WO2017068642A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2017068642A1
WO2017068642A1 PCT/JP2015/079553 JP2015079553W WO2017068642A1 WO 2017068642 A1 WO2017068642 A1 WO 2017068642A1 JP 2015079553 W JP2015079553 W JP 2015079553W WO 2017068642 A1 WO2017068642 A1 WO 2017068642A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
adjustment tank
refrigeration cycle
expansion valve
heat exchanger
Prior art date
Application number
PCT/JP2015/079553
Other languages
English (en)
French (fr)
Inventor
拓也 伊藤
和之 石田
昂仁 彦根
靖 大越
正紘 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/079553 priority Critical patent/WO2017068642A1/ja
Priority to EP15906648.9A priority patent/EP3367021B1/en
Priority to EP19152449.5A priority patent/EP3508802B1/en
Priority to JP2017546308A priority patent/JP6479203B2/ja
Publication of WO2017068642A1 publication Critical patent/WO2017068642A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves

Definitions

  • the present invention relates to a refrigeration cycle apparatus in which a refrigerant circulates in a refrigerant circuit.
  • the water-side heat exchanger In an air-cooled chiller, the water-side heat exchanger generally has a higher efficiency of condensing the refrigerant than the air-side heat exchanger, so that the volume of the water-side heat exchanger can be reduced.
  • the amount of refrigerant required for the refrigeration cycle apparatus is smaller during the heating operation. Therefore, during the heating operation in which the water-side heat exchanger functions as a condenser, the amount of refrigerant required is smaller than that during the cooling operation, so it is necessary to store surplus refrigerant. Then, the refrigerating cycle apparatus which can store the excess refrigerant
  • the present invention has been made in view of the above problems in the prior art, and even when the ambient temperature of the refrigerant amount adjustment tank is lower than the evaporation temperature of the refrigerant, the refrigerant to the refrigerant amount adjustment tank
  • An object of the present invention is to provide a refrigeration cycle apparatus capable of suppressing stagnation.
  • the refrigeration cycle apparatus of the present invention includes a compressor, a refrigerant flow switching device, an air-side heat exchanger, a main expansion valve, and a water-side heat exchanger that are sequentially connected by piping to form a refrigerant circuit in which a refrigerant circulates.
  • a cycle device which is provided in parallel with the main expansion valve, branches from a refrigerant amount adjustment tank for storing the refrigerant, and a pipe connecting the air-side heat exchanger and the main expansion valve, and the refrigerant
  • a first refrigerant flow control valve which is provided in a pipe connected to one end of the amount adjustment tank and adjusts the amount of refrigerant flowing into and out of the refrigerant amount adjustment tank according to the opening; the main expansion valve;
  • a second pipe that branches from a pipe connecting the side heat exchanger and is connected to the other end of the refrigerant quantity adjustment tank, and that adjusts the amount of refrigerant flowing into and out of the refrigerant quantity adjustment tank according to the opening degree.
  • the refrigerant flows into the refrigerant quantity adjustment tank and the refrigerant in the refrigerant quantity adjustment tank flows.
  • the refrigerant quantity adjustment tank flows into the refrigerant quantity adjustment tank and the refrigerant in the refrigerant quantity adjustment tank flows.
  • FIG. 1 is a schematic diagram illustrating an example of a circuit configuration of a refrigeration cycle apparatus 1 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 1 includes a compressor 11, a refrigerant flow switching device 12, such as a four-way valve, an air side heat exchanger 13, a main expansion valve 14, a water side heat exchanger 15, an accumulator 16, A refrigerant amount adjusting tank 17, two auxiliary expansion valves 18A and 18B as refrigerant flow rate control valves, a gas vent circuit 19, and a heat source machine control device 10 as a control device are configured.
  • a compressor 11 a refrigerant flow switching device 12, such as a four-way valve, an air side heat exchanger 13, a main expansion valve 14, a water side heat exchanger 15, an accumulator 16, A refrigerant amount adjusting tank 17, two auxiliary expansion valves 18A and 18B as refrigerant flow rate control valves, a gas vent circuit 19, and a heat source machine control device 10 as a control device are configured.
  • a refrigerant flow switching device 12 such as a four-way valve
  • an air side heat exchanger 13 such as a four-way valve
  • the compressor 11, the refrigerant flow switching device 12, the air-side heat exchanger 13, the main expansion valve 14, the water-side heat exchanger 15 and the accumulator 16 are connected in an annular shape by the refrigerant pipe 2, and the main circuit of the refrigerant circuit is Is formed. Further, a sub circuit of the refrigerant circuit is formed by the refrigerant amount adjusting tank 17, the sub expansion valves 18A and 18B, and the gas vent circuit 19.
  • the compressor 11 sucks in a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges it into a high-temperature and high-pressure gas refrigerant state.
  • the compressor 11 for example, an inverter compressor or the like that can control the capacity that is the refrigerant delivery amount per unit time by arbitrarily changing the drive frequency can be used.
  • a low pressure sensor 22 is provided on the suction side of the compressor 11 to detect the pressure of the refrigerant sucked into the compressor 11. Information indicating the detected pressure is supplied to the heat source machine control device 10 to be described later.
  • the refrigerant flow switching device 12 switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows.
  • a four-way valve can be used as the refrigerant flow switching device 12, but other valves may be used in combination.
  • the air-side heat exchanger 13 performs heat exchange between the air supplied by the air-side blower 21 such as a fan installed in the vicinity and the refrigerant. Specifically, the air-side heat exchanger 13 functions as a condenser that radiates the heat of the refrigerant to the air and condenses the refrigerant during the cooling operation. The air-side heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air with the heat of vaporization.
  • the main expansion valve 14 has a function of depressurizing and expanding the refrigerant flowing in the refrigerant circuit.
  • the main expansion valve 14 is configured by a valve capable of controlling the opening degree, such as an electronic expansion valve.
  • the water side heat exchanger 15 functions as a condenser or an evaporator, and performs heat exchange between the refrigerant flowing in the refrigerant circuit and a heat medium such as water flowing in the heat medium circuit by the pump 40.
  • the accumulator 16 is provided on the suction side which is the low pressure side of the compressor 11.
  • the accumulator 16 stores surplus refrigerant generated due to a difference in operating state between the cooling operation and the heating operation, surplus refrigerant with respect to a transient change in operation, and the like.
  • the refrigerant amount adjustment tank 17 is provided in parallel with the main expansion valve 14 and stores surplus refrigerant generated due to the difference in the operation state between the cooling operation and the heating operation.
  • a pipe branched from the refrigerant pipe 2 connecting the air-side heat exchanger 13 and the main expansion valve 14 is connected to one end of the refrigerant quantity adjustment tank 17.
  • a pipe branched from the refrigerant pipe 2 connecting the main expansion valve 14 and the water-side heat exchanger 15 is connected to the other end of the refrigerant quantity adjustment tank 17.
  • the water-side heat exchanger 15 is more efficient in condensing the refrigerant than the air-side heat exchanger 13,
  • the volume on the refrigerant side in the water-side heat exchanger 15 can be reduced.
  • the amount of refrigerant required for the refrigerant circuit is smaller during the heating operation than during the cooling operation.
  • the amount of refrigerant necessary for the refrigerant circuit becomes surplus, so that surplus refrigerant liquid flows into the refrigerant amount adjustment tank 17 and the refrigerant liquid is stored.
  • the heating operation is switched to the cooling operation, the amount of refrigerant necessary for the refrigerant circuit is insufficient, so that the refrigerant liquid stored in the refrigerant amount adjustment tank 17 flows into the refrigerant circuit.
