WO2017069051A1 - 単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法 - Google Patents

単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法 Download PDF

Info

Publication number
WO2017069051A1
WO2017069051A1 PCT/JP2016/080499 JP2016080499W WO2017069051A1 WO 2017069051 A1 WO2017069051 A1 WO 2017069051A1 JP 2016080499 W JP2016080499 W JP 2016080499W WO 2017069051 A1 WO2017069051 A1 WO 2017069051A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal diamond
impurity concentration
tool
main surface
Prior art date
Application number
PCT/JP2016/080499
Other languages
English (en)
French (fr)
Inventor
西林 良樹
夏生 辰巳
拓也 野原
小林 豊
暁彦 植田
Original Assignee
住友電気工業株式会社
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ハードメタル株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020187004239A priority Critical patent/KR102643918B1/ko
Priority to JP2017546524A priority patent/JP6752213B2/ja
Priority to CN201680046754.8A priority patent/CN107923067B/zh
Priority to US15/753,241 priority patent/US10569317B2/en
Priority to EP16857366.5A priority patent/EP3366815A4/en
Publication of WO2017069051A1 publication Critical patent/WO2017069051A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • B21C3/025Dies; Selection of material therefor; Cleaning thereof comprising diamond parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/279Diamond only control of diamond crystallography
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Definitions

