WO2017068960A1 - 偏光光照射装置及び偏光光照射方法 - Google Patents

偏光光照射装置及び偏光光照射方法 Download PDF

Info

Publication number
WO2017068960A1
WO2017068960A1 PCT/JP2016/079401 JP2016079401W WO2017068960A1 WO 2017068960 A1 WO2017068960 A1 WO 2017068960A1 JP 2016079401 W JP2016079401 W JP 2016079401W WO 2017068960 A1 WO2017068960 A1 WO 2017068960A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
light irradiation
unit
stage
irradiation unit
Prior art date
Application number
PCT/JP2016/079401
Other languages
English (en)
French (fr)
Inventor
和重 橋本
敏成 新井
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201680056639.9A priority Critical patent/CN108139630A/zh
Priority to KR1020187008164A priority patent/KR20180072672A/ko
Publication of WO2017068960A1 publication Critical patent/WO2017068960A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • the present invention relates to a polarized light irradiation apparatus and a polarized light irradiation method.
  • Patent Document 1 polarized light with respect to a substrate placed on a stage is moved by moving at least one of a polarizing means having a plurality of unit polarizers arranged adjacent to each other and a stage or polarized light irradiation means. It is equipped with scanning means that scans the ultraviolet rays from the irradiation means in a predetermined scanning direction, and the adjacent surface of the unit polarizer and the adjacent direction of the unit polarizer are inclined with respect to the scanning direction, thereby realizing good alignment characteristics.
  • a photo-alignment irradiation apparatus for achieving the above has been disclosed.
  • the length of the photo-alignment irradiation apparatus in order to move the stage along the scanning direction, is the substrate placed on the stage. Etc. (hereinafter referred to as the object W) in the direction along the scanning direction (when scanning is performed with the object W tilted with respect to the scanning direction, the scanning direction of the object W in the tilted state) 2) or more).
  • the object W in the direction along the scanning direction (when scanning is performed with the object W tilted with respect to the scanning direction, the scanning direction of the object W in the tilted state) 2 or more).
  • the present invention has been made in view of such circumstances, and provides a polarized light irradiation apparatus and a polarized light irradiation method capable of downsizing the apparatus, particularly shortening the length in the direction along the scanning direction. With the goal.
  • a polarized light irradiation apparatus provides a stage on which an object is placed and substantially band-shaped polarized light along a direction substantially orthogonal to the scanning direction of the object.
  • a polarized light irradiation unit that irradiates; an optical measurement unit that measures characteristics of light emitted from the polarized light irradiation unit; and a light source moving unit that moves the polarized light irradiation unit along a scanning direction of the object;
  • the stage, the polarized light irradiation unit, and the optical measurement unit are provided so that horizontal positions do not overlap when the polarized light irradiation unit is in a standby position.
  • a stage on which an object is placed a polarized light irradiation unit that irradiates a substantially band-shaped polarized light along a direction substantially orthogonal to the scanning direction of the object, and polarized light irradiation
  • the optical measurement unit that measures the characteristics of the light emitted from the unit is provided so that the horizontal position does not overlap when the polarized light irradiation unit is in the standby position.
  • the light source moving unit moves the polarized light irradiating unit along the scanning direction of the object and passes it over the stage.
  • an input unit for inputting information a moving speed calculating unit for calculating the moving speed of the polarized light irradiation unit based on the information input by the input unit, and the movement calculated by the moving speed calculating unit
  • the polarized light irradiation unit moves at a speed so as to pass on the stage, and the horizontal position of the polarized light irradiation unit and the horizontal position of the optical measuring device are moved to a measurement position.
  • a light source movement control unit that controls the light source movement unit.
  • the optical measuring device may be provided on the opposite side of the stage across the polarized light irradiation unit in the horizontal direction. Thereby, it is possible to prevent the optical measuring instrument from being irradiated with polarized light more than necessary.
  • a light source control unit that controls turning on and off of the light source, an optical measurement unit that measures an exposure amount and illuminance based on a result measured by the optical measuring instrument and information input by the input unit,
  • the horizontal position of the optical measuring device is between the horizontal position of the stage and the horizontal position of the polarized light irradiation unit.
  • the light source movement control unit passes the polarized light irradiation unit continuously over the optical measuring instrument and the stage, and the light source control unit is configured such that the light source movement control unit controls the polarized light irradiation unit.
  • the light source may be turned on. Thereby, the measurement with an optical measuring device can be performed substantially simultaneously with the exposure process.
  • an input unit for inputting information an optical measuring device moving unit for moving the optical measuring device along the scanning direction of the object, and the polarized light irradiation based on the information input by the input unit
  • a moving speed calculating unit that calculates a moving speed of the unit
  • a light source moving that controls the light source moving unit so that the polarized light irradiation unit passes over the stage at a moving speed calculated by the moving speed calculating unit.
  • the optical measuring instrument moving unit is controlled to move the optical measuring instrument to a measuring position where the horizontal position of the control unit and the polarized light irradiating unit coincide with the horizontal position of the optical measuring instrument.
  • An optical measurement unit movement control unit is controlled to move the optical measuring instrument to a measuring position where the horizontal position of the control unit and the polarized light irradiating unit coincide with the horizontal position of the optical measuring instrument.
  • the optical measurement device and the polarized light irradiation unit are provided adjacent to each other in the horizontal direction, and are provided on both sides of the optical measurement device and the polarized light irradiation unit. Two stages may be provided. Thereby, a several target object can be irradiated with polarized light efficiently.
  • the light source moving unit may include a rotating unit that rotates the polarized light irradiation unit.
  • the longitudinal direction of the polarized light to be exposed can be tilted with respect to the scanning direction without moving the stage, and as a result, good alignment characteristics can be obtained.
  • the polarized light irradiation unit is a light source, a light guide member that guides light emitted from the light source, a light incident unit to which the light of the light source is supplied, and substantially above the stage.
  • a light guide member provided in a band shape and having a light emitting part that irradiates light to the stage may be included. In this way, by using the light guide member, the portion moved by the light source moving unit can be made smaller and lighter, whereby the polarized light irradiation device can be further downsized.
  • the polarized light irradiation method includes, for example, a stage on which an object is placed, and substantially band-shaped polarized light along a direction substantially orthogonal to the scanning direction of the object.
  • the stage, the polarized light irradiation unit, and the optical measuring instrument are polarized light irradiation methods using a polarized light irradiation device provided so that horizontal positions do not overlap,
  • the step of placing the object the step of calculating the moving speed of the polarized light irradiation unit based on the information input from the input unit, and the state of irradiating light from the polarized light irradiation unit,
  • the polarized light irradiation unit is moved from the standby position to the pair.
  • moving the polarized light irradiation unit in the scanning direction without moving the stage in the scanning direction it is possible to reduce the size of the polarized light irradiation device, particularly to shorten the length in the longitudinal direction.
  • the polarized light irradiation method includes, for example, a stage on which an object is placed, and substantially band-shaped polarized light along a direction substantially orthogonal to the scanning direction of the object.
  • the stage, the polarized light irradiation unit, and the optical measuring instrument are polarized light irradiation methods using a polarized light irradiation device provided so that horizontal positions do not overlap,
  • the step of placing the object the step of calculating the moving speed of the polarized light irradiation unit based on the information input from the input unit, and the state of irradiating light from the polarized light irradiation unit,
  • the polarized light irradiation unit is moved from the standby position to the pair. Is moved at a moving speed of the calculated along the scanning direction of the object, characterized in that it comprises a and a step of passing in succession over the optical measuring instrument and the stage.
  • the polarized light irradiation device can be downsized, and measurement can be performed with an optical measuring instrument almost simultaneously with the exposure process.
  • the time required to perform processing on one object W can be shortened.
  • the apparatus can be miniaturized, and in particular, the length in the direction along the scanning direction can be shortened.
  • FIG. 2 is a block diagram illustrating an outline of a functional configuration of the polarized light irradiation device 1.
  • FIG. 3 is a block diagram illustrating an example of a schematic configuration of a control unit 50.
  • FIG. It is a flowchart which shows the flow of the process which the polarized light irradiation apparatus 1 performs. It is an example of information input to the moving speed calculation unit 52 and information calculated by the moving speed calculation unit 52.
  • FIG. 4 is a perspective view showing an outline of a light guide member 62.
  • FIG. It is an example which showed typically the distribution state of the emission part 62c (end surface of the optical fiber strand 62a) in the irradiation surface 62e.
  • It is a top view which shows the outline of 4 A of polarized light irradiation apparatuses which concern on the modification of 4th Embodiment.
  • FIG. 1 is a plan view showing an outline of a polarized light irradiation apparatus 1 according to the first embodiment.
  • FIG. 2 is a front view showing an outline of the polarized light irradiation apparatus 1.
  • the polarized light irradiation device 1 performs, for example, a liquid crystal panel or the like by irradiating an exposed surface of an object W such as a glass substrate with light polarized through a polarizer (hereinafter referred to as polarized light). This is an apparatus for producing an alignment film.
  • the photo-alignment treatment means that the film is made anisotropic by irradiating the polymer film with linearly polarized ultraviolet rays to induce rearrangement of molecules in the film and anisotropic chemical reaction. It is processing.
  • the process that can be performed using the polarized light irradiation apparatus 1 is not limited to the photo-alignment process, and for example, the exposed object W can be inspected using the polarized light irradiation apparatus 1.
  • the conveyance direction of the object W is defined as the x direction
  • the direction orthogonal to the conveyance direction is defined as the y direction
  • the vertical direction is defined as the z direction.
  • FIG. 2 for the sake of explanation, a part of the front side ( ⁇ y side) of the apparatus is not shown.
  • the top surface (the surface on the + z side) of the device frame is not shown.
  • the polarized light irradiation device 1 mainly includes a polarized light irradiation unit 10, a stage 21, an optical measuring device 22, a light source moving unit 30, and a robot 40.
  • the polarized light irradiation unit 10 irradiates the object W with polarized light.
  • FIG. 3 is a perspective view showing details of the polarized light irradiation unit 10.
  • the polarized light irradiation unit 10 mainly includes a light source 11, an optical member 12, a mirror 13, and a housing 14.
  • the light source 11 is a rod-shaped member and emits unpolarized light (for example, ultraviolet light).
  • the light source 11 has a length of about 1 m to about 2 m and a diameter of about 10 mm.
  • the light source 11 is not limited to this form.
  • point light sources may be arranged in a line to form a rod-shaped light source.
  • the optical member 12 is a rectangular member having a long side slightly longer than the light emission length of the light source 11.
  • the optical member 12 is provided on the lower side ( ⁇ z side) of the light source 11 so that the longitudinal direction thereof substantially coincides with the longitudinal direction of the light source 11.
  • the optical member 12 is, for example, a polarizing film that polarizes non-polarized light emitted from the light source 11, but is not limited to the polarizing film.
  • the optical member 12 may be constituted by a single member, or may be constituted by arranging parallelogram (including square and rectangle) pieces in a row.
  • the mirror 13 has a substantially semi-elliptical cross section and reflects the light emitted from the light source 11.
  • the mirror 13 is provided on the upper side (+ z side) of the light source 11 so that the longitudinal direction thereof coincides with the longitudinal direction of the light source 11.
  • the light emitted from the light source 11 passes through the optical member 12 and is irradiated downward ( ⁇ z direction) as thin linear light (see the two-dot chain line in FIG. 3).
  • the housing 14 is provided with a light source 11, an optical member 12, and a mirror 13.
  • a rotating portion 33 (detailed later) is provided on the upper surface (+ z side) of the housing 14.
  • the rotation unit 33 is provided at the housing 14, that is, at the approximate center of the polarized light irradiation unit 10.
  • the stage 21 is rotatably provided by a rotation mechanism (not shown) (see the dotted line in FIG. 1).
  • An object W is placed on the upper surface of the stage 21.
  • the optical measuring instrument 22 measures the characteristics of the light emitted from the polarized light irradiation unit 10 such as the illuminance of light irradiated from the polarized light irradiation unit 10, the integrated exposure amount, and the direction of the axis of polarization. As shown in FIG. 1, the optical measuring instrument 22 has a sensor 22a for measuring the illuminance of light and a sensor 22b for measuring the direction of the axis of polarization. In addition, the position and number of sensors 22a and 22b are not limited to the form shown in FIG. The optical measuring instrument 22 can use various known techniques.
  • the light source moving unit 30 mainly includes a support base 31, a support base movement unit 32, and a rotation unit 33.
  • the support base 31 holds the polarized light irradiation unit 10 via the rotation unit 33.
  • the rotating unit 33 is provided on the back surface (the surface on the ⁇ z side) of the support base 31.
  • the rotation unit 33 mainly includes a rotation shaft 33a that rotates the housing 14 with respect to the support base 31, and a rotation shaft drive unit 33b that drives the rotation shaft (not shown in FIG. 3, see FIG. 4). And will be described later in detail).
  • the rotation part 33 is not an essential structure.
  • the housing 14 may be provided directly on the support base 31.
  • the support base moving part 32 is formed on the rail 32a by the driving force of the rod-like rail 32a, the support base drive part 32b (not shown in FIGS. 1 and 2, see FIG. 4 and described in detail later), and the support base drive part 32b. And a parallel movement mechanism (not shown) for reciprocating the support base 31 along.
  • a sliding portion (not shown) is provided on the surface (+ z side surface) or side surface (+ y side surface and -y side surface) of the support base 31, and this sliding portion slides along the rail 32a. Thereby, the support base 31 moves along the rail 32a.
  • Various known techniques can be used for the translation mechanism.
  • the robot 40 is a moving means for moving the object W to the stage 21 and moving the object W from the stage 21.
  • the position of the robot 40 is not limited to the positions shown in FIGS. Since the robot 40 is already known, a description thereof will be omitted.
  • the polarized light irradiation unit 10 and the support base 31 are in the standby position shown in FIGS. 1 and 2 (positions indicated by a broken line and a solid line)
  • the polarized light irradiation unit 10, the stage 21, and the optical measuring instrument 22 are as follows.
  • the horizontal position is not overlapped. Thereby, it is possible to measure the characteristics of light in the optical measuring instrument 22 or to perform the alignment process on the object W without any problem.
  • FIG. 4 is a block diagram showing an outline of a functional configuration of the polarized light irradiation apparatus 1.
  • the control unit 50 mainly includes a support stage movement control unit 51, a movement speed calculation unit 52, a rotation control unit 53, a light source control unit 54, a stage rotation control unit 55, a robot control unit 56, and an optical unit.
  • a measurement unit 57 and an overall control unit 59 are included.
  • the support table movement control unit 51 controls the support table driving unit 32b so that the support table 31 passes over the stage 21 and the optical measuring instrument 22 along the scanning direction (+ x direction or -x direction).
  • the support base drive unit 32b is, for example, an actuator.
  • the support base movement control unit 51 can grasp the position of the support base 31 in the x direction based on the encoder value of the actuator.
  • the moving speed calculation unit 52 calculates the moving speed of the support base 31 based on the input information and the like. The result calculated by the movement speed calculation unit 52 is output to the support base movement control unit 51.
  • the support table movement control unit 51 moves the support table 31 in the x direction at the speed calculated by the movement speed calculation unit 52. Specific processing performed by the moving speed calculation unit 52 will be described in detail later.
  • the rotation control unit 53 rotates the support base 31 by controlling the rotation shaft driving unit 33b when an instruction is input by an input device (see FIG. 5) or the like.
  • the rotation shaft drive unit 33b is, for example, an actuator.
  • the rotation control unit 53 can grasp the rotation angle of the support base 31 from the encoder value of the actuator. As already described, the rotation unit 33 is not an essential configuration, and the rotation control unit 53 is not necessary when the rotation unit 33 is not provided.
  • the light source control unit 54 controls turning on and off of the light source 11.
  • the stage rotation control unit 55 drives the stage 21 to rotate.
  • the robot control unit 56 controls the robot 40. Since the light source control unit 54 and the stage rotation control unit 55 are already known, description thereof will be omitted.
