统
JP2021517860A (ja) * 2018-03-13 2021-07-29 ビーエル テクノロジーズ、インコーポレイテッド 高濃度の酸又は塩基生成のための多段バイポーラ電気透析システム
CN113184818A (zh) * 2021-04-20 2021-07-30 同济大学 一种源分离尿液中高纯氮磷回收装置及其回收方法与应用
CN113184952A (zh) * 2021-04-20 2021-07-30 同济大学 一种废水中氮磷同步回收装置及其回收方法与应用
CN114477653A (zh) * 2022-02-24 2022-05-13 陕西煤业化工技术研究院有限责任公司 一种分子筛生产过程废水处理方法及系统
CN117797775A (zh) * 2024-02-28 2024-04-02 中蓝长化工程科技有限公司 一种高盐废水cod去除药剂及其制备方法及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112694186A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 含有机胺的废水的处理方法
GB202019478D0 (en) * 2020-12-10 2021-01-27 Fujifilm Corp Purifying polar liquids
RU2761205C1 (ru) * 2021-03-26 2021-12-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева (РХТУ им. Д.И. Менделеева) Способ получения комплексного алюминийсодержащего коагулянта
US20230322588A1 (en) * 2022-04-08 2023-10-12 Macdermid, Incorporated Electrochemical Oxidation of Amine Complexants in Waste Streams from Electroplating Processes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212526A (ja) * 2005-02-03 2006-08-17 Jfe Engineering Kk 再利用水の製造方法
CN103771436A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 一种分子筛离子交换方法及其应用
CN103771434A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 一种分子筛离子交换方法
CN104030499A (zh) * 2014-05-22 2014-09-10 浙江工业大学 一种特种分子筛合成母液的综合处理方法
CN104370293A (zh) * 2013-08-13 2015-02-25 东营科尔特化工科技有限公司 一种合成含钛β分子筛的方法
CN105540945A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN105540743A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 一种废水的处理方法和一种分子筛的制备方法以及一种分子筛制备系统
CN105540762A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN105540944A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN105540943A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 含硅废水的处理方法和含硅废水的利用方法以及分子筛制备方法和分子筛制备系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402115A (en) * 1965-03-12 1968-09-17 Monsanto Co Preparation of quaternary ammonium hydroxides by electrodialysis
JP3637458B2 (ja) * 1995-02-24 2005-04-13 東芝プラントシステム株式会社 アンモニア性窒素の除去方法
FR2746671B1 (fr) * 1996-04-02 1998-09-25 Rhone Poulenc Fibres Procede de separation d'un catalyseur par electrodialyse membranaire
JP3543915B2 (ja) * 1996-11-21 2004-07-21 オルガノ株式会社 フォトレジスト現像廃液の再生処理方法
US6787021B2 (en) * 2002-01-03 2004-09-07 Sachem, Inc. Purification of onium hydroxides by electrodialysis
JP5492612B2 (ja) * 2010-03-16 2014-05-14 オルガノ株式会社 電気式脱イオン水製造装置
WO2014028465A1 (en) * 2012-08-13 2014-02-20 Enviro Water Minerals Company, Inc. System for removing minerals from a brine using electrodialysis
TWI637912B (zh) * 2013-10-29 2018-10-11 中國石油化工科技開發有限公司 Titanium bismuth molecular sieve and synthesis method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212526A (ja) * 2005-02-03 2006-08-17 Jfe Engineering Kk 再利用水の製造方法
CN103771436A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 一种分子筛离子交换方法及其应用
CN103771434A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 一种分子筛离子交换方法
CN104370293A (zh) * 2013-08-13 2015-02-25 东营科尔特化工科技有限公司 一种合成含钛β分子筛的方法
CN104030499A (zh) * 2014-05-22 2014-09-10 浙江工业大学 一种特种分子筛合成母液的综合处理方法
CN105540945A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN105540743A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 一种废水的处理方法和一种分子筛的制备方法以及一种分子筛制备系统
CN105540762A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN105540944A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN105540943A (zh) * 2015-10-30 2016-05-04 中国石油化工股份有限公司 含硅废水的处理方法和含硅废水的利用方法以及分子筛制备方法和分子筛制备系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517860A (ja) * 2018-03-13 2021-07-29 ビーエル テクノロジーズ、インコーポレイテッド 高濃度の酸又は塩基生成のための多段バイポーラ電気透析システム
JP7339957B2 (ja) 2018-03-13 2023-09-06 ビーエル テクノロジーズ、インコーポレイテッド 高濃度の酸又は塩基生成のための多段バイポーラ電気透析システム
CN111518056A (zh) * 2020-05-23 2020-08-11 安徽金禾实业股份有限公司 一种安赛蜜结晶废液的处理利用方法
CN112299553A (zh) * 2020-10-26 2021-02-02 济南大学 一种解决电催化曝气生物滤池阴极结垢的方法
CN113009794A (zh) * 2021-03-05 2021-06-22 苏州晶洲装备科技有限公司 一种光阻剥离液废液循环利用系统
CN113184818A (zh) * 2021-04-20 2021-07-30 同济大学 一种源分离尿液中高纯氮磷回收装置及其回收方法与应用
CN113184952A (zh) * 2021-04-20 2021-07-30 同济大学 一种废水中氮磷同步回收装置及其回收方法与应用
CN113184952B (zh) * 2021-04-20 2022-10-25 同济大学 一种废水中氮磷同步回收装置及其回收方法与应用
CN114477653A (zh) * 2022-02-24 2022-05-13 陕西煤业化工技术研究院有限责任公司 一种分子筛生产过程废水处理方法及系统
CN117797775A (zh) * 2024-02-28 2024-04-02 中蓝长化工程科技有限公司 一种高盐废水cod去除药剂及其制备方法及其应用