  • the present invention relates to single crystal diamond, a tool using the same, and a method for producing single crystal diamond.
  • This application claims priority based on Japanese Patent Application No. 2015-205482, which is a Japanese patent application filed on October 19, 2015. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • Single crystal diamond has excellent performance such as high hardness, high thermal conductivity, and high light transmission, so various products such as cutting tools, grinding tools, anti-wear tools, optical components, semiconductors, electronic components, etc. (Hereinafter also referred to as “diamond products”). Examples of the single crystal diamond used in such a diamond product include natural diamond and synthetic diamond. Natural diamonds vary widely in quality and supply is not stable, so synthetic diamonds are also used today.
  • HPHT high temperature high pressure synthesis method
  • CVD chemical vapor deposition
  • a hot filament CVD (Chemical Vapor Deposition) method a microwave excitation plasma CVD method
  • a DC plasma CVD method a chemical vapor deposition method
  • single crystal diamond can be obtained by growing single crystal diamond (epitaxial growth layer) on the surface of the substrate and then separating the substrate and single crystal diamond.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-35723
  • at least one layered conductive layer obtained by a vapor phase synthesis method is formed substantially parallel to the main surface, and the conductive layer is insulated.
  • a single crystal diamond which is formed inside a single crystal diamond and the conductive layer penetrates to the side surface of the single crystal diamond and a tool using the same.
  • a single crystal diamond according to one embodiment of the present invention is a single crystal diamond that includes a pair of opposing main surfaces, and the impurity concentration of the main surface varies along a first direction.
  • a tool according to an aspect of the present invention is a tool including the single crystal diamond of (1) above.
  • a method for producing a single crystal diamond according to one embodiment of the present invention is the method for producing a single crystal diamond according to (1) above, wherein the impurity concentration changes along the crystal growth direction by a vapor phase synthesis method.
  • a method for producing single crystal diamond comprising: obtaining a synthetic single crystal diamond; and cutting the synthetic single crystal diamond in a direction in which the impurity concentration changes.
  • FIG. 1A is a plan view of single-crystal diamond in Embodiment 1.
  • FIG. 1B is a perspective view of single crystal diamond in the first exemplary embodiment.
  • FIG. 2 is a graph showing the impurity concentration in the main surface of the single crystal diamond of FIGS. 1A and 1B.
  • FIG. 3A is an example of the method for producing single-crystal diamond according to Embodiment 1, and is a diagram illustrating one process thereof.
  • FIG. 3B is an example of the method for producing single-crystal diamond of Embodiment 1, and is a diagram showing a process different from the above.
  • FIG. 3C is an example of the method for producing single-crystal diamond of Embodiment 1, and is a diagram showing a process different from the above.
  • FIG. 3A is a plan view of single-crystal diamond in Embodiment 1.
  • FIG. 1B is a perspective view of single crystal diamond in the first exemplary embodiment.
  • FIG. 2 is a graph showing the im
  • FIG. 4A is a plan view of single crystal diamond in the second exemplary embodiment.
  • FIG. 4B is a perspective view of the single crystal diamond in the second exemplary embodiment.
  • FIG. 5 is a graph showing the impurity concentration in the main surface of the single crystal diamond of FIGS. 4A and 4B.
  • FIG. 6A is an example of the method for producing single-crystal diamond of Embodiment 2, and is a diagram showing one step thereof.
  • FIG. 6B is an example of the method for producing single-crystal diamond of Embodiment 2, and is a diagram showing a process different from the above.
  • FIG. 6C is an example of the method for producing single-crystal diamond of Embodiment 2, and is a diagram showing a step different from the above.
  • FIG. 6A is an example of the method for producing single-crystal diamond of Embodiment 2, and is a diagram showing one step thereof.
  • FIG. 6B is an example of the method for producing single-crystal diamond of Embodiment
  • FIG. 7A is a diagram illustrating a cutting tool according to the third embodiment.
  • FIG. 7B is a diagram for explaining the cutting bit according to the third embodiment after cutting the work material 5.
  • FIG. 7C is a diagram for explaining the cutting tool according to Embodiment 3 in which the angle of the flank 9 with respect to the rake face 8 is 55 ° or greater and 90 ° or less.
  • FIG. 7D is a top view of the cutting tool according to the third embodiment.
  • FIG. 8A is a diagram illustrating a cutting tool according to the fourth embodiment.
  • FIG. 8B is a diagram for explaining the cutting bit according to the fourth embodiment after cutting the work material 5.
  • FIG. 8A is a diagram illustrating a cutting tool according to the fourth embodiment.
  • FIG. 8B is a diagram for explaining the cutting bit according to the fourth embodiment after cutting the work material 5.
  • FIG. 8C is a diagram for explaining the cutting tool according to the fourth embodiment in which the angle of the flank 9 with respect to the rake face 8 is 55 ° or more and 90 ° or less.
  • FIG. 8D is a top view of the cutting tool according to the fourth embodiment.
  • FIG. 9A is a diagram for explaining a drawing die according to the fifth embodiment.
  • FIG. 9B is a diagram illustrating the wire drawing die of the fifth embodiment after being used for wire drawing.
  • FIG. 9C is a diagram for explaining a drawing die of the fifth embodiment in which a region having an impurity concentration [1] and a region having an impurity concentration [2] are shown.
  • FIG. 10A is an example of a method for producing single-crystal diamond in samples 50, 51, 60, and 61, and is a diagram showing one process thereof.
  • FIG. 10B is an example of a method for producing single-crystal diamond in samples 50, 51, 60, 61, and is a diagram showing a process different from the above.
  • a boron doped layer or an ion implanted layer is formed as a conductive layer in single crystal diamond.
  • the side surface on which the conductive layer capable of electrical contact with the external member of the single crystal diamond is exposed is arranged to be the flank of the tool. Since the single crystal diamond layer and the conductive layer have different impurity concentrations, the crystallinity is different, and thus the hardness and wear rate are also different. Therefore, the tool using the single crystal diamond has a problem that the flank surface is unevenly worn with use, so that the work material is damaged and the work surface of the work material is not uniform.
  • an object of the present invention is to provide a single crystal diamond in which uneven wear of the tool is suppressed when used as a tool material, a tool using the same, and a method for producing the single crystal diamond.
  • the single crystal diamond according to one embodiment of the present invention is a single crystal diamond having a pair of main surfaces facing each other, the impurity concentration of the main surface changing along a first direction.
  • the impurity concentration is substantially uniform on the main surface along a second direction orthogonal to the first direction.
  • the substantially uniform impurity concentration means that the concentration range is within a range of ⁇ 20% to + 20% from the average value. According to this, when used as a tool material, it is possible to obtain a single crystal diamond capable of effectively suppressing uneven wear of the tool.
  • the first direction and the second direction have different crystal orientations. According to this, when used as a tool material, it is possible to obtain a single crystal diamond capable of effectively suppressing uneven wear of the tool. Among them, it is more preferable that the direction with the largest wear rate or the direction with the smallest wear rate coincides with the first direction among the orientations in the main surface. Furthermore, it is preferable that the direction with the largest wear rate and the direction with the smallest wear rate are orthogonal among the orientations in the main surface, and any one of them coincides with the first direction.
  • the impurity concentration is preferably 10 ppb or more and 10,000 ppm or less.
  • the impurity concentration is less than 10 ppb, cracks are likely to propagate, a sufficient crack propagation suppressing effect cannot be obtained, and the fracture resistance is lowered.
  • the impurity concentration exceeds 10,000 ppm, the wear resistance is remarkably lowered.
  • the impurity concentration has periodicity along the first direction, and the distance of one period on the main surface is 0.1 ⁇ m or more and 1000 ⁇ m or less. According to this, a single crystal diamond having improved wear resistance and fracture resistance in a well-balanced manner can be obtained.
  • the periodicity indicates that a layer having a high impurity concentration and a layer having a low impurity concentration are repeated, and is not a limitation that the lengths of the respective periods are all constant. For example, the length of the period may change in the middle of a plurality of consecutive periods.
  • the periodicity may be based not on the end portion of the main surface but on the inner side with a predetermined interval from the end portion, or on the inner side with a predetermined interval from the end portion.
  • the impurity concentration only needs to have periodicity in at least a portion along the first direction on the main surface. This is because a suitable pattern varies depending on the use of single crystal diamond.
  • each period is the same length, and a layer having a high impurity concentration and a layer having a low concentration are repeated at the same interval.
  • each period has the same length means “impurity concentration reaches a predetermined high concentration again from a predetermined high concentration location through a low concentration location along the first direction. It means that “one cycle” corresponding to “distance to” is the same length.
  • the same interval between the high-concentration layer and the low-concentration layer means that the width of the high-concentration layer and the low-concentration layer have the same length along the first direction. It means that. According to this, single crystal diamond can be suitably applied to various uses. It is preferable that the impurity concentration does not change sharply at the boundary between the high impurity concentration layer and the low impurity concentration layer. This is because the tool performance is superior when the wear rate does not change sharply in the applied tool.
  • the impurity concentration preferably has central symmetry along the first direction. According to this, single crystal diamond can be suitably applied to various uses.
  • the single crystal diamond has an ion implantation layer on a side surface along the second direction. According to this, it is possible to obtain single crystal diamond having a reduced impurity concentration with the distance from the ion implantation layer.
  • the angle of the side surface with respect to the main surface is preferably 55 ° or more and 125 ° or less.
  • the impurity concentration on the side surface can be made substantially uniform.
  • the substantially uniform impurity concentration means that the concentration range is within a range of ⁇ 20% to + 20% from the average value.
  • the impurity includes at least one element selected from the group consisting of nitrogen, boron, aluminum, silicon, phosphorus, and sulfur.
  • the crystallinity of the single crystal diamond is changed, the propagation of cracks can be suppressed, and the fracture resistance is improved.
  • a tool according to an aspect of the present invention is a tool including the single crystal diamond according to any one of the above [1] to [9].
  • the tool according to one embodiment of the present invention has a well-balanced improvement in wear resistance and fracture resistance, and has an excellent tool life.
  • the tool is a cutting bit, and the amount of change in the impurity concentration of the single crystal diamond on the flank face of the cutting bit is smaller than the amount of change in the impurity concentration of the single crystal diamond on the rake face of the cutting bit. It is preferable. According to this, since uneven wear of the cutting tool can be suppressed, the work material can be processed uniformly.
  • the tool is a cutting tool, and the rake face of the cutting tool has a relationship in which a difference in wear rate resulting from a difference in surface orientation and a difference in wear rate resulting from a difference in impurity concentration cancel each other. It is preferable. Since the cutting tool is a tool having a curved surface in a cutting part or a wear part, a difference in surface orientation occurs in these parts. Therefore, in these parts, uneven wear usually occurs with the use of the tool. According to one embodiment of the present invention, in these portions, the difference in level of impurity concentration is formed so as to offset the difference in wear rate resulting from the difference in surface orientation, thereby reducing uneven wear. Can do.
  • the tool is a drawing die, and a hole is formed through the pair of opposing main surfaces along a direction perpendicular to the main surface of the single crystal diamond. According to this, since uneven wear of the drawing dies can be suppressed, the work material can be processed uniformly.
  • the tool is a drawing die, and in a direction parallel to the main surface of the single crystal diamond, there is a difference in wear rate due to a difference in surface orientation and a difference in wear rate due to a difference in impurity concentration. It is preferable to have a canceling relationship. Since the drawing die is a tool having a curved surface at a cutting part or a worn part, a difference in surface orientation occurs at these parts. Therefore, in these parts, uneven wear usually occurs with the use of the tool. According to one embodiment of the present invention, in these portions, the difference in level of impurity concentration is formed so as to offset the difference in wear rate resulting from the difference in surface orientation, thereby reducing uneven wear. Can do.
  • a method for producing a single crystal diamond according to an aspect of the present invention is the method for producing a single crystal diamond according to any one of [1] to [9] above, wherein crystal growth is performed by a vapor phase synthesis method.
  • a method for producing single crystal diamond comprising: obtaining a single crystal diamond whose impurity concentration changes along a direction; and cutting the single crystal diamond in a direction where the impurity concentration changes.
  • single crystal diamond capable of processing a work material more uniformly when used as a tool material can be obtained.
  • FIG. 1A, FIG. 1B, and FIG. 1A and 1B are a plan view and a perspective view of a single crystal diamond in Embodiment 1, respectively.
  • FIG. 2 is a graph showing the impurity concentration in the main surface of the single crystal diamond of FIGS. 1A and 1B.
  • the plan view is a view seen from above the main surface of the single crystal diamond.
  • the main surface means the surface having the largest area among the surfaces constituting the surface of the single crystal diamond.
  • the single crystal diamond 10 has a pair of main surfaces facing each other.
  • the impurity high concentration region 1 extending in a band shape along a second direction (Y axis direction) orthogonal to the first direction (X axis direction), and a band shape along the second direction
  • the impurity low-concentration regions 2 extending in the direction are alternately arranged adjacent to each other.
  • 1A and 1B show the case where the shape of the single crystal diamond 10 is a rectangular parallelepiped, but the shape of the single crystal diamond 10 is not particularly limited as long as it has a pair of opposing main surfaces. In FIG. 1A and FIG.
  • a plurality of high impurity concentration regions 1 and a plurality of low impurity concentration regions 2 are arranged, but the number of each region is not particularly limited as long as they are alternately arranged.
  • One high impurity concentration region 1 and one low impurity concentration region 2 may be provided.
  • the high impurity concentration region 1 and the low impurity concentration region 2 extending in a strip shape have a length (width) along the first direction (X-axis direction) of 1 ⁇ m or more and 1000 ⁇ m, respectively.
  • the following is preferable, and 5 ⁇ m or more and 300 ⁇ m or less is more preferable.
  • the range of the length is matched with the curvature of the curved surface formed on the wear surface of the tool using single crystal diamond. Therefore, the tool using such a single crystal diamond can suppress the occurrence of uneven wear rate (uneven wear) due to the difference in surface orientation in a specific portion of the wear surface.
  • the width of the high impurity concentration region 1 and the width of the low impurity concentration region 2 may be the same or different.
  • FIG. 2 is a graph showing an example of a change in impurity concentration along the first direction (X-axis direction) on the main surface of the single crystal diamond 10 of FIGS. 1A and 1B.
  • the distance along the first direction means the distance along the first direction from the left side surface along the second direction of the single crystal diamond 10 of FIGS. 1A and 1B.
  • the impurity concentration changes along the first direction on the main surface. Specifically, along the first direction, regions where the impurity concentration is higher than the predetermined concentration P1 and regions where the impurity concentration is lower appear alternately with a certain periodicity.
  • FIG. 2 is a graph showing an example of a change in impurity concentration along the first direction (X-axis direction) on the main surface of the single crystal diamond 10 of FIGS. 1A and 1B.
  • the distance along the first direction means the distance along the first direction from the left side surface along the second direction of the single crystal diamond 10 of FIGS. 1A and 1B.
  • the impurity concentration changes along the first
  • the region where the impurity concentration is equal to or higher than the predetermined concentration P1 corresponds to the high impurity concentration region 1 in FIGS. 1A and 1B, and the region where the impurity concentration is lower than the predetermined concentration P1 is the low impurity concentration in FIGS. 1A and 1B.
  • the predetermined concentration P1 is in a range of 10 ppb or more and 10000 ppm or less, and is an intermediate value between the maximum value of the high impurity concentration region and the minimum value of the low impurity concentration region.
  • the high impurity concentration region is a region where the impurity concentration is from the maximum value to 60% of the maximum value, and the width is in the range of 0.5 ⁇ m to 500 ⁇ m.
  • the low impurity concentration region is a region where the impurity concentration is less than 60% of the maximum value.
  • the value of P1 is located almost at the boundary between the high impurity concentration region and the low impurity concentration region, but when the minimum value of the low impurity concentration region is less than 20% of the maximum value of the high impurity concentration region, the P1 value is It will be located in the low concentration region.