  • the optical measurement unit 57 calculates the illuminance (mW / cm 2 ) and the integrated exposure amount (mJ / cm 2 ) of the polarized light emitted from the polarized light irradiation unit 10 based on the result measured by the sensor 22a.
  • the optical measuring unit 57 determines whether the direction of the polarization axis measured by the sensor 22b is correct. The processing performed by the optical measurement unit 57 will be described in detail later.
  • the overall control unit 59 comprehensively controls each unit constituting the polarized light irradiation apparatus 1 and each functional component of the control unit 50.
  • the overall control unit 59 has a function of sending a command signal to each unit of the apparatus based on information (data) input, processing results, and the like.
  • FIG. 5 is a block diagram illustrating an example of a schematic configuration of the control unit 50.
  • the control unit 50 configured by a computer, for example, is a CPU (Central Processing Unit) 501 that is an arithmetic device, a RAM (Random Access Memory) that is a volatile storage device, or a non-volatile storage device.
  • a memory 502 made up of a certain ROM (Read only memory), an external storage device 503, a communication device 504 for communicating with an external device of the polarized light irradiation device 1, an input device 505 such as a mouse or a keyboard, a display, etc.
  • An output device 506 and an interface (I / F) 507 for connecting the control unit 50 and other units are provided.
  • I / F interface
  • Each functional unit illustrated in FIG. 4 is realized, for example, by the CPU 501 reading a predetermined program stored in a nonvolatile storage device in the memory 502 to a volatile storage device in the memory 502 and executing it. Is done.
  • the predetermined program may be installed in the memory 502 in advance, or may be downloaded from the network via the communication device 504 and installed or updated.
  • FIG. 6 is a flowchart showing the flow of processing performed by the polarized light irradiation apparatus 1. Before the polarized light irradiation device 1 is operated, the polarized light irradiation unit 10 is in the standby position shown in FIGS.
  • the robot controller 56 performs a charging process for controlling the robot 40 to place the object W on the stage 21 (step S10).
  • the stage rotation control unit 55 rotates the stage 21 to perform a rotation process for inclining the object W by a certain angle with respect to the scanning direction (step S12). Thereby, the preparation for irradiating the object W with polarized light is completed.
  • the support base movement control unit 51 moves the support base 31 in the ⁇ x direction to pass over the stage 21.
  • the light source control unit 54 turns on the light source 11 and irradiates the object W with polarized light from the polarized light irradiation unit 10.
  • the support base movement control unit 51 stops the support base 31 in the vicinity of the end on the ⁇ x side (see the two-dot chain line on the left side in FIGS. 1 and 2).
  • the support table movement control unit 51 moves the support table 31 in the ⁇ x direction at the speed, time, and the like calculated by the movement speed calculation unit 52 in advance.
  • FIG. 7 is an example of information input to the moving speed calculation unit 52 and information calculated by the moving speed calculation unit 52.
  • the column described as “input” is information stored in the memory 502 via the input device 505 and input to the moving speed calculation unit 52
  • the column described as “calculation” is The information which the movement speed calculation part 52 calculates based on the information memorize
  • the support base 31 is accelerated to 100 mm / second at 1176.8 mm / second 2 for the first 0.1 second, and moved 27.9 seconds at 100 mm / second,
  • the moving speed calculation unit 52 determines that the final 0.1 second is 1176.8 mm / second 2 and is decelerated to 100 mm / second.
  • the support table movement control unit 51 moves the support table 31 in the ⁇ x direction at the speed, time, and the like calculated by the movement speed calculation unit 52 in this way.
  • the range in which the support base 31 is accelerated is referred to as an acceleration area
  • the range in which the support base 31 is moved at a constant speed is referred to as a constant speed area
  • the range in which the support base 31 is moved at a reduced speed is referred to as a deceleration area.
  • step S16 the light source control unit 54 and the support base movement control unit 51 perform the backward exposure processing (step S16).
  • the support stage movement control unit 51 moves the support stage 31 in the + x direction at the same speed and time as the forward path exposure process (step S14) and passes over the stage 21.
  • the light source control unit 54 turns on the light source 11 and irradiates the object W with polarized light from the polarized light irradiation unit 10.
  • the round-trip exposure process steps S14 and S16 is completed.
  • the optical measuring instrument 22 is provided on the opposite side of the stage 21 across the polarized light irradiation unit 10 in the horizontal direction. Degradation of the optical measuring instrument 22 is accelerated by excessive irradiation of light, particularly ultraviolet rays. Therefore, it is possible to prevent the optical measuring instrument 22 from being irradiated with light (ultraviolet rays) during the reciprocating exposure processing (steps S14 and S16), and to prevent the performance of the optical measuring instrument 22 from deteriorating early.
  • the stage rotation control unit 55 rotates the stage 21 so that the object W is returned from the tilted state with respect to the scanning direction by a predetermined angle. Is performed (step S18).
  • the support base movement control unit 51 moves the support base 31 in the + x direction so that the horizontal position (x direction) of the light source 11 comes to a measurement position that overlaps the position of the optical measuring instrument 22 in the x direction. (Step S18).
  • step S20 When the light source 11 is moved to the measurement position, measurement processing of polarized light emitted from the polarized light irradiation unit 10 is performed (step S20). Specifically, when the polarized light irradiation unit 10 is at the measurement position, the light source control unit 54 turns on the light source 11 for a certain period of time. In addition, the time for which the polarized light irradiation unit 10 irradiates the optical measuring instrument 22 with the polarized light is stored in the memory 502 in advance.
  • the optical measurement unit 57 determines the integrated exposure amount (mJ / cm 2 ) of the polarized light irradiated from the polarized light irradiation unit 10 and the polarized light based on the information measured by the sensor 22a and the information indicating the lighting time. Illuminance (mW / cm 2 ) is calculated.
  • the robot control unit 56 performs a discharge process of controlling the robot 40 to discharge the object W from the stage 21 (step S20).
  • step S20 the overall control unit 59 compares the result measured by the polarized light measurement process with the information stored in the memory 502, and determines whether the result measured by the polarized light measurement process is correct. That is, it may be determined whether or not the object W has been accurately exposed. If the overall control unit 59 determines that the object W is not accurately exposed, the overall control unit 59 may end the process.
  • the overall control unit 59 determines whether there is an object W to be processed next (step S22). For example, when the information indicating that the process is to be terminated is not input from the input device 505, the overall control unit 59 determines to perform the process on the next object W.
  • step S22 When there is an object W to be processed next (YES in step S22), the support base movement control unit 51 moves the support base 31 to the standby position shown in FIGS. 1 and 2 (step S24). Then, similarly to step S10, the robot control unit 56 controls the robot 40 to perform a loading process for placing the object W on the stage 21 (step S24). Thereafter, the overall control unit 59 returns the process to step S12 and performs the process on the next object W.
  • step S22 If there is no object W to be processed next (NO in step S22), the support base movement control unit 51 moves the support base 31 to the standby position shown in FIGS.
  • the control unit 59 ends the series of processes.
  • steps S18, S20, and S24 a plurality of processes are performed at the same time in order to reduce the processing time. However, these processes may be performed in order.
  • the polarized light irradiation unit 10 irradiates the polarized light to the target W with respect to the target W inclined by a certain angle with respect to the scanning direction (x direction).
  • the stage 21 may not be rotated, the longitudinal direction of the light source 11 may be tilted with respect to the y direction, or the longitudinal direction of the light source 11 may be tilted with respect to the y direction and the stage 21 may be tilted. May be inclined with respect to the x direction.
  • the longitudinal direction of the light source 11 when the longitudinal direction of the light source 11 is tilted with respect to the y direction without rotating the stage 21, the longitudinal direction of the light source 11 can be tilted with respect to the scanning direction without moving the stage 21, As a result, good alignment characteristics can be obtained.
  • the stage 21 is not moved in the scanning direction, but the polarized light irradiation unit 10 is moved in the scanning direction, the length of the polarized light irradiation apparatus 1 in the longitudinal direction is shortened, and the polarized light is The irradiation apparatus 1 can be reduced in size.
  • FIG. 22 shows a polarized light irradiation apparatus 100 that moves the stage 101 in the scanning direction as an example of a conventional polarized light irradiation apparatus.
  • size of the polarized light irradiation apparatus 1 of this invention is shown with a dashed-two dotted line for the comparison.
  • an area where the stage 101 can be arranged is necessary on both sides of the polarized light irradiation unit 102, and the optical measuring instrument 103 needs to be arranged outside the area.
  • the length of the polarized light irradiation apparatus 100 in the x direction is the length of the polarized light irradiation unit 10 in the x direction, the length of the optical measuring instrument 103 in the x direction, and the length of the stage 101 in the x direction (stage 101). Is tilted with respect to the scanning direction, a length equal to or greater than the total length of twice the length in the tilted state in the x direction) is required.
  • the polarized light irradiation unit 10 is moved in the scanning direction without moving the stage 21 in the scanning direction, the area for scanning by moving the stage 21, specifically, the length of the stage 21 in the x direction. Therefore, when the stage 21 is tilted with respect to the scanning direction, the length in the tilted state in the x direction is unnecessary. Therefore, the polarized light irradiation device 1 can be reduced in size. Specifically, the length of the polarized light irradiation apparatus 1 in the longitudinal direction is not more than twice the length of the stage 21 in the x direction (or the length of the stage 21 in the x direction when tilted with respect to the scanning direction). can do.
  • the polarized light irradiation device 1 of the present invention is effective when the size of the object W is large. This is particularly effective when the length of the object W in the direction along the scanning direction is as large as 300 mm or more. This is because the polarized light irradiation apparatus 1 can be further downsized as the length of the object W in the direction along the scanning direction becomes longer.
  • the polarized light irradiation unit 10 is provided between the stage 21 and the optical measuring instrument 22 at the standby position shown in FIGS.
  • the optical measuring device 22 may be provided so that the horizontal position does not overlap at the standby position, and the arrangement of these components is not limited to the case shown in FIGS.
  • an optical measuring device 22 is provided between the stage 21 and the polarized light irradiation unit 10 at the standby position.
  • the polarized light irradiation apparatus 2 according to the second embodiment will be described.
  • symbol is attached
  • FIG. 8 is a plan view showing an outline of the polarized light irradiation apparatus 2 according to the second embodiment.
  • the standby positions of the polarized light irradiation unit 10 and the support base 31 are indicated by a broken line and a solid line.
  • the polarized light irradiation unit 10 is provided near the end on the + x side.
  • the optical measuring instrument 22 is provided between the stage 21 and the polarized light irradiation unit 10.
  • the polarized light irradiation device 2 mainly includes a polarized light irradiation unit 10, a stage 21, an optical measuring instrument 22, a light source moving unit 30A, and a robot 40.
  • the light source moving unit 30A mainly includes a support base 31, a support base moving part 32A, and a rotating part 33.
  • the support base moving part 32A includes a rod-shaped rail 32c, a support base drive part 32b (not shown), and a parallel movement mechanism part (not shown). The difference between the rail 32a and the rail 32c is only the length in the x direction.
  • FIG. 9 is a flowchart showing a flow of processing performed by the polarized light irradiation device 2.
  • the polarized light irradiation unit 10 Prior to operating the polarized light irradiation device 2, the polarized light irradiation unit 10 is in the standby position shown in FIG.
  • the robot control unit 56 performs a loading process for placing the object W on the stage 21 (step S10).
  • the stage rotation control unit 55 performs a rotation process for rotating the stage 21 (step S12).
  • step S15 the difference between step S14 (see FIG. 6) and step S15 is the distance in the constant speed range (total movement distance L-1 and exposure distance L3-1), and the other steps are steps S14 and S15. Are the same.
  • an optical measuring device 22 is provided in a constant speed region. Therefore, the total moving distance L-1 and the exposure distance L3-1 in the polarized light irradiation apparatus 2 are longer than the total moving distance L and the exposure distance L3 in the polarized light irradiation apparatus 1 by at least the optical measuring instrument 22.
  • step S15 during the constant speed movement in the constant speed region, the support base 31 (polarized light irradiation unit 10) passes over the optical measuring instrument 22 and continuously passes over the stage 21 as it is. Therefore, in step S15, the measurement process can be performed almost simultaneously with the forward exposure process.
  • the optical measuring unit 57 is based on the measurement result of the optical measuring instrument 22 and the speed calculated by the moving speed calculating unit 52, and the integrated exposure amount (mJ / cm 2 ) of the polarized light emitted from the polarized light irradiating unit 10. ) And the illuminance (mW / cm 2 ) of polarized light.
  • the support base movement control unit 51 stops the support base 31 near the end on the ⁇ x side (see the two-dot chain line in FIG. 8).
  • step S15 When the forward exposure process and the measurement process (step S15) are completed, the light source controller 54 and the support base movement controller 51 move the support base 31 in the + x direction while turning on the light source 11, and perform the return path exposure process. This is performed (step S16). After the return path exposure process (step S16), the support base 31 returns to the standby position shown in FIG.
  • the stage rotation control unit 55 rotates the stage 21 so that the object W is returned from the tilted state with respect to the scanning direction by a predetermined angle. Is performed (step S17). And the robot control part 56 performs the discharge process which controls the robot 40 and discharges the target object W from the stage 21 (step S21).
  • the overall control unit 59 determines whether there is an object W to be processed next (step S22). If there is an object W to be processed next (YES in step S22), the robot control unit 56 returns the process to step S10 and performs the process on the next object W.
  • step S22 If there is no object W to be processed next (NO in step S22), the overall control unit 59 ends the series of processes.
  • the size of the polarized light irradiation device 2 in the longitudinal direction can be reduced as in the first embodiment.
  • the support unit 31 (polarized light irradiation unit 10) has only to be reciprocated once (moved in the ⁇ x direction and then moved in the + x direction). The contents can be facilitated, and the time required for processing one object W can be shortened.
  • the polarized light irradiation unit 10 is provided to be movable, but members other than the polarized light irradiation unit 10 may be provided to be movable.
  • the polarized light irradiation unit 10 and the optical measuring device 22 are movably provided.
  • the polarized light irradiation device 3 according to the second embodiment will be described.
  • symbol is attached
  • FIG. 10 is a plan view showing an outline of the polarized light irradiation apparatus 3 according to the third embodiment.
  • FIG. 11 is a front view showing an outline of the polarized light irradiation apparatus 3 according to the third embodiment. 10 and 11, the optical measuring device 22 is provided near the end on the + x side, and the polarized light irradiation unit 10 is provided adjacent to the ⁇ x side. In other words, at the standby position, the polarized light irradiation unit 10 is provided between the stage 21 and the optical measuring device 22 when viewed from above (+ z direction).
  • the polarized light irradiation device 3 mainly includes a polarized light irradiation unit 10, a stage 21, an optical measuring instrument 22, an optical measuring instrument moving unit 23, a light source moving unit 30B, and a robot 40.
  • the optical measuring instrument moving part 23 is driven by the driving force of the rod-shaped rail 23a, the optical measuring instrument driving part 23b (not shown in FIGS. 10 and 11, see FIG. 12 and described in detail later), and the optical measuring instrument driving part 23b.
  • a translation mechanism (not shown) that reciprocates the optical measuring instrument 22 along the rail 23a.
  • a slide portion (not shown) is provided on the bottom surface (the surface on the ⁇ z side) of the optical measuring instrument 22, and the optical measuring instrument 22 moves along the rail 23a by sliding along the rail 23a. Move.
  • Various known techniques can be used for the translation mechanism.
  • the light source moving unit 30B mainly includes a support base 31, a support base moving unit 32B, and a rotating unit 33.
  • the support base moving part 32B includes a rod-shaped rail 32d, a support base drive part 32b (not shown in FIGS. 10 and 11, see FIG. 12), and a parallel movement mechanism part (not shown).
  • the difference between the rail 32a and the rail 32d is only the length in the x direction.
  • FIG. 12 is a block diagram showing an outline of a functional configuration of the polarized light irradiation device 3.
  • the control unit 50A mainly includes a support base movement control unit 51, a movement speed calculation unit 52, a rotation control unit 53, a light source control unit 54, a stage rotation control unit 55, a robot control unit 56, and an optical unit. It has a measuring unit 57, an optical measuring instrument movement control unit 58, and a general control unit 59.
  • the optical measuring instrument movement control unit 58 controls the optical measuring instrument driving unit 23b so as to move the optical measuring instrument 22 along the scanning direction (+ x direction or -x direction).