  • the sub-expansion valves 18A and 18B function as a refrigerant flow rate control valve that adjusts the refrigerant quantity flowing into and out of the refrigerant quantity adjustment tank 17 according to the opening degree.
  • the sub-expansion valve 18A is provided on one end side of the refrigerant quantity adjustment tank 17, specifically on the upstream side during the cooling operation.
  • the sub-expansion valve 18B is provided on the other end side of the refrigerant amount adjustment tank 17, specifically, on the downstream side during the cooling operation.
  • the degassing circuit 19 prevents the refrigerant in the refrigerant amount adjustment tank 17 from being liquid-sealed even when both of the auxiliary expansion valves 18A and 18B provided at both ends of the refrigerant amount adjustment tank 17 are fully closed. prevent.
  • the low-pressure sensor 22 detects the pressure of the refrigerant flowing into the compressor 11 and supplies pressure information as a detection result to the heat source controller 10.
  • the low pressure sensor 22 is provided in the refrigerant pipe 2 on the inflow side of the compressor 11.
  • the outside air temperature sensor 23 detects the temperature around the refrigerant amount adjustment tank 17 and supplies temperature information as a detection result to the heat source apparatus control device 10.
  • the outside air temperature sensor 23 is provided in the vicinity of the refrigerant amount adjustment tank 17, but is not limited thereto, and may be provided, for example, at a position away from the refrigerant amount adjustment tank 17. Further, for example, a temperature sensor (not shown) provided at the air suction position of the air-side heat exchanger 13 may be used as the outside air temperature sensor 23.
  • the heat source machine control device 10 is constituted by a microcomputer, for example, and controls the entire refrigeration cycle device 1.
  • the heat source device control apparatus 10 receives information indicating detection results from various detection means such as the low pressure sensor 22 and the outside air temperature sensor 23. Then, based on the operation information of the refrigeration cycle apparatus 1 based on the detection result and the operation content instructed by the user, the heat source apparatus control apparatus 10 drives the driving frequency of the compressor 11 and the rotation speed (ON / ON of the air-side blower 21). OFF), switching of the refrigerant flow switching device 12, opening of the main expansion valve 14, opening of the sub expansion valves 18A and 18B, and the like are controlled.
  • FIG. 2 is a schematic diagram illustrating an installation example of the refrigerant quantity adjustment tank 17 in the refrigeration cycle apparatus 1 of FIG.
  • various devices in the refrigeration cycle apparatus 1 are accommodated in a machine room 30, and an air-side heat exchanger 13 is disposed on the machine room 30.
  • An air-side blower 21 is disposed on the air-side heat exchanger 13.
  • various devices accommodated in the machine room 30 include a compressor 11, a refrigerant flow switching device 12, a main expansion valve 14, a water-side heat exchanger 15, and an accumulator 16 that constitute a main circuit of the refrigerant circuit. And the heat source machine control device 10 are included.
  • the machine room 30 also houses a refrigerant amount adjustment tank 17 and sub-expansion valves 18A and 18B constituting a sub circuit of the refrigerant circuit.
  • the refrigerant quantity adjustment tank is installed in the air-side heat exchanger.
  • a structure has been proposed for installation on the downstream side of the air flow, that is, on the machine room.
  • the structure of the pipe connected to the refrigerant quantity adjustment tank may be complicated.
  • the refrigerant quantity adjustment tank is heavy, in order to place the refrigerant quantity adjustment tank on the machine room, it is necessary to increase the strength of the machine room. There is a risk that the manufacturing cost increases as the number increases.
  • the center of gravity as the refrigeration cycle apparatus is located above, and thus there is a risk that stability may be reduced when the refrigeration cycle apparatus is installed. is there.
  • the refrigerant amount adjusting tank 17 is accommodated in the machine room 30 to solve the above-described problems.
  • the refrigerant quantity adjustment tank 17 is accommodated in the machine room 30, the refrigerant quantity adjustment tank 17 is connected to a device such as the water-side heat exchanger 15 that needs to be connected in the refrigerant circuit via the refrigerant pipe 2 at a substantially shortest distance. Is done.
  • the refrigerant pipe 2 connected to the refrigerant quantity adjustment tank 17 can be connected at a substantially shortest distance by accommodating the refrigerant quantity adjustment tank 17 in the machine room 30, the refrigerant pipe 2 in the refrigeration cycle apparatus 1 can be shortened, The structure can be further simplified.
  • the weight of the refrigeration cycle apparatus 1 can be reduced and the manufacturing cost can be reduced. Furthermore, since the center of gravity of the refrigeration cycle apparatus 1 is positioned below, the stability can be improved when the refrigeration cycle apparatus 1 is installed.
  • the refrigerant amount adjustment tank 17 when the refrigerant amount adjustment tank 17 is accommodated in the machine room 30, when the refrigerant evaporation temperature is higher than the outside air temperature, the refrigerant is cooled by the outside air via the container wall surface of the refrigerant amount adjustment tank 17. Therefore, the refrigerant in the refrigerant quantity adjustment tank 17 may be liquefied and the refrigerant liquid may stay in the refrigerant quantity adjustment tank 17.
  • the auxiliary expansion valves 18A and 18B are provided at both ends of the refrigerant quantity adjustment tank 17, and the flow rate of the refrigerant flowing to the refrigerant quantity adjustment tank 17 is appropriately adjusted during the cooling operation.
  • FIG. 3 is a flowchart showing an example of the flow of the refrigerant flow rate control process to the refrigerant quantity adjustment tank 17 in the refrigeration cycle apparatus 1 of FIG.
  • the refrigerant flow rate control to the refrigerant quantity adjustment tank 17 is continuously performed, and the processing of the flowchart of FIG. 3 is cyclically repeated.
  • the process shown in FIG. 3 is repeated every predetermined time.
  • step S1 the heat source machine control device 10 determines whether or not unit operation is being performed.
  • the “unit operation is being performed” state is a state in which the compressor 11 is in the operation state, the refrigerant is circulating in the refrigerant circuit, and the operation mode is the cooling operation. If it is determined that the unit operation is being performed (step S1; YES), the process proceeds to step S2. On the other hand, when it is determined that the unit operation is not performed (step S1; NO), the process proceeds to step S4.
  • step S2 the heat source machine control device 10 converts the pressure information detected by the low pressure sensor 22 into an evaporation temperature that is a saturation temperature of the refrigerant. Then, the heat source controller 10 compares the obtained refrigerant evaporation temperature with the outside air temperature based on the temperature information detected by the outside air temperature sensor 23, and determines whether or not the refrigerant evaporation temperature is higher than the outside air temperature. Judging. In this example, the evaporating temperature of the refrigerant is obtained based on the detection result of the low pressure sensor 22.
  • a temperature sensor may be provided on the refrigerant outlet side of the air-side heat exchanger 13 during the cooling operation, and the evaporation temperature of the refrigerant may be obtained from the detection result of the temperature sensor.
  • the evaporating temperature of the refrigerant is a temperature obtained based on the pressure of the refrigerant at the low pressure detected by the low pressure sensor 22, and the pressure of the refrigerant at this time is the value when flowing into the refrigerant amount adjustment tank 17. Different from pressure. Therefore, an error occurs between the refrigerant evaporation temperature at low pressure based on the detection result of the low pressure sensor 22 and the refrigerant evaporation temperature based on the pressure when flowing into the refrigerant amount adjustment tank 17.
  • the outside air temperature is a temperature obtained based on the temperature detected by the outside air temperature sensor 23, but an error also occurs between this outside air temperature and the actual temperature of the refrigerant amount adjustment tank 17.