  • the impurity concentration on the main surface of the single crystal diamond 10 is a value measured by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • Cs + is used as a primary ion
  • an acceleration voltage is 15 kV
  • a detection region is 35 ⁇ m ⁇
  • a concentration at a place where 0.5 ⁇ m is sputtered from the sample outermost surface is obtained.
  • the concentration is determined by comparison with a separately prepared standard sample (a diamond single crystal with a known impurity concentration produced by ion implantation). If the impurity concentration is small, the measured value may deviate from the true value due to the accuracy of the instrument. In order to obtain a more accurate value, it is necessary to measure at a depth of up to 0.5 ⁇ m at at least three points located at a distance of at least 100 ⁇ m from each other and take an average of these values (depth and position). preferable.
  • the impurity concentration along the second direction (Y-axis direction) perpendicular to the first direction (X-axis direction) is substantially uniform on the main surface of the single crystal diamond 10.
  • the substantially uniform impurity concentration means that the concentration range is within a range of ⁇ 20% to + 20% from the average value.
  • the impurity concentration along the depth direction, which is perpendicular to the main surface is substantially uniform.
  • the substantially uniform impurity concentration means that the concentration range is within a range of ⁇ 20% to + 20% from the average value.
  • the surface with the substantially uniform impurity concentration described above may or may not be the same as the crystal growth surface.
  • a surface with a substantially uniform impurity concentration may be inclined with respect to the growth surface.
  • the main surface of the single crystal diamond 10 and the surface having a substantially uniform impurity concentration are preferably substantially perpendicular, but may be inclined within a range of ⁇ 35 ° from the perpendicular.
  • the flank face is inclined with respect to the rake face.
  • the surface having a substantially uniform impurity concentration escapes when the main surface is a rake face. It can be a surface.
  • the impurity concentration is preferably 10 ppb or more and 10,000 ppm or less. If the impurity concentration is less than 10 ppb, cracks are likely to propagate, a sufficient crack propagation suppressing effect cannot be obtained, and the fracture resistance is lowered. On the other hand, when the impurity concentration exceeds 10,000 ppm, the wear resistance is remarkably lowered.
  • the impurity concentration is more preferably from 100 ppb to 1000 ppm, and further preferably from 500 ppb to 100 ppm.
  • the maximum value of the impurity concentration is preferably 1 ppm or more and 10,000 ppm or less, and more preferably 5 ppm or more and 1000 ppm or less.
  • the minimum value of the impurity concentration is preferably 10 ppb or more and 100 ppm or less, and more preferably 100 ppb or more and 50 ppm or less.
  • the ratio (minimum value / maximum value) between the maximum value and the minimum value of the impurity concentration is preferably 10 ⁇ 6 or more and less than 0.8, and more preferably 10 ⁇ 4 or more and 0.5 or less.
  • the impurity concentration has periodicity along the first direction, and the distance of one cycle in the main surface is preferably 2 ⁇ m or more and 2000 ⁇ m or less, more preferably 10 ⁇ m or more and 600 ⁇ m or less.
  • the distance of one period on the main surface is the sum of the distances (widths) in the X-axis direction between a pair of adjacent high impurity concentration regions 1 and low impurity concentration regions 2 in FIGS. 1A and 1B. It corresponds to.
  • the number of periods in the single crystal diamond 10 is at least one, the effect of reducing uneven wear can be obtained.
  • the number of periods is represented by n + 0.5 (n represents an integer) (for example, 1.5, 2.5, etc.).
  • n represents an integer
  • the impurity concentration can be arranged symmetrically about the line passing through the center of the main surface. It is.
  • only the central portion of the main surface may be a high impurity concentration region or a low impurity concentration region. This case is suitable for use in a tool for making a hole in the center (a drilling tool such as a drawing die).
  • the impurities present on the main surface of the single crystal diamond 10 preferably contain at least one element selected from the group consisting of nitrogen, boron, aluminum, silicon, phosphorus and sulfur.
  • an impurity contains at least any one of nitrogen and boron.
  • the impurity has a smaller ratio of impurities mixed in with carbon and substitution type, and the ratio is, for example, preferably 20% or less, and more preferably 10% or less. According to this, the mechanical characteristics as a tool (characteristic that it is hard and hard to chip) are good.
  • the ratio of substitutional impurities is the value measured by secondary ion mass spectrometry (SIMS) (total impurity concentration) and the value measured by electron spin resonance (ESR) (substitution resonance). (Concentration of mold).
  • the plane orientation of the direction in which the impurity concentration is substantially uniform and the direction in which the impurity concentration changes are different. More preferably, the direction with the smallest wear rate matches the direction in which the impurity concentration is substantially uniform or the direction in which the impurity concentration changes.
  • the wear rate varies depending on the plane orientation and impurity concentration. Therefore, by appropriately combining the difference in wear rate resulting from the difference in surface orientation and the difference in wear rate resulting from the difference in impurity concentration, the difference in wear rate (uneven wear) can be offset.
  • a layer with a low impurity concentration (generally a low impurity concentration layer is difficult to wear, so the low impurity concentration layer) is centered on the hole, and an impurity concentration layer (high impurity concentration layer) that is easily worn at the end of the hole. It is preferable to contact or overlap. In the case of producing a cutting tool, it is preferable that the tip of the cutting tool is in contact with or overlaps an impurity concentration layer (impurity high concentration layer) that is easily worn.
  • Impurity-concentrated layers generally low-impurity layers are difficult to wear, so high-impurity layers are centered on the holes), and impurity-concentrated layers (low-impurity layers are hard to wear)
  • the layer is preferably in contact with or overlapping.
  • the tip of the cutting tool is in contact with or overlaps an impurity concentration layer (impurity low concentration layer) that is difficult to wear.
  • FIGS. 3A to 3C are diagrams showing an example of the method for producing single crystal diamond according to the first embodiment.
  • the method for producing single crystal diamond includes a step of obtaining a synthetic single crystal diamond in which the impurity concentration varies along the crystal growth direction by a vapor phase synthesis method; Cutting in the direction of changing.
  • a single crystal diamond substrate 4 is prepared.
  • the single crystal diamond substrate 4 for example, a single crystal substrate (type: Ib) having a flat plate shape and made of diamond manufactured by a high temperature high pressure synthesis method can be used.
  • Single-crystal diamond substrate 4 has a main surface made of (100) plane and side surfaces made of (001) plane and (010) plane perpendicular to the main surface.
  • the shape of the single crystal diamond substrate 4 is not particularly limited, and can be a desired shape. Further, it is preferable that the surface of the main surface of the diamond single crystal substrate is smoothed by mechanical polishing or the like and etched by about 1 ⁇ m to 50 ⁇ m by reactive ion etching.
  • the single crystal diamond substrate 4 is placed in the chamber of the CVD apparatus, and a synthetic single crystal diamond whose impurity concentration varies along the crystal growth direction is obtained by a vapor phase synthesis method (FIG. 3B).
  • synthetic single crystal diamond is epitaxially grown on the main surface of the single crystal diamond substrate 4 by a CVD method while introducing a gas containing carbon into the chamber.
  • the carbon in the gas becomes the carbon source for the synthetic single crystal diamond.
  • the gas containing carbon for example, CH 4 , C 2 H 6 , C 2 H 4 , C 2 H 2 , CH 3 OH, C 2 H 5 OH, (CH 3 ) 2 CO, or the like can be used.
  • CO and CO 2 can also be used.
  • CH 4 because carbon radicals that are precursors for diamond film formation are easily generated.
  • nitrogen can be introduced into the chamber by introducing nitrogen gas into the chamber simultaneously with the gas containing carbon.
  • the concentration of impurity nitrogen in the synthetic single crystal diamond can be changed along the crystal growth direction.
  • the impurity concentration can be changed along the growth direction by changing the total pressure, input power, substrate temperature, and the like.
  • diborane gas B 2 H 6
  • trimethylaluminum (CH 3 ) 3 Al)
  • silane gas SiH 4
  • Phosphine gas PH 3
  • hydrogen sulfide H 2 S
  • organic gases can be used.
  • the pressure in the chamber is controlled to, for example, 6.6 kPa to 26.6 kPa, microwave power is introduced, and the chamber temperature is heated to 800 ° C. to 1200 ° C.
  • Synthetic single crystal diamond is epitaxially grown on the main surface of the diamond substrate 4.
  • a microwave plasma CVD method MP-CVD method
  • a hot filament (HF) CVD method a DC plasma method, or the like can be used.
  • the synthetic single crystal diamond is cut in the direction in which the impurity concentration changes.
  • cutting in the direction in which the impurity concentration changes means cutting so as to cross the surfaces having a uniform impurity concentration. This is not limited to cutting in a direction perpendicular to a surface with a substantially uniform impurity concentration, but cutting at a predetermined angle (for example, ⁇ 35 °) with respect to a surface with a substantially uniform impurity concentration. Including. This is because, depending on the use of the single crystal diamond, it may be convenient for the plane having a substantially uniform impurity concentration and the cut plane to intersect at an angle other than perpendicular.
  • the synthetic single crystal diamond can be cut by laser cutting.
  • the synthetic single crystal diamond and the diamond single crystal substrate 4 are separated using a laser to obtain single crystal diamond.
  • a laser it can also be separated by electrochemical etching.
  • the obtained single crystal diamond has as its main surface a plane substantially parallel to the crystal growth direction of the synthetic single crystal diamond. Therefore, in this case, in the single crystal diamond, the impurity concentration changes along the crystal growth direction on the main surface.
  • Another method for producing the single crystal diamond according to the first embodiment will be described. This method is the same as the method described above except for the method of changing the impurity concentration.
  • a method for changing the impurity concentration will be described.
  • the main surface of the diamond single crystal substrate is flat, and the direction of change in impurity concentration is perpendicular to the growth surface.
  • the direction of change in the impurity concentration is not necessarily the direction perpendicular to the growth surface by performing special processing on the substrate.
  • an off-angle substrate is prepared as a diamond single crystal substrate.
  • One or more line-shaped protrusions are formed on the main surface of the substrate.
  • the height of the protrusion is preferably 10 ⁇ m or less.
  • the aspect ratio (height / width) of the protrusion is preferably 1 or less.
  • the protrusion interval (adjacent interval) is preferably larger than the protrusion height.
  • FIG. 4A and 4B are a plan view and a perspective view, respectively, of the single crystal diamond in the second embodiment.
  • FIG. 5 is a graph showing the impurity concentration in the main surface of the single crystal diamond of FIGS. 4A and 4B.
  • the plan view is a view seen from above the main surface of the single crystal diamond.
  • the single crystal diamond 20 has a rectangular parallelepiped shape having a pair of opposing main surfaces.
  • an ion implantation layer 3 On the main surface, an ion implantation layer 3, a high impurity concentration region 1, and a low impurity concentration region 2 extending in a strip shape along the Y-axis direction are arranged adjacent to each other in the order described above.
  • the ion implantation layer 3 is located at one end of the single crystal diamond 20 in the X-axis direction and is disposed along one side surface substantially parallel to the Y-axis direction.
  • FIG. 5 is a graph showing an example of a change in impurity concentration along the first direction (X-axis direction) on the main surface of the single crystal diamond 20 of FIGS. 4A and 4B.
  • the distance along the first direction means the distance along the first direction from the side surface where the ion-implanted layer 3 of the single crystal diamond 20 of FIGS. 4A and 4B exists.
  • the impurity concentration changes along the first direction on the main surface. Specifically, the impurity concentration gradually decreases from the ion implantation layer 3 existing on the side surface of the diamond single crystal 20 toward the low impurity concentration region 2 along the first direction.
  • FIG. 5 is a graph showing an example of a change in impurity concentration along the first direction (X-axis direction) on the main surface of the single crystal diamond 20 of FIGS. 4A and 4B.
  • the distance along the first direction means the distance along the first direction from the side surface where the ion-implanted layer 3 of the single crystal diamond 20 of FIGS. 4A and
  • the region where the impurity concentration is equal to or higher than the predetermined concentration P2 corresponds to the ion implantation layer 3 and the high impurity concentration region 1 in FIGS. 4A and 4B, and the region where the impurity concentration is lower than the predetermined concentration P2 is This corresponds to the low impurity concentration region 2 in FIG. 4B.
  • the predetermined concentration P2 is in the range of 10 ppb or more and 10,000 ppm or less, and is an intermediate value between the maximum value of the high impurity concentration region and the minimum value of the low impurity concentration region.
  • the high impurity concentration region is a region where the impurity concentration is from the maximum value to 60% of the maximum value, and the width is in the range of 0.5 ⁇ m to 500 ⁇ m.
  • the low impurity concentration region is a region where the impurity concentration is less than 60% of the maximum value.
  • the value of P2 is located almost at the boundary between the high impurity concentration region and the low impurity concentration region, but when the minimum value of the low impurity concentration region is less than 20% of the maximum value of the high impurity concentration region, the P2 value is It will be located in the low concentration region.
  • the ions contained in the ion implantation layer 3 are preferably at least one selected from the group consisting of carbon ions, boron ions, nitrogen ions, argon ions, phosphorus ions, silicon ions, and sulfide ions. This is because, when a synthetic single crystal diamond is grown on the ion-implanted layer, these ions are likely to be mixed into the synthetic single crystal diamond and easily form an impurity concentration gradient.
  • the ion species for ion implantation and the ion species having a concentration gradient in diamond may be the same or different.
  • ions are implanted into a substrate in a predetermined amount (preferably a dose amount of 3 ⁇ 10 16 cm ⁇ 2 ) or more.
  • the single crystal diamond is synthesized while the substrate is slightly etched as an initial state at the time of synthesis. At that time, implanted ions in the substrate are released into the atmosphere.
  • single crystal diamond is formed while some of the implanted ions in the atmosphere are taken in. As time elapses, new diamond is formed on the substrate, so that implanted ions in the substrate are not released into the atmosphere, and the amount of implanted ions in the atmosphere gradually decreases. Therefore, the number of implanted ions taken into the single crystal diamond gradually decreases. Thereby, a concentration gradient of impurities is formed in the synthetic single crystal diamond.
  • an impurity element is included in or around the atmosphere when single-crystal diamond is synthesized.
  • a trace gas may be introduced, or a solid raw material may be placed on the holder.
  • a graphite layer is formed on the substrate by ion implantation for later electrochemical separation.
  • the ion species to be ion-implanted is not limited, but carbon ions, boron ions, nitrogen ions, argon ions, phosphorus ions, silicon ions, sulfide ions and the like are preferable. Especially, since a graphite layer is formed, a carbon ion is more preferable.
  • the substrate When synthesizing single crystal diamond, it is preferable not to etch the substrate in the initial stage. Crystals are disordered on the surface of the substrate into which ions have been implanted, and diamond synthesized on the surface is synthesized with crystal fluctuations and single crystal diamonds with many defects. As the crystal is synthesized, the fluctuation of the crystal is reduced, and single crystal diamond with good crystallinity is gradually formed.
  • the crystal element has many crystal fluctuations, and an impurity element is likely to be mixed in a crystal having many defects. When the crystal fluctuation is eliminated, the impurity element is reduced. Thereby, a concentration gradient of impurities is formed in the synthetic single crystal diamond.
  • the impurity concentration along the second direction (Y-axis direction) orthogonal to the first direction (X-axis direction) is substantially uniform on the main surface of the single crystal diamond 20.
  • the substantially uniform impurity concentration means that the concentration range is within a range of ⁇ 20% to + 20% from the average value.
  • the impurity concentration along the depth direction which is perpendicular to the main surface is uniform.
  • the uniform impurity concentration means that the concentration range is within a range of ⁇ 20% to + 20% from the average value.
  • the impurity concentration is preferably 10 ppb or more and 10,000 ppm or less. If the impurity concentration is less than 10 ppb, cracks are likely to propagate, a sufficient crack propagation suppressing effect cannot be obtained, and the fracture resistance is lowered. On the other hand, when the impurity concentration exceeds 10,000 ppm, the wear resistance is remarkably lowered.
  • the impurity concentration is more preferably from 100 ppb to 1000 ppm, and further preferably from 500 ppb to 100 ppm.
  • the impurity concentration is a value measured by secondary ion mass spectrometry (SIMS).
  • the maximum value of the impurity concentration is preferably 1 ppm or more and 10,000 ppm or less, and more preferably 5 ppm or more and 1000 ppm or less.
  • the minimum value of the impurity concentration is preferably 10 ppb or more and 100 ppm or less, and more preferably 100 ppb or more and 50 ppm or less.
  • the ratio (minimum value / maximum value) between the maximum value and the minimum value of the impurity concentration is preferably 10 ⁇ 6 or more and less than 0.8, and more preferably 10 ⁇ 4 or more and 0.5 or less.