  • the optical measuring instrument driver 23b is an actuator, for example.
  • the optical measuring instrument movement control unit 58 can grasp the position of the optical measuring instrument 22 in the x direction based on the encoder value of the actuator.
  • FIG. 13 is a flowchart showing the flow of processing performed by the polarized light irradiation device 3. Before the polarized light irradiation device 3 is operated, the polarized light irradiation unit 10 is in the standby position shown in FIGS.
  • the robot controller 56 performs a charging process for controlling the robot 40 to place the object W on the stage 21 (step S10).
  • the stage rotation control unit 55 performs a rotation process for rotating the stage 21 (step S12).
  • the light source control unit 54 and the support movement control unit 51 perform the forward exposure process (step S14) and the return path exposure process (step S16).
  • the stage rotation control unit 55 performs a rotation process for rotating the stage 21 and returning the object W from a state inclined by a certain angle with respect to the scanning direction.
  • Step S19 This process is the same as the process in step S18 (see FIG. 6).
  • the optical measuring instrument movement control unit 58 moves the optical measuring instrument 22 in the ⁇ x direction so that the horizontal position (x direction) of the light source 11 comes to a measurement position that overlaps the x position of the optical measuring instrument 22. (Step S19).
  • step S20 When the light source 11 is moved to the measurement position, the measurement process of the polarized light emitted from the polarized light irradiation unit 10 is performed (step S20). At the same time, the robot controller 56 performs a discharge process for controlling the robot 40 to discharge the object W from the stage 21 (step S20).
  • the overall control unit 59 determines whether there is an object W to be processed next (step S22). If there is an object W to be processed next (YES in step S22), the optical measuring instrument movement control unit 58 moves the optical measuring instrument 22 in the + x direction so that the optical measuring instrument 22 comes to the standby position. (Step S25). Then, similarly to step S10, the robot control unit 56 controls the robot 40 to perform a loading process for placing the object W on the stage 21 (step S25). Thereafter, the overall control unit 59 returns the process to step S12 and performs the process on the next object W.
  • step S22 If there is no object W to be processed next (NO in step S22), the optical measuring instrument 22 is moved in the + x direction (step S27), and the overall control unit 59 ends the series of processes.
  • steps S19, S20, and S25 a plurality of processes are simultaneously performed to reduce the processing time.
  • the plurality of processes may be performed in order.
  • the size of the polarized light irradiation device 3 can be further reduced. Specifically, the size of the polarized light irradiation device 3 can be made smaller than the size of the polarized light irradiation device 1 by the length of the support base 31 in the x direction.
  • the polarized light irradiation unit 10 using the light source 11 is moved in the scanning direction, but the polarized light irradiation unit to be moved is not limited to this.
  • a light guide member that guides light from a light source onto the stage 21 is used.
  • the polarized light irradiation device 4 according to the fourth embodiment will be described.
  • symbol is attached
  • FIG. 14 is a plan view showing an outline of the polarized light irradiation apparatus 4 according to the fourth embodiment.
  • FIG. 15 is a front view showing an outline of the polarized light irradiation device 4.
  • the polarized light irradiation unit 60 mainly includes a light source 61, a light guide member 62, and an optical member 63 (not shown in FIG. 14). 14 and 15, the polarized light irradiation unit 60 is provided between the stage 21 and the optical measuring instrument 22 in the horizontal direction.
  • the light source 61 mainly includes a lamp 61a and an optical filter 61b.
  • the light source 61 is provided, for example, outside the device frame of the polarized light irradiation device 1.
  • the position where the light source 61 is provided is not limited to the position shown in FIGS.
  • the lamp 61a emits unpolarized light (for example, ultraviolet light).
  • the lamp 61a is a short arc type lamp that is a high-luminance point light source having a short distance between electrodes of about 1 to 10 mm, for example.
  • the lamp 61a is not limited to a short arc type lamp, and various types of light emitting devices such as LEDs can be used.
  • the optical filter 61b passes only light having a predetermined wavelength from the light irradiated from the lamp 61a.
  • a lamp 61a is provided on the back surface of the optical filter 61b, and an incident portion 62b (detailed later) of the light guide member 62 is provided on the front surface of the optical filter 61b.
  • FIG. 16 is a perspective view showing an outline of the light guide member 62.
  • the light guide member 62 guides the light emitted from the light source 61 to a place away from the light source.
  • the light guide member 62 is an optical fiber bundle formed by bundling a plurality of optical fiber strands 62a.
  • the optical fiber 62a guides the light supplied from the incident part 62b to the emission part 62c.
  • the light guide member 62 is partially bundled with optical fiber strands 62a.
  • the bundled main body 62d is formed by bundling a plurality of optical fiber strands 62a into a bundle and integrating them by a fusion process or the like.
  • the end surface on the side where the optical fiber strands 62a are bundled is an incident portion 62b.
  • the end surfaces of the plurality of optical fiber strands 62a are uniformly distributed and fixed.
  • the end surface on the side where the optical fiber strands 62a are not bundled is the emitting portion 62c.
  • the optical fiber 62a In the vicinity of the emitting part 62c, the optical fiber 62a can be expanded.
  • the optical fiber strands 62a are spread and arranged so that the emission portion 62c has a substantially band shape.
  • the whole emission part 62c arranged in a substantially band shape is defined as an irradiation surface 62e for irradiating the object W with light.
  • FIG. 17 is an example schematically showing the distribution state of the emitting portion 62c (the end face of the optical fiber strand 62a) on the irradiation surface 62e.
  • the optical fiber strand 62a is partially displayed.
  • the emitting portions 62c are arranged in a staggered manner so that unevenness of light irradiated from the irradiation surface 62e is not noticeable. That is, the optical fiber strand 62a is arranged so that the center of the emission part 62c in the first row (row I) is located between the centers of the emission portions 62c in the row adjacent to the first row (row II).
  • the arrangement of the emitting portion 62c is not limited to this form.
  • the irradiation surface 62e and the optical member 63 are provided above the stage 21 (+ z direction).
  • the optical member 63 is a rectangular member having a long side substantially the same length as the irradiation surface 62e.
  • the optical member 63 is provided on the lower side ( ⁇ z side) of the light source 61 so that the longitudinal direction thereof substantially coincides with the longitudinal direction of the irradiation surface 62e.
  • the optical member 63 is, for example, a polarizer that polarizes non-polarized light emitted from the light source 11, but is not limited thereto.
  • the support base 31 supports the irradiation surface 62e and the optical member 63.
  • the support base 31 is provided with a hole (not shown) through which the main body 62d passes.
  • An optical fiber 62a is provided on the lower surface side of the support base 31 so as to form an irradiation surface 62e.
  • the light source controller 54 controls turning on and off of the light source 61.
  • the processing content of the polarized light irradiation apparatus 4 is the same as the processing content of the polarized light irradiation apparatus 1, description is abbreviate
  • the light source 61 is not moved, and only the light guide member 62 and the optical member 63 are moved. Therefore, the portion supported by the support base 31 (in other words, the portion moved by the support base drive unit 32b). Can be made small and light. As a result, it becomes easy to move the portion irradiated with polarized light. As a result, it is possible to use the support driving unit 32b with a small output, and to further reduce the polarized light irradiation device 3.
  • the support base drive unit 32b since heat is generated from the light source 11, the polarized light irradiation unit 10 is often provided with a duct for exhaust heat. Therefore, the support base drive unit 32b must move the duct together when the polarized light irradiation unit 10 is moved, and it is necessary to use an actuator or the like having a large output as the support base drive unit 32b.
  • the polarized light irradiation device 4 of the present embodiment is lightly moved, a small actuator with a small output can be used as the support drive unit 32b. Moreover, since the part which the support stand 31 supports is small and light, the polarized light irradiation apparatus 3 can be reduced in size.
  • an optical fiber bundle is used as the light guide member 62, but the light guide member is not limited to this.
  • a diffusion plate may be used as a light guide member that guides light from the light source 61.
  • FIG. 18 is a plan view showing an outline of a polarized light irradiation apparatus 4A according to a modification of the fourth embodiment.
  • FIG. 19 is a front view showing an outline of the polarized light irradiation device 4A.
  • the polarized light irradiation unit 60A mainly includes a light source 61, a light guide member 64, and an optical member 63 (not shown in FIG. 11). 18 and 19, the polarized light irradiation unit 60 ⁇ / b> A is provided between the stage 21 and the optical measuring instrument 22 in the horizontal direction.
  • the light source 61 is provided adjacent to the side surface of the light guide member 64 (here, the side surface on the y side (short side direction)).
  • the optical member 63 is provided below the light guide member 64.
  • the light guide member 64 is a plate material made of a transparent material such as acrylic, and has a substantially strip shape.
  • a metal reflection diffusion plate is provided on the front surface (+ z side surface) of the light guide member 64 so that the back surface ( ⁇ z side surface) of the light guide member 64 emits light.
  • a light shielding plate made of metal is provided on a side surface of the light guide member 64 where the light source 61 is not provided adjacent to the light guide member 64 so that light does not escape.
  • the support base 31 supports the polarized light irradiation unit 60A.
  • the polarized light irradiation unit 60A includes a light source 61. Since the light source 61 is smaller and lighter than the light source 11, the support 31 can be easily moved as compared with the polarized light irradiation devices 1 and 2. Therefore, the polarized light irradiation device 4A can be downsized as compared with the polarized light irradiation devices 1 and 2.
  • FIG. 20 is a plan view showing an outline of the polarized light irradiation device 5 according to the second embodiment.
  • the positions of the polarized light irradiation unit 10 and the support base 31 at the standby position are indicated by broken lines and solid lines.
  • the polarized light irradiation unit 10 is provided at the approximate center in the x direction.
  • an optical measuring instrument 22 is provided adjacent to the polarized light irradiation unit 10, and stages 21 are provided on both sides thereof.
  • the optical measuring device 22 is provided on the right side (+ x side) of the polarized light irradiation unit 10, but the optical measuring device 22 is provided on the left side ( ⁇ x side) of the polarized light irradiation unit 10. It may be.
  • the polarized light irradiation device 5 mainly includes a polarized light irradiation unit 10, a stage 21, an optical measuring device 22, a light source moving unit 30C, and a robot 40 (not shown in FIG. 20).
  • the light source moving unit 30C mainly includes a support base 31, a support base moving unit 32C, and a rotating unit 33.
  • the support base moving part 32C includes a rod-shaped rail 32e, a support base drive part 32b (not shown), and a parallel movement mechanism part (not shown). The difference between the rail 32a and the rail 32e is only the length in the x direction.
  • the robot 40 is provided to face the + x side end and the ⁇ x side end of the polarized light irradiation device 5.
  • the position of the robot 40 provided at the end on the ⁇ x side is the same as that of the polarized light irradiation apparatus 1.
  • FIG. 21 is a flowchart showing the flow of processing performed by the polarized light irradiation device 5. Before the polarized light irradiation device 5 is operated, the polarized light irradiation unit 10 is in the standby position shown in FIG.
  • the robot control unit 56 controls the robot 40 to perform a loading process for placing the object W on the stage 21 (hereinafter referred to as the first stage 21) provided on the ⁇ x side (step S30). .
  • This process is the same as step 10 (see FIG. 6).
  • step S32 rotates the first stage 21 to perform a rotation process for inclining the object W by a certain angle with respect to the scanning direction. This process is the same as step 12 (see FIG. 6).
  • step S34 the light source control unit 54 and the support base movement control unit 51 perform the forward exposure process on the first stage 21. This process is the same as step S14 (see FIG. 6).
  • step S34 When the forward exposure process (step S34) is completed, the light source control unit 54 and the support base movement control unit 51 perform a return exposure process on the first stage 21 (step S36).
  • the return exposure process in step S36 is the same as step S16 (see FIG. 6).
  • the robot control unit 56 controls the robot 40 to perform a loading process for placing the object W on the stage 21 provided on the + x side (hereinafter referred to as the second stage 21) (step S36). .
  • step S38 When the reciprocal exposure processing (steps S34 and S36) for the first stage 21 is completed, the light source control unit 54 turns on the light source 11, and the support base movement control unit 51 starts moving the support base 31 in the + x direction (step). S38). At the same time, the stage rotation controller 55 rotates the first stage 21 to rotate the object W from the state in which the object W is inclined by a certain angle with respect to the scanning direction, and rotates the second stage 21. Thus, a rotation process for tilting the object W by a certain angle with respect to the scanning direction is performed (step S38).
  • Step S40 the measurement process of the polarized light emitted from the polarized light irradiation unit 10 is performed.
  • Step S42 the light source control unit 54 and the support base movement control unit 51 perform the forward exposure process on the second stage 21 (step S42).
  • the overall control unit 59 After starting to move the support base 31 in step S38, the overall control unit 59 performs steps S40 and S42 continuously without stopping the support base 31.
  • the movement speed calculation unit 52 calculates the speed, time, and the like for the support base movement control unit 51 to move the support base 31 in advance.
  • the optical measurement unit 57 calculates the accumulated exposure amount of the polarized light irradiated from the polarized light irradiation unit 10 based on the measurement result of the optical measuring instrument 22 and the speed calculated by the moving speed calculation unit 52. mJ / cm 2 ) and the illuminance (mW / cm 2 ) of polarized light are calculated. As described above, in steps S38 to S42, the exposure process and the measurement process are continuously performed almost simultaneously.
  • the robot control unit 56 performs a discharge process of controlling the robot 40 to discharge the object W from the first stage 21 (step S42).
  • the overall control unit 59 determines whether there is an object W to be processed next (step S44). If there is an object W to be processed next (YES in step S44), the light source control unit 54 and the support base movement control unit 51 perform the return path exposure process for the second stage 21 and the target for the first stage 21.
  • the material W is loaded (step S46). In the return exposure process performed on the second stage 21 in step S46, the support base 31 is moved in the ⁇ x direction at the same speed as that in steps S38 to S42, and the polarized light irradiation unit 10 is returned to the standby position. .
  • the process of loading the object W onto the first stage 21 in step S46 is the same as that in step S30.
  • the stage rotation control unit 55 rotates the second stage 21 to perform a rotation process for returning the object W from a state where the object W is inclined by a certain angle with respect to the scanning direction (step S48). This process is the same as step 32.
  • the stage rotation control unit 55 rotates the first stage 21 to perform a rotation process for inclining the object W by a certain angle with respect to the scanning direction (step S48).
  • the robot control unit 56 performs a discharge process for controlling the robot 40 to discharge the object W from the second stage 21 (step S50).
  • the light source control unit 54 and the support base movement control unit 51 perform the forward exposure process on the first stage 21 (step S50). This exposure process is the same as step S34.
  • the overall control unit 59 returns the process to step S36 and performs the process on the next object W.
  • step S52 If there is no object W to be processed next (NO in step S44), the light source control unit 54 and the support base movement control unit 51 perform the return path exposure process for the second stage 21 (step S52). This process is the same as the process in step S46.
  • step S54 rotates the second stage 21 to perform a rotation process for returning the object W from a state where the object W is inclined by a certain angle with respect to the scanning direction (step S54). This process is the same as step S48.
  • the robot control unit 56 performs a discharge process for controlling the robot 40 to discharge the object W from the second stage 21 (step S56). This process is the same as the process in step S50.
  • the overall control unit 59 ends the series of processes.
  • steps S36, S38, S42, S46, S48, and S50 a plurality of processes are performed at the same time to reduce the processing time.
  • the plurality of processes may be performed in order.
  • substantially is a concept that includes not only a case where they are exactly the same but also errors and deformations that do not lose the identity.
  • the approximate center is not limited to the exact center.
  • the “neighborhood” is a concept indicating that when it is in the vicinity of A, for example, it is near A and may or may not include A.
  • polarized light irradiation device 10 polarized light irradiation unit 11: light source 12: optical member 13: mirror 14: housing 21: stage 22: optical measuring instruments 22a, 22b: sensor 23 : Optical measuring instrument moving part 23a: Rail 23b: Optical measuring instrument driving part 30, 30A, 30B, 30C: Light source moving part 31: Supporting base 32, 32A, 32B, 32C: Supporting base moving part 32a: Rail 32b: Supporting base Drive unit 32c: Rail 32d: Rail 32e: Rail 33: Rotating unit 33a: Rotating shaft 33b: Rotating shaft driving unit 40: Robot 50, 50A: Control unit 51: Support stand movement control unit 52 : Movement speed calculation unit 53: rotation control unit 54: light source control unit 55: stage rotation control unit 56: robot control unit 57: optical measurement unit 58: optical measuring instrument movement control unit 59: overall control unit 60, 60A: Polarized light irradiation unit 61: light source 61a: lamp 61