  • a preset temperature for correcting these errors is set in advance, and the refrigerant evaporation temperature at low pressure is compared with the temperature obtained by adding the preset temperature to the outside air temperature.
  • the temperature obtained by adding the set temperature to the outside temperature will be simply referred to as “outside temperature”.
  • step S2 If it is determined that the evaporation temperature of the refrigerant is equal to or lower than the outside air temperature (step S2; NO), the process proceeds to step S4.
  • the evaporation temperature of the refrigerant is equal to or lower than the outside air temperature
  • the refrigerant in the refrigerant amount adjustment tank 17 is heated by the surrounding outside air.
  • the heat source device control apparatus 10 sets the opening degree of the sub-expansion valve 18A to “fully closed” and sets the opening degree of the sub-expansion valve 18B to “fully open”.
  • step S2 if it is determined in step S2 that the refrigerant evaporation temperature is higher than the outside air temperature (step S2; YES), the process proceeds to step S3.
  • the refrigerant in the refrigerant amount adjustment tank 17 is cooled by the surrounding outside air.
  • the refrigerant quantity is maintained even if the sub expansion valve 18B is opened and the pipe connecting the refrigerant quantity adjustment tank 17 and the water side heat exchanger 15 is opened.
  • the refrigerant liquid stays in the adjustment tank 17. Then, the refrigerant liquid stays in the refrigerant amount adjustment tank 17 and the refrigerant necessary for the cooling operation becomes insufficient, so there is a possibility that stable operation cannot be performed.
  • step S3 the heat source device control apparatus 10 sets the opening degree of the sub expansion valve 18A to a preset “set opening degree” and sets the opening degree of the sub expansion valve 18B to “fully open”. Thereby, liquefaction of the refrigerant in the refrigerant quantity adjustment tank 17 can be suppressed, and a state in which stable operation cannot be performed due to the refrigerant remaining can be avoided.
  • the refrigerant in the refrigerant quantity adjustment tank 17 is in a gas state as described above, and the refrigerant does not stay in the refrigerant quantity adjustment tank 17, so that most of the refrigerant filled in the refrigerant circuit is used in the refrigerant circuit. It will circulate inside. Therefore, the required amount of refrigerant during the cooling operation can be reduced as compared with the case where the refrigerant is always allowed to flow through the refrigerant amount adjustment tank 17.
  • the sub expansion valve 18B is set to “fully open”, the pipe connecting the refrigerant amount adjustment tank 17 and the water-side heat exchanger 15 is opened, and excess refrigerant is stored in the refrigerant amount adjustment tank 17. To do. If the refrigerant repeatedly enters and exits the refrigerant amount adjustment tank 17 at this time, there is a possibility that the refrigeration oil may remain in the refrigerant amount adjustment tank 17, so the sub-expansion valve 18A is used to suppress the refrigeration oil remaining. Set to the minimum opening. Thereby, the minimum circulation amount of the refrigerant can be circulated in the refrigerant circuit.
  • the refrigerant amount adjustment tank 17 for storing excess refrigerant is provided in parallel to the main expansion valve 14, and the sub-expansion valves 18 ⁇ / b> A and 18 ⁇ / b> B are provided at both ends of the refrigerant amount adjustment tank 17. Provide. Then, based on the evaporation temperature and the outside air temperature of the refrigerant in the refrigerant amount adjustment tank 17, the opening degree of the sub expansion valves 18 ⁇ / b> A and 18 ⁇ / b> B is adjusted to adjust the amount of refrigerant flowing into and out of the refrigerant amount adjustment tank 17.
  • the refrigerant can flow into the refrigerant amount adjustment tank 17 so as to prevent the refrigerant staying in the refrigerant amount adjustment tank 17 from being liquefied by the outside air, and the refrigerant into the refrigerant amount adjustment tank 17 Can be suppressed.
  • the refrigerant amount adjustment tank 17 is placed downstream of the air flow in the air-side heat exchanger as in the past. No need to install in Therefore, the refrigerant quantity adjustment tank 17 can be accommodated in the machine room, and the structure of the refrigeration cycle apparatus 1 can be simplified.
  • sub-expansion valve 18B may be omitted because its opening degree is always set to “fully open” during the cooling operation and the heating operation.
  • Embodiment 2 an air conditioner according to Embodiment 2 of the present invention will be described.
  • the refrigerant amount adjustment tank 17 may be cooled while the compressor 11 is stopped, the refrigerant is kept for a predetermined time after the compressor 11 is started.
  • the amount of heat for cooling is larger than when the operation is stable. Therefore, for a predetermined time after the compressor 11 is started, it is necessary to make the flow rate of the refrigerant flowing to the refrigerant amount adjustment tank 17 larger than when the operation is stable and to heat the refrigerant amount adjustment tank 17 with the flowing refrigerant.
  • the opening of the sub-expansion valve 18A is changed according to the elapsed time from the start of the compressor 11, and the flow rate of the refrigerant flowing to the refrigerant amount adjustment tank 17 is adjusted.
  • the circuit configuration of the refrigeration cycle apparatus according to the second embodiment and the installation position of the refrigerant quantity adjustment tank are the same as those in the first embodiment, and thus the description thereof is omitted here.
  • FIG. 4 is a flowchart showing an example of the flow of the refrigerant flow rate control process to the refrigerant quantity adjustment tank 17 in the refrigeration cycle apparatus 1 according to Embodiment 2 of the present invention.
  • the refrigerant flow rate control to the refrigerant quantity adjustment tank 17 is continuously performed, and the processing of the flowchart of FIG. 4 is cyclically repeated.
  • the process shown in FIG. 4 is repeated every predetermined time.
  • step S11 the heat source apparatus control device 10 determines whether or not unit operation is being performed. If it is determined that the unit operation is being performed (step S11; YES), the process proceeds to step S12.
  • step S12 the heat source machine control device 10 converts the pressure information detected by the low pressure sensor 22 into an evaporation temperature that is a saturation temperature of the refrigerant. Then, the heat source controller 10 compares the obtained refrigerant evaporation temperature with the outside air temperature based on the temperature information detected by the outside air temperature sensor 23, and determines whether or not the refrigerant evaporation temperature is higher than the outside air temperature. Judging. If it is determined that the evaporation temperature of the refrigerant is higher than the outside air temperature (step S12; YES), the process proceeds to step S13.
  • step S ⁇ b> 13 the heat source machine control device 10 determines whether or not 4 minutes have elapsed since the start of the compressor 11. This is to determine whether or not the compressor 11 is operating stably as described above. Note that the time for determining whether or not the compressor 11 is in a stable state is not limited to 4 minutes, and can be appropriately set in consideration of, for example, the performance of the compressor 11.
  • step S15 the heat source controller 10 sets the opening of the sub expansion valve 18A to a preset “first opening”. Specifically, the heat source device control apparatus 10 sets, for example, the opening degree of the sub-expansion valve 18A to about 20% of the fully opened state as the “first opening degree”.
  • step S13 determines whether 4 minutes have passed (step S13; YES). If it is determined in step S13 that 4 minutes have passed (step S13; YES), the process proceeds to step S14.
  • step S14 the heat source device control apparatus 10 sets the opening of the sub expansion valve 18A to a “second opening” that is smaller than the opening set in step S15. Specifically, the heat source device control apparatus 10 sets, for example, the opening degree of the sub-expansion valve 18A to about 10% of full opening as the “second opening degree”.
  • step S11 when it is determined in step S11 that the unit operation is not performed (step S11; NO) and when it is determined in step S12 that the evaporation temperature of the refrigerant is equal to or lower than the outside air temperature (step S12; NO).