  • the angle of the side surface having the ion implantation layer with respect to the main surface is preferably 55 ° or more and 125 ° or less.
  • the impurity concentration on the side surface can be made uniform.
  • the uniform impurity concentration means that the concentration range is within a range of ⁇ 20% to + 20% from the average value.
  • the impurities present on the main surface of the single crystal diamond 20 preferably contain at least one element selected from the group consisting of nitrogen, boron, aluminum, silicon, phosphorus and sulfur. This is because even if these impurities are mixed in the diamond, the crystallinity of the diamond is not greatly deteriorated, and defects suitable for the tool performance are appropriately generated. Especially, it is preferable that an impurity contains at least any one of nitrogen and boron.
  • FIGS. 6A to 6C are diagrams showing an example of the method for producing single crystal diamond of the second embodiment.
  • the method for producing a single crystal diamond includes a step of obtaining a synthetic single crystal diamond in which an impurity concentration varies along a crystal growth direction by a vapor phase synthesis method, and the crystal growth of the synthetic single crystal diamond. Cutting along the direction.
  • a single crystal diamond substrate 24 including an ion implantation layer 3 at a certain depth from the main surface is prepared.
  • the single crystal diamond substrate 24 has a flat plate shape, for example, and can be produced by performing ion implantation on a single crystal substrate (type: Ib) made of diamond manufactured by a high temperature high pressure synthesis method.
  • the surface 24a of the single crystal diamond substrate 24 maintains the crystallinity of the single crystal substrate before ion implantation to such an extent that it can be epitaxially grown by a vapor phase synthesis method.
  • the implantation energy is preferably 80 keV or more and 10,000 keV or less, and more preferably 180 keV or more and 350 keV or less.
  • the irradiation amount is preferably 3 ⁇ 10 15 pieces / cm 2 or more and 5 ⁇ 10 17 pieces / cm 2 or less, more preferably 1 ⁇ 10 16 pieces / cm 2 or more and 1 ⁇ 10 17 pieces / cm 2 or less.
  • the ion implantation layer 3 is formed inside the substrate 24 while maintaining the crystallinity of the main surface of the substrate 24 to such an extent that the epitaxial growth by the vapor phase synthesis method is possible. Can do.
  • ions to be ion-implanted at least one selected from the group consisting of carbon ions, boron ions, nitrogen ions, argon ions, phosphorus ions, silicon ions and sulfur ions can be used.
  • the diamond single crystal substrate 24 is placed in the chamber of the CVD apparatus, and a synthetic single crystal diamond whose impurity concentration changes along the crystal growth direction is obtained by a vapor phase synthesis method (FIG. 6B). Specifically, synthetic single crystal diamond is epitaxially grown on the main surface of the single crystal diamond substrate 24 by CVD while introducing a gas containing carbon into the chamber.
  • the carbon in the gas becomes the carbon source for the synthetic diamond single crystal.
  • the gas containing carbon for example, CH 4 , C 2 H 6 , C 2 H 4 , C 2 H 2 , CH 3 OH, C 2 H 5 OH, (CH 3 ) 2 CO, or the like can be used.
  • CO and CO 2 can also be used.
  • CH 4 because carbon radicals that are precursors for diamond film formation are easily generated.
  • the pressure in the chamber is controlled to, for example, 6.6 kPa to 26.6 kPa, microwave power is introduced, and the chamber temperature is heated to 800 ° C. to 1200 ° C.
  • Synthetic single crystal diamond is epitaxially grown on the main surface of the diamond substrate 24.
  • a microwave plasma CVD method MP-CVD method
  • a hot filament (HF) CVD method a DC plasma method, or the like can be used.
  • the synthetic single crystal diamond is cut along the crystal growth direction.
  • the synthetic single crystal diamond can be cut by laser cutting.
  • the synthetic single crystal diamond and the single crystal diamond substrate 24 are separated from each other by electrochemically etching the ion implantation layer 3 to obtain single crystal diamond.
  • the obtained single crystal diamond has as its main surface a plane parallel to the crystal growth direction of the synthetic single crystal diamond, and has an ion implantation layer on its side surface. Therefore, the impurity concentration of the single crystal diamond changes along the crystal growth direction on the main surface.
  • FIG. 7A is a diagram illustrating the cutting of the workpiece 5 using the cutting tool 6 of the third embodiment.
  • FIG. 7B is a diagram showing the cutting bit 6 of Embodiment 3 after cutting the work material 5.
  • the cutting tool 6 of the third embodiment is manufactured using the single crystal diamond 10 of the first embodiment.
  • the cutting tool 6 uses the main surface of the single crystal diamond 10 as the rake face 8 of the cutting tool 6, and of the side surfaces of the single crystal diamond 10, the main surface is orthogonal to the first direction (X-axis direction). It is preferable that the side surface parallel to the second direction (Y-axis direction) is made as the flank 9 of the cutting tool 6. That is, it is preferable that the amount of change in the impurity concentration of single crystal diamond on the rake face 8 of the cutting tool is larger than the amount of change in the impurity concentration of single crystal diamond on the flank face 9 of the cutting tool.
  • the angle of the flank 9 with respect to the rake face 8 is preferably 55 ° or more and 90 ° or less.
  • the angle of the flank 9 with respect to the rake face 8 can be adjusted to the above range by performing laser processing so that the angle of the side with respect to the main surface is 55 ° or more and 90 ° or less.
  • FIG. 7C it is preferable that the angle of the flank 9 with respect to the rake face 8 and the angle with the substantially uniform surface of the impurity concentration with respect to the main surface coincide. Further, as shown in the top view of the cutting tool in FIG.
  • the direction of the impurity concentration change is preferably matched with the surface orientation A of the curved surface at the tip of the tool. That is, when the wear rates in the plane orientation A and the plane orientation B in FIG. 7D are A> B, the wear rates of the region having the impurity concentration [1] and the region having the impurity concentration [2] are [1] ⁇ [2 ] On the other hand, when A ⁇ B, it is better to set [1]> [2]. Furthermore, the periodicity in the concentration change is advantageous because the same concentration change situation can be repeatedly created when the tool is reground and used.
  • the cutting tool 6 is in contact with the work material over portions having different impurity concentrations. This can prevent uneven wear.
  • FIG. 8A is a diagram illustrating the cutting of the work material 5 using the cutting tool 26 according to the fourth embodiment.
  • FIG. 8B is a diagram illustrating the cutting bit 26 of Embodiment 4 after cutting the work material 5.
  • the cutting tool 26 of the fourth embodiment is manufactured using the single crystal diamond 20 of the second embodiment.
  • the main surface of the single crystal diamond 20 is the rake face 8 of the cutting bit 26, and the side surface of the single crystal diamond 20 where the ion implantation layer 3 is disposed is the cutting bit 26.
  • the flank 9 is produced. That is, the amount of change in the impurity concentration of single crystal diamond on the rake face of the cutting tool is preferably larger than the amount of change in the impurity concentration of single crystal diamond on the flank face of the cutting tool.
  • the angle of the flank 9 with respect to the rake face 8 is preferably 55 ° or more and 90 ° or less.
  • laser processing is performed so that the angle of the side surface on which the ion implantation layer 3 is disposed with respect to the main surface is 55 ° or more and 90 ° or less, so that the angle of the flank 9 with respect to the rake surface 8 is Can be adjusted within the range.
  • FIG. 8C it is preferable that the angle of the flank 9 with respect to the rake face 8 and the angle with the substantially uniform surface of the impurity concentration with respect to the main surface coincide. Further, as shown in the top view of the cutting tool in FIG.
  • the direction of the impurity concentration change is preferably matched with the surface orientation A of the curved surface at the tip of the tool. That is, when the wear rates in the plane orientation A and the plane orientation B in FIG. 8D are A> B, the wear rates in the region of the impurity concentration [1] and the region of the impurity concentration [2] are [1] ⁇ [2 ] On the other hand, when A ⁇ B, it is better to set [1]> [2]. Furthermore, the periodicity in the concentration change is advantageous because the same concentration change situation can be repeatedly created when the tool is reground and used.
  • the cutting tool 6 is in contact with the work material over portions having different impurity concentrations. This can prevent uneven wear.
  • FIG. 9A is a plan view of the drawing die 7 according to the fifth embodiment.
  • FIG. 9B is a diagram showing the wire drawing die 7 of Embodiment 5 after being used for wire drawing.
  • the drawing die 7 of the fifth embodiment is manufactured using the single crystal diamond 10 of the first embodiment. Specifically, the drawing die 7 uses the main surface of the single crystal diamond 10 as the main surface of the drawing die 7 and sets a pair of opposing main surfaces along a direction perpendicular to the main surface of the single crystal diamond 10. It is preferable that a through-hole is formed.
  • the drawing die 7 has a hole center in the high impurity concentration region 1 and, in the circumference on the main surface forming the outer edge of the hole, in the second direction (Y-axis direction) of the single crystal diamond 10 from the center of the hole.
  • the two farthest points along each are located in the high impurity concentration region 1 of the single crystal diamond 10, and the two farthest points along the first direction (X-axis direction) of the single crystal diamond 10 from the center of the hole.
  • the drawing die 7 is located at the center of the hole on the symmetry axis along the second direction (Y-axis direction) of the high impurity concentration region 1 of the single crystal diamond 10. Further, the impurity concentration along the first direction (X-axis direction) on the main surface of the drawing die 7 passes through the center of the hole, and the line along the second direction (Y-axis direction) is a symmetry axis. It is preferable to change with. According to this, at the time of wire drawing using the wire drawing die 7, uneven wear of the wire drawing die 7 can be effectively suppressed.
  • the high impurity concentration region 1 and the low impurity concentration region 2 have different optical transmittances. This is because the position of the impurity region can be numerically grasped by using a laser or an optical microscope, and one of the most convenient ones can be selected to make a hole. Even if the optical transmittance is approximate, if the geometric center of the main surface is understood to be the high impurity concentration region or the low impurity concentration region, it is possible to determine which one is convenient. You can pick and drill holes.
  • the low impurity concentration region 2 is arranged on both sides of the high impurity concentration region 1 on the main surface of the drawing die 7 .
  • the arrangement of the high impurity concentration region 1 and the low impurity concentration region 2 is as follows. The reverse is also acceptable.
  • the drawing die 7 has a surface orientation A and a surface when the wear rate of the region having the impurity concentration [1] and the region having the impurity concentration [2] is [1] ⁇ [2].
  • the wear rate in the direction B is preferably [B]> [A].
  • the region having the impurity concentration [1] may be the high impurity concentration region 1 or the low impurity concentration region 2 in some cases. According to this, at the time of wire drawing using the wire drawing die 7, uneven wear of the wire drawing die 7 can be suppressed. Therefore, also in the drawing die 7 after the wire drawing, the roundness of the hole is not easily lost, and the outer edge of the hole can maintain a circular shape on the main surface.
  • Example 1 (Single crystal diamond) An artificial Ib type single crystal ⁇ 100 ⁇ substrate having a size of 5 mm ⁇ 5 mm and a thickness of 0.5 mm was prepared, and epitaxial growth was performed by a microwave plasma CVD method. The substrate temperature was 1100 ° C. and the pressure was 100 torr. The introduced gas was methane 150 sccm (Standard Cubic cm) and hydrogen 1000 sccm. The growth was performed so that the growth thickness of the single crystal diamond was in the range of 0.7 mm to 1 mm.
  • the nitrogen gas added during the growth of the single crystal diamond was 100% nitrogen gas or 1% nitrogen gas diluted with hydrogen. 100% nitrogen gas and 1% nitrogen gas were alternately introduced. When one nitrogen gas was flowing, the flow rate of the other nitrogen gas was set to zero. The concentration of impurities contained in the growth film was controlled by changing the flow rate of each nitrogen gas (0.1 to 5 sccm) and the introduction time.
  • the obtained synthetic single crystal diamond was cut along a direction perpendicular to a surface having a uniform impurity concentration (see FIG. 3C) to obtain a single crystal diamond having a thickness of 0.8 mm.
  • samples 50 and 51 the obtained synthetic single crystal diamond was cut along a direction parallel to a surface having a uniform impurity concentration (see FIG. 10A) to obtain a single crystal diamond having a thickness of 0.8 mm.
  • Sample 52 was obtained by growing single crystal diamond without introducing nitrogen gas and then cutting out single crystal diamond having a thickness of 0.8 mm.
  • the main surface of the obtained single crystal diamond was measured for nitrogen atom (impurity) content with respect to carbon atoms by secondary ion mass spectrometry. The results are shown in Table 1.
  • Cutting tools were prepared using the single crystal diamonds of Samples 1, 2, and 50. Specifically, as shown in FIGS. 7A to 7D, the main surface of the single crystal diamond is the rake face of the cutting tool, and the first surface (X-axis direction) of the main surface among the side surfaces of the single crystal diamond. A side surface parallel to the direction perpendicular to the Z axis direction (Z-axis direction) was prepared as a flank of the cutting tool.
  • the tip angles of the cutting tools were all 80 °, and the tip R, the tip position, and the center position of the tip diameter were as shown in Table 2.
  • Cutting was performed under the following conditions.
  • Work material A4032 (Al-Si material)
  • Cutting speed 600 m / min
  • Cutting distance 20km
  • Feed rate 2 ⁇ m / rev Stock removal: 2 ⁇ m
  • the cutting tools of Samples 1 and 2 were evenly worn and no chipping occurred.
  • the work material was processed smoothly and uniformly, and no scratches were generated. Further, when the curved surfaces of the rake surfaces of Samples 1 and 2 were observed, the curved surfaces maintained the roundness before processing. That is, the wear was very low in uneven wear.
  • the surface of the cutting tool of Sample 50 was rougher than that of Samples 1 and 2. When the rake face was observed, the curved face was greatly unevenly worn before processing.
  • FIGS. 9A to 9C the drawing dies have the main surface of the single crystal diamond as the main surface of the drawing dies, and face each other along a direction perpendicular to the main surface of the single crystal diamond. A hole penetrating the pair of main surfaces is formed. Table 3 shows the hole diameter and the center position of the hole.
  • wire drawing was performed under the following conditions.
  • Wire drawing material SUS306 Drawing speed: 600 m / min Drawing distance: 20km
  • the wire drawing dies of Samples 3 and 4 were evenly worn and there was very little uneven wear of the holes.
  • the drawn material was processed smoothly and uniformly, and no scratch was generated on the drawn material.
  • Example 2 (Single crystal diamond) An artificial Ib type single crystal ⁇ 100 ⁇ substrate having a size of 5 mm ⁇ 5 mm and a thickness of 0.5 mm was prepared, and epitaxial growth was performed by a microwave plasma CVD method. The substrate temperature was 1100 ° C. and the pressure was 100 torr. The introduced gas was methane 150 sccm (Standard Cubic cm) and hydrogen 1000 sccm. The growth was performed so that the growth thickness of the single crystal diamond was in the range of 0.7 mm to 1 mm.
  • the diborane gas (hydrogen dilution 100 ppm) added during the growth of the single crystal diamond was repeatedly and alternately introduced at flow rates of 5 sccm and 0 sccm while controlling the respective introduction times.
  • the obtained synthetic single crystal diamond was cut along a direction perpendicular to the surface having a uniform impurity concentration (see FIG. 3C) to obtain a single crystal diamond having a thickness of 0.8 mm.
  • samples 60 and 61 the obtained synthetic single crystal diamond was cut along a direction parallel to a surface having a uniform impurity concentration (see FIG. 10A) to obtain a single crystal diamond having a thickness of 0.8 mm.
  • Sample 62 was obtained by growing single crystal diamond without introducing diborane gas and then cutting out single crystal diamond having a thickness of 0.8 mm.
  • the main surface of the obtained single crystal diamond was measured for boron atom (impurity) content with respect to carbon atoms by secondary ion mass spectrometry. The results are shown in Table 4.
  • Cutting tools were prepared using the single crystal diamonds of Samples 11, 12, and 60. Specifically, as shown in FIGS. 7A to 7D, the main surface of the single crystal diamond is the rake face of the cutting tool, and the first surface (X-axis direction) of the main surface among the side surfaces of the single crystal diamond. A side surface parallel to the direction perpendicular to the Z axis direction (Z-axis direction) was prepared as a flank of the cutting tool.
  • the tip angles of the cutting tools were all 80 °, the tip R, the tip position, and the center position of the tip diameter were as shown in Table 5.
  • the surface of the cutting tool of sample 60 was rougher than that of samples 11 and 12. When the rake face was observed, the curved face was greatly unevenly worn before processing.
  • FIGS. 9A to 9C Samples 13, 14, 61, 62 single crystal diamond was used to produce a drawing die. Specifically, as shown in FIGS. 9A to 9C, the drawing die has a main surface of the single crystal diamond as the main surface of the drawing die, and is opposed to the main surface of the single crystal diamond along a direction perpendicular to the main surface of the single crystal diamond. A hole penetrating the main surfaces of the set is formed. Table 6 shows the hole diameter and the center position of the hole.
  • wire drawing was performed under the following conditions.
  • Wire drawing material SUS306 Drawing speed: 600 m / min Drawing distance: 20km
  • the drawing dies of Samples 13 and 14 were uniformly worn, and the uneven wear of the holes was very small.
  • the drawn material was processed smoothly and uniformly, and no scratch was generated on the drawn material.
  • the single crystal diamond of the present invention is useful when used for tools such as cutting tools, grinding tools, and anti-wear tools.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Metal Extraction Processes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