Also Published As

Publication number Publication date
RU2018119084A (ru) 2019-12-02
RU2018119084A3 (zh) 2020-03-13
EP3369710A1 (en) 2018-09-05
EP3369710A4 (en) 2019-07-10
JP2018533473A (ja) 2018-11-15
EP3369710B1 (en) 2023-02-15
RU2730338C2 (ru) 2020-08-21
JP6917369B2 (ja) 2021-08-11
SG11201803576SA (en) 2018-05-30
SG10201911200UA (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2017071116A1 (zh) 废水处理方法和处理系统与分子筛制备方法和制备系统
WO2017071115A1 (zh) 含硅废水处理方法和利用方法与分子筛制备方法和系统
CN108623054B (zh) 一种多膜集成的制浆造纸废水零排放处理方法及装置
JP3256545B2 (ja) 濃厚な塩水溶液のナノ濾過
JP4995353B1 (ja) リチウム遷移金属リン酸塩の連続製造中におけるリチウム含有廃液の浄化方法
CN111777134A (zh) 一种废水的处理方法和一种分子筛的制备方法以及一种分子筛制备系统
CN107986538A (zh) 一种光声电耦合能场多级氧化-膜分离协同水处理系统及工艺
CN105540944A (zh) 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
AU2014235024B2 (en) Process for water treatment prior to reverse osmosis
CN105154908B (zh) 双极膜法从溶液中回收氢氧化锂工艺
CN105540762A (zh) 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN109248565B (zh) 一种基于双极膜的盐水回收系统
JP3565098B2 (ja) 超純水の製造方法及び装置
CN106315916A (zh) 一种深度处理抗生素废水的方法
CN210915600U (zh) 一种ro浓盐水的再利用装置
CN105540945A (zh) 废水的处理方法和废水处理系统以及分子筛的制备方法和分子筛制备系统
CN103420520A (zh) 一种含钒含铝废水的处理方法
CN207862085U (zh) 一种光声电耦合能场多级氧化-膜分离协同水处理系统
KR100911456B1 (ko) 티타늄 응집제 처리공정을 이용한 담수화 방법
CN110790460A (zh) 一种处理头孢类医药中间体生产废水的方法
CN210736443U (zh) 一种工业废水资源化零排放系统
CN220703463U (zh) 一种半导体行业酸碱废水的回收利用系统
CN111039480A (zh) 一种矿井水降盐的方法及装置
CN219297154U (zh) 一种用于净化肥料级湿法磷酸的系统
JP7094674B2 (ja) 有機性排水の処理方法及び処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858567

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2018522000

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018119084

Country of ref document: RU

Ref document number: 2016858567

Country of ref document: EP