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

偏光光照射装置を小型化する、特に長手方向の長さを短くすることができる。 対象物が載置されるステージと、対象物の走査方向と略直交する方向に沿った略帯状の偏光光を照射する偏光光照射部と、偏光光照射部から照射された光の特性を測定する光学測定器とは、偏光光照射部が待機位置にあるときは水平方向の位置が重ならないように設けられる。光源移動部は、偏光光照射部を対象物の走査方向に沿って移動させて、光学測定部の上を通過させ、またステージの上を通過させる。

Description

偏光光照射装置及び偏光光照射方法
 本発明は、偏光光照射装置及び偏光光照射方法に関する。
 特許文献1には、隣接して配置された複数の単位偏光子を備えた偏光手段と、ステージもしくは偏光光照射手段の少なくとも一方を移動させることでステージに載置された基板に対して偏光光照射手段からの紫外線を所定の走査方向に走査する走査手段を備え、単位偏光子の隣接面及び単位偏光子の隣接方向が走査方向に対して傾斜していることにより、良好な配向特性の実現を図る光配向照射装置が開示されている。
特許第5131886号公報
 しかしながら、特許文献1に記載の発明では、ステージを走査方向に沿って移動させるため、光配向照射装置の長手方向、ここでは走査方向に沿った方向の長さを、ステージに載置される基板等(以下、対象物Wという)の走査方向に沿った方向の長さ(対象物Wを走査方向に対して傾斜した状態で走査を行う場合には、傾斜した状態における対象物Wの走査方向に沿った長さ)の2倍以上とする必要がある。このように、特許文献1に記載の発明では、装置が大型化してしまうという問題がある。
 本発明はこのような事情に鑑みてなされたもので、装置を小型化する、特に走査方向に沿った方向の長さを短くすることができる偏光光照射装置及び偏光光照射方法を提供することを目的とする。
 上記課題を解決するために、本発明に係る偏光光照射装置は、例えば、対象物が載置されるステージと、前記対象物の走査方向と略直交する方向に沿った略帯状の偏光光を照射する偏光光照射部と、前記偏光光照射部から照射された光の特性を測定する光学測定部と、前記偏光光照射部を前記対象物の走査方向に沿って移動させる光源移動部と、を備え、前記偏光光照射部が待機位置にあるときに、前記ステージと、前記偏光光照射部と、前記光学測定部とは、水平方向の位置が重ならないように設けられることを特徴とする。
 本発明に係る露光装置によれば、対象物が載置されるステージと、対象物の走査方向と略直交する方向に沿った略帯状の偏光光を照射する偏光光照射部と、偏光光照射部から照射された光の特性を測定する光学測定部とは、偏光光照射部が待機位置にあるときは水平方向の位置が重ならないように設けられる。光源移動部は、偏光光照射部を対象物の走査方向に沿って移動させて、ステージの上を通過させる。このように、ステージを走査方向に移動させず、偏光光照射部を走査方向に移動させることで、偏光光照射装置を小型化する、特に長手方向の長さを短くすることができる。
 ここで、情報を入力する入力部と、前記入力部により入力された情報に基づいて、前記偏光光照射部の移動速度を算出する移動速度算出部と、前記移動速度算出部により算出された移動速度で前記偏光光照射部が前記ステージの上を通過するように、また、前記偏光光照射部の水平方向の位置と前記光学測定器の水平方向の位置とが一致する測定位置へ移動するように、前記光源移動部を制御する光源移動制御部と、を備えてもよい。これにより、偏光光照射部を走査方向に移動させることで、対象物Wへの露光と、光学測定器での測定(偏光光の照度(mW/cm)及び積算露光量(mJ/cm))を行うことができる。
 ここで、前記偏光光照射部が待機位置にあるときには、水平方向において、前記光学測定器が、前記偏光光照射部を挟んで前記ステージの反対側に設けられてもよい。これにより、光学測定器に必要以上の偏光光が照射されることを防止することができる。
 ここで、前記光源の点灯及び消灯を制御する光源制御部と、前記光学測定器で測定された結果及び前記入力部により入力された情報に基づいて、露光量及び照度を測定する光学測定部と、を備え、前記偏光光照射部が待機位置にあるときには、前記光学測定器の水平方向の位置は、前記ステージの水平方向の位置と前記偏光光照射部の水平方向の位置との間であり、前記光源移動制御部は、前記偏光光照射部を前記光学測定器の上及び前記ステージの上を連続して通過させ、前記光源制御部は、前記光源移動制御部が前記偏光光照射部を移動させる間、前記光源を点灯させてもよい。これにより、露光処理とほぼ同時に光学測定器での測定を行うことができる。
 ここで、情報を入力する入力部と、前記光学測定器を前記対象物の走査方向に沿って移動させる光学測定器移動部と、前記入力部により入力された情報に基づいて、前記偏光光照射部の移動速度を算出する移動速度算出部と、前記移動速度算出部により算出された移動速度で前記偏光光照射部が前記ステージの上を通過するように、前記光源移動部を制御する光源移動制御部と、前記偏光光照射部の水平方向の位置と前記光学測定器の水平方向の位置とが一致する測定位置へ前記光学測定器を移動させるように、前記光学測定器移動部を制御する光学測定部移動制御部と、を備えてもよい。これにより、装置の大きさをより小さくすることができる。
 ここで、前記偏光光照射部が待機位置にあるときには、水平方向において、前記光学測定器と前記偏光光照射部とが隣接して設けられ、前記光学測定器及び前記偏光光照射部の両側に前記ステージが2つ設けられてもよい。これにより、効率よく複数の対象物に偏光光を照射することができる。
 ここで、前記光源移動部は、前記偏光光照射部を回動させる回動部を有してもよい。これにより、ステージを動かすことなく、露光する偏光光の長手方向が走査方向に対して傾斜させることができ、その結果良好な配向特性を得ることができる。
 ここで、前記偏光光照射部は、光源と、前記光源から照射された光を導光する導光部材であって、前記光源の光が供給される光入射部と、前記ステージの上方に略帯状に設けられ、前記ステージへ光を照射する光出射部と、を有する導光部材と、を有してもよい。このように、導光部材を用いることで、光源移動部が移動させる部分を小さくかつ軽くし、これにより、偏光光照射装置をより小型化することができる。
 上記課題を解決するために、本発明に係る偏光光照射方法は、例えば、対象物が載置されるステージと、前記対象物の走査方向と略直交する方向に沿った略帯状の偏光光を照射する偏光光照射部と、前記偏光光照射部から照射された光の特性を測定する光学測定器と、情報を入力する入力部と、を有し、前記偏光光照射部が待機位置にあるときに、前記ステージと、前記偏光光照射部と、前記光学測定器とは、水平方向の位置が重ならないように設けられる偏光光照射装置を使用する偏光光照射方法であって、前記ステージに前記対象物を載置する工程と、前記入力部から入力された情報に基づいて、前記偏光光照射部の移動速度を算出する工程と、前記偏光光照射部から光を照射した状態で、前記偏光光照射部を前記待機位置から前記対象物の走査方向に沿って前記算出された移動速度で移動させて、前記ステージの上を通過させる工程と、前記偏光光照射部の水平方向の位置と前記光学測定器の水平方向の位置とが一致する測定位置へ前記偏光光照射部又は前記光学測定器を走査方向に沿って移動させ、前記偏光光照射部から光を照射する工程と、を含むことを特徴とする。このように、ステージを走査方向に移動させず、偏光光照射部を走査方向に移動させることで、偏光光照射装置を小型化する、特に長手方向の長さを短くすることができる。
 上記課題を解決するために、本発明に係る偏光光照射方法は、例えば、対象物が載置されるステージと、前記対象物の走査方向と略直交する方向に沿った略帯状の偏光光を照射する偏光光照射部と、前記偏光光照射部から照射された光の特性を測定する光学測定器と、情報を入力する入力部と、を有し、前記偏光光照射部が待機位置にあるときに、前記ステージと、前記偏光光照射部と、前記光学測定器とは、水平方向の位置が重ならないように設けられる偏光光照射装置を使用する偏光光照射方法であって、前記ステージに前記対象物を載置する工程と、前記入力部から入力された情報に基づいて、前記偏光光照射部の移動速度を算出する工程と、前記偏光光照射部から光を照射した状態で、前記偏光光照射部を前記待機位置から前記対象物の走査方向に沿って前記算出された移動速度で移動させて、前記光学測定器及び前記ステージの上を連続して通過させる工程と、を含むことを特徴とする。これにより、ステージを走査方向に移動させず、偏光光照射部を走査方向に移動させることで、偏光光照射装置を小型化し、かつ、露光処理とほぼ同時に光学測定器での測定を行うことで、1枚の対象物Wに対して処理を行うのに要する時間を短くすることができる。
 本発明によれば、装置を小型化する、特に走査方向に沿った方向の長さを短くすることができる。
第1の実施の形態に係る偏光光照射装置1の概略を示す平面図である。 偏光光照射装置1の概略を示す正面図である。 偏光光照射部10の詳細を示す斜視図である。 偏光光照射装置1の機能構成の概略を示すブロック図である。 制御部50の概略構成の一例を示すブロック図である。 偏光光照射装置1が行う処理の流れを示すフローチャートである。 移動速度算出部52に入力される情報及び移動速度算出部52が算出する情報の一例である。 第2の実施の形態に係る偏光光照射装置2の概略を示す平面図である。 偏光光照射装置2が行う処理の流れを示すフローチャートである。 第3の実施の形態に係る偏光光照射装置3の概略を示す平面図である。 第3の実施の形態に係る偏光光照射装置3の概略を示す正面図である。 制御部50Aの概略構成の一例を示すブロック図である。 偏光光照射装置3が行う処理の流れを示すフローチャートである。 偏光光照射装置4の概略を示す平面図である。 偏光光照射装置4の概略を示す正面図である。 導光部材62の概略を示す斜視図である。 照射面62eにおける、出射部62c(光ファイバー素線62aの端面)の分布状態を模式的に示した一例である。 第4の実施の形態の変形例に係る偏光光照射装置4Aの概略を示す平面図である。 偏光光照射装置4Aの概略を示す正面図である。 第5の実施の形態に係る偏光光照射装置5の概略を示す平面図である。 偏光光照射装置5が行う処理の流れを示すフローチャートである。 従来の偏光光照射装置100の概略を示す図である。
 以下、本発明の実施形態を、図面を参照して詳細に説明する。
 <第1の実施の形態>
 図1は、第1の実施の形態に係る偏光光照射装置1の概略を示す平面図である。図2は、偏光光照射装置1の概略を示す正面図である。偏光光照射装置1は、例えば、偏光子を通過させて偏光した光(以下、偏光光という)をガラス基板等の対象物Wの被露光面に照射して光配向処理を行い、液晶パネル等の配向膜を生成する装置である。ここで、光配向処理とは、直線偏光紫外線を高分子膜上に照射して、膜内の分子の再配列や異方的な化学反応を誘起することで、膜に異方性を持たせる処理である。ただし、偏光光照射装置1を用いて行うことができる処理は光配向処理に限定されず、例えば偏光光照射装置1を用いて露光後の対象物Wを検査することもできる。
 以下、対象物Wの搬送方向をx方向とし、搬送方向に直交する方向をy方向とし、鉛直方向をz方向とする。なお、図2においては、説明のため、装置手前側(-y側)の一部について図示を省略している。また、図1においては、説明のため、装置枠の天面(+z側の面)について図示を省略している。
 偏光光照射装置1は、主として、偏光光照射部10と、ステージ21と、光学測定器22と、光源移動部30と、ロボット40と、を備える。
 偏光光照射部10は、対象物Wに偏光を照射する。図3は、偏光光照射部10の詳細を示す斜視図である。偏光光照射部10は、主として、光源11と、光学部材12と、ミラー13と、筐体14と、を有する。
 光源11は、棒状の部材であり、偏光していない光(例えば、紫外光)を出射する。光源11は、長さが略1m~略2m程度であり、直径が略10mm程度である。なお、光源11はこの形態に限られるものではなく、例えば点光源を一列に並べて棒状の光源としてもよい。
 光学部材12は、光源11の発光長よりやや長い長辺を持つ長方形の部材である。光学部材12は、その長手方向が光源11の長手方向に略一致するように、光源11の下側(-z側)に設けられる。光学部材12は、例えば、光源11から出射された無偏光の光を偏光する偏光膜であるが、偏光膜に限定されるものではない。また、光学部材12は、一個の部材で構成してもよいし、平行四辺形(正方形、長方形を含む)の小片を列状に並べて構成してもよい。
 ミラー13は、断面が略半楕円形であり、光源11から出射された光を反射する。ミラー13は、その長手方向が光源11の長手方向と一致するように、光源11の上側(+z側)に設けられる。これにより、光源11から出射された光は、光学部材12を通って、細い線状の光として下方(-z方向)に向けて照射される(図3の2点鎖線参照)。
 筐体14には、光源11、光学部材12、及びミラー13が設けられる。筐体14の上側(+z側)の面には、回動部33(後に詳述)が設けられる。回動部33は、筐体14、すなわち偏光光照射部10の略中央に設けられる。
 図1及び図2の説明に戻る。ステージ21は、図示しない回転機構により回転可能に設けられる(図1点線参照)。ステージ21の上面には、対象物Wが載置される。
 光学測定器22は、偏光光照射部10から照射される光の照度、積算露光量や、偏光の軸の向き等の、偏光光照射部10から照射される光の特性を測定する。図1に示すように、光学測定器22には、光の照度を測定するセンサ22aと、偏光の軸の向きを測定するセンサ22bとを有する。なお、センサ22a、22bの位置及び数は図1に示す形態に限定されない。光学測定器22は、すでに公知の様々な技術を用いることができる。
 光源移動部30は、主として、支持台31と、支持台移動部32と、回動部33と、を有する。
 図3に示すように、支持台31は、回動部33を介して偏光光照射部10を保持する。回動部33は、支持台31の裏面(-z側の面)に設けられる。
 回動部33は、主として、支持台31に対して筐体14を回動させる回動軸33aと、回動軸を駆動させる回動軸駆動部33b(図3では図示せず、図4参照、後に詳述)と、を有する。