単結晶ダイヤモンドは、対向する一組の主面を備え、前記主面において、第1の方向に沿って不純物濃度が変化する。

Description

単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法
 本発明は、単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法に関する。本出願は、2015年10月19日に出願した日本特許出願である特願2015-205482号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 単結晶ダイヤモンドは、高い硬度、高い熱伝導率、高い光透過性などの優れた性能を有することから、切削工具、研削工具、耐摩工具などの工具、光学部品、半導体、電子部品などの各種製品(以下、「ダイヤモンド製品」ともいう。)に幅広く用いられている。このようなダイヤモンド製品に用いられる単結晶ダイヤモンドとしては、天然ダイヤモンドと合成ダイヤモンドとを挙げることができる。天然ダイヤモンドは品質のばらつきが大きく、供給量も安定しないことから、現在合成ダイヤモンドも多く用いられている。
 上述の合成ダイヤモンドの製造方法の1つとして、高温高圧合成法(HPHT:High Pressure High Temperature Method)が知られている。この方法により製造される単結晶ダイヤモンドは、品質のばらつきが小さく、供給量も安定しているが、使用される製造設備のコストが高いという問題がある。
 また、合成ダイヤモンドの製造方法の他の1つとして、熱フィラメントCVD(Chemical Vapor Deposition)法、マイクロ波励起プラズマCVD法およびDCプラズマCVD法などの化学気相合成(CVD)法がある。CVD法では、基板の表面上に単結晶ダイヤモンド(エピタキシャル成長層)を成長させ、その後、基板と単結晶ダイヤモンドとを分離することにより、単結晶ダイヤモンドを得ることができる。
 例えば、特許文献1(特開2013-35723号公報)には、気相合成法により得られた、少なくとも一つ以上の層状の導電層が主面にほぼ平行に形成され、該導電層は絶縁性の単結晶ダイヤモンドの内部に形成されており、該単結晶ダイヤモンドの側面まで前記導電層が貫通している単結晶ダイヤモンド及びそれを用いた工具が開示されている。
特開2013-35732号公報
 (1)本発明の一態様に係る単結晶ダイヤモンドは、対向する一組の主面を備え、前記主面において、第1の方向に沿って不純物濃度が変化する、単結晶ダイヤモンドである。
 (2)本発明の一態様に係る工具は、上記(1)の単結晶ダイヤモンドを備える、工具である。
 (3)本発明の一態様に係る単結晶ダイヤモンドの製造方法は、上記(1)の単結晶ダイヤモンドの製造方法であって、気相合成法により、結晶成長方向に沿って不純物濃度が変化する合成単結晶ダイヤモンドを得る工程と、前記合成単結晶ダイヤモンドを、前記不純物濃度が変化する方向に切断する工程とを備える、単結晶ダイヤモンドの製造方法である。
図1Aは、実施の形態1における単結晶ダイヤモンドの平面図である。 図1Bは、実施の形態1における単結晶ダイヤモンドの斜視図である。 図2は、図1Aおよび図1Bの単結晶ダイヤモンドの主面における不純物濃度を示すグラフである。 図3Aは、実施の形態1の単結晶ダイヤモンドの製造方法の一例であって、その一工程を示す図である。 図3Bは、実施の形態1の単結晶ダイヤモンドの製造方法の一例であって、上記とは別の工程を示す図である。 図3Cは、実施の形態1の単結晶ダイヤモンドの製造方法の一例であって、上記とは別の工程を示す図である。 図4Aは、実施の形態2における単結晶ダイヤモンドの平面図である。 図4Bは、実施の形態2における単結晶ダイヤモンドの斜視図である。 図5は、図4Aおよび図4Bの単結晶ダイヤモンドの主面における不純物濃度を示すグラフである。 図6Aは、実施の形態2の単結晶ダイヤモンドの製造方法の一例であって、その一工程を示す図である。 図6Bは、実施の形態2の単結晶ダイヤモンドの製造方法の一例であって、上記とは別の工程を示す図である。 図6Cは、実施の形態2の単結晶ダイヤモンドの製造方法の一例であって、上記とは別の工程を示す図である。 図7Aは、実施の形態3の切削バイトを説明する図である。 図7Bは、被削材5を切削した後の実施の形態3の切削バイトを説明する図である。 図7Cは、すくい面8に対する逃げ面9の角度が55°以上90°以下である、実施の形態3の切削バイトを説明する図である。 図7Dは、実施の形態3の切削バイトの上面図である。 図8Aは、実施の形態4の切削バイトを説明する図である。 図8Bは、被削材5を切削した後の実施の形態4の切削バイトを説明する図である。 図8Cは、すくい面8に対する逃げ面9の角度を55°以上90°以下である、実施の形態4の切削バイトを説明する図である。 図8Dは、実施の形態4の切削バイトの上面図である。 図9Aは、実施の形態5の線引きダイスを説明する図である。 図9Bは、伸線加工に用いた後の実施の形態5の線引きダイスを説明する図である。 図9Cは、不純物濃度[1]の領域と、不純物濃度[2]の領域を記した実施の形態5の線引きダイスを説明する図である。 図10Aは、試料50,51,60,61における単結晶ダイヤモンドの製造方法の一例であって、その一工程を示す図である。 図10Bは、試料50,51,60,61における単結晶ダイヤモンドの製造方法の一例であって、上記とは別の工程を示す図である。
[本開示が解決しようとする課題]
 特許文献1の技術では、単結晶ダイヤモンド中の導電層として、ホウ素ドープ層やイオン注入層を形成している。該単結晶ダイヤモンドを用いた工具では、単結晶ダイヤモンドの外部部材との電気的なコンタクトが可能な導電層が露出している側面を、工具の逃げ面となるように配置している。単結晶ダイヤモンド層と導電層とは、不純物濃度が異なるため、結晶性が異なり、このため硬度や摩耗率も異なっている。したがって、該単結晶ダイヤモンドを用いた工具は、使用に伴い逃げ面が偏摩耗するため、被削材を傷つけてしまい、被削材の加工面が均一とならないという問題がある。
 そこで、本目的は、工具材料として用いた場合に、工具の偏摩耗が抑制された単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法を提供することを目的とする。
[本開示の効果]
 上記態様によれば、工具材料として用いた場合に、工具の偏摩耗が抑制された単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法を提供することが可能となる。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 [1]本発明の一態様に係る単結晶ダイヤモンドは、対向する一組の主面を備え、前記主面において、第1の方向に沿って不純物濃度が変化する、単結晶ダイヤモンドである。
 上記態様によれば、工具材料として用いた場合に、工具の偏摩耗が抑制された単結晶ダイヤモンドを得ることができる。
 [2]前記主面において、前記第1の方向と直交する第2の方向に沿って、前記不純物濃度は略均一であることが好ましい。ここで、不純物濃度が略均一とは、濃度の幅が平均値より-20%~+20%の範囲内であることを意味する。これによると、工具材料として用いた場合に、工具の偏摩耗を効果的に抑制することができる単結晶ダイヤモンドを得ることができる。
 [3]前記主面内において、前記第1の方向と前記第2の方向とは、結晶方位が異なることが好ましい。これによると、工具材料として用いた場合に、工具の偏摩耗を効果的に抑制することができる単結晶ダイヤモンドを得ることができる。中でも、主面内の方位の中で、摩耗率の一番大きい方位又は一番小さい方位が、第1の方向と一致していることがより好ましい。さらに、主面内の方位の中で、摩耗率の一番大きい方位と一番小さい方位とが直交しており、そのいずれかが、第1の方向と一致していることが好ましい。
 [4]前記不純物濃度は、10ppb以上10000ppm以下であることが好ましい。前記不純物濃度が10ppb未満であると、亀裂が伝搬しやすく、十分なクラック伝播抑制効果が得られず、耐欠損性が低下する。一方、前記不純物濃度が10000ppmを超えると、耐摩耗性が著しく低下する。
 [5]前記不純物濃度は前記第1の方向に沿って周期性を有し、前記主面における一周期の距離は0.1μm以上1000μm以下であることが好ましい。これによると、耐摩耗性と耐欠損性とがバランスよく向上した単結晶ダイヤモンドを得ることができる。ここで、周期性とは、不純物濃度の高い層と低い層とが繰り返されていることを指しており、各周期の長さが、全て一定であるという限定ではない。例えば、周期の長さは、複数の連続する周期の途中で変わってもよい。また、周期性は、主面の端部からではなく、端部から所定の間隔を空けた内側を起点としてもよいし、端部から所定の間隔を空けた内側を終点としてもよい。すなわち、不純物濃度は、主面上の第1の方向に沿った少なくとも一部において、周期性を有していればよい。これは、単結晶ダイヤモンドの用途によって、好適なパターンが異なるからである。
 不純物濃度の高い層と低い層との配置は、主面内で中心対称性があることが好ましい。不純物濃度の周期性は、各周期が同じ長さで、不純物濃度が高濃度の層と低濃度の層が同じ間隔で繰り返すことが好ましい。ここで、「各周期が同じ長さ」とは、「不純物濃度が、第1の方向に沿って、所定の高濃度の場所から、低濃度の場所を経て、再び所定の高濃度に到達するまでの距離」に該当する「一周期」が、同じ長さであることを意味する。「不純物濃度が高濃度の層と低濃度の層が同じ間隔」とは、第1の方向に沿って、不純物濃度が高濃度の層の幅と、低濃度の層の幅が、同じ長さであることを意味する。これによると、単結晶ダイヤモンドを、種々の用途に好適に適用することができる。不純物濃度は、不純物濃度の高い層と低い層の境界で、急峻に変化しないことが好ましい。これは、応用する工具において、摩耗率が急峻に変化しない方が、工具性能が優れるからである。
 [6]前記不純物濃度は、前記第1の方向に沿って中心対称性を有することが好ましい。これによると、単結晶ダイヤモンドを、種々の用途に好適に適用することができる。
 [7]前記単結晶ダイヤモンドは、前記第2の方向に沿った側面にイオン注入層を有することが好ましい。これによると、イオン注入層からの距離の大きさに伴い、不純物濃度が低下した単結晶ダイヤモンドを得ることができる。
 [8]前記主面に対する前記側面の角度は、55°以上125°以下であることが好ましい。これによると、側面における不純物濃度を略均一とすることができる。ここで、不純物濃度が略均一とは、濃度の幅が平均値より-20%~+20%の範囲内であることを意味する。
 [9]前記不純物は、窒素、ホウ素、アルミニウム、ケイ素、リン及び硫黄からなる群より選ばれる少なくとも1種の元素を含むことが好ましい。単結晶ダイヤモンド中にこれらの元素が存在すると、単結晶ダイヤモンドの結晶性が変化し、クラックの伝播を抑制でき、耐欠損性が向上する。
 [10]本発明の一態様に係る工具は、上記[1]~[9]のいずれかに記載の単結晶ダイヤモンドを備える、工具である。本発明の一態様に係る工具は、耐摩耗性及び耐欠損性がバランスよく向上し、工具寿命が優れている。
 [11]前記工具は切削バイトであり、前記切削バイトの逃げ面における前記単結晶ダイヤモンドの不純物濃度の変化量は、前記切削バイトのすくい面における前記単結晶ダイヤモンドの不純物濃度の変化量よりも小さいことが好ましい。これによると、切削バイトの偏摩耗を抑制できるため、被削材を均一に加工することができる。
 [12]前記工具は切削バイトであり、前記切削バイトのすくい面において、面方位の相違に由来する摩耗率の相違と、不純物濃度の相違に由来する摩耗率の相違とが相殺する関係を有することが好ましい。切削工具は切削部又は摩耗部に曲面を有した工具であるため、これらの部位において面方位の差が生じている。したがって、通常、これらの部位では、工具の使用に伴い偏摩耗が発生する。本発明の一実施の形態よれば、これらの部分において、面方位の相違に由来する摩耗率の相違を相殺するように、不純物濃度の高低差が形成されているため、偏摩耗を減少することができる。
 [13]前記工具は線引きダイスであり、前記単結晶ダイヤモンドの主面に垂直な方向に沿って、前記対向する一組の主面同士を貫通する穴が形成されることが好ましい。これによると、線引きダイスの偏摩耗を抑制できるため、被削材を均一に加工することができる。
 [14]前記工具は線引きダイスであり、前記単結晶ダイヤモンドの主面に平行な方向において、面方位の相違に由来する摩耗率の相違と、不純物濃度の相違に由来する摩耗率の相違とが相殺する関係を有することが好ましい。線引きダイスは切削部又は摩耗部に曲面を有した工具であるため、これらの部位において面方位の差が生じている。したがって、通常、これらの部位では、工具の使用に伴い偏摩耗が発生する。本発明の一実施の形態よれば、これらの部分において、面方位の相違に由来する摩耗率の相違を相殺するように、不純物濃度の高低差が形成されているため、偏摩耗を減少することができる。
 [15]本発明の一態様に係る単結晶ダイヤモンドの製造方法は、上記[1]~[9]のいずれかに記載の単結晶ダイヤモンドの製造方法であって、気相合成法により、結晶成長方向に沿って不純物濃度が変化する単結晶ダイヤモンドを得る工程と、前記単結晶ダイヤモンドを、前記不純物濃度が変化する方向に切断する工程とを備える、単結晶ダイヤモンドの製造方法である。
 本発明の一態様に係る単結晶ダイヤモンドの製造方法によると、工具材料として用いた場合に、被削材をより均一に加工することのできる単結晶ダイヤモンドを得ることができる。
 [本発明の実施形態の詳細]
 本発明の実施形態にかかる単結晶ダイヤモンド、工具及び単結晶ダイヤモンドの製造方法の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。本明細書中においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。
 <実施の形態1>
 実施の形態1の単結晶ダイヤモンドについて、図1A、図1B及び図2を用いて説明する。図1A及び図1Bは、それぞれ実施の形態1における単結晶ダイヤモンドの平面図及び斜視図である。図2は、図1A及び図1Bの単結晶ダイヤモンドの主面における不純物濃度を示すグラフである。平面図とは、単結晶ダイヤモンドの主面の上から見た図である。本明細書中、主面とは、単結晶ダイヤモンドの表面を構成する面のうち、最も面積の大きい面を意味する。
 図1A及び図1Bに示されるように、単結晶ダイヤモンド10は対向する一組の主面を備える。主面の両面において、第1の方向(X軸方向)と直交する第2の方向(Y軸方向)に沿って帯状に延在する不純物高濃度領域1と、第2の方向に沿って帯状に延在する不純物低濃度領域2とが、交互に隣接して配置されている。図1A及び図1Bでは、単結晶ダイヤモンド10の形状が直方体の場合を示しているが、単結晶ダイヤモンド10の形状は、対向する一組の主面を備える形状であれば、特に限定されない。図1A及び図1Bでは、不純物高濃度領域1と不純物低濃度領域2とがそれぞれ複数配置されているが、それぞれが交互に配置されていれば、それぞれの領域の数は特に限定されない。不純物高濃度領域1と不純物低濃度領域2とは、それぞれ1つずつであってもよい。
 単結晶ダイヤモンド10の主面において、帯状に延在する不純物高濃度領域1及び不純物低濃度領域2は、それぞれ第1の方向(X軸方向)に沿った長さ(幅)は、1μm以上1000μm以下が好ましく、5μm以上300μm以下がさらに好ましい。前記の長さの範囲は、単結晶ダイヤモンドを用いた工具の摩耗面に形成された曲面の曲率と相関して適合している。したがって、このような単結晶ダイヤモンドを用いた工具は、摩耗面の特定の部分において、面方位の相違に由来する摩耗率の偏り(偏摩耗)の発生を抑制することができる。なお、不純物高濃度領域1の幅と不純物低濃度領域2の幅は、同じでもよいし、異なっていてもよい。
 図2は、図1A及び図1Bの単結晶ダイヤモンド10の主面における、第1の方向(X軸方向)に沿った不純物濃度の変化の一例を示すグラフである。図2において、第1の方向に沿った距離とは、図1A及び図1Bの単結晶ダイヤモンド10の第2の方向に沿った左側の側面からの第1の方向に沿った距離を意味する。図2に示されるように、主面において、不純物濃度は第1の方向に沿って変化する。具体的には、第1の方向に沿って、不純物濃度が所定濃度P1よりも高い領域と低い領域とが、交互に一定の周期性を持って出現する。図2において、不純物濃度が所定濃度P1以上の領域は、図1A及び図1Bの不純物高濃度領域1に該当し、不純物濃度が所定濃度P1よりも低い領域は、図1A及び図1Bの不純物低濃度領域2に該当する。ここで、所定濃度P1は、10ppb以上10000ppm以下の範囲にあり、不純物高濃度領域の最大値と、不純物低濃度領域の最小値の中間値とする。不純物高濃度領域は、不純物濃度が、最大値から、前記最大値の60%までの領域であり、幅は0.5μm以上500μm以下の範囲である。不純物低濃度領域は、不純物濃度が最大値の60%未満の領域である。P1の値は、不純物高濃度領域と不純物低濃度領域のほぼ境界に位置するが、不純物低濃度領域の最小値が、不純物高濃度領域の最大値の20%未満の場合は、P1値は不純物低濃度領域の中に位置することとなる。
 単結晶ダイヤモンド10の主面における不純物濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)によって測定した値である。SIMS分析は、一次イオンとしてCsを用いて、加速電圧15kV、検出領域35μmΦとして、試料最表面から0.5μmスパッタした場所での濃度を求める。濃度定量は、別途用意した標準試料(イオン注入により作製した不純物濃度既知のダイヤモンド単結晶)との比較により行う。不純物濃度は、値が小さいと、機器の精度により、測定値が真の値とずれることがある。より正確な値を得るためには、相互に少なくとも100μm離れた位置の少なくとも3点において、0.5μmまでの深さで測定し、これら(深さ及び位置)の値の平均値をとることが好ましい。
 単結晶ダイヤモンド10の主面において、第1の方向(X軸方向)と直交する第2の方向(Y軸方向)に沿った不純物濃度は略均一であることが好ましい。ここで、不純物濃度が略均一とは、濃度の幅が平均値より-20%~+20%の範囲内であることを意味する。
 単結晶ダイヤモンド10において、主面に対して垂直方向である、深さ方向に沿った不純物濃度は略均一であることが好ましい。ここで、不純物濃度が略均一とは、濃度の幅が平均値より-20%~+20%の範囲内であることを意味する。
 上述の不純物濃度が略均一な面は、結晶成長面と同一であってもよいし、同一でなくてもよい。単結晶ダイヤモンドの作製方法により、不純物濃度が略均一な面が、成長面より傾く場合がある。単結晶ダイヤモンド10における主面と、不純物濃度が略均一な面は、ほぼ垂直であることが好ましいが、垂直から±35°の範囲で傾いていても構わない。切削バイトでは、逃げ面がすくい面に対して傾いている。したがって、単結晶ダイヤモンドの主面と不純物濃度が略均一な面とが垂直から±35°の範囲で傾いていると、主面をすくい面とした場合に、不純物濃度が略均一な面を逃げ面とすることができる。