  • step S16 the heat source controller 10 sets the opening degree of the sub expansion valve 18A to “fully closed” and sets the opening degree of the sub expansion valve 18B to “fully open”.
  • step S14 the opening degree of the sub-expansion valve 18A can be set to a larger opening degree equivalent to that in step S15.
  • the flow rate ratio of the refrigerant flowing in the refrigerant amount adjustment tank 17 can be reduced with respect to the flow rate of the refrigerant flowing in the main expansion valve 14. Therefore, the influence on the refrigerant flow rate control with respect to the main expansion valve 14 can be reduced, and a stable operation can be performed.
  • the opening degree of the sub-expansion valve 18A is changed according to the elapsed time from the start of the compressor 11, and until a predetermined time elapses after the compressor 11 is started. Since the opening of the sub-expansion valve 18A is larger than when the operation is stable, the flow rate of the refrigerant flowing into the refrigerant quantity adjustment tank 17 can be increased, and the refrigerant staying in the refrigerant quantity adjustment tank 17 is heated more. can do.
  • the opening of the sub-expansion valve 18A when the operation of the compressor 11 is stable smaller than the opening of the sub-expansion valve 18A when the compressor 11 is started up, it is possible to control the refrigerant flow rate of the main expansion valve 14. The influence can be reduced and the operation can be made more stable.
  • FIG. 5 is a schematic diagram illustrating an example in which a plurality of refrigerant circuits are provided in the refrigeration cycle apparatus according to Embodiment 1 and Embodiment 2 of the present invention.
  • FIG. 5 the case where four refrigerant circuits are provided in the refrigeration cycle apparatus 1 is shown.
  • a state is shown in which heat exchange is performed between the refrigerant flowing in each of the four refrigerant circuits and the heat medium flowing in one heat medium circuit by one pump 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 圧縮機、冷媒流路切替装置、空気側熱交換器、主膨張弁および水側熱交換器が配管で順次接続され、冷媒が循環する冷媒回路が形成された冷凍サイクル装置であって、主膨張弁に対して並列に設けられ、冷媒を貯留する冷媒量調整タンクと、空気側熱交換器および主膨張弁を接続する配管から分岐して冷媒量調整タンクの一端に接続された配管に設けられ、開度に応じて冷媒量調整タンクに流入出する冷媒の量を調整する第1の冷媒流量制御弁と、主膨張弁および水側熱交換器を接続する配管から分岐して冷媒量調整タンクの他端に接続された配管に設けられ、開度に応じて冷媒量調整タンクに流入出する冷媒の量を調整する第2の冷媒流量制御弁とを備える。

Description

冷凍サイクル装置
 本発明は、冷媒回路内を冷媒が循環する冷凍サイクル装置に関するものである。
 空冷式のチラーにおいては、一般に、水側熱交換器の方が空気側熱交換器よりも冷媒を凝縮する効率がよいので、水側熱交換器の容積を小さくすることができる。また、冷房運転時と暖房運転時とでは、暖房運転時の方が冷凍サイクル装置に必要な冷媒量が少なくて済む。
 そのため、水側熱交換器が凝縮器として機能する暖房運転時においては、冷房運転時と比較して必要な冷媒量が少ないので、余剰冷媒を貯留する必要がある。
 そこで、このようにして生じる余剰冷媒を貯留することが可能な冷凍サイクル装置が提案されている(例えば、特許文献1参照)。
特開2003-83644号公報
 しかしながら、特許文献1に記載の技術では、冷房運転中に冷媒量調整タンクの周囲温度が冷媒の蒸発温度よりも低い場合、冷媒量調整タンク内の冷媒が冷却されることになる。この場合には、冷媒の特性上、冷媒液が冷媒量調整タンクに滞留することになるので、冷媒回路内を循環する冷媒が不足する虞があるという問題点があった。
 本発明は、上記従来の技術における問題点に鑑みてなされたものであって、冷媒量調整タンクの周囲温度が冷媒の蒸発温度よりも低い状態となった場合でも、冷媒量調整タンクへの冷媒の滞留を抑制することが可能な冷凍サイクル装置を提供することを目的とする。
 本発明の冷凍サイクル装置は、圧縮機、冷媒流路切替装置、空気側熱交換器、主膨張弁および水側熱交換器が配管で順次接続され、冷媒が循環する冷媒回路が形成された冷凍サイクル装置であって、前記主膨張弁に対して並列に設けられ、前記冷媒を貯留する冷媒量調整タンクと、前記空気側熱交換器および前記主膨張弁を接続する配管から分岐して前記冷媒量調整タンクの一端に接続された配管に設けられ、開度に応じて前記冷媒量調整タンクに流入出する冷媒の量を調整する第1の冷媒流量制御弁と、前記主膨張弁および前記水側熱交換器を接続する配管から分岐して前記冷媒量調整タンクの他端に接続された配管に設けられ、開度に応じて前記冷媒量調整タンクに流入出する冷媒の量を調整する第2の冷媒流量制御弁とを備えるものである。
 以上のように、本発明によれば、冷媒量調整タンクの周囲温度が冷媒の蒸発温度よりも低い状態となった場合でも、冷媒量調整タンクへ冷媒を流して冷媒量調整タンク内の冷媒の液化を防ぐことにより、冷媒量調整タンクへの冷媒の滞留を抑制することが可能になる。
本発明の実施の形態1に係る冷凍サイクル装置の回路構成の一例を示す概略図である。 図1の冷凍サイクル装置における冷媒量調整タンクの設置例を示す概略図である。 図1の冷凍サイクル装置における冷媒量調整タンクへの冷媒流量制御処理の流れの一例を示すフローチャートである。 本発明の実施の形態2に係る冷凍サイクル装置における冷媒量調整タンクへの冷媒流量制御処理の流れの一例を示すフローチャートである。 本発明の実施の形態1および実施の形態2に係る冷凍サイクル装置において、複数の冷媒回路を設けた場合の一例を示す概略図である。
実施の形態1.
 以下、本発明の実施の形態1に係る冷凍サイクル装置について説明する。
 図1は、本発明の実施の形態1に係る冷凍サイクル装置1の回路構成の一例を示す概略図である。
[冷凍サイクル装置の回路構成]
 図1に示すように、冷凍サイクル装置1は、圧縮機11、四方弁等の冷媒流路切替装置12、空気側熱交換器13、主膨張弁14、水側熱交換器15、アキュムレータ16、冷媒量調整タンク17、冷媒流量制御弁としての2つの副膨張弁18Aおよび18B、ガス抜き回路19、および制御装置としての熱源機制御装置10を含んで構成される。
 また、圧縮機11、冷媒流路切替装置12、空気側熱交換器13、主膨張弁14、水側熱交換器15およびアキュムレータ16が冷媒配管2によって環状に接続され、冷媒回路の主回路が形成されている。さらに、冷媒量調整タンク17、副膨張弁18Aおよび18B、ガス抜き回路19により、冷媒回路の副回路が形成されている。
 圧縮機11は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧のガス冷媒の状態にして吐出する。圧縮機11としては、例えば、駆動周波数を任意に変化させることにより、単位時間あたりの冷媒送出量である容量を制御することが可能なインバータ圧縮機等を用いることができる。
 また、圧縮機11の吸入側には、低圧圧力センサ22が設けられ、圧縮機11に吸入される冷媒の圧力を検出する。検出された圧力を示す情報は、後述する熱源機制御装置10に供給される。
 冷媒流路切替装置12は、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12としては、例えば四方弁を用いることができるが、他の弁を組み合わせて使用してもよい。
 空気側熱交換器13は、近傍に設置されたファン等の空気側送風機21によって供給される空気と冷媒との間で熱交換を行う。具体的には、空気側熱交換器13は、冷房運転の際に、冷媒の熱を空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、空気側熱交換器13は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。
 主膨張弁14は、冷媒回路内を流れる冷媒を減圧および膨張させる機能を有する。主膨張弁14は、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。
 水側熱交換器15は、凝縮器または蒸発器として機能し、冷媒回路内を流れる冷媒と、ポンプ40によって熱媒体回路内を流れる水等の熱媒体との間で熱交換を行う。
 アキュムレータ16は、圧縮機11の低圧側である吸入側に設けられる。アキュムレータ16は、冷房運転および暖房運転の運転状態の違いによって生じる余剰冷媒、過渡的な運転の変化に対する余剰冷媒等を貯留する。
 冷媒量調整タンク17は、主膨張弁14に対して並列的に設けられ、冷房運転および暖房運転の運転状態の違いによって生じる余剰冷媒を貯留する。
 冷媒量調整タンク17の一端には、空気側熱交換器13および主膨張弁14を接続する冷媒配管2から分岐した配管が接続される。また、冷媒量調整タンク17の他端には、主膨張弁14および水側熱交換器15を接続する冷媒配管2から分岐した配管が接続される。
 ここで、冷房運転時と暖房運転時とで冷媒回路に必要な冷媒量を比較した場合、水側熱交換器15の方が空気側熱交換器13よりも冷媒を凝縮する効率がよいため、水側熱交換器15における冷媒側の容積を小さくすることができる。これにより、冷房運転時よりも暖房運転時の方が、冷媒回路に必要な冷媒量が少なくて済むことになる。
 すなわち、暖房運転時には、冷媒回路に必要な冷媒量が余剰となるので、冷媒量調整タンク17には余剰分の冷媒液が流れ込み、冷媒液が貯留される。
 一方、暖房運転から冷房運転に切り替えた場合には、冷媒回路に必要な冷媒量が不足するので、冷媒量調整タンク17に貯留された冷媒液が冷媒回路に流れ込む。
 副膨張弁18Aおよび18Bは、その開度に応じて冷媒量調整タンク17に流入出する冷媒量を調整する冷媒流量制御弁として機能する。
 副膨張弁18Aは、冷媒量調整タンク17の一端側、具体的には冷房運転時の上流側に設けられる。また、副膨張弁18Bは、冷媒量調整タンク17の他端側、具体的には冷房運転時の下流側に設けられる。
 ガス抜き回路19は、一端が冷媒量調整タンク17に設けられ、他端が主膨張弁14および水側熱交換器15の間の冷媒配管2に設けられる。
 ガス抜き回路19は、冷媒量調整タンク17の両端側に設けられた副膨張弁18Aおよび18Bの両方が全閉となった場合でも、冷媒量調整タンク17内の冷媒が液封となるのを防ぐ。
 低圧圧力センサ22は、圧縮機11に流入する冷媒の圧力を検出し、検出結果である圧力情報を熱源機制御装置10に供給する。
 低圧圧力センサ22は、圧縮機11の流入側の冷媒配管2に設けられる。
 外気温度センサ23は、冷媒量調整タンク17の周囲の温度を検出し、検出結果である温度情報を熱源機制御装置10に供給する。
 外気温度センサ23は、冷媒量調整タンク17の近傍に設けられるが、これに限られず、例えば、冷媒量調整タンク17から離れた位置に設けてもよい。また、例えば、空気側熱交換器13の空気吸い込み位置に設けられた図示しない温度センサを、外気温度センサ23として用いてもよい。
 熱源機制御装置10は、例えばマイクロコンピュータで構成され、この冷凍サイクル装置1全体を制御する。例えば、熱源機制御装置10は、低圧圧力センサ22および外気温度センサ23等の各種検出手段から検出結果を示す情報を受け取る。そして、熱源機制御装置10は、検出結果に基づく冷凍サイクル装置1の運転情報、並びに使用者から指示される運転内容に基づき、圧縮機11の駆動周波数、空気側送風機21の回転数(ON/OFFを含む)、冷媒流路切替装置12の切り替え、主膨張弁14の開度、副膨張弁18Aおよび18Bの開度等を制御する。
[冷媒量調整タンクの設置位置]
 次に、冷凍サイクル装置1における冷媒量調整タンク17の設置位置について説明する。図2は、図1の冷凍サイクル装置1における冷媒量調整タンク17の設置例を示す概略図である。
 図2に示すように、冷凍サイクル装置1における各種機器は、機械室30に収容され、機械室30上に空気側熱交換器13が配置される。また、空気側熱交換器13上には空気側送風機21が配置される。
 具体的には、機械室30に収容される各種機器には、冷媒回路の主回路を構成する圧縮機11、冷媒流路切替装置12、主膨張弁14、水側熱交換器15およびアキュムレータ16と、熱源機制御装置10とが含まれる。また、機械室30には、冷媒回路の副回路を構成する冷媒量調整タンク17、副膨張弁18Aおよび18Bも収容される。
 ところで、従来の冷凍サイクル装置においては、冷媒量調整タンク内の温度が冷媒の蒸発温度よりも常に高くなるようにして冷媒を加熱するために、例えば、冷媒量調整タンクを空気側熱交換器の空気の流れの下流側、すなわち機械室上に設置する構造が提案されている。
 しかしながら、このように冷媒量調整タンクを設置した場合には、冷媒量調整タンクに接続される配管の構造が複雑になる虞がある。
 また、一般的に、冷媒量調整タンクは重量があるため、冷媒量調整タンクを機械室上に載置するためには、機械室の強度を高める必要があり、冷凍サイクル装置全体としての重量が増大するとともに、製造コストが増大する虞がある。
 さらに、重量のある冷媒量調整タンクを機械室上に載置するため、冷凍サイクル装置としての重心が上方に位置することになるため、冷凍サイクル装置を設置した場合に安定性が低下する虞もある。
 そこで、本実施の形態1では、冷媒量調整タンク17を機械室30内に収容し、上述した問題点を解決するようにしている。
 冷媒量調整タンク17を機械室30に収容した場合、冷媒量調整タンク17は、冷媒回路中の接続が必要な水側熱交換器15等の機器と冷媒配管2を介して略最短距離で接続される。
 このように、冷媒量調整タンク17を機械室30に収容することにより、冷媒量調整タンクを空気側熱交換器の空気流れの下流側に設置していた従来の冷凍サイクル装置と比較して、構造を簡略化することができる。
 また、冷媒量調整タンク17を機械室30に収容することにより、冷媒量調整タンク17に接続される冷媒配管2を略最短距離で接続できるため、冷凍サイクル装置1における冷媒配管2を短くでき、構造をより簡略化することができる。
 さらに、機械室30の強度を高める必要がなくなるため、冷凍サイクル装置1の重量を軽量化することができるとともに、製造コストを低減することができる。
 さらにまた、冷凍サイクル装置1としての重心が下方に位置することになるため、冷凍サイクル装置1を設置した場合に安定性を向上させることができる。
 ここで、冷媒量調整タンク17を機械室30に収容した場合において、冷媒の蒸発温度が外気温度よりも高いときには、冷媒量調整タンク17の容器壁面を介して冷媒が外気によって冷却される。そのため、冷媒量調整タンク17内の冷媒が液化され、冷媒量調整タンク17に冷媒液が滞留することがある。
 このとき、冷媒量調整タンク17に冷媒液が滞留するのを防ぐために、冷媒量調整タンク17に対して一定量の冷媒を常に供給し続けた場合、冷媒の蒸発温度よりも外気温度が高いときであっても、冷媒量調整タンク17に一定量の冷媒液が滞留してしまう。
 また、これによって冷房運転時における必要冷媒量が増加してしまうため、暖房運転時と冷房運転時とにおける必要冷媒量の差が大きくなり、結果として冷媒量調整タンク17の容量を大きくする必要が生じる。
 本実施の形態1では、冷媒量調整タンク17の両端に副膨張弁18Aおよび18Bを設け、冷房運転時に冷媒量調整タンク17へ流れる冷媒の流量を適切に調整する。
 これにより、冷媒量調整タンク17を機械室30内に収容できるとともに、外気温度よりも冷媒の蒸発温度が高い場合の冷媒量調整タンク17への冷媒の滞留を抑制することができる。
[冷媒量調整タンクへの冷媒流量制御]
 図3は、図1の冷凍サイクル装置1における冷媒量調整タンク17への冷媒流量制御処理の流れの一例を示すフローチャートである。
 なお、ここでは、冷媒量調整タンク17への冷媒流量制御が継続的に行われるものとし、図3のフローチャートの処理が巡回的に繰り返されるものとする。例えば、所定時間毎に図3に示す処理が繰り返される。
 まず、ステップS1において、熱源機制御装置10は、ユニット運転が行われているか否かを判断する。なお、「ユニット運転が行われている」状態とは、圧縮機11が運転状態であり、冷媒が冷媒回路内を循環しており、かつ、運転モードが冷房運転である状態を示す。
 ユニット運転が行われていると判断した場合(ステップS1;YES)には、処理がステップS2に移行する。一方、ユニット運転が行われていないと判断した場合(ステップS1;NO)には、処理がステップS4に移行する。
 ステップS2において、熱源機制御装置10は、低圧圧力センサ22で検出された圧力情報を冷媒の飽和温度である蒸発温度に換算する。そして、熱源機制御装置10は、得られた冷媒の蒸発温度と、外気温度センサ23で検出された温度情報に基づく外気温度とを比較し、冷媒の蒸発温度が外気温度よりも高いか否かを判断する。
 なお、この例では、低圧圧力センサ22の検出結果に基づいて冷媒の蒸発温度を得るようにしているが、これに限られない。例えば、冷房運転時における空気側熱交換器13の冷媒の出口側に温度センサを設け、この温度センサの検出結果から冷媒の蒸発温度を得るようにしてもよい。
 ここで、冷媒の蒸発温度は、低圧圧力センサ22によって検出された低圧時の冷媒の圧力に基づき得られる温度であるが、このときの冷媒の圧力は、冷媒量調整タンク17に流入する際の圧力と異なる。そのため、低圧圧力センサ22の検出結果に基づく低圧時の冷媒の蒸発温度と、冷媒量調整タンク17に流入する際の圧力に基づく冷媒の蒸発温度との間には、誤差が生じる。
 また、外気温度は、外気温度センサ23によって検出された温度に基づき得られる温度であるが、この外気温度と実際の冷媒量調整タンク17の温度との間にも、誤差が生じる。
 そこで、本実施の形態1では、これらの誤差を補正するための設定温度を予め設定し、低圧時の冷媒の蒸発温度と、外気温度に設定温度を加算した温度とを比較する。
 なお、以下では、外気温度に設定温度を加算して得られる温度を、単に「外気温度」と称して説明する。
 冷媒の蒸発温度が外気温度以下であると判断した場合(ステップS2;NO)には、処理がステップS4に移行する。
 冷媒の蒸発温度が外気温度以下である場合、冷媒量調整タンク17内の冷媒は、周囲の外気によって加熱される状態となる。このとき、冷媒は加熱されてガス状態となるため、副膨張弁18Bを開として冷媒量調整タンク17と水側熱交換器15とを接続する配管を開放しても、冷媒量調整タンク17へ冷媒液が滞留することはない。
 したがって、ステップS4において、熱源機制御装置10は、副膨張弁18Aの開度を「全閉」に設定するとともに、副膨張弁18Bの開度を「全開」に設定する。
 一方、ステップS2において、冷媒の蒸発温度が外気温度よりも高いと判断した場合(ステップS2;YES)には、処理がステップS3に移行する。
 冷媒の蒸発温度が外気温度よりも高い場合、冷媒量調整タンク17内の冷媒は、周囲の外気によって冷却される状態となる。これにより、冷媒量調整タンク17内の冷媒が凝縮によって液化するため、副膨張弁18Bを開として冷媒量調整タンク17と水側熱交換器15とを接続する配管を開放しても、冷媒量調整タンク17へ冷媒液が滞留することになる。そして、冷媒液が冷媒量調整タンク17に滞留することにより、冷房運転時に必要な冷媒が不足する状態となるため、安定した運転ができない虞がある。
 したがって、ステップS3において、熱源機制御装置10は、副膨張弁18Aの開度を予め設定された「設定開度」に設定するとともに、副膨張弁18Bの開度を「全開」に設定する。
 これにより、冷媒量調整タンク17内の冷媒の液化を抑制し、冷媒が滞留することで安定した運転ができない状態を回避することができる。
 このような場合、冷媒量調整タンク17内の冷媒は、上述したようにガス状態となり、冷媒量調整タンク17への冷媒の滞留がなくなるので、冷媒回路内に充填されたほとんどの冷媒が冷媒回路内を循環することになる。そのため、冷房運転時における必要冷媒量は、冷媒量調整タンク17に冷媒を常に流し続ける場合よりも少なくすることができる。
 なお、暖房運転時においては、冷房運転時と比較して必要な冷媒量が少ないので、余剰冷媒を冷媒量調整タンク17に貯留する必要がある。そのため、この場合には、副膨張弁18Bを「全開」に設定して冷媒量調整タンク17と水側熱交換器15とを接続する配管を開放し、冷媒量調整タンク17に余剰冷媒を貯留する。
 なお、このときに冷媒が冷媒量調整タンク17への出入りを繰り返すと、冷媒量調整タンク17内に冷凍機油が残留する可能性があるので、冷凍機油の残留を抑制するため、副膨張弁18Aを最低開度に設定する。これにより、最低循環量の冷媒を冷媒回路に循環させることができる。
 以上のように、本実施の形態1では、余剰冷媒を貯留する冷媒量調整タンク17を主膨張弁14に並列的に設けるとともに、冷媒量調整タンク17の両端側に副膨張弁18Aおよび18Bを設ける。そして、冷媒量調整タンク17内の冷媒の蒸発温度および外気温度に基づき、副膨張弁18Aおよび18Bの開度を調整し、冷媒量調整タンク17に流入出する冷媒の量を調整する。
 これにより、冷房運転時において、冷媒量調整タンク17に滞留する冷媒が外気によって液化するのを防ぐように冷媒量調整タンク17内に冷媒を流すことができ、冷媒量調整タンク17内への冷媒の滞留を抑制することができる。
 また、本実施の形態1では、上述のようにして冷媒量調整タンク17への冷媒の滞留を抑制できることにより、従来のように冷媒量調整タンクを空気側熱交換器の空気の流れの下流側に設置する必要がなくなる。そのため、冷媒量調整タンク17を機械室内に収容することができ、冷凍サイクル装置1の構造を簡略化することができる。
 なお、副膨張弁18Bは、冷房運転時および暖房運転時においてその開度が常に「全開」に設定されるので、省略してもよい。
実施の形態2.
 次に、本発明の実施の形態2に係る空気調和装置について説明する。
 図1に示す冷凍サイクル装置1においては、圧縮機11が停止している間に冷媒量調整タンク17が冷却されることがあるので、圧縮機11が起動してから所定時間の間は、冷媒を冷却する熱量が運転安定時よりも大きくなる。そのため、圧縮機11が起動してから所定時間の間は、冷媒量調整タンク17へ流れる冷媒の流量を運転安定時よりも大きくし、流れる冷媒によって冷媒量調整タンク17を加熱する必要がある。
 そこで、本実施の形態2では、圧縮機11の起動からの経過時間に応じて副膨張弁18Aの開度を変更し、冷媒量調整タンク17へ流れる冷媒の流量を調整するようにしている。
 なお、本実施の形態2に係る冷凍サイクル装置の回路構成、および冷媒量調整タンクの設置位置については、実施の形態1と同様であるため、ここでは説明を省略する。
[冷媒量調整タンクへの冷媒流量制御]
 図4は、本発明の実施の形態2に係る冷凍サイクル装置1における冷媒量調整タンク17への冷媒流量制御処理の流れの一例を示すフローチャートである。
 なお、ここでは、冷媒量調整タンク17への冷媒流量制御が継続的に行われるものとし、図4のフローチャートの処理が巡回的に繰り返されるものとする。例えば、所定時間毎に図4に示す処理が繰り返される。
 まず、ステップS11において、熱源機制御装置10は、ユニット運転が行われているか否かを判断する。ユニット運転が行われていると判断した場合(ステップS11;YES)には、処理がステップS12に移行する。
 ステップS12において、熱源機制御装置10は、低圧圧力センサ22で検出された圧力情報を冷媒の飽和温度である蒸発温度に換算する。そして、熱源機制御装置10は、得られた冷媒の蒸発温度と、外気温度センサ23で検出された温度情報に基づく外気温度とを比較し、冷媒の蒸発温度が外気温度よりも高いか否かを判断する。
 冷媒の蒸発温度が外気温度よりも高いと判断した場合(ステップS12;YES)には、処理がステップS13に移行する。
 ステップS13において、熱源機制御装置10は、圧縮機11の起動から4分間経過したか否かを判断する。これは、上述したように圧縮機11が安定して運転している状態であるか否かを判断するためである。
 なお、圧縮機11が安定している状態であるか否かを判断する時間は、4分に限られず、例えば、圧縮機11の性能等を考慮して適宜設定することができる。
 4分間経過していないと判断した場合(ステップS13;NO)には、処理がステップS15に移行する。
 ステップS15において、熱源機制御装置10は、副膨張弁18Aの開度を予め設定された「第1の開度」に設定する。具体的には、熱源機制御装置10は、例えば副膨張弁18Aの開度を、「第1の開度」として全開の20%程度に設定する。
 一方、ステップS13において、4分間経過したと判断した場合(ステップS13;YES)には、処理がステップS14に移行する。
 ステップS14において、熱源機制御装置10は、副膨張弁18Aの開度をステップS15で設定した開度よりも小さい「第2の開度」に設定する。具体的には、熱源機制御装置10は、例えば副膨張弁18Aの開度を、「第2の開度」として全開の10%程度に設定する。
一方、ステップS11においてユニット運転が行われていないと判断した場合(ステップS11;NO)、ならびに、ステップS12において冷媒の蒸発温度が外気温度以下であると判断した場合(ステップS12;NO)には、処理がステップS16に移行する。
 ステップS16において、熱源機制御装置10は、副膨張弁18Aの開度を「全閉」に設定するとともに、副膨張弁18Bの開度を「全開」に設定する。
 なお、ステップS14においては、副膨張弁18Aの開度をステップS15と同等のより大きい開度に設定することもできる。
 しかしながら、運転安定時に流れる冷媒の流量を少なくすることで、主膨張弁14に流れる冷媒の流量に対して、冷媒量調整タンク17に流れる冷媒の流量比率を小さくすることができる。そのため、主膨張弁14に対する冷媒流量制御への影響を小さくすることができ、安定した運転を行うことができる。
 以上のように、本実施の形態2によれば、圧縮機11の起動からの経過時間に応じて副膨張弁18Aの開度を変更し、圧縮機11が起動してから所定時間経過するまでは、運転安定時よりも副膨張弁18Aの開度を大きくするため、冷媒量調整タンク17に流入する冷媒の流量を大きくすることができ、冷媒量調整タンク17内に滞留する冷媒をより加熱することができる。
 また、圧縮機11の運転安定時における副膨張弁18Aの開度を、圧縮機11の起動時における副膨張弁18Aの開度よりも小さくすることにより、主膨張弁14の冷媒流量制御への影響を小さくすることができ、運転をより安定させることができる。
 以上、本発明の実施の形態1および実施の形態2について説明したが、本発明は、上述した本発明の実施の形態1および実施の形態2に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
 例えば、上述した実施の形態1および実施の形態2では、冷媒回路が1つである場合について説明したが、これに限られず、例えば、同一の冷凍サイクル装置1内に複数の冷媒回路を設けてもよい。
 図5は、本発明の実施の形態1および実施の形態2に係る冷凍サイクル装置において、複数の冷媒回路を設けた場合の一例を示す概略図である。図5に示す例では、冷凍サイクル装置1内に、4つの冷媒回路を設けた場合を示す。
 この例では、4つのそれぞれの冷媒回路内を流れる冷媒と、1台のポンプ40によって1つの熱媒体回路内を流れる熱媒体との間で熱交換を行う状態を示している。
 1 冷凍サイクル装置、2 冷媒配管、10 熱源機制御装置、11 圧縮機、12 冷媒流路切替装置、13 空気側熱交換器、14 主膨張弁、15 水側熱交換器、16 アキュムレータ、17 冷媒量調整タンク、18A、18B 副膨張弁、19 ガス抜き回路、21 空気側送風機、22 低圧圧力センサ、23 外気温度センサ、30 機械室、40 ポンプ。

Claims (7)

  1.  圧縮機、冷媒流路切替装置、空気側熱交換器、主膨張弁および水側熱交換器が配管で順次接続され、冷媒が循環する冷媒回路が形成された冷凍サイクル装置であって、
     前記主膨張弁に対して並列に設けられ、前記冷媒を貯留する冷媒量調整タンクと、
     前記空気側熱交換器および前記主膨張弁を接続する配管から分岐して前記冷媒量調整タンクの一端に接続された配管に設けられ、開度に応じて前記冷媒量調整タンクに流入出する冷媒の量を調整する第1の冷媒流量制御弁と、
     前記主膨張弁および前記水側熱交換器を接続する配管から分岐して前記冷媒量調整タンクの他端に接続された配管に設けられ、開度に応じて前記冷媒量調整タンクに流入出する冷媒の量を調整する第2の冷媒流量制御弁と
    を備える
    冷凍サイクル装置。
  2.  前記冷媒量調整タンクは、
     前記冷媒回路を形成する前記圧縮機、前記膨張弁および前記水側熱交換器を少なくとも収容する機械室内に収容される
    請求項1に記載の冷凍サイクル装置。
  3.  一端が前記冷媒量調整タンクに接続され、他端が前記主膨張弁と前記水側熱交換器とを接続する配管に接続されたガス抜き回路をさらに備える
    請求項1または2に記載の冷凍サイクル装置。
  4.  前記圧縮機、前記膨張弁、前記第1の冷媒流量制御弁および前記第2の冷媒流量制御弁を制御する制御装置をさらに備え、
     前記制御装置は、
     冷房運転の際に、前記冷媒量調整タンクの周囲の温度である外気温度および前記冷媒の蒸発温度に基づき、前記第1の冷媒流量制御弁の前記開度を調整する
    請求項1~3のいずれか一項に記載の冷凍サイクル装置。
  5.  前記制御装置は、
     前記冷媒の蒸発温度が前記外気温度よりも高い場合に、前記第1の冷媒流量制御弁の開度を予め設定された開度に設定し、
     前記冷媒の蒸発温度が前記外気温度以下である場合に、前記第1の冷媒流量制御弁の開度を全閉に設定する
    請求項4に記載の冷凍サイクル装置。
  6.  前記制御装置は、
     前記冷媒の蒸発温度が前記外気温度よりも高いときで、前記圧縮機が起動してから予め設定された時間を経過していない場合に、前記第1の冷媒流量制御弁の前記開度を予め設定された第1の開度に設定し、前記圧縮機が起動してから前記設定された時間を経過した場合に、前記第1の冷媒流量制御弁の前記開度を前記第1の開度よりも小さい第2の開度に設定する
    請求項4に記載の冷凍サイクル装置。
  7.  前記冷媒回路が複数設けられる
    請求項1~6のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2015/079553 2015-10-20 2015-10-20 冷凍サイクル装置 WO2017068642A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/079553 WO2017068642A1 (ja) 2015-10-20 2015-10-20 冷凍サイクル装置
EP15906648.9A EP3367021B1 (en) 2015-10-20 2015-10-20 Refrigeration cycle device
EP19152449.5A EP3508802B1 (en) 2015-10-20 2015-10-20 Refrigeration cycle apparatus
JP2017546308A JP6479203B2 (ja) 2015-10-20 2015-10-20 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079553 WO2017068642A1 (ja) 2015-10-20 2015-10-20 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2017068642A1 true WO2017068642A1 (ja) 2017-04-27

Family

ID=58557039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079553 WO2017068642A1 (ja) 2015-10-20 2015-10-20 冷凍サイクル装置

Country Status (3)

Country Link
EP (2) EP3367021B1 (ja)
JP (1) JP6479203B2 (ja)
WO (1) WO2017068642A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170082332A1 (en) * 2014-05-19 2017-03-23 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2021084743A1 (ja) * 2019-11-01 2021-05-06

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154420B2 (ja) 2019-08-07 2022-10-17 三菱電機株式会社 冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269873A (ja) * 1988-04-22 1989-10-27 Mitsubishi Electric Corp ヒートポンプ装置
JP2000146328A (ja) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd 冷凍空調装置
JP2003083644A (ja) * 2001-09-12 2003-03-19 Mitsubishi Electric Corp 冷媒回路
JP2014066420A (ja) * 2012-09-26 2014-04-17 Hitachi Appliances Inc 冷凍装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526477A (ja) * 1991-07-15 1993-02-02 Toshiba Corp 空気調和機
JP2000266415A (ja) * 1999-03-15 2000-09-29 Bosch Automotive Systems Corp 冷凍サイクル
JP3584862B2 (ja) * 2000-07-13 2004-11-04 ダイキン工業株式会社 空気調和機の冷媒回路
JP2002106960A (ja) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd ヒートポンプ給湯機
JP4321095B2 (ja) * 2003-04-09 2009-08-26 日立アプライアンス株式会社 冷凍サイクル装置
JP4974714B2 (ja) * 2007-03-09 2012-07-11 三菱電機株式会社 給湯器
KR101425040B1 (ko) * 2007-08-23 2014-07-31 엘지전자 주식회사 공기조화기
JP4687710B2 (ja) * 2007-12-27 2011-05-25 三菱電機株式会社 冷凍装置
WO2011010473A1 (ja) * 2009-07-22 2011-01-27 三菱電機株式会社 ヒートポンプ装置
JP6148001B2 (ja) * 2012-12-14 2017-06-14 シャープ株式会社 空気調和機
JP2014119154A (ja) * 2012-12-14 2014-06-30 Sharp Corp 空気調和機
JP6068121B2 (ja) * 2012-12-14 2017-01-25 シャープ株式会社 空気調和機
JP5817775B2 (ja) * 2013-04-12 2015-11-18 ダイキン工業株式会社 チラー装置
JP6250428B2 (ja) * 2014-02-12 2017-12-20 東芝キヤリア株式会社 冷凍サイクル装置
KR101805334B1 (ko) * 2014-02-20 2017-12-05 도시바 캐리어 가부시키가이샤 열원 장치
JP6218922B2 (ja) * 2014-03-14 2017-10-25 三菱電機株式会社 冷凍サイクル装置
JP2015224845A (ja) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6257809B2 (ja) * 2015-01-29 2018-01-10 三菱電機株式会社 冷凍サイクル装置
EP3315875B1 (en) * 2015-06-24 2019-02-13 Mitsubishi Electric Corporation Heat source apparatus
JP6433602B2 (ja) * 2015-10-07 2018-12-05 三菱電機株式会社 冷凍サイクル装置
EP3361184B1 (en) * 2015-10-08 2020-05-06 Mitsubishi Electric Corporation Refrigeration cycle device
CN112963986B (zh) * 2015-10-08 2022-09-20 三菱电机株式会社 制冷循环装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269873A (ja) * 1988-04-22 1989-10-27 Mitsubishi Electric Corp ヒートポンプ装置
JP2000146328A (ja) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd 冷凍空調装置
JP2003083644A (ja) * 2001-09-12 2003-03-19 Mitsubishi Electric Corp 冷媒回路
JP2014066420A (ja) * 2012-09-26 2014-04-17 Hitachi Appliances Inc 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367021A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170082332A1 (en) * 2014-05-19 2017-03-23 Mitsubishi Electric Corporation Air-conditioning apparatus
US10976085B2 (en) * 2014-05-19 2021-04-13 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2021084743A1 (ja) * 2019-11-01 2021-05-06
WO2021084743A1 (ja) * 2019-11-01 2021-05-06 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP3367021B1 (en) 2022-02-23
EP3508802B1 (en) 2020-04-22
EP3367021A4 (en) 2019-02-20
EP3508802A1 (en) 2019-07-10
JPWO2017068642A1 (ja) 2018-05-10
EP3367021A1 (en) 2018-08-29
JP6479203B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
JP5855129B2 (ja) 室外機及び空気調和装置
US11441828B2 (en) Method for operating a chiller
JP6828821B2 (ja) 相変化冷却装置および相変化冷却方法
KR101602741B1 (ko) 항온액 순환 장치 및 그 운전 방법
JP6792057B2 (ja) 冷凍サイクル装置
JP6187514B2 (ja) 冷凍装置
JP2013092318A (ja) 空気調和装置
JPWO2016017430A1 (ja) 室外機および冷凍サイクル装置
JP2010190553A (ja) 電子機器の冷却システム
JP2017044454A (ja) 冷凍サイクル装置及び冷凍サイクル装置の制御方法
JP6479203B2 (ja) 冷凍サイクル装置
WO2017085859A1 (ja) 空気調和装置
JP2008249259A (ja) 冷凍空気調和装置
WO2012096078A1 (ja) 冷却システム及びその運転方法
JP2013231542A (ja) ヒートポンプ装置
JP2012021744A (ja) 冷凍装置
WO2017068631A1 (ja) 熱源システム
CN107735625B (zh) 制冷机系统
JP5836844B2 (ja) 冷凍装置
JP2016145687A (ja) 冷却装置
JP6881424B2 (ja) 冷凍装置
JP2013124843A (ja) 冷凍サイクルシステム
JP2018112367A (ja) 二元ヒートポンプ装置
JP6491465B2 (ja) 冷却システム
JPWO2019008660A1 (ja) 空気調和システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015906648

Country of ref document: EP