 なお、回動部33は必須の構成ではない。回動部33を設けない形態では、支持台31に筐体14を直接設ければよい。
 図1及び図2の説明に戻る。支持台移動部32は、棒状のレール32aと、支持台駆動部32b(図1、2では図示せず、図4参照、後に詳述)と、支持台駆動部32bの駆動力によってレール32aに沿って支持台31を往復移動させる平行移動機構部(図示せず)と、を有する。
 支持台31の表面(+z側の面)又は側面(+y側の面及び-y側の面)には、図示しない摺動部が設けられ、この摺動部がレール32aに沿って摺動することで、支持台31がレール32aに沿って移動する。平行移動機構部は、公知の様々な技術を用いることができる。
 ロボット40は、対象物Wをステージ21へ移動させたり、対象物Wをステージ21から移動させたりする移動手段である。ロボット40の位置は、図1、2に示す位置には限定されない。ロボット40は、すでに公知であるため、説明を省略する。
 なお、偏光光照射部10及び支持台31が図1、2に示す待機位置(破線及び実線で示す位置)にあるときは、偏光光照射部10と、ステージ21と、光学測定器22とは、水平方向の位置が重ならないように設けられる。これにより、光学測定器22において光の特性を測定したり、対象物Wに対して配向処理をしたりすることを問題なく行うことができる。
 図4は、偏光光照射装置1の機能構成の概略を示すブロック図である。制御部50は、主として、支持台移動制御部51と、移動速度算出部52と、回動制御部53と、光源制御部54と、ステージ回動制御部55と、ロボット制御部56と、光学測定部57と、統括制御部59と、を有する。
 支持台移動制御部51は、支持台31を走査方向(+x方向又は-x方向)に沿って、ステージ21や光学測定器22の上を通過させるように、支持台駆動部32bを制御する。支持台駆動部32bは、例えばアクチュエータである。支持台移動制御部51は、アクチュエータのエンコーダー値等により支持台31のx方向の位置を把握することができる。
 移動速度算出部52は、入力された情報等に基づいて、支持台31の移動速度を算出する。移動速度算出部52で算出された結果は支持台移動制御部51に出力される。支持台移動制御部51は、移動速度算出部52で算出された速度で支持台31をx方向に移動させる。移動速度算出部52が行う具体的な処理については、後に詳述する。
 回動制御部53は、入力装置(図5参照)等により指示が入力されると、回動軸駆動部33bを制御して支持台31を回動させる。回動軸駆動部33bは、例えばアクチュエータである。回動制御部53は、アクチュエータのエンコーダー値等により支持台31の回動角度を把握することができる。なお、すでに説明したように、回動部33は必須の構成ではなく、回動部33が設けられていない場合には回動制御部53も不要である。
 光源制御部54は、光源11の点灯及び消灯を制御する。ステージ回動制御部55は、ステージ21を回動駆動する。ロボット制御部56は、ロボット40を制御する。光源制御部54及びステージ回動制御部55はすでに公知であるため、説明を省略する。
 光学測定部57は、センサ22aで測定された結果に基づいて、偏光光照射部10から照射された偏光光の照度(mW/cm)及び積算露光量(mJ/cm)を算出する。また、光学測定部57は、センサ22bで測定された偏光の軸の向きが正しいかどうか判定する。光学測定部57が行う処理については、後に詳述する。
 統括制御部59は、偏光光照射装置1を構成する各部や制御部50の各機能構成部を統括的に制御する。また、統括制御部59は、情報(データ)入力、処理結果等に基づき、装置各部へ指令信号を送出する機能を有する。
 図5は、制御部50の概略構成の一例を示すブロック図である。図示するように、例えばコンピュータなどで構成される制御部50は、演算装置であるCPU(Central  Processing  Unit)501と、揮発性の記憶装置であるRAM(Random  Access  Memory)や不揮発性の記憶装置であるROM(Read  only  Memory)からなるメモリ502と、外部記憶装置503と、偏光光照射装置1の外部の装置と通信を行う通信装置504と、マウスやキーボード等の入力装置505と、ディスプレイ等の出力装置506と、制御部50と他のユニットを接続するインターフェース(I/F)507とを備える。
 図4に記載の各機能部は、例えば、CPU501がメモリ502のうちの不揮発性の記憶装置に格納された所定のプログラムをメモリ502のうちの揮発性の記憶装置に読み出して実行することにより実現される。なお、所定のプログラムは、例えば、予めメモリ502にインストールされてもよいし、通信装置504を介してネットワークからダウンロードされてインストール又は更新されてもよい。
 このように構成された偏光光照射装置1の作用について説明する。図6は、偏光光照射装置1が行う処理の流れを示すフローチャートである。偏光光照射装置1を動作させる前は、偏光光照射部10は、図1、2に示す待機位置にある。
 まず、ロボット制御部56は、ロボット40を制御して対象物Wをステージ21の上に載置する投入処理を行う(ステップS10)。次に、ステージ回動制御部55は、ステージ21を回転させて、対象物Wを走査方向に対して一定角度だけ傾ける回転処理を行う(ステップS12)。これにより、対象物Wに対して偏光光を照射するための準備が終了する。
 次に、光源制御部54及び支持台移動制御部51は、往路の露光処理を行う(ステップS14)。以下、往路の露光処理(ステップS14)について説明する。支持台移動制御部51は、支持台31を-x方向に移動させて、ステージ21の上を通過させる。このとき、光源制御部54は光源11を点灯して、偏光光照射部10から対象物Wに偏光光を照射する。支持台移動制御部51は、支持台31を-x側の端近傍(図1、2における左側の2点鎖線参照)で停止させる。この往路の露光処理において、支持台移動制御部51は、あらかじめ移動速度算出部52が算出した速度、時間等で支持台31を-x方向に移動させる。
 図7は、移動速度算出部52に入力される情報及び移動速度算出部52が算出する情報の一例である。図7中、「入力」と記載されている列は、入力装置505を介してメモリ502に記憶され、移動速度算出部52に入力される情報であり、「算出」と記載されている列は、メモリ502に記憶された情報に基づいて移動速度算出部52が算出する情報を示す。
 移動速度算出部52は、数式(1)に基づいて加速度及び減速度を算出する。例えば、支持台駆動部32bの駆動力が0.12Gと入力された場合には、移動速度算出部52は、加速度及び減速度を0.12(G)×9.80665×1000=1176.8(mm/秒)と算出する。なお、支持台駆動部32bの駆動力は、0.12G~0.15Gの範囲内であることが望ましい。
 [数1]
加速度、減速度=支持台駆動部32bの駆動力×重力加速度×1000 ・・・(1)
 移動速度算出部52は、数式(2)、(3)に基づいて、加速又は減速に必要な時間を算出する。例えば、加速度及び減速度が1176.8mm/秒であり、露光速度が100mm/秒であり、初期速度及び最終速度が0mm/秒である場合には、移動速度算出部52は、加速時間及び減速時間を、(100(mm/秒)-0(mm/秒))/1176.8(mm/秒)=0.085(秒)と算出する。
 [数2]
加速時間=(露光速度-初期速度)÷加速度 ・・・(2)
 [数3]
減速時間=(露光速度-最終速度)÷減速度 ・・・(3)
 移動速度算出部52は、数式(4)、(5)に基づいて、加速及び減速に必要な距離L1、L2(図1参照)を算出する。例えば、加速時間及び減速時間が0.1秒、初期速度及び最終速度が0mm/秒である場合には、移動速度算出部52は、加速距離L1及び減速距離L2を1/2×1176.8(mm/秒)×0.085(秒)=4.25(mm)と算出する。また、移動速度算出部52は、数式(6)に基づいて、露光距離L3(図1参照)を算出する。例えば、総移動距離L(図1参照)が2800mmであり、加速距離L1及び減速距離L2が4.25mmである場合には、移動速度算出部52は、露光距離L3を2800(mm)-4.25(mm)-4.25(mm)=2791.5(mm)と算出する。
 [数4]
加速距離L1=1/2×加速度×加速時間+初期速度×加速時間 ・・・(4)
 [数5]
減速距離L2=1/2×減速度×減速時間+最終速度×減速時間 ・・・(5)
 [数6]
露光距離L3=総移動距離L-加速距離L1-減速距離L2 ・・・(7)
 移動速度算出部52は、数式(7)、(8)に基づいて、露光時間及び総所要時間を算出する。例えば、露光距離が2791.5mm、露光速度が100mm/秒の場合には、露光時感は2791.5(mm)÷100(mm/秒)=27.915(秒)と算出する。また、加速時間及び減速時間が0.085秒の場合には、総所要時間を0.085(秒)+27.915(秒)+0.085(秒)=28.07(秒)と算出する。
 [数7]
露光時間=露光距離÷露光速度 ・・・(7)
 [数8]
総所要時間=加速時間+露光時間+減速時間 ・・・(8)
 以上より、往路の露光処理(ステップS14)において、支持台31を、最初の0.1秒は1176.8mm/秒で100mm/秒まで加速し、100mm/秒で27.9秒移動させ、最後の0.1秒は1176.8mm/秒で100mm/秒まで減速することが移動速度算出部52により求められる。支持台移動制御部51は、このようにして移動速度算出部52が算出した速度、時間等で支持台31を-x方向に移動させる。以下、支持台31が加速移動する範囲を加速域といい、支持台31が定速移動する範囲を定速域といい、支持台31が減速移動する範囲を減速域という。
 往路の露光処理(ステップS14)が終了したら、光源制御部54及び支持台移動制御部51は、復路の露光処理を行う(ステップS16)。復路の露光処理(ステップS16)において、支持台移動制御部51は、往路の露光処理(ステップS14)と同じ速度、時間等で支持台31を+x方向に移動させて、ステージ21の上を通過させる。このとき、光源制御部54は光源11を点灯して、偏光光照射部10から対象物Wに偏光光を照射する。以上により、往復の露光処理(ステップS14、S16)が終了する。
 偏光光照射装置1においては、偏光光照射部10が待機位置にあるときは、水平方向において、光学測定器22が、偏光光照射部10を挟んでステージ21と反対側に設けられる。光学測定器22は、光、特に紫外線が過剰に照射されることで劣化が加速する。したがって、往復の露光処理(ステップS14、S16)時に、光学測定器22に光(紫外線)が照射されることを防止し、光学測定器22の性能が早期に劣化しないようにすることができる。
 往復の露光処理(ステップS14、S16)が終了したら、ステージ回動制御部55は、ステージ21を回転させて、対象物Wが走査方向に対して一定角度だけ傾いた状態から元に戻す回転処理を行う(ステップS18)。それと同時に、支持台移動制御部51は、光源11の水平方向(x方向)の位置が光学測定器22のx方向の位置と重なる測定位置にくるように、支持台31を+x方向に移動させる(ステップS18)。
 光源11が測定位置に移動されたら、偏光光照射部10から照射される偏光光の測定処理を行う(ステップS20)。具体的には、偏光光照射部10が測定位置にあるときに、光源制御部54が光源11を一定時間だけ点灯する。また、偏光光照射部10から光学測定器22に偏光光が照射される時間は、あらかじめメモリ502に記憶されている。したがって、光学測定部57は、センサ22aで測定された結果及び点灯時間を示す情報に基づいて、偏光光照射部10から照射された偏光光の積算露光量(mJ/cm)及び偏光光の照度(mW/cm)を算出する。
 偏光光の測定処理と同時に、ロボット制御部56は、ロボット40を制御して対象物Wをステージ21から排出する排出処理を行う(ステップS20)。
 なお、ステップS20において、統括制御部59は、偏光光の測定処理によって測定された結果と、メモリ502に記憶された情報とを比較し、偏光光の測定処理によって測定された結果が正しいかどうか、すなわち対象物Wが正確に露光されたかどうかを判定してもよい。そして、統括制御部59は、対象物Wが正確に露光されていないと判定した場合には、処理を終了してもよい。
 統括制御部59は、次に処理を行う対象物Wがあるか否かを判定する(ステップS22)。例えば、統括制御部59は、入力装置505より処理を終了することを示す情報が入力されていない場合には、次の対象物Wに対して処理を行うと判定する。
 次に処理を行う対象物Wがある場合(ステップS22でYES)には、支持台移動制御部51は、支持台31を図1、2に示す待機位置に移動させる(ステップS24)。そして、ロボット制御部56は、ステップS10と同様に、ロボット40を制御して対象物Wをステージ21の上に載置する投入処理を行う(ステップS24)。その後、統括制御部59は処理をステップS12に戻し、次の対象物Wに対して処理を行う。
 次に処理を行う対象物Wが無い場合(ステップS22でNO)には、支持台移動制御部51は、支持台31を図1、2に示す待機位置に移動させて(ステップS26)、統括制御部59は一連の処理を終了する。
 なお、ステップS18、S20及びS24においては、処理時間短縮のため複数の処理を同時に行ったが、これらの処理は順番に行ってもよい。
 また、走査方向(x方向)に対して一定角度だけ傾いた対象物Wに対して、偏光光照射部10から対象物Wに偏光光を照射したが、対象物Wが偏光光照射部10に対して傾いていればよく、例えばステージ21を回動させず、光源11の長手方向をy方向に対して傾いていてもよいし、光源11の長手方向をy方向に対して傾けるとともにステージ21をx方向に対して傾いていてもよい。例えば、ステージ21を回動させず、光源11の長手方向をy方向に対して傾ける場合には、ステージ21を動かすことなく光源11の長手方向を走査方向に対して傾斜させることができ、その結果、良好な配向特性を得ることができる。
 本実施の形態によれば、ステージ21を走査方向に移動させず、偏光光照射部10を走査方向に移動させるようにしたため、偏光光照射装置1の長手方向の長さを短くし、偏光光照射装置1を小型化することができる。
 従来の偏光光照射装置の一例として、ステージ101を走査方向に移動させる偏光光照射装置100を図22に示す。なお、図22において、比較のため、本発明の偏光光照射装置1の大きさを2点鎖線で示す。偏光光照射装置100では、偏光光照射部102の両側にステージ101が配置可能な領域が必要であり、またその外側に光学測定器103を配置する必要がある。そのため、偏光光照射装置100のx方向の長さは、偏光光照射部10のx方向の長さ、光学測定器103のx方向の長さ、及びステージ101のx方向の長さ(ステージ101が走査方向に対して傾く場合は、傾いた状態におけるx方向の長さ)の2倍の長さの合計以上の長さが必要となる。
 しかしながら、ステージ21を走査方向に移動させず、偏光光照射部10を走査方向に移動させる場合には、ステージ21を移動させて走査するための領域、具体的にはステージ21のx方向の長さ(ステージ21が走査方向に対して傾く場合は、傾いた状態におけるx方向の長さ)の分が不要となる。したがって、偏光光照射装置1を小型化することができる。具体的には、偏光光照射装置1の長手方向の長さをステージ21のx方向の長さ(又は走査方向に対して傾いた状態におけるステージ21のx方向の長さ)の2倍以下とすることができる。
 本発明の偏光光照射装置1は、対象物Wの大きさが大きい場合に有効である。特に、対象物Wの走査方向に沿った方向の長さが300mm以上と大きい場合に有効である。これは、対象物Wの走査方向に沿った方向の長さが長くなればなるほど、偏光光照射装置1をより小型化することができるためである。
 <第2の実施の形態>
 第1の実施の形態では、図1、2に示す待機位置において、ステージ21と光学測定器22との間に偏光光照射部10が設けられるが、偏光光照射部10と、ステージ21と、光学測定器22とは、待機位置において水平方向の位置が重ならないように設けられればよく、これらの構成要素の配置は図1、2に示す場合に限られない。
 第2の実施の形態は、待機位置において、ステージ21と偏光光照射部10との間に光学測定器22を設ける形態である。以下、第2の実施の形態に係る偏光光照射装置2について説明する。なお、第1の実施の形態に係る偏光光照射装置1と同一の部分については、同一の符号を付し、説明を省略する。
 図8は、第2の実施の形態に係る偏光光照射装置2の概略を示す平面図である。図8においては、偏光光照射部10及び支持台31の待機位置を破線及び実線で示す。この待機位置においては、偏光光照射部10が+x側の端近傍に設けられる。言い換えると、待機位置においては、ステージ21と偏光光照射部10との間に光学測定器22が設けられる。
 偏光光照射装置2は、主として、偏光光照射部10と、ステージ21と、光学測定器22と、光源移動部30Aと、ロボット40と、を備える。
 光源移動部30Aは、主として、支持台31と、支持台移動部32Aと、回動部33と、を有する。支持台移動部32Aは、棒状のレール32cと、支持台駆動部32b(図示せず)と、平行移動機構部(図示せず)と、を有する。なお、レール32aとレール32cとの差異はx方向の長さのみである。
 偏光光照射装置2の作用について説明する。図9は、偏光光照射装置2が行う処理の流れを示すフローチャートである。偏光光照射装置2を動作させる前は、偏光光照射部10は、図8に示す待機位置にある。
 まず、ロボット制御部56は、対象物Wをステージ21の上に載置する投入処理を行う(ステップS10)。次に、ステージ回動制御部55は、ステージ21を回転させる回転処理を行う(ステップS12)。
 その後、光源制御部54及び支持台移動制御部51は、光源11を点灯しながら支持台31を-x方向に移動させて、往路の露光処理及び測定処理を行う(ステップS15)。往路の露光処理に関して、ステップS14(図6参照)とステップS15との違いは定速域の距離(総移動距離L-1及び露光距離L3-1)であり、その他はステップS14とステップS15とで同一である。
 偏光光照射装置2においては定速域に光学測定器22が設けられる。したがって、偏光光照射装置2における総移動距離L-1及び露光距離L3-1は、少なくとも光学測定器22の分だけ、偏光光照射装置1における総移動距離L及び露光距離L3より長い。
 ステップS15では、定速域における定速移動中において、支持台31(偏光光照射部10)が光学測定器22の上を通過し、そのまま連続してステージ21の上を通過する。したがって、ステップS15において、往路の露光処理とほぼ同時に測定処理を行うことができる。光学測定部57は、光学測定器22での測定結果と、移動速度算出部52が算出した速度とに基づいて、偏光光照射部10から照射された偏光光の積算露光量(mJ/cm)及び偏光光の照度(mW/cm)を算出する。
 往路の露光処理及び測定処理(ステップS15)後には、支持台移動制御部51は、支持台31を-x側の端近傍(図8における2点鎖線参照)で停止させる。
 往路の露光処理及び測定処理(ステップS15)が終了したら、光源制御部54及び支持台移動制御部51は、光源11を点灯しながら支持台31を+x方向に移動させて、復路の露光処理を行う(ステップS16)。復路の露光処理(ステップS16)後には、支持台31が図8に示す待機位置に戻る。
 往復の露光処理(ステップS14、S16)が終了したら、ステージ回動制御部55は、ステージ21を回転させて、対象物Wが走査方向に対して一定角度だけ傾いた状態から元に戻す回転処理を行う(ステップS17)。そして、ロボット制御部56は、ロボット40を制御して対象物Wをステージ21から排出する排出処理を行う(ステップS21)。
 統括制御部59は、次に処理を行う対象物Wがあるか否かを判定する(ステップS22)。次に処理を行う対象物Wがある場合(ステップS22でYES)には、ロボット制御部56は、統括制御部59は処理をステップS10に戻し、次の対象物Wに対して処理を行う。
 次に処理を行う対象物Wが無い場合(ステップS22でNO)には、統括制御部59は一連の処理を終了する。
 本実施の形態によれば、第1の実施の形態と同様、偏光光照射装置2の長手方向の大きさを小さくすることができる。
 また、本実施の形態によれば、支持台31(偏光光照射部10)を一往復(-x方向に移動させてから+x方向に移動させる)させればよいため、制御部50が行う処理内容を容易にし、また、1枚の対象物Wに対して処理を行うのに要する時間を短くすることができる。
 <第3の実施の形態>
 第1の実施の形態では、偏光光照射部10が移動可能に設けられたが、偏光光照射部10以外の部材を移動可能に設けてもよい。
 第3の実施の形態は、偏光光照射部10及び光学測定器22を移動可能に設ける形態である。以下、第2の実施の形態に係る偏光光照射装置3について説明する。なお、第1の実施の形態に係る偏光光照射装置1と同一の部分については、同一の符号を付し、説明を省略する。
 図10は、第3の実施の形態に係る偏光光照射装置3の概略を示す平面図である。図11は、第3の実施の形態に係る偏光光照射装置3の概略を示す正面図である。図10、11に示す待機位置においては、光学測定器22が+x側の端近傍に設けられ、その-x側に隣接して偏光光照射部10が設けられる。言い換えると、待機位置においては、上(+z方向)からみて、ステージ21と光学測定器22との間に偏光光照射部10が設けられる。
 偏光光照射装置3は、主として、偏光光照射部10と、ステージ21と、光学測定器22と、光学測定器移動部23と、光源移動部30Bと、ロボット40と、を備える。
 光学測定器移動部23は、棒状のレール23aと、光学測定器駆動部23b(図10、11では図示せず、図12参照、後に詳述)と、光学測定器駆動部23bの駆動力によってレール23aに沿って光学測定器22を往復移動させる平行移動機構部(図示せず)と、を有する。
 光学測定器22の底面(-z側の面)には、図示しない摺動部が設けられ、この摺動部がレール23aに沿って摺動することで、光学測定器22がレール23aに沿って移動する。平行移動機構部は、公知の様々な技術を用いることができる。
 光源移動部30Bは、主として、支持台31と、支持台移動部32Bと、回動部33と、を有する。支持台移動部32Bは、棒状のレール32dと、支持台駆動部32b(図10、11では図示せず、図12参照)と、平行移動機構部(図示せず)と、を有する。なお、レール32aとレール32dとの差異はx方向の長さのみである。
 図12は、偏光光照射装置3の機能構成の概略を示すブロック図である。制御部50Aは、主として、支持台移動制御部51と、移動速度算出部52と、回動制御部53と、光源制御部54と、ステージ回動制御部55と、ロボット制御部56と、光学測定部57と、光学測定器移動制御部58と、統括制御部59と、を有する。
 光学測定器移動制御部58は、光学測定器22を走査方向(+x方向又は-x方向)に沿って移動させるように、光学測定器駆動部23bを制御する。光学測定器駆動部23bは、例えばアクチュエータである。光学測定器移動制御部58は、アクチュエータのエンコーダー値等により光学測定器22のx方向の位置を把握することができる。
 このように構成された偏光光照射装置3の作用について説明する。図13は、偏光光照射装置3が行う処理の流れを示すフローチャートである。偏光光照射装置3を動作させる前は、偏光光照射部10は、図10、11に示す待機位置にある。
 まず、ロボット制御部56は、ロボット40を制御して対象物Wをステージ21の上に載置する投入処理を行う(ステップS10)。次に、ステージ回動制御部55は、ステージ21を回転させる回転処理を行う(ステップS12)。次に、光源制御部54及び支持台移動制御部51は、往路の露光処理(ステップS14)及び復路の露光処理を行う(ステップS16)。
 露光処理(ステップS14、S16)が終了すると、ステージ回動制御部55は、ステージ21を回転させて、対象物Wが走査方向に対して一定角度だけ傾いた状態から元に戻す回転処理を行う(ステップS19)。この処理は、ステップS18(図6参照)における処理と同一である。それと同時に、光学測定器移動制御部58は、光源11の水平方向(x方向)の位置が光学測定器22のx方向の位置と重なる測定位置にくるように、光学測定器22を-x方向に移動させる(ステップS19)。
 光源11が測定位置に移動されたら、偏光光照射部10から照射される偏光光の測定処理を行う(ステップS20)。それと同時に、ロボット制御部56は、ロボット40を制御して対象物Wをステージ21から排出する排出処理を行う(ステップS20)。
 統括制御部59は、次に処理を行う対象物Wがあるか否かを判定する(ステップS22)。次に処理を行う対象物Wがある場合(ステップS22でYES)には、光学測定器移動制御部58は、光学測定器22が待機位置にくるように、光学測定器22を+x方向に移動させる(ステップS25)。そして、ロボット制御部56は、ステップS10と同様に、ロボット40を制御して対象物Wをステージ21の上に載置する投入処理を行う(ステップS25)。その後、統括制御部59は処理をステップS12に戻し、次の対象物Wに対して処理を行う。
 次に処理を行う対象物Wが無い場合(ステップS22でNO)には、光学測定器22を+x方向に移動させて(ステップS27)、統括制御部59は一連の処理を終了する。
 なお、ステップS19、S20及びS25においては、処理時間短縮のため複数の処理を同時に行ったが、複数の処理は順番に行ってもよい。
 本実施の形態によれば、偏光光照射装置3の大きさをより小さくすることができる。具体的には、偏光光照射装置3の大きさを、偏光光照射装置1の大きさよりも、支持台31のx方向の長さの分だけ小さくすることができる。
 <第4の実施の形態>
 第1の実施の形態では、光源11を用いた偏光光照射部10を走査方向に移動させたが、移動させる偏光光照射部はこれに限られない。
 第4の実施の形態は、光源の光をステージ21の上へ導く導光部材を用いる形態である。以下、第4の実施の形態に係る偏光光照射装置4について説明する。なお、第1の実施の形態に係る偏光光照射装置1と同一の部分については、同一の符号を付し、説明を省略する。
 図14は、第4の実施の形態に係る偏光光照射装置4の概略を示す平面図である。図15は、偏光光照射装置4の概略を示す正面図である。
 偏光光照射部60は、主として、光源61と、導光部材62と、光学部材63(図14では図示せず)と、を有する。図14、15に示す待機位置では、水平方向において、偏光光照射部60は、ステージ21と光学測定器22との間に設けられる。
 光源61は、主として、ランプ61aと、光学フィルタ61bと、を有する。光源61は、例えば偏光光照射装置1の装置枠の外側に設けられる。ただし、光源61を設ける位置は、図14、15に示す位置に限られない。
 ランプ61aは、偏光していない光(例えば、紫外光)を出射する。ランプ61aは、例えば、電極間距離が1~10mm程度と短い高輝度の点光源であるショートアークタイプのランプである。なお、ランプ61aは、ショートアークタイプのランプに限られず、LED等の様々な種類の発光装置を用いることができる。
 光学フィルタ61bは、ランプ61aから照射された光の中から所定の波長の光のみを通過させる。光学フィルタ61bの背面にはランプ61aが設けられ、光学フィルタ61bの前面には導光部材62の入射部62b(後に詳述)が設けられる。
 図16は、導光部材62の概略を示す斜視図である。導光部材62は、光源61から照射された光を、光源から離れた場所に導くものである。本実施の形態では、導光部材62は、複数本の光ファイバー素線62aが束ねられて束状に形成された光ファイバー束である。光ファイバー素線62aは、入射部62bから供給された光を出射部62cへ導光する。
 導光部材62は、部分的に光ファイバー素線62aが束ねられている。この束ねられた本体62dは、複数の光ファイバー素線62aを束ねて束状にし、これを融着処理等により一体にすることで形成される。
 光ファイバー素線62aのうちの、光ファイバー素線62aが束ねられた側の端面は、入射部62bである。入射部62bにおいては、複数の光ファイバー素線62aの端面は、均一に分布して固定されている。
 光ファイバー素線62aのうちの、光ファイバー素線62aが束ねられていな側の端面は、出射部62cである。出射部62cの近傍では、光ファイバー素線62aを広げることができる。本実施の形態では、出射部62cが略帯状となるように光ファイバー素線62aを広げて並べる。以下、略帯状に並べた出射部62c全体を、対象物Wに光を照射する照射面62eと定義する。
 図17は、照射面62eにおける、出射部62c(光ファイバー素線62aの端面)の分布状態を模式的に示した一例である。図17では、光ファイバー素線62aを部分的に表示している。
 出射部62cは、照射面62eから照射される光のムラが目立たないように、千鳥状に配置される。すなわち、第一列(列I)における出射部62cの中心が、第一列に隣接する列(列II)における出射部62cの中心の間に位置するように、光ファイバー素線62aを配置する。ただし、出射部62cの配置はこの形態に限られない。
 図14、15の説明に戻る。照射面62e及びの光学部材63は、ステージ21の上方(+z方向)に設けられる。
 光学部材63は、照射面62eと略同じ長さの長辺を持つ長方形の部材である。光学部材63は、その長手方向が照射面62eの長手方向と略一致するように、光源61の下側(-z側)に設けられる。光学部材63は、例えば、光源11から出射された無偏光の光を偏光する偏光子であるが、これに限定されるものではない。
 支持台31は、照射面62eと、光学部材63とを支持する。支持台31には、本体62dが貫通する孔(図示せず)が設けられている。支持台31の下面側には、光ファイバー素線62aが広げて設けられ、照射面62eが形成される。支持台31をレール32aに沿って移動させると、導光部材62及び光学部材63が移動され、光源61は移動されない。
 偏光光照射装置4においては、光源制御部54は光源61の点灯及び消灯を制御する。その他、偏光光照射装置4の処理内容は、偏光光照射装置1の処理内容と同一であるため、説明を省略する。
 本実施の形態によれば、光源61を移動させず、導光部材62及び光学部材63のみを移動させるため、支持台31が支持する部分(言い換えると、支持台駆動部32bが移動させる部分)を小さくかつ軽くすることができる。その結果、偏光光を照射する部分を移動させることが容易となる。その結果、出力が小さい支持台駆動部32bを使用することができ、また偏光光照射装置3をより小さくすることができる。
 例えば、第1の実施の形態の偏光光照射装置1では、光源11から熱が発生するため、偏光光照射部10には排熱のためのダクトが設けられることが多い。そのため、支持台駆動部32bは、偏光光照射部10を移動する時にダクトも一緒に移動させなくてはならず、支持台駆動部32bとして出力が大きいアクチュエータ等を使用する必要がある。
 それに対し、本実施の形態の偏光光照射装置4は移動させる部分が軽いため、支持台駆動部32bとして出力が小さい小型のアクチュエータを使用することができる。また、支持台31が支持する部分が小さくかつ軽いため、その分偏光光照射装置3を小型化することができる。
 なお、本実施の形態では、導光部材62として光ファイバー束を用いたが、導光部材はこれに限定されない。光源61の光を導光する導光部材として拡散板を用いてもよい。
 図18は、第4の実施の形態の変形例に係る偏光光照射装置4Aの概略を示す平面図である。図19は、偏光光照射装置4Aの概略を示す正面図である。
 偏光光照射部60Aは、主として、光源61と、導光部材64と、光学部材63と(図11では図示せず)と、を有する。図18、19に示す待機位置では、水平方向において、偏光光照射部60Aは、ステージ21と光学測定器22との間に設けられる。
 光源61は、導光部材64の側面(ここでは、y側(短手方向)の側面)に隣接して設けられる。光学部材63は、導光部材64の下方に設けられる。
 導光部材64は、アクリル等の透明な材料で形成された板材であり、略帯状に形成されている。導光部材64の裏面(-z側の面)が面発光するように、導光部材64の表面(+z側の面)には、金属製の反射拡散板が設けられる。また、導光部材64の光源61が隣接して設けられていない側面には、光が逃げないように、金属製の遮光板が設けられる。
 支持台31は、偏光光照射部60Aを支持する。偏光光照射部60Aは光源61を有するが、光源61は光源11より小さくかつ軽いため、偏光光照射装置1、2と比べて支持台31の移動は容易である。したがって、偏光光照射装置1、2と比べて、偏光光照射装置4Aを小型化することができる。
 <第5の実施の形態>
 第1の実施の形態では、ステージ21が1つ設けられたが、ステージ21の数はこれに限られない。
 第5の実施の形態は、ステージ21を2つ設ける形態である。以下、第5の実施の形態に係る偏光光照射装置5について説明する。なお、第1の実施の形態に係る偏光光照射装置1と同一の部分については、同一の符号を付し、説明を省略する。
 図20は、第2の実施の形態に係る偏光光照射装置5の概略を示す平面図である。図20においては、待機位置における偏光光照射部10及び支持台31の位置を破線及び実線で示す。この待機位置においては、偏光光照射部10がx方向の略中央に設けられる。また、待機位置においては、偏光光照射部10に隣接して光学測定器22が設けられ、これらの両側にステージ21が設けられる。なお、図20においては、偏光光照射部10の右側(+x側)に光学測定器22が設けられているが、偏光光照射部10の左側(-x側)に光学測定器22が設けられていてもよい。
 偏光光照射装置5は、主として、偏光光照射部10と、ステージ21と、光学測定器22と、光源移動部30Cと、ロボット40(図20では図示せず)と、を備える。
 光源移動部30Cは、主として、支持台31と、支持台移動部32Cと、回動部33と、を有する。支持台移動部32Cは、棒状のレール32eと、支持台駆動部32b(図示せず)と、平行移動機構部(図示せず)と、を有する。なお、レール32aとレール32eとの差異はx方向の長さのみである。
 ロボット40は、偏光光照射装置5の+x側の端及び-x側の端に対向して設けられる。-x側の端に設けられるロボット40の位置は、偏光光照射装置1と同様である。
 このように構成された偏光光照射装置5の作用について説明する。図21は、偏光光照射装置5が行う処理の流れを示すフローチャートである。偏光光照射装置5を動作させる前は、偏光光照射部10は、図20に示す待機位置にある。
 まず、ロボット制御部56は、ロボット40を制御して対象物Wを-x側に設けられたステージ21(以下、第1ステージ21という)の上に載置する投入処理を行う(ステップS30)。当該処理は、ステップ10(図6参照)と同様である。
 次に、ステージ回動制御部55は、第1ステージ21を回転させて、対象物Wを走査方向に対して一定角度だけ傾ける回転処理を行う(ステップS32)。当該処理は、ステップ12(図6参照)と同様である。
 次に、光源制御部54及び支持台移動制御部51は、第1ステージ21に対して往路の露光処理を行う(ステップS34)。当該処理は、ステップS14(図6参照)と同じである。
 往路の露光処理(ステップS34)が終了したら、光源制御部54及び支持台移動制御部51は、第1ステージ21に対する復路の露光処理を行う(ステップS36)。ステップS36における復路の露光処理は、ステップS16(図6参照)と同じである。それと同時に、ロボット制御部56は、ロボット40を制御して対象物Wを+x側に設けられたステージ21(以下、第2ステージ21という)の上に載置する投入処理を行う(ステップS36)。
 第1ステージ21に対する往復の露光処理(ステップS34、S36)が終了したら、光源制御部54は光源11を点灯して、支持台移動制御部51は支持台31を+x方向に移動させ始める(ステップS38)。それと同時に、ステージ回動制御部55は、第1ステージ21を回転させて、対象物Wが走査方向に対して一定角度だけ傾いた状態から元に戻す回転処理、及び、第2ステージ21を回転させて、対象物Wを走査方向に対して一定角度だけ傾ける回転処理を行う(ステップS38)。
 光源11が、光源11の水平方向(x方向)の位置が光学測定器22のx方向の位置と重なる測定位置に移動されたら、偏光光照射部10から照射される偏光光の測定処理を行う(ステップS40)。そして、光源制御部54及び支持台移動制御部51は、第2ステージ21に対して往路の露光処理を行う(ステップS42)。
 統括制御部59は、ステップS38で支持台31移動させ始めてから、支持台31を止めずに連続してステップS40、S42を行う。移動速度算出部52は、あらかじめ支持台移動制御部51が支持台31を移動させる速度、時間等を算出しておく。ステップS40において、光学測定部57は、光学測定器22での測定結果と、移動速度算出部52が算出した速度とに基づいて、偏光光照射部10から照射された偏光光の積算露光量(mJ/cm)及び偏光光の照度(mW/cm)を算出する。このように、ステップS38~S42において、露光処理と測定処理とが連続してほぼ同時に行われる。
 往路の露光処理と同時に、ロボット制御部56は、ロボット40を制御して対象物Wを第1ステージ21から排出する排出処理を行う(ステップS42)。
 統括制御部59は、次に処理を行う対象物Wがあるか否かを判定する(ステップS44)。次に処理を行う対象物Wがある場合(ステップS44でYES)には、光源制御部54及び支持台移動制御部51は、第2ステージ21に対する復路の露光処理と、第1ステージ21に対する対象物Wの投入処理と、を行う(ステップS46)。ステップS46における、第2ステージ21に対して行う復路の露光処理は、ステップS38~S42における速度と同じ速度で支持台31を-x方向に移動させて、偏光光照射部10を待機位置に戻す。ステップS46における第1ステージ21への対象物Wの投入処理は、ステップS30と同じである。
 次に、ステージ回動制御部55は、第2ステージ21を回転させて、対象物Wが走査方向に対して一定角度だけ傾いた状態から元に戻す回転処理を行う(ステップS48)。当該処理は、ステップ32と同様である。それと同時に、ステージ回動制御部55は、第1ステージ21を回転させて、対象物Wを走査方向に対して一定角度だけ傾ける回転処理を行う(ステップS48)。
 そして、ロボット制御部56は、ロボット40を制御して対象物Wを第2ステージ21から排出する排出処理を行う(ステップS50)。それと同時に、光源制御部54及び支持台移動制御部51は、第1ステージ21に対して往路の露光処理を行う(ステップS50)。この露光処理は、ステップS34と同一である。その後、統括制御部59は処理をステップS36に戻し、次の対象物Wに対して処理を行う。
 次に処理を行う対象物Wが無い場合(ステップS44でNO)には、光源制御部54及び支持台移動制御部51は、第2ステージ21に対する復路の露光処理を行う(ステップS52)。当該処理は、ステップS46における処理と同じである。次に、ステージ回動制御部55は、第2ステージ21を回転させて、対象物Wが走査方向に対して一定角度だけ傾いた状態から元に戻す回転処理を行う(ステップS54)。当該処理は、ステップS48と同様である。その後、ロボット制御部56は、ロボット40を制御して対象物Wを第2ステージ21から排出する排出処理を行う(ステップS56)。当該処理は、ステップS50における処理と同じである。そして、統括制御部59は一連の処理を終了する。
 なお、ステップS36、S38、S42、S46、S48及びS50においては、処理時間短縮のため複数の処理を同時に行ったが、複数の処理は順番に行ってもよい。
 本実施の形態によれば、従来の装置と同等の大きさの装置を用いて、より効率よく処理を行うことができる。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 また、本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。例えば、略中央とは、厳密に中央の場合には限られない。また、例えば、単に平行、直交等と表現する場合において、厳密に平行、直交等の場合のみでなく、略平行、略直交等の場合を含むものとする。また、本発明において「近傍」とは、例えばAの近傍であるときに、Aの近くであって、Aを含んでもいても含んでいなくてもよいことを示す概念である。
1、2、3、4、4A、5  :偏光光照射装置
10            :偏光光照射部
11            :光源
12            :光学部材
13            :ミラー
14            :筐体
21            :ステージ
22            :光学測定器
22a、22b       :センサ
23            :光学測定器移動部
23a           :レール
23b           :光学測定器駆動部
30、30A、30B、30C:光源移動部
31            :支持台
32、32A、32B、32C:支持台移動部
32a           :レール
32b           :支持台駆動部
32c           :レール
32d           :レール
32e           :レール
33            :回動部
33a           :回動軸
33b           :回動軸駆動部
40            :ロボット
50、50A        :制御部
51            :支持台移動制御部
52            :移動速度算出部
53            :回動制御部
54            :光源制御部
55            :ステージ回動制御部
56            :ロボット制御部
57            :光学測定部
58            :光学測定器移動制御部
59            :統括制御部
60、60A        :偏光光照射部
61            :光源
61a           :ランプ
61b           :光学フィルタ
62、64         :導光部材
62a           :光ファイバー素線
62b           :入射部
62c           :出射部
62d           :本体
62e           :照射面
63            :光学部材
501           :CPU
502           :メモリ
503           :外部記憶装置
504           :通信装置
505           :入力装置
506           :出力装置
507           :インターフェース

Claims (10)

  1.  対象物が載置されるステージと、
     前記対象物の走査方向と略直交する方向に沿った略帯状の偏光光を照射する偏光光照射部と、
     前記偏光光照射部から照射された光の特性を測定する光学測定器と、
     前記偏光光照射部を前記対象物の走査方向に沿って移動させる光源移動部と、
     を備え、
     前記偏光光照射部が待機位置にあるときに、前記ステージと、前記偏光光照射部と、前記光学測定器とは、水平方向の位置が重ならないように設けられる
     ことを特徴とする偏光光照射装置。
  2.  情報を入力する入力部と、
     前記入力部により入力された情報に基づいて、前記偏光光照射部の移動速度を算出する移動速度算出部と、
     前記移動速度算出部により算出された移動速度で前記偏光光照射部が前記ステージの上を通過するように、また、前記偏光光照射部の水平方向の位置と前記光学測定器の水平方向の位置とが一致する測定位置へ移動するように、前記光源移動部を制御する光源移動制御部と、
     を備えたことを特徴とする請求項1に記載の偏光光照射装置。
  3.  前記偏光光照射部が待機位置にあるときには、水平方向において、前記光学測定器が、前記偏光光照射部を挟んで前記ステージの反対側に設けられる
     ことを特徴とする請求項1又は2に記載の偏光光照射装置。
  4.  前記偏光光照射部の点灯及び消灯を制御する光源制御部と、
     前記光学測定器で測定された結果及び前記入力部により入力された情報に基づいて、露光量及び照度を測定する光学測定部と、を備え、
     前記偏光光照射部が待機位置にあるときには、前記光学測定器の水平方向の位置は、前記ステージの水平方向の位置と前記偏光光照射部の水平方向の位置との間であり、
     前記光源移動制御部は、前記偏光光照射部を前記光学測定器の上及び前記ステージの上を連続して通過させ、
     前記光源制御部は、前記光源移動制御部が前記偏光光照射部を移動させる間、前記偏光光照射部を点灯させる
     ことを特徴とする請求項2に記載の偏光光照射装置。
  5.  情報を入力する入力部と、
     前記光学測定器を前記対象物の走査方向に沿って移動させる光学測定器移動部と、
     前記入力部により入力された情報に基づいて、前記偏光光照射部の移動速度を算出する移動速度算出部と、
     前記移動速度算出部により算出された移動速度で前記偏光光照射部が前記ステージの上を通過するように、前記光源移動部を制御する光源移動制御部と、
     前記偏光光照射部の水平方向の位置と前記光学測定器の水平方向の位置とが一致する測定位置へ前記光学測定器を移動させるように、前記光学測定器移動部を制御する光学測定部移動制御部と、
     を備えたことを特徴とする請求項1に記載の偏光光照射装置。
  6.  前記偏光光照射部が待機位置にあるときには、水平方向において、前記光学測定器と前記偏光光照射部とが隣接して設けられ、前記光学測定器及び前記偏光光照射部の両側に前記ステージが2つ設けられる
     ことを特徴とする請求項1又は2に記載の偏光光照射装置。
  7.  前記光源移動部は、前記偏光光照射部を回動させる回動部を有する
     ことを特徴とする請求項1から6のいずれか1項に記載の偏光光照射装置。
  8.  前記偏光光照射部は、光源と、前記光源から照射された光を導光する導光部材であって、前記光源の光が供給される光入射部と、前記ステージの上方に略帯状に設けられ、前記ステージへ光を照射する光出射部と、を有する導光部材と、を有する
     ことを特徴とする請求項1から7のいずれか1項に記載の偏光光照射装置。
  9.  対象物が載置されるステージと、前記対象物の走査方向と略直交する方向に沿った略帯状の偏光光を照射する偏光光照射部と、前記偏光光照射部から照射された光の特性を測定する光学測定器と、情報を入力する入力部と、を有し、前記偏光光照射部が待機位置にあるときに、前記ステージと、前記偏光光照射部と、前記光学測定器とは、水平方向の位置が重ならないように設けられる偏光光照射装置を使用する偏光光照射方法であって、
     前記ステージに前記対象物を載置する工程と、
     前記入力部から入力された情報に基づいて、前記偏光光照射部の移動速度を算出する工程と、
     前記偏光光照射部から光を照射した状態で、前記偏光光照射部を前記待機位置から前記対象物の走査方向に沿って前記算出された移動速度で移動させて、前記ステージの上を通過させる工程と、
     前記偏光光照射部の水平方向の位置と前記光学測定器の水平方向の位置とが一致する測定位置へ前記偏光光照射部又は前記光学測定器を走査方向に沿って移動させ、前記偏光光照射部から光を照射する工程と、
     を含むことを特徴とする偏光光照射方法。
  10.  対象物が載置されるステージと、前記対象物の走査方向と略直交する方向に沿った略帯状の偏光光を照射する偏光光照射部と、前記偏光光照射部から照射された光の特性を測定する光学測定器と、情報を入力する入力部と、を有し、前記偏光光照射部が待機位置にあるときに、前記ステージと、前記偏光光照射部と、前記光学測定器とは、水平方向の位置が重ならないように設けられる偏光光照射装置を使用する偏光光照射方法であって、
     前記ステージに前記対象物を載置する工程と、
     前記入力部から入力された情報に基づいて、前記偏光光照射部の移動速度を算出する工程と、
     前記偏光光照射部から光を照射した状態で、前記偏光光照射部を前記待機位置から前記対象物の走査方向に沿って前記算出された移動速度で移動させて、前記光学測定器及び前記ステージの上を連続して通過させる工程と、
     を含むことを特徴とする偏光光照射方法。
PCT/JP2016/079401 2015-10-23 2016-10-04 偏光光照射装置及び偏光光照射方法 WO2017068960A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680056639.9A CN108139630A (zh) 2015-10-23 2016-10-04 偏振光照射装置以及偏振光照射方法
KR1020187008164A KR20180072672A (ko) 2015-10-23 2016-10-04 편광 광 조사 장치 및 편광 광 조사 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-209415 2015-10-23
JP2015209415A JP6714992B2 (ja) 2015-10-23 2015-10-23 偏光光照射装置及び偏光光照射方法

Publications (1)

Publication Number Publication Date
WO2017068960A1 true WO2017068960A1 (ja) 2017-04-27

Family

ID=58557423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079401 WO2017068960A1 (ja) 2015-10-23 2016-10-04 偏光光照射装置及び偏光光照射方法

Country Status (5)

Country Link
JP (1) JP6714992B2 (ja)
KR (1) KR20180072672A (ja)
CN (1) CN108139630A (ja)
TW (1) TW201727340A (ja)
WO (1) WO2017068960A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035376B2 (ja) * 2017-08-28 2022-03-15 ウシオ電機株式会社 偏光光照射装置および偏光光照射方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249887A (ja) * 2004-03-01 2005-09-15 Hitachi Displays Ltd 光配向処理装置とその方法、及び液晶表示装置
JP2006171043A (ja) * 2004-12-13 2006-06-29 Fuji Photo Film Co Ltd 配向膜及びその製造技術、並びに液晶装置
JP2012173693A (ja) * 2011-02-24 2012-09-10 Hitachi High-Technologies Corp 露光装置及び露光方法
WO2013157114A1 (ja) * 2012-04-19 2013-10-24 信越エンジニアリング株式会社 光配向照射装置
WO2013157113A1 (ja) * 2012-04-19 2013-10-24 信越エンジニアリング株式会社 光配向照射装置
JP2015099709A (ja) * 2013-11-19 2015-05-28 岩崎電気株式会社 光照射装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131886A (ja) 1974-09-11 1976-03-18 Toshiba Machine Co Ltd Zetsuensuriibunadono seikeihinseizohoho
JP4604661B2 (ja) * 2004-11-05 2011-01-05 ウシオ電機株式会社 光配向用偏光光照射装置
CN204406005U (zh) * 2015-02-28 2015-06-17 成都京东方光电科技有限公司 光取向设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249887A (ja) * 2004-03-01 2005-09-15 Hitachi Displays Ltd 光配向処理装置とその方法、及び液晶表示装置
JP2006171043A (ja) * 2004-12-13 2006-06-29 Fuji Photo Film Co Ltd 配向膜及びその製造技術、並びに液晶装置
JP2012173693A (ja) * 2011-02-24 2012-09-10 Hitachi High-Technologies Corp 露光装置及び露光方法
WO2013157114A1 (ja) * 2012-04-19 2013-10-24 信越エンジニアリング株式会社 光配向照射装置
WO2013157113A1 (ja) * 2012-04-19 2013-10-24 信越エンジニアリング株式会社 光配向照射装置
JP2015099709A (ja) * 2013-11-19 2015-05-28 岩崎電気株式会社 光照射装置

Also Published As

Publication number Publication date
JP2017083545A (ja) 2017-05-18
JP6714992B2 (ja) 2020-07-01
CN108139630A (zh) 2018-06-08
KR20180072672A (ko) 2018-06-29
TW201727340A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
KR102276749B1 (ko) 노광 장치, 레지스트 패턴 형성 방법 및 기억 매체
JP6119035B2 (ja) 露光装置
JP6206945B2 (ja) 走査露光装置及び走査露光方法
TWI820325B (zh) 超高速攝像裝置
US20160223428A1 (en) Inspecting device, drawing device and inspecting method
CN106997125B (zh) 光照射装置以及光照射方法
WO2017068960A1 (ja) 偏光光照射装置及び偏光光照射方法
JP6951446B2 (ja) 感光性の層を露光するための装置および方法
WO2015040664A1 (ja) 光配向照射装置及び光配向照射装置の開口量調整方法
JP4123271B2 (ja) 液晶モジュール輝度測定装置
WO2017068962A1 (ja) 光照射装置
JP2015106015A (ja) 偏光光照射装置、偏光光照射方法および偏光光照射プログラム
KR101138041B1 (ko) 인라인 기판 검사 장치의 광학 시스템 교정 방법 및 인라인 기판 검사 장치
JP5361036B2 (ja) 位置調整装置および発光分光分析装置
CN111781773B (zh) 光配向设备以及光配向方法
CN110462503A (zh) 光照射装置
JP2004325544A (ja) ディスプレイパネルの貼り合わせ装置
KR20060094172A (ko) 음극선관용 패널의 검사장치 및 그 방법
US9316923B2 (en) Exposure apparatus and exposure method using the same
JP4347028B2 (ja) 目視検査装置
JP2002296020A (ja) 表面形状測定装置
JP2007219610A (ja) コード読取装置
JP7217370B1 (ja) 検査装置
KR100867197B1 (ko) 다층막 코팅 유리의 두께 측정장치
KR20090040531A (ko) 노광 장치 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187008164

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857276

Country of ref document: EP

Kind code of ref document: A1