 単結晶ダイヤモンド10の主面において、不純物濃度は、10ppb以上10000ppm以下であることが好ましい。不純物濃度が10ppb未満であると、亀裂が伝搬しやすく、十分なクラック伝播抑制効果が得られず、耐欠損性が低下する。一方、前記不純物濃度が10000ppmを超えると、耐摩耗性が著しく低下する。不純物濃度は、100ppb以上1000ppm以下がさらに好ましく、500ppb以上100ppm以下がさらに好ましい。
 単結晶ダイヤモンド10の主面において、不純物濃度の最大値は1ppm以上10000ppm以下が好ましく、5ppm以上1000ppm以下がさらに好ましい。また、不純物濃度の最小値は10ppb以上100ppm以下が好ましく、100ppb以上50ppm以下がさらに好ましい。不純物濃度の最大値と最小値との比(最小値/最大値)は、10-6以上0.8未満が好ましく、10-4以上0.5以下がさらに好ましい。これによると、単結晶ダイヤモンドを加工工具の材料として使用する場合、不純物濃度の相違に由来する材料の偏摩耗が、面方位の相違に由来する偏摩耗と相殺されて、工具全体としての偏摩耗を抑制することができる。
 単結晶ダイヤモンド10の主面において、不純物濃度は第1の方向に沿って周期性を有し、主面における一周期の距離は2μm以上2000μm以下であることが好ましく、10μm以上600μm以下がさらに好ましい。ここで、主面における一周期の距離とは、図1A及び図1Bにおける、隣接する一組の不純物高濃度領域1と不純物低濃度領域2とのそれぞれのX軸方向の距離(幅)の合計に該当する。ここで、単結晶ダイヤモンド10の中に周期の数は少なくとも1つあれば、偏摩耗の低減効果を得ることができる。周期の数は、n+0.5(nは整数を示す)で表される(例えば、1.5、2.5等)ことがより好ましい。これによると、不純物高濃度領域と、不純物低濃度領域とを、同じ幅、同じ周期で形成した時に、不純物濃度を、主面の中心を通過する線を軸として対称に配置することができるからである。同じ理由で、主面の中央部のみが不純物高濃度領域、又は、不純物低濃度領域であって構わない。この場合は、中心に穴をあけるような工具(線引きダイスなどの穿孔工具)に使用する場合に好適である。
 単結晶ダイヤモンド10の主面に存在する不純物は、窒素、ホウ素、アルミニウム、ケイ素、リン及び硫黄からなる群より選ばれる少なくとも1種の元素を含むことが好ましい。単結晶ダイヤモンド10中にこれらの元素が存在すると、単結晶ダイヤモンド10の結晶性が変化し、クラックの伝播を抑制でき、耐欠損性が向上する。中でも、不純物は、窒素及びホウ素の少なくともいずれかを含むことが好ましい。さらに、不純物は、炭素と置換型で混入した不純物の割合が小さい方が好ましく、該割合は、例えば、20%以下が好ましく、10%以下がより好ましい。これによると、工具としての機械的特性(硬くて欠けにくいという特性)が良好となる。置換型の不純物の割合は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)で測定した値(全不純物濃度)と、電子スピン共鳴法(ESR:Electron Spin Resonance)で測定した値(置換型の濃度)から算出できる。
 単結晶ダイヤモンドの主面において、不純物濃度が略均一な方向と、不純物濃度が変化する方向の面方位が異なることが好ましい。摩耗率の一番小さい方位が、不純物濃度が略均一な方向、あるいは不純物濃度が変化する方向と一致していることがより好ましい。一般的に、摩耗率は、面方位や不純物濃度によって異なる。よって、面方位の相違に由来する摩耗率の相違と、不純物濃度の相違に由来する摩耗率の相違とを適宜組み合わせると、それぞれの摩耗率の相違(偏摩耗)の相殺が可能になる。
 線引きダイス等の穿孔工具を作製する際に、不純物濃度が均一な方向と摩耗しやすい面方位とを一致させる場合は、不純物濃度が変化する方向と摩耗し難い面方位とを一致させ、摩耗し難い不純物濃度の層(一般には不純物濃度が低いと摩耗し難いので、不純物低濃度層)に孔の中心がくるようにし、孔の端に摩耗しやすい不純物濃度の層(不純物高濃度層)が接するかあるいは重なるようにすることが好ましい。切削バイトを作製する場合では、切削工具の先端が摩耗しやすい不純物濃度の層(不純物高濃度層)に接するかあるいは重なるようにすることが好ましい。
 また、線引きダイス等の穿孔工具を作製する際に、不純物濃度が均一な方向と摩耗し難い面方位とを一致させ、不純物濃度が変化する方向と摩耗しやすい面方位とを一致させる場合は、摩耗しやすい不純物濃度の層(一般には不純物濃度が低いと摩耗し難いので、不純物高濃度層)に孔の中心がくるようにして、孔の端に摩耗し難い不純物濃度の層(不純物低濃度層)が接するかあるいは重なるようにすることが好ましい。切削バイトを作製する場合では、切削工具の先端が摩耗し難い不純物濃度の層(不純物低濃度層)に接するかあるいは重なるようにすることが好ましい。
 実施の形態1の単結晶ダイヤモンドの製造方法の一例について、図3A乃至図3Cを用いて説明する。図3A乃至図3Cは、実施の形態1の単結晶ダイヤモンドの製造方法の一例を示す図である。本実施の形態において、単結晶ダイヤモンドの製造方法は、気相合成法により、結晶成長方向に沿って不純物濃度が変化する合成単結晶ダイヤモンドを得る工程と、前記合成単結晶ダイヤモンドを、前記不純物濃度が変化する方向に切断する工程とを備える。
 初めに、図3Aに示されるように、単結晶ダイヤモンド基板4を準備する。単結晶ダイヤモンド基板4としては、たとえば平板形状を有し、高温高圧合成法により製造されたダイヤモンドからなる単結晶基板(タイプ:Ib)を用いることができる。単結晶ダイヤモンド基板4は、(100)面からなる主面と、主面に対して垂直な(001)面及び(010)面からなる側面とを有している。なお、単結晶ダイヤモンド基板4の形状は特に限定されず、所望の形状とすることができる。さらに、ダイヤモンド単結晶基板の主面の表面を機械研磨などによって平滑化し、反応性イオンエッチングによって、1μm~50μm程度エッチングしておくことが好ましい。
 次に、単結晶ダイヤモンド基板4を、CVD装置のチャンバ内に配置し、気相合成法により、結晶成長方向に沿って不純物濃度が変化する合成単結晶ダイヤモンドを得る(図3B)。具体的には、チャンバ内に炭素を含むガスを導入しながら、単結晶ダイヤモンド基板4の主面上にCVD法により合成単結晶ダイヤモンドをエピタキシャル成長させる。
 ガス中の炭素は合成単結晶ダイヤモンドの炭素源になる。炭素を含むガスとしては、たとえばCH、C、C、C、CHOH、COH、(CHCOなどを用いることができる。なお、これらのガスに加えて、CO、COも用いることもできる。中でも、CHを用いることがダイヤ膜形成の前駆体となる炭素ラジカルが生成されやすいとされている点から好ましい。
 チャンバには、炭素を含むガスと同時に、窒素ガスを導入することによって、合成単結晶ダイヤモンド中に、不純物として窒素を導入することができる。チャンバ内に導入するガス中の窒素ガスの添加量を制御することにより、合成単結晶ダイヤモンド中の不純物窒素濃度を結晶成長方向に沿って変化させることができる。添加ガスの流量比以外にも、全圧力、投入電力、基板温度などを変化させることによって、不純物濃度を成長方向に沿って変化させることができる。
 合成単結晶ダイヤモンド中に不純物として、ホウ素、アルミニウム、ケイ素、リン、硫黄を導入する場合は、それぞれ、ジボランガス(B)、トリメチルアルミニウム((CHAl)、シランガス(SiH)、フォスフィンガス(PH)、硫化水素(HS)等を用いることができる。アルミニウム以外の元素においても、一般的に知られている有機系のガスを用いることができる。
 上記のガスを導入しながら、チャンバ内の圧力をたとえば6.6kPa~26.6kPaに制御し、マイクロ波パワーを導入して、チャンバ内温度を800℃~1200℃に加熱した上で、単結晶ダイヤモンド基板4の主面上に合成単結晶ダイヤモンドをエピタキシャル成長させる。エピタキシャル成長層の形成方法は、たとえばマイクロ波プラズマCVD法(MP-CVD法)、熱フィラメント(HF:Hot Filament)CVD法やDCプラズマ法などを用いることができる。
 次に、図3Cの破線で示されるように、合成単結晶ダイヤモンドを、不純物濃度が変化する方向に切断する。ここで、不純物濃度が変化する方向に切断するとは、不純物濃度が均一な面同士を横切るように切断することを意味する。これは、不純物濃度が略均一な面に対して、垂直な方向に切断することに限定されず、不純物濃度が略均一な面に対して、所定の角度(例えば±35°)で切断することも含む。単結晶ダイヤモンドの用途によっては、不純物濃度が略均一な面と切断面とが、垂直以外の角度で交差していることが都合がよい場合があるからである。合成単結晶ダイヤモンドの切断は、レーザー切断によって行うことができる。
 続いて、合成単結晶ダイヤモンドと、ダイヤモンド単結晶基板4とを、レーザーを用いて分離し、単結晶ダイヤモンドを得る。レーザーを用いる代わりに、電気化学的にエッチングして分離することもできる。この場合は、結晶成長する前に、あらかじめ基板にイオン注入でグラファイト層を内部に形成しておく必要がある。得られた単結晶ダイヤモンドは、合成単結晶ダイヤモンドの結晶成長方向に略平行な面を主面として有する。したがって、この場合、単結晶ダイヤモンドは、主面において、結晶成長方向に沿って不純物濃度が変化している。
 実施の形態1の単結晶ダイヤモンドの他の製造方法について、説明する。この方法は、不純物濃度を変化させる方法に関して以外は、前述の方法と同じである。以下では、不純物濃度を変化させる方法について説明する。前述の方法では、ダイヤモンド単結晶基板の主面は平坦であり、不純物濃度の変化の方向は成長面に垂直であった。一方、本方法では、基板に特殊な加工を施すことによって、不純物濃度の変化の方向が、必ずしも成長面に垂直な方向とはならない。
 初めに、ダイヤモンド単結晶基板として、オフ角の基板を用意する。該基板の主面上に、ライン状の突起を1つ以上形成する。突起の高さは10μm以下が好ましい。突起のアスペクト比(高さ/幅)は1以下が好ましい。突起が複数の場合は、突起間隔(隣接する間隔)は突起高さより大きい方が好ましい。該基板の主面上にダイヤモンドを成長させると、突起側面に基板主面と異なる高次の面方位が発生し、突起上部はオフ角が解消したジャスト面となる。突起側面の高次面と、基板主面とでは、不純物含有効率の違いが生じ、かつ結晶成長速度が異なるので、主面に対して傾きを有する帯状の不純物濃度の異なる部分が形成される。この傾き(θd)は、主面と垂直方向への成長速度(Rv)と高次面の横方向の成長速度(Rh)の比を使って、tan(θd)=Rv/Rhの式で算出される。すなわち、本製法では、結晶成長面からθdだけ傾いた、不純物濃度が略均一な面が生じることとなる。
 <実施の形態2>
 実施の形態2の単結晶ダイヤモンドについて、図4A、図4B及び図5を用いて説明する。図4A及び図4Bは、それぞれ実施の形態2における単結晶ダイヤモンドの平面図及び斜視図である。図5は、図4A及び図4Bの単結晶ダイヤモンドの主面における不純物濃度を示すグラフである。平面図とは、単結晶ダイヤモンドの主面の上から見た図である。
 図4A及び図4Bに示されるように、単結晶ダイヤモンド20は対向する一組の主面を備える直方体形状である。主面において、Y軸方向に沿って帯状に延在する、イオン注入層3、不純物高濃度領域1及び不純物低濃度領域2が、前記の順に隣接して配置されている。イオン注入層3は、単結晶ダイヤモンド20のX軸方向の端部に位置し、Y軸方向に略平行な一つの側面に沿って配置されている。
 図5は、図4A及び図4Bの単結晶ダイヤモンド20の主面における、第1の方向(X軸方向)に沿った不純物濃度の変化の一例を示すグラフである。図5において、第1の方向に沿った距離とは、図4A及び図4Bの単結晶ダイヤモンド20のイオン注入層3が存在する側面からの第1の方向に沿った距離を意味する。図5に示されるように、主面において、不純物濃度は第1の方向に沿って変化する。具体的には、不純物濃度が第1の方向に沿って、ダイヤモンド単結晶20の側面に存在するイオン注入層3から不純物低濃度領域2へ向かって、漸減する。図5において、不純物濃度が所定濃度P2以上の領域は、図4A及び図4Bのイオン注入層3及び不純物高濃度領域1に該当し、不純物濃度が所定濃度P2よりも低い領域は、図4A及び図4Bの不純物低濃度領域2に該当する。ここで、所定濃度P2は、10ppb以上10000ppm以下の範囲にあり、不純物高濃度領域の最大値と、不純物低濃度領域の最小値の中間値とする。不純物高濃度領域は、不純物濃度が、最大値から、前記最大値の60%までの領域であり、幅は0.5μm以上500μm以下の範囲である。不純物低濃度領域は、不純物濃度が最大値の60%未満の領域である。P2の値は、不純物高濃度領域と不純物低濃度領域のほぼ境界に位置するが、不純物低濃度領域の最小値が、不純物高濃度領域の最大値の20%未満の場合は、P2値は不純物低濃度領域の中に位置することとなる。
 イオン注入層3に含まれるイオンは、炭素イオン、ホウ素イオン、窒素イオン、アルゴンイオン、リンイオン、ケイ素イオン、硫化物イオンからなる群より選択される少なくとも1種であることが好ましい。これらのイオンは、イオン注入層上に合成単結晶ダイヤモンドを成長させた場合、該合成単結晶ダイヤモンド中に混入しやすく、不純物の濃度勾配を形成しやすいためである。イオン注入のイオン種と、ダイヤモンド中の濃度勾配のあるイオン種とは、同一であってもよいし、異なっていてもよい。
 不純物の濃度勾配を形成する方法の一例を以下に述べる。まず、基板中に、イオンを所定量(好ましくはドーズ量3x1016cm-2)以上注入しておく。次に、単結晶ダイヤモンドを合成時に、初期状態として、基板を若干エッチングしながら合成する。その際に、基板中の注入イオンが、雰囲気中に放出される。基板上にダイヤモンドを合成すると、雰囲気中の注入イオンが若干取り込まれながら単結晶ダイヤモンドが形成される。時間が経過すると、基板上に新しいダイヤモンドが形成されるので、雰囲気中には、基板中の注入イオンが放出されなくなり、雰囲気中の注入イオンの量も次第に減少する。したがって、単結晶ダイヤモンド中に取り込まれる注入イオンも次第に減少してゆく。これにより、合成単結晶ダイヤモンド中に、不純物の濃度勾配が形成される。
 不純物の濃度勾配を形成する方法の他の例を以下に述べる。基板に注入するイオン種とは関係なく、単結晶ダイヤモンドの合成時に、雰囲気中にあるいは周辺に不純物元素を含ませておく。微量ガスを導入してもよいし、ホルダー上に固体原料を置いておいてもよい。基板には、後に電気化学的に分離を行うために、イオン注入によりグラファイト層を形成しておく。イオン注入されるイオン種は限定されないが、炭素イオン、ホウ素イオン、窒素イオン、アルゴンイオン、リンイオン、ケイ素イオン、硫化物イオン等が好ましい。中でも、グラファイト層を形成するので、炭素イオンがより好ましい。単結晶ダイヤモンドの合成の際は、初期に、基板をエッチングしないことが好ましい。イオン注入をした基板の表面は結晶が乱れており、その上に合成するダイヤモンドは結晶の揺らぎ、及び、欠陥の多い単結晶ダイヤモンドが合成される。結晶の合成とともに結晶の揺らぎが低減し、徐々に結晶性の良い単結晶ダイヤモンドが形成される。結晶の揺らぎが多く、欠陥の多い結晶中には不純物元素が混入しやすく、結晶の揺らぎが解消されると不純物元素の混入が減少する。これにより、合成単結晶ダイヤモンド中に、不純物の濃度勾配が形成される。
 単結晶ダイヤモンド20の主面において、第1の方向(X軸方向)と直交する第2の方向(Y軸方向)に沿った不純物濃度は略均一であることが好ましい。ここで、不純物濃度が略均一とは、濃度の幅が平均値より-20%~+20%の範囲内であることを意味する。
 単結晶ダイヤモンド20において、主面に対して垂直方向である深さ方向に沿った不純物濃度は均一であることが好ましい。ここで、不純物濃度が均一とは、濃度の幅が平均値より-20%~+20%の範囲内であることを意味する。
 単結晶ダイヤモンド20の主面において、不純物濃度は、10ppb以上10000ppm以下であることが好ましい。不純物濃度が10ppb未満であると、亀裂が伝搬しやすく、十分なクラック伝播抑制効果が得られず、耐欠損性が低下する。一方、前記不純物濃度が10000ppmを超えると、耐摩耗性が著しく低下する。不純物濃度は、100ppb以上1000ppm以下がさらに好ましく、500ppb以上100ppm以下がさらに好ましい。不純物濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)によって測定した値である。
 単結晶ダイヤモンド20の主面において、不純物濃度の最大値は1ppm以上10000ppm以下が好ましく、5ppm以上1000ppm以下がさらに好ましい。また、不純物濃度の最小値は10ppb以上100ppm以下が好ましく、100ppb以上50ppm以下がさらに好ましい。不純物濃度の最大値と最小値との比(最小値/最大値)は、10-6以上0.8未満が好ましく、10-4以上0.5以下がさらに好ましい。これによると、単結晶ダイヤモンドを加工工具の材料として使用する場合、不純物濃度の相違に由来する材料の偏摩耗が、面方位の相違に由来する偏摩耗と相殺されて、工具全体としての偏摩耗を防ぐことができる。
 単結晶ダイヤモンド20において、主面に対するイオン注入層を有する側面の角度は、55°以上125°以下であることが好ましい。これによると、側面における不純物濃度を均一とすることができる。ここで、不純物濃度が均一とは、濃度の幅が平均値より-20%~+20%の範囲内であることを意味する。
 単結晶ダイヤモンド20の主面に存在する不純物は、窒素、ホウ素、アルミニウム、ケイ素、リン及び硫黄からなる群より選ばれる少なくとも1種の元素を含むことが好ましい。これらの不純物は、ダイヤモンド中に混入しても、ダイヤモンドの結晶性を大きく崩すことなく、工具性能に適した欠陥を適度に生じさせるためである。中でも、不純物は、窒素及びホウ素の少なくともいずれかを含むことが好ましい。
 実施の形態2の単結晶ダイヤモンドの製造方法について、図6A乃至図6Cを用いて説明する。図6A乃至図6Cは、実施の形態2の単結晶ダイヤモンドの製造方法の一例を示す図である。本実施の形態において、単結晶ダイヤモンドの製造方法は、気相合成法により、結晶成長方向に沿って不純物濃度が変化する合成単結晶ダイヤモンドを得る工程と、前記合成単結晶ダイヤモンドを、前記結晶成長方向に沿って切断する工程とを備える。
 初めに、図6Aに示されるように、主面から一定の深さにイオン注入層3を含む単結晶ダイヤモンド基板24を準備する。単結晶ダイヤモンド基板24は、たとえば平板形状を有し、高温高圧合成法により製造されたダイヤモンドからなる単結晶基板(タイプ:Ib)に、イオン注入を行って作製することができる。単結晶ダイヤモンド基板24の表面24aは、イオン注入前の単結晶基板の結晶性を、気相合成法によるエピタキシャル成長が可能な程度に維持している。
 注入エネルギーは、80keV以上10000keV以下が好ましく、180keV以上350keV以下がさらに好ましい。照射量は、3×1015個/cm以上5×1017個/cm以下が好ましく、1×1016個/cm以上1×1017個/cm以下がさらに好ましい。注入エネルギーおよび照射量が前記範囲であると、基板24の主面の結晶性を、気相合成法によるエピタキシャル成長が可能な程度に維持したまま、基板24の内部にイオン注入層3を形成することができる。
 イオン注入されるイオンとしては、炭素イオン、ホウ素イオン、窒素イオン、アルゴンイオン、リンイオン、ケイ素イオン、硫黄イオンからなる群より選択される少なくとも1種を用いることができる。
 次に、ダイヤモンド単結晶基板24を、CVD装置のチャンバ内に配置し、気相合成法により、結晶成長方向に沿って不純物濃度が変化する合成単結晶ダイヤモンドを得る(図6B)。具体的には、チャンバ内に炭素を含むガスを導入しながら、単結晶ダイヤモンド基板24の主面上にCVD法により合成単結晶ダイヤモンドをエピタキシャル成長させる。
 ガス中の炭素は合成ダイヤモンド単結晶の炭素源になる。炭素を含むガスとしては、たとえばCH、C、C、C、CHOH、COH、(CHCOなどを用いることができる。なお、これらのガスに加えて、CO、COも用いることもできる。中でも、CHを用いることがダイヤ膜形成の前駆体となる炭素ラジカルが生成されやすいとされている点から好ましい。
 単結晶ダイヤモンド基板24上に合成ダイヤモンド単結晶を成長させる際に、イオン注入層3に存在するイオンが合成ダイヤモンド単結晶中に拡散し、合成ダイヤモンド中の不純物となる。したがって、合成ダイヤモンド単結晶において、イオン注入層3から結晶成長方向に沿った距離の増加に伴い、不純物濃度が漸減する。
 上記のガスを導入しながら、チャンバ内の圧力をたとえば6.6kPa~26.6kPaに制御し、マイクロ波パワーを導入して、チャンバ内温度を800℃~1200℃に加熱した上で、単結晶ダイヤモンド基板24の主面上に合成単結晶ダイヤモンドをエピタキシャル成長させる。エピタキシャル成長層の形成方法は、たとえばマイクロ波プラズマCVD法(MP-CVD法)、熱フィラメント(HF:Hot Filament)CVD法やDCプラズマ法などを用いることができる。
 次に、図6Cの破線で示されるように、合成単結晶ダイヤモンドを、結晶成長方向に沿って切断する。合成単結晶ダイヤモンドの切断は、レーザー切断によって行うことができる。続いて、合成単結晶ダイヤモンドと、単結晶ダイヤモンド基板24とを、イオン注入層3を電気化学的にエッチングを用いて分離し、単結晶ダイヤモンドを得る。得られた単結晶ダイヤモンドは、合成単結晶ダイヤモンドの結晶成長方向に平行な面を主面として有し、側面にはイオン注入層を有する。したがって、単結晶ダイヤモンドは、主面において、結晶成長方向に沿って不純物濃度が変化している。
 <実施の形態3>
 実施の形態3の切削バイトについて、図7A乃至図7Dを用いて説明する。図7Aは、実施の形態3の切削バイト6を用いた被削材5の切削を示す図である。図7Bは、被削材5を切削後の実施の形態3の切削バイト6を示す図である。
 実施の形態3の切削バイト6は、実施の形態1の単結晶ダイヤモンド10を用いて作製される。具体的には、切削バイト6は、単結晶ダイヤモンド10の主面を切削バイト6のすくい面8とし、単結晶ダイヤモンド10の側面のうち、主面において第1の方向(X軸方向)に直交する第2の方向(Y軸方向)に平行な側面を切削バイト6の逃げ面9として作製されることが好ましい。すなわち、切削バイトのすくい面8における単結晶ダイヤモンドの不純物濃度の変化量は、切削バイトの逃げ面9における単結晶ダイヤモンドの不純物濃度の変化量よりも大きいことが好ましい。
 切削バイト6において、すくい面8に対する逃げ面9の角度は、55°以上90°以下であることが好ましい。例えば、単結晶ダイヤモンド10において、主面に対する側面の角度が55°以上90°以下となるようにレーザ加工することにより、すくい面8に対する逃げ面9の角度を前記の範囲に調整することができる。図7Cに示されるように、すくい面8に対する逃げ面9の角度と、主面に対する不純物濃度の略均一な面との角度が、一致していることが好ましい。また、図7Dの切削バイトの上面図に示されるように、不純物の濃度変化の方向は、工具の先端曲面の面方位Aに合わせるのがよい。すなわち、図7Dの面方位Aと面方位Bの摩耗率が、A>Bの場合、不純物濃度[1]の領域と、不純物濃度[2]の領域の摩耗率を、[1]<[2]とするのがよい。一方、A<Bの場合は、[1]>[2]とするのがよい。さらに、濃度変化に周期性があると、工具を再研磨して使用する場合に、同じ濃度変化の状況を繰り返し作製できるので、好都合である。
 図7Aに示されるように、切削バイト6を用いて被削材5を切削する際、切削バイト6の不純物高濃度領域1のみが被削材5と接触する。不純物高濃度領域1では、不純物濃度が一定範囲内に制御されているため、単結晶ダイヤモンドの結晶性がほぼ均一である。したがって、被削材5の切削時に、逃げ面9で偏摩耗が発生することなく、被削材を均一に加工することができる。
 一方、切削バイト6の面方位の異なる複数の面が、被削材と接触する場合は、切削バイト6は、不純物濃度の異なる部分に渡って被削材と接していることが好ましい。これによって偏摩耗を防ぐことができる。
 <実施の形態4>
 実施の形態4の切削バイトについて、図8A乃至図8Dを用いて説明する。図8Aは、実施の形態4の切削バイト26を用いた被削材5の切削を示す図である。図8Bは、被削材5を切削後の実施の形態4の切削バイト26を示す図である。
 実施の形態4の切削バイト26は、実施の形態2の単結晶ダイヤモンド20を用いて作製される。具体的には、切削バイト26は、単結晶ダイヤモンド20の主面を切削バイト26のすくい面8とし、単結晶ダイヤモンド20の側面のうち、イオン注入層3が配置された側面を切削バイト26の逃げ面9として作製されることが好ましい。すなわち、切削バイトのすくい面における単結晶ダイヤモンドの不純物濃度の変化量は、切削バイトの逃げ面における単結晶ダイヤモンドの不純物濃度の変化量よりも大きいことが好ましい。
 切削バイト26において、すくい面8に対する逃げ面9の角度は、55°以上90°以下であることが好ましい。例えば、単結晶ダイヤモンド20において、主面に対するイオン注入層3が配置された側面の角度が55°以上90°以下となるようにレーザ加工することにより、すくい面8に対する逃げ面9の角度を前記の範囲に調整することができる。図8Cに示されるように、すくい面8に対する逃げ面9の角度と、主面に対する不純物濃度の略均一な面との角度が、一致していることが好ましい。また、図8Dの切削バイトの上面図に示されるように、不純物の濃度変化の方向は、工具の先端曲面の面方位Aに合わせるのがよい。すなわち、図8Dの面方位Aと面方位Bの摩耗率が、A>Bの場合、不純物濃度[1]の領域と、不純物濃度[2]の領域の摩耗率を、[1]<[2]とするのがよい。一方、A<Bの場合は、[1]>[2]とするのがよい。さらに、濃度変化に周期性があると、工具を再研磨して使用する場合に、同じ濃度変化の状況を繰り返し作製できるので、好都合である。
 図8Aに示されるように、切削バイト26を用いて被削材5を切削する際、切削バイト26のイオン注入層3のみが被削材5と接触する。イオン注入層3では、不純物濃度が一定範囲内に制御されているため、単結晶ダイヤモンドの結晶性がほぼ均一である。したがって、被削材5の切削時に、逃げ面9で偏摩耗が発生することなく、被削材を均一に加工することができる。
 一方、切削バイト6の面方位の異なる複数の面が、被削材と接触する場合は、切削バイト6は、不純物濃度の異なる部分に渡って被削材と接していることが好ましい。これによって偏摩耗を防ぐことができる。
 <実施の形態5>
 実施の形態5の線引きダイスについて、図9A乃至図9Cを用いて説明する。図9Aは、実施の形態5の線引きダイス7の平面図である。図9Bは、伸線加工に用いた後の実施の形態5の線引きダイス7を示す図である。
 実施の形態5の線引きダイス7は、実施の形態1の単結晶ダイヤモンド10を用いて作製される。具体的には、線引きダイス7は、単結晶ダイヤモンド10の主面を線引きダイス7の主面とし、単結晶ダイヤモンド10の主面に垂直な方向に沿って、対向する一組の主面同士を貫通する穴が形成されていることが好ましい。
 線引きダイス7は、穴の中心が不純物高濃度領域1にあり、穴の外縁を形成する主面上の円周において、穴の中心から単結晶ダイヤモンド10の第2の方向(Y軸方向)に沿った2つの最遠点は、それぞれ単結晶ダイヤモンド10の不純物高濃度領域1に位置し、穴の中心から単結晶ダイヤモンド10の第1の方向(X軸方向)に沿った2つの最遠点は、それぞれ単結晶ダイヤモンド10の主面の不純物低濃度領域2に位置することが好ましい。これによると、線引きダイス7を用いた伸線加工時に、線引きダイス7の偏摩耗を抑制できる。したがって、伸線加工後の線引きダイス7においても、穴の真円度が崩れにくく、主面において、穴の外縁が円形を保持することができる。
 線引きダイス7は、穴の中心が、単結晶ダイヤモンド10の不純物高濃度領域1の第2の方向(Y軸方向)に沿った対称軸上に位置することが好ましい。また、線引きダイス7の主面における第1方向(X軸方向)に沿った不純物濃度が、穴の中心を通り、第2の方向(Y軸方向)に沿った線を対称軸として、対称性を持って変化していることが好ましい。これによると、線引きダイス7を用いた伸線加工時に、線引きダイス7の偏摩耗を効果的に抑制できる。
 不純物高濃度領域1と不純物低濃度領域2とは、光学的な透過率が異なることが好ましい。これは、レーザーあるいは光学顕微鏡を使って、不純物領域の位置を数値的に把握することができ、そのいずれか都合の良い方を選んで、穴をあけることができるからである。光学的な透過率が近似している場合でも、主面の幾何学的中心が、不純物高濃度領域又は不純物低濃度領域であるかが分かるようにしておけば、そのいずれか都合の良い方を選んで、穴をあけることができる。
 上記では、線引きダイス7の主面において、不純物高濃度領域1の両側に、不純物低濃度領域2が配置されている場合を説明したが、不純物高濃度領域1と不純物低濃度領域2の配置は、逆であっても構わない。
 図9Cに示されるように、線引きダイス7は、不純物濃度[1]の領域と、不純物濃度[2]の領域の摩耗率が、[1]<[2]の場合、面方位Aと、面方位Bの摩耗率が、[B]>[A]であることが好ましい。一方、[1]>[2]の場合は、[B]<[A]であることが好ましい。ここで、不純物濃度[1]の領域は不純物高濃度領域1である場合もあり、不純物低濃度領域2である場合もある。これによると、線引きダイス7を用いた伸線加工時に、線引きダイス7の偏摩耗を抑制できる。したがって、伸線加工後の線引きダイス7においても、穴の真円度が崩れにくく、主面において、穴の外縁が円形を保持することができる。
 本発明を実施例によりさらに具体的に説明する。ただし、これらの実施例により本発明が限定されるものではない。
 [実施例1]
 (単結晶ダイヤモンド)
 5mm×5mm、厚さ0.5mmの人工Ib型単結晶{100}基板を用意して、マイクロ波プラズマCVD法によるエピタキシャル成長を行った。基板温度は1100℃、圧力100torrでおこなった。導入したガスはメタン150sccm(Standard Cubic cm)、水素1000sccmとした。単結晶ダイヤモンドの成長厚が0.7mm~1mmの範囲になるように成長を行った。
 単結晶ダイヤモンドの成長時に添加する窒素ガスは、100%窒素ガス、又は、水素で希釈した1%窒素ガスを用いた。100%窒素ガスと、1%窒素ガスとは、交互に導入した。片方の窒素ガスが流れているときは、他方の窒素ガスの流量はゼロとした。各窒素ガスの流量(0.1~5sccm)、及び、導入時間を変化させることにより、成長膜中に含まれる不純物濃度を制御した。
 試料1~4では、得られた合成単結晶ダイヤモンドを、不純物濃度の均一な面に垂直な方向に沿って切断し(図3C参照)、0.8mm厚みの単結晶ダイヤモンドを得た。試料50、51では、得られた合成単結晶ダイヤモンドを、不純物濃度の均一な面に平行な方向に沿って切断し(図10A参照)、0.8mm厚みの単結晶ダイヤモンドを得た。試料52は、窒素ガスを導入せずに単結晶ダイヤモンドを成長させた後、0.8mm厚みの単結晶ダイヤモンドを切り出した。
 得られた単結晶ダイヤモンドの主面について、二次イオン質量分析法により、炭素原子に対する窒素原子(不純物)含有量の計測を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 試料1~4では、主面において、窒素濃度の高濃度領域と低濃度領域とが、繰り返して分布していた。
 試料1~4の不純物高濃度条件と同じである試料52において、電子スピン共鳴(ESR)により孤立置換型窒素濃度を調べたところ、800ppbであり、全窒素の1%以下であった。
 (切削バイト)
 試料1,2,50の単結晶ダイヤモンドを用いて、切削バイトを作製した。具体的には、図7A乃至図7Dに示されるように、単結晶ダイヤモンドの主面を切削バイトのすくい面とし、単結晶ダイヤモンドの側面のうち、主面において第1の方向(X軸方向)に直交する方向(Z軸方向)に平行な側面を切削バイトの逃げ面として作製した。切削バイトの先端角は全て80°とし、先端R、先端位置、先端径の中心位置は表2の通りとした。
Figure JPOXMLDOC01-appb-T000002
 得られた切削バイトを用いて、以下の条件で切削加工を行った。
 被削材:A4032(Al-Si系材料)
 切削速度:600m/min
 切削距離:20km
 送り速度:2μm/rev
 取り代:2μm
 試料1,2の切削バイトは、均一に摩耗し、欠損は生じなかった。被削材は滑らかに均一に加工されており、傷は発生していなかった。さらに、試料1,2のすくい面の曲面を観察すると、曲面が加工前の真円度を維持していた。すなわち偏摩耗の非常に少ない摩耗であった。
 試料50の切削バイトは、試料1,2に比べて、被削材は表面が荒れていた。すくい面を観察すると、曲面が加工前から大きく偏摩耗していた。
 (線引きダイス)
 試料3,4,51,52の単結晶ダイヤモンドを用いて、線引きダイスを作製した。具体的には、図9A乃至図9Cに示されるように、線引きダイスは、単結晶ダイヤモンドの主面を線引きダイスの主面とし、単結晶ダイヤモンドの主面に垂直な方向に沿って、対向する一組の主面同士を貫通する穴が形成されている。穴直径、穴の中心位置は表3の通りとした。
Figure JPOXMLDOC01-appb-T000003
 得られた線引きダイスを用いて、以下の条件で伸線加工を行った。
 被伸線材:SUS306
 伸線速度:600m/min
 伸線距離:20km
 試料3,4の線引きダイスは、均一に摩耗し、穴の偏摩耗は非常に少なかった。被伸線材は滑らかに均一に加工されており、伸線材には傷は発生していなかった。
 試料51、52の線引きダイスは、穴の偏摩耗が大きく(真円度が大きく)なった。
 [実施例2]
 (単結晶ダイヤモンド)
 5mm×5mm、厚さ0.5mmの人工Ib型単結晶{100}基板を用意して、マイクロ波プラズマCVD法によるエピタキシャル成長を行った。基板温度は1100℃、圧力100torrでおこなった。導入したガスはメタン150sccm(Standard Cubic cm)、水素1000sccmとした。単結晶ダイヤモンドの成長厚が0.7mm~1mmの範囲になるように成長を行った。
 単結晶ダイヤモンドの成長時に添加するジボランガス(水素希釈100ppm)は、流量5sccmと0sccmとを、それぞれの導入時間を制御して交互に繰り返して導入した。
 試料11~14では、得られた合成単結晶ダイヤモンドを、不純物濃度の均一な面に垂直な方向に沿って切断し(図3C参照)、0.8mm厚みの単結晶ダイヤモンドを得た。試料60、61では、得られた合成単結晶ダイヤモンドを、不純物濃度の均一な面に平行な方向に沿って切断し(図10A参照)、0.8mm厚みの単結晶ダイヤモンドを得た。試料62は、ジボランガスを導入せずに単結晶ダイヤモンドを成長させた後、0.8mm厚みの単結晶ダイヤモンドを切り出した。
 得られた単結晶ダイヤモンドの主面について、二次イオン質量分析法により、炭素原子に対するボロン原子(不純物)含有量の計測を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 試料11~14では、主面において、ボロン濃度の高濃度領域と低濃度領域とが、繰り返して分布していた。
 (切削バイト)
 試料11,12,60の単結晶ダイヤモンドを用いて、切削バイトを作製した。具体的には、図7A乃至図7Dに示されるように、単結晶ダイヤモンドの主面を切削バイトのすくい面とし、単結晶ダイヤモンドの側面のうち、主面において第1の方向(X軸方向)に直交する方向(Z軸方向)に平行な側面を切削バイトの逃げ面として作製した。切削バイトの先端角は全て80°、先端R、先端位置、先端径の中心位置は表5の通りとした。
Figure JPOXMLDOC01-appb-T000005
 得られた切削バイトを用いて、以下の条件で切削加工を行った。
 被削材:A4032(Al-Si系材料)
 切削速度:600m/min
 切削距離:20km
 送り速度:2μm/rev
 取り代:2μm
 試料11,12の切削バイトは、均一に摩耗し、欠損は生じなかった。被削材は滑らかに均一に加工されており、傷は発生していなかった。さらに、試料11,12のすくい面の曲面を観察すると、曲面が加工前の真円度を維持していた。すなわち偏摩耗の非常に少ない摩耗であった。
 試料60の切削バイトは、試料11,12に比べて、被削材は表面が荒れていた。すくい面を観察すると、曲面が加工前から大きく偏摩耗していた。
 (線引きダイス)
 試料13,14,61,62単結晶ダイヤモンドを用いて、線引きダイスを作製した。具体的には、図9A乃至図9Cに示されるように線引きダイスは、単結晶ダイヤモンドの主面を線引きダイスの主面とし、単結晶ダイヤモンドの主面に垂直な方向に沿って、対向する一組の主面同士を貫通する穴が形成されている。穴直径、穴の中心位置は表6の通りとした。
Figure JPOXMLDOC01-appb-T000006
 得られた線引きダイスを用いて、以下の条件で伸線加工を行った。
 被伸線材:SUS306
 伸線速度:600m/min
 伸線距離:20km
 試料13,14の線引きダイスは、均一に摩耗し、穴の偏摩耗は非常に少なかった。被伸線材は滑らかに均一に加工されており、伸線材には傷は発生していなかった。
 試料61、62の線引きダイスは、穴の偏摩耗が大きく(真円度が大きく)なってしまった。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の単結晶ダイヤモンドは、切削工具、研削工具、耐摩工具などの工具に用いると有益である。
1 不純物高濃度領域、2 不純物低濃度領域、3 イオン注入層、4,24 単結晶ダイヤモンド基板、5 被削材、6,26 切削バイト、7 線引きダイス、8 すくい面、9 逃げ面、10,20 単結晶ダイヤモンド。

Claims (15)

  1.  対向する一組の主面を備え、
     前記主面において、第1の方向に沿って不純物濃度が変化する、
     単結晶ダイヤモンド。
  2.  前記主面において、前記第1の方向と直交する第2の方向に沿って、前記不純物濃度は略均一である、
     請求項1に記載の単結晶ダイヤモンド。
  3.  前記主面において、前記第1の方向と前記第2の方向とは、結晶方位が異なる、
     請求項1又は請求項2に記載の単結晶ダイヤモンド。
  4.  前記不純物濃度は、10ppb以上10000ppm以下である、
     請求項1又は請求項2に記載の単結晶ダイヤモンド。
  5.  前記不純物濃度は前記第1の方向に沿って周期性を有し、前記主面における一周期の距離は0.1μm以上1000μm以下である、
     請求項1~請求項4のいずれか1項に記載の単結晶ダイヤモンド。
  6.  前記不純物濃度は、前記第1の方向に沿って中心対称性を有する、
     請求項1~請求項5のいずれか1項に記載の単結晶ダイヤモンド。
  7.  前記単結晶ダイヤモンドは、前記第2の方向に沿った側面にイオン注入層を有する、
     請求項2~請求項5のいずれか1項に記載の単結晶ダイヤモンド。
  8.  前記主面に対する前記側面の角度は、55°以上125°以下である、
     請求項7に記載の単結晶ダイヤモンド。
  9.  前記不純物は、窒素、ホウ素、アルミニウム、ケイ素、リン及び硫黄からなる群より選ばれる少なくとも1種の元素を含む、
     請求項1~請求項8のいずれか1項に記載の単結晶ダイヤモンド。
  10.  請求項1~請求項9のいずれか1項に記載の単結晶ダイヤモンドを備える、工具。
  11.  前記工具は切削バイトであり、
     前記切削バイトの逃げ面における前記単結晶ダイヤモンドの不純物濃度の変化量は、前記切削バイトのすくい面における前記単結晶ダイヤモンドの不純物濃度の変化量よりも小さい、
     請求項10に記載の工具。
  12.  前記工具は切削バイトであり、
     前記切削バイトのすくい面において、面方位の相違に由来する摩耗率の相違と、不純物濃度の相違に由来する摩耗率の相違とが相殺する関係を有する、
     請求項10又は11に記載の工具。
  13.  前記工具は線引きダイスであり、
     前記単結晶ダイヤモンドの主面に垂直な方向に沿って、前記対向する一組の主面同士を貫通する穴が形成される、
     請求項10に記載の工具。
  14.  前記工具は線引きダイスであり、
     前記単結晶ダイヤモンドの主面に平行な方向において、面方位の相違に由来する摩耗率の相違と、不純物濃度の相違に由来する摩耗率の相違とが相殺する関係を有する、
     請求項10又は13に記載の工具。
  15.  請求項1~請求項9のいずれか1項に記載の単結晶ダイヤモンドの製造方法であって、
     気相合成法により、結晶成長方向に沿って不純物濃度が変化する合成単結晶ダイヤモンドを得る工程と、
     前記合成単結晶ダイヤモンドを、前記不純物濃度が変化する方向に切断する工程とを備える、
     単結晶ダイヤモンドの製造方法。
PCT/JP2016/080499 2015-10-19 2016-10-14 単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法 WO2017069051A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187004239A KR102643918B1 (ko) 2015-10-19 2016-10-14 단결정 다이아몬드, 이것을 이용한 공구 및 단결정 다이아몬드의 제조 방법
JP2017546524A JP6752213B2 (ja) 2015-10-19 2016-10-14 単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法
CN201680046754.8A CN107923067B (zh) 2015-10-19 2016-10-14 单晶金刚石、使用单晶金刚石的工具以及单晶金刚石的制造方法
US15/753,241 US10569317B2 (en) 2015-10-19 2016-10-14 Single-crystal diamond, tool using same, and method of producing single-crystal diamond
EP16857366.5A EP3366815A4 (en) 2015-10-19 2016-10-14 MONOCRYSTALLINE DIAMOND, TOOL USING SAME, AND METHOD FOR PRODUCING SINGLE CRYSTALLINE DIAMOND

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-205482 2015-10-19
JP2015205482 2015-10-19

Publications (1)

Publication Number Publication Date
WO2017069051A1 true WO2017069051A1 (ja) 2017-04-27

Family

ID=58557355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080499 WO2017069051A1 (ja) 2015-10-19 2016-10-14 単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法

Country Status (6)

Country Link
US (1) US10569317B2 (ja)
EP (1) EP3366815A4 (ja)
JP (1) JP6752213B2 (ja)
KR (1) KR102643918B1 (ja)
CN (2) CN113005516A (ja)
WO (1) WO2017069051A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059123A1 (ja) * 2017-09-19 2019-03-28 住友電気工業株式会社 単結晶ダイヤモンドおよびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110219043A (zh) * 2019-05-23 2019-09-10 宁波晶钻工业科技有限公司 一种多色单晶金刚石生长方法
JP2023511395A (ja) * 2020-01-20 2023-03-17 エム・セブン・ディー コーポレーション 大きなダイヤモンドの成長方法
CN117587512A (zh) * 2023-10-25 2024-02-23 上海征世科技股份有限公司 一种用mpcvd法阶梯性掺氮生长单晶金刚石的方法
CN117904593B (zh) * 2024-03-15 2024-05-17 上海谱俊科技有限公司 金属工件、金属表面复合涂层及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176889A (ja) * 2012-05-10 2012-09-13 Apollo Diamond Inc 合成ダイヤモンドを生成するためのシステム及び方法
WO2014044607A1 (en) * 2012-09-19 2014-03-27 Element Six Limited Single crystal chemical vapour deposited synthetic diamond materials having uniform colour

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787A (en) * 1838-06-19 James mcclory
JPH0712485B2 (ja) 1989-04-06 1995-02-15 住友電気工業株式会社 線引きダイス用素材および該素材を用いた線引きダイス
JP2675218B2 (ja) * 1990-11-22 1997-11-12 住友電気工業株式会社 多結晶ダイヤモンド工具及びその製造方法
EP0487292B1 (en) * 1990-11-22 1996-02-14 Sumitomo Electric Industries, Limited Polycrystalline diamond tool and method for producing same
US6887144B2 (en) * 1996-11-12 2005-05-03 Diamond Innovations, Inc. Surface impurity-enriched diamond and method of making
JPH1171197A (ja) 1997-08-13 1999-03-16 General Electric Co <Ge> 表面強化ダイヤモンド及びその製造方法
US6858080B2 (en) * 1998-05-15 2005-02-22 Apollo Diamond, Inc. Tunable CVD diamond structures
JP2001293603A (ja) 2001-02-28 2001-10-23 Mitsubishi Materials Corp 気相合成ダイヤモンド被覆切削工具
WO2003014427A1 (en) 2001-08-08 2003-02-20 Apollo Diamond, Inc. System and method for producing synthetic diamond
JP4770105B2 (ja) 2002-02-07 2011-09-14 住友電気工業株式会社 n型ダイヤモンド半導体
EP2468392B1 (en) * 2003-10-10 2019-04-03 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method for synthesizing single crystal diamond, and diamond jewelry
GB2441044A (en) 2003-12-12 2008-02-20 Element Six Ltd A method of incorporating a mark in CVD diamond.
CN101400833B (zh) * 2007-12-26 2012-05-02 住友电气工业株式会社 制造具有薄膜的金刚石单晶的方法和具有薄膜的金刚石单晶
JP2010020946A (ja) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd ダイヤモンド電子源
GB201013112D0 (en) 2010-08-04 2010-09-22 Element Six Ltd A diamond optical element
JP5807840B2 (ja) 2011-08-10 2015-11-10 住友電気工業株式会社 導電層付き単結晶ダイヤモンドおよびそれを用いた工具
US9441312B2 (en) 2012-06-29 2016-09-13 Sumitomo Electric Industries, Ltd. Diamond single crystal, method for producing the same, and single crystal diamond tool
US9957640B2 (en) * 2013-04-30 2018-05-01 Sumitomo Electric Industries, Ltd. Single crystal diamond and diamond tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176889A (ja) * 2012-05-10 2012-09-13 Apollo Diamond Inc 合成ダイヤモンドを生成するためのシステム及び方法
WO2014044607A1 (en) * 2012-09-19 2014-03-27 Element Six Limited Single crystal chemical vapour deposited synthetic diamond materials having uniform colour

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3366815A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059123A1 (ja) * 2017-09-19 2019-03-28 住友電気工業株式会社 単結晶ダイヤモンドおよびその製造方法

Also Published As

Publication number Publication date
CN107923067A (zh) 2018-04-17
EP3366815A4 (en) 2019-11-13
CN107923067B (zh) 2023-04-28
JP6752213B2 (ja) 2020-09-09
KR102643918B1 (ko) 2024-03-05
KR20180070547A (ko) 2018-06-26
CN113005516A (zh) 2021-06-22
JPWO2017069051A1 (ja) 2018-08-09
US20180236515A1 (en) 2018-08-23
US10569317B2 (en) 2020-02-25
EP3366815A1 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
WO2017069051A1 (ja) 単結晶ダイヤモンド、これを用いた工具及び単結晶ダイヤモンドの製造方法
JP6665952B2 (ja) 単結晶ダイヤモンド工具及び単結晶ダイヤモンド工具の製造方法
EP2655704B1 (en) Dislocation engineering in single crystal synthetic diamond material
KR102407952B1 (ko) 단결정 다이아몬드, 단결정 다이아몬드의 제조 방법 및 단결정 다이아몬드를 이용한 공구
JP6360041B2 (ja) 単結晶ダイヤモンドおよびダイヤモンド工具
WO2016013588A1 (ja) 単結晶ダイヤモンドおよびその製造方法、単結晶ダイヤモンドを含む工具、ならびに単結晶ダイヤモンドを含む部品
JP2018162212A (ja) 単結晶ダイヤモンドおよびダイヤモンド工具
JP6359805B2 (ja) ダイヤモンド複合体、ダイヤモンド複合体の製造方法および単結晶ダイヤモンドの製造方法
JP7232186B2 (ja) 単結晶ダイヤモンドおよびその製造方法
JP6228404B2 (ja) ダイヤモンド複合体、ダイヤモンド接合体、単結晶ダイヤモンドおよびこれを備える工具
JP2017186255A (ja) 単結晶ダイヤモンドおよびダイヤモンド工具
GB2535572A (en) A method of fabricating single crystal synthetic diamond products and single crystal synthetic diamond products fabricated using said method
CN117587512A (zh) 一种用mpcvd法阶梯性掺氮生长单晶金刚石的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546524

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187004239

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE