KR101602741B1 - 항온액 순환 장치 및 그 운전 방법 - Google Patents

항온액 순환 장치 및 그 운전 방법 Download PDF

Info

Publication number
KR101602741B1
KR101602741B1 KR1020140082419A KR20140082419A KR101602741B1 KR 101602741 B1 KR101602741 B1 KR 101602741B1 KR 1020140082419 A KR1020140082419 A KR 1020140082419A KR 20140082419 A KR20140082419 A KR 20140082419A KR 101602741 B1 KR101602741 B1 KR 101602741B1
Authority
KR
South Korea
Prior art keywords
pressure
refrigerant
compressor
fan
temperature
Prior art date
Application number
KR1020140082419A
Other languages
English (en)
Other versions
KR20150005460A (ko
Inventor
신타로 스기야마
Original Assignee
에스엠시 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스엠시 가부시키가이샤 filed Critical 에스엠시 가부시키가이샤
Publication of KR20150005460A publication Critical patent/KR20150005460A/ko
Application granted granted Critical
Publication of KR101602741B1 publication Critical patent/KR101602741B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(과제) 냉동 회로내의 냉매압력이 높아진 경우라도 압축기를 정지시키지 않고 냉매압력을 저하시킬 수 있도록 하고, 그것에 의해 냉동 회로 또는 항온액 순환 장치 전체를 정지시키지 않고 항온액의 온도제어를 계속적으로 행할 수 있도록 한다.
(해결 수단) 압축기(25)의 기동 후 압력 센서(43)로 측정되는 냉매압력이 기준 압력영역에 도달하지 못한 경우에는 팬(34a)을 기동하지 않거나 또는 기동해서 최소 회전수로 유지하고, 상기 냉매압력이 상기 기준 압력영역에 도달하면 상기 팬(34a)의 회전수를 인버터 제어함으로써 상기 냉매압력을 제어하고, 상기 팬(34a)의 회전수가 최대 회전수에 도달한 후에도 상기 냉매압력이 더 상승을 계속해서 상한값을 상회할 경우에는 상기 팬(34a)의 회전수를 최대 회전수로 유지한 채, 상기 압축기(25)의 회전수를 정상 운전시의 회전수인 고회전수로부터 감소시키는 제어를 행한다.

Description

항온액 순환 장치 및 그 운전 방법{CONSTANT TEMPERATURE LIQUID CIRCULATING DEVICE AND OPERATION METHOD THEREOF}
본 발명은 온도 조정된 항온액을 부하에 공급함으로써 상기 부하를 냉각 또는 가열하는 항온액 순환 장치 및 그 운전 방법에 관한 것이다.
온도 조정된 항온액을 부하에 공급함으로써 상기 부하를 냉각 또는 가열하는 항온액 순환 장치는 예를 들면 특허문헌 1에 그 일례가 개시되어 있듯이 이미 공지이다. 이 종류의 항온액 순환 장치는 통상, 도 3에 개략적으로 나타내는 구성을 갖고 있고, 온도 조정된 항온액을 부하(50)에 순환적으로 공급하는 항온액 회로(51)와, 상기 항온액을 온도 조정하는 냉동 회로(52)를 갖고 있다.
상기 항온액 회로(51)는 상기 항온액을 수용하는 탱크(53)와, 상기 탱크(53)내의 항온액을 부하(50)에 공급하는 펌프(54)와, 부하(50)를 냉각함으로써 승온한 항온액을 열교환기(55)에 있어서 냉매와의 열교환에 의해 냉각하고, 상기 탱크(53)로 리턴시키는 냉각관(56)을 갖고 있다.
또한, 상기 냉동 회로(52)는 가스상 냉매를 압축해서 고온고압의 가스상 냉매로 하는 압축기(57)와, 상기 압축기(57)로부터 보내지는 고온고압의 가스상 냉매를 냉각해서 고압의 액상 냉매로 하는 공냉식의 콘덴서(58)와, 상기 콘덴서(58)에 냉각풍을 송풍하는 팬(59)과, 상기 콘덴서(58)로부터 보내지는 고압의 액상 냉매를 팽창시켜서 저온저압의 액상 냉매로 하는 팽창밸브(60)와, 상기 팽창밸브(60)로부터 보내지는 저온저압의 액상 냉매를 상기 열교환기(55)에 있어서 상기 항온액과의 열교환에 의해 증발시켜 저압의 가스상 냉매로 해서 상기 압축기(57)로 보내는 증발기(61)를 갖고 있다.
상기 냉동 회로(52)의 내부는 냉매압력이 높은 고압측 부분과, 냉매압력이 낮은 저압측 부분으로 나뉜다. 상기 고압측 부분은 상기 압축기(57)로부터 상기 콘덴서(58)를 거쳐 상기 팽창밸브(60)에 이르기까지의 부분이며, 한편, 상기 저압측 부분은 상기 팽창밸브(60)로부터 상기 증발기(61)를 거쳐 상기 압축기(57)에 이르기까지의 부분이다.
여기에서, 상기 고압측 부분의 냉매압력은 상기 콘덴서(58)내에서 가스상 냉매가 액화될 때의 온도인 응축 온도에 의존하고, 이 응축 온도가 높으면 냉매압력은 높아지고, 응축 온도가 낮으면 냉매압력은 낮아진다.
또한, 상기 콘덴서(58)가 공냉식인 경우, 상기 고압측 부분의 냉매압력은 항온액 순환 장치의 주위온도(특히 외기온도)와, 상기 팬(59)에 의해 콘덴서(58)에 송풍되는 냉각풍의 통풍량과, 상기 압축기(57)로부터 토출되는 냉매의 유량에 의존한다. 즉, 상기 주위온도가 오르면 상기 응축 온도가 올라서 냉매압력도 상승하고, 주위온도가 떨어지면 상기 응축온도가 떨어져서 냉매압력도 저하된다. 또한, 상기 팬(59)의 회전수가 늘어나서 냉각풍의 통풍량이 늘어나면 상기 응축 온도가 떨어져서 냉매압력은 저하하고, 상기 팬(59)의 회전수가 줄어서 냉각풍의 통풍량이 줄면 상기 응축 온도가 올라서 냉매압력은 상승한다. 또한, 상기 압축기(57)로부터 토출 되는 냉매의 유량이 감소하면 상기 응축 온도가 떨어져서 냉매압력은 저하되고, 상기 압축기(57)로부터 토출되는 냉매의 유량이 증가하면 상기 응축 온도가 올라서 냉매압력도 상승하게 된다.
상기 고압측 부분의 냉매압력이 지나치게 높아진 경우, 배관이나 사용 부품의 내압한도를 초과해서 위험한 상태가 된다. 이 때문에, 종래의 항온액 순환 장치에 있어서는 상기 고압측 부분의 냉매압력이 높아진 경우, 상기 팬(59)의 회전수를 늘려서 냉각풍의 풍량을 증대시키도록 하고 있다. 그러나, 주위온도의 영향 등에 의해 상기 팬(59)의 회전수를 최대 회전수로 해도 냉매압력의 상승이 계속될 경우가 있고, 이러한 경우에는 상기 압축기(57)를 정지시켜서 배관이나 사용 부품의 파손을 방지하도록 하고 있다.
그러나, 압축기(57)를 정지시키면 냉동 회로가 기능하지 않게 되거나, 또는 항온액 순환 장치 전체의 운전을 정지시키지 않을 수 없기 때문에 항온액의 온도 조정이 불가능하게 된다는 문제가 있었다.
일본 특허 공개 2002-22337호 공보
본 발명의 목적은 냉동 회로내의 냉매압력이 높아진 경우라도 압축기를 정지시키지 않고 냉매압력을 저하시킬 수 있도록 하고, 그것에 의해 냉동 회로를 정지시키거나 또는 항온액 순환 장치 전체를 정지시키거나 하지 않고 항온액의 온도제어를 계속적으로 행할 수 있도록 하는 것에 있다.
상기 목적을 달성하기 위해서 본 발명의 항온액 순환 장치는 온도 조정된 항온액을 부하에 공급하는 항온액 회로와, 상기 항온액의 온도를 상기 항온액과 냉매의 열교환에 의해 조정하는 냉동 회로와, 장치 전체를 제어하는 제어부를 갖고, 상기 냉동 회로는 가스상 냉매를 압축해서 고온고압의 가스상 냉매로 하는 압축기와, 상기 압축기로부터 보내지는 고온고압의 가스상 냉매를 냉각해서 고압의 액상 냉매로 하는 공냉식의 콘덴서와, 상기 콘덴서에 냉각풍을 송풍하는 팬과, 상기 콘덴서로부터 보내지는 고압의 액상 냉매를 팽창시켜서 저온저압의 액상 냉매로 하는 팽창 밸브와, 상기 팽창 밸브로부터 보내지는 저온저압의 액상 냉매를 상기 항온액의 열교환에 의해 증발시켜서 저압의 가스상 냉매로 하고, 이 저압의 가스상 냉매를 상기 압축기로 보내는 증발기와, 상기 팽창 밸브의 입구측의 냉매압력을 측정하는 압력 센서를 갖고, 상기 제어부는 상기 압축기의 기동후, 상기 압력 센서로 측정되는 냉매압력이 기준 압력영역에 도달하지 못한 경우에는 상기 팬을 기동하지 않거나, 또는 기동해서 최소 회전수로 유지하고, 상기 냉매압력이 상기 기준 압력영역에 도달하면 상기 팬의 회전수를 인버터 제어함으로써 상기 냉매압력을 제어하고, 상기 압축기의 회전수가 정상 운전시의 회전수인 고회전수에 도달함과 아울러 상기 팬의 회전수가 최대 회전수에 도달한 후에, 상기 냉매압력이 더 상승을 계속해서 상한값에 도달한 경우에는 상기 팬의 회전수를 최대 회전수로 유지한 채, 상기 압축기의 회전수를 상기 고회전수로부터 감소시키는 제어를 행하도록 구성된 것을 특징으로 한다.
또한, 본 발명의 항온액 순환 장치의 운전 방법은 온도 조정된 항온액을 부하에 공급하는 항온액 회로와, 상기 항온액의 온도를 상기 항온액과 냉매의 열교환에 의해 조정하는 냉동 회로를 갖고 있고, 상기 냉동 회로는 가스상 냉매를 압축해서 고온고압의 가스상 냉매로 하는 압축기와, 상기 압축기로부터 보내지는 고온고압의 가스상 냉매를 냉각해서 고압의 액상 냉매로 하는 공냉식의 콘덴서와, 상기 콘덴서에 냉각풍을 송풍하는 팬과, 상기 콘덴서로부터 보내지는 고압의 액상 냉매를 팽창시켜서 저온저압의 액상 냉매로 하는 팽창 밸브와, 상기 팽창 밸브로부터 보내지는 저온저압의 액상 냉매를 상기 항온액과의 열교환에 의해 증발시켜서 저압의 가스상 냉매로 하고, 이 저압의 가스상 냉매를 상기 압축기로 보내는 증발기와, 상기 팽창 밸브의 입구측의 냉매압력을 측정하는 압력 센서를 갖는 항온액 순환 장치를 운전하기 위한 방법으로서, 상기 압축기의 기동후, 상기 압력 센서로 측정되는 냉매압력이 기준 압력영역에 도달하지 못한 경우에는 상기 팬을 기동하지 않거나, 또는 기동해서 최소 회전수로 유지하고, 상기 냉매압력이 상기 기준 압력영역에 도달하면 상기 팬의 회전수를 인버터 제어함으로써 상기 냉매압력을 제어하고, 상기 압축기의 회전수가 정상 운전시의 회전수인 고회전수에 도달함과 아울러 상기 팬의 회전수가 최대 회전수에 도달한 후에, 상기 냉매압력이 더 상승을 계속해서 상한값에 도달한 경우에는 상기 팬의 회전수를 최대 회전수로 유지한 채, 상기 압축기의 회전수를 상기 고회전수로부터 감소시키는 제어를 행하는 것을 특징으로 한다.
본 발명에 있어서는 상기 냉매압력이 상한값에 도달했을 때 상기 압축기의 회전수를 상기 고회전수로부터 상기 상한값 부근에서 냉매압력이 일정해지는 저회전수까지 감소시키도록 제어한다.
(발명의 효과)
본 발명에 의하면, 냉동 회로에 있어서의 냉매압력에 따라서 압축기의 회전수와 공냉식 콘덴서의 팬의 회전수를 인버터 제어함으로써 압축기를 정지시키지 않고 냉매압력을 저하시킬 수 있고, 이 결과, 냉동 회로의 운전을 계속해서 항온액의 온도제어를 계속적으로 행할 수 있다.
도 1은 본 발명에 의한 항온액 순환 장치의 일실시형태를 나타내는 구성도이다.
도 2는 도 1의 항온액 순환 장치의 동작 타이밍 챠트도이다.
도 3은 종래의 항온액 순환 장치의 구성도이다.
도 1은 본 발명에 의한 항온액 순환 장치의 일실시형태를 나타내는 것이다. 이 항온액 순환 장치는 온도 조정된 항온액(L)을 부하(4)에 순환적으로 공급해서 상기 부하(4)를 냉각 또는 가열하는 항온액 회로(1)와, 상기 항온액(L)을 냉매와의 열교환에 의해 설정된 온도로 온도 조정하는 냉동 회로(2)와, 장치 전체를 제어하는 제어부(3)를 갖고 있다. 상기 항온액 회로(1)와 냉동 회로(2)는 케이싱(5) 안에 수용되고, 상기 케이싱(5)에 형성된 공급측의 접속구(6a)와 리턴측의 접속구(6b)에 상기 부하(4)가 접속되도록 되어 있다.
상기 항온액 회로(1)는 탱크(9)내에 수용된 상기 항온액(L)을 펌프(10)로 열교환기(11)내의 온도조정관(12)으로 보내고, 이 열교환기(11)로 상기 냉동 회로(2)의 냉매와 열교환시켜서 설정 온도로 조정한 후 상기 부하(4)에 공급하도록 구성되어 있다. 이 때문에, 상기 펌프(10)의 토출구(10a)와 상기 온도조정관(12)의 입구(12a)가 제 1 공급관(13)에 의해 접속되고, 상기 온도조정관(12)의 출구(12b)와 상기 케이싱(5)에 형성된 공급측의 접속구(6a)가 제 2 공급관(14)에 의해 접속되고, 상기 탱크(9)와 상기 리턴측의 접속구(6b)가 리턴관(15)에 의해 접속되고, 상기 공급측의 접속구(6a) 및 리턴측의 접속구(6b)에 상기 부하(4)의 입구측 배관(4a)과 출구측 배관(4b)이 접속되어 있다.
상기 탱크(9)내에는 항온액(L)의 액위를 측정하는 볼탭식의 액위계(16)와, 레벨 스위치(17)가 설치되고, 또한, 상기 케이싱(5)에는 오버플로우관(18)에 의해 상기 탱크(9)에 연통하는 오버플로우구(18a)와, 급액관(19)에 의해 상기 탱크(9)에 연통하는 자동 급액구(19a)와, 드레인관(20)에 의해 상기 탱크(9)에 연통하는 드레인구(20a)가 설치되어 있다. 그리고, 상기 탱크(9)내의 항온액(L)의 액위가 이상 상승한 경우에 상기 오버플로우구(18a)로부터 항온액이 오버플로우해서 상기 항온액(L)의 액위가 저하된 것을 상기 액위계(16)가 검출한 경우에 상기 자동 급액구(19a)에 접속된 미도시의 급액 장치로부터 탱크(9)내에 항온액이 공급되고, 상기 레벨 스위치(17)이 항온액(L)의 액위의 이상 저하를 검출한 경우에 경보가 발생하도록 구성되어 있다.
또한, 상기 제 2 공급관(14)에는 항온액 공급측의 압력 센서(21)와 항온액 공급측의 제 1 온도 센서(22)가 접속되고, 상기 리턴관(15)에는 항온액 리턴측의 제 2 온도 센서(23)가 접속되고, 이들 압력 센서(21) 및 온도 센서(22,23)의 측정 결과에 의거해서 상기 제어부(3)에서 장치 전체의 제어가 행해진다.
이 때문에, 상기 액위계(16), 레벨 스위치(17), 압력 센서(21), 온도 센서(22,23)는 상기 제어부(3)에 전기적으로 접속되어 있지만, 그 접속 상태의 도시는 생략되어 있다.
한편, 상기 냉동 회로(2)는 가스상 냉매를 압축해서 고온고압의 가스상 냉매로 하는 압축기(25)와, 상기 압축기(25)로부터 제 1 냉매관(26)을 통해 보내지는 고온고압의 가스상 냉매를 냉각하고, 고압의 액상 냉매로 하는 콘덴서(27)와, 상기 콘덴서(27)로부터 제 2 냉매관(28)을 통해서 보내지는 고압의 액상 냉매를 팽창시켜서 저온저압의 액상 냉매로 하는 제 1 팽창 밸브(29)와, 상기 제 1 팽창 밸브(29)로부터 제 3 냉매관(30)을 통해서 보내지는 저온저압의 액상 냉매를 상기 항온액(L)과의 열교환에 의해 증발시켜서 저압의 가스상 냉매로 하고, 이 저압의 가스상 냉매를 제 4 냉매관(31)을 통해서 상기 압축기(25)로 보내는 증발기(32)를 순차 직렬이며 또한 순환 회로상으로 접속함으로써 구성되어 있다. 도면중 33은 드라이어이다.
상기 콘덴서(27)는 전동 모터(34b)로 구동되는 팬(34a)에 의해 냉매를 냉각하는 공냉식의 콘덴서이며, 상기 팬(34a)은 상기 케이싱(5)의 상면에 형성된 팬수용부(5a)내에 설치되고, 상기 팬수용부(5a)에 냉각풍(A)을 상방을 향해서 배출하는 배기구(35)가 설치되어 있다. 또한, 상기 케이싱(5)의 측면의 상기 콘덴서(27)에 대면하는 위치에는 외기를 냉각풍(A)으로서 흡입하는 흡입구(36)가 설치되고, 상기 흡입구(36)로부터 흡입된 냉각풍(A)이 상기 콘덴서(27)를 통과할 때 냉매를 냉각하고, 그 후 상기 배기구(35)로부터 케이싱(5)의 외부로 배출되도록 구성되어 있다.
상기 압축기(25) 및 팬(34a)은 상기 제어부(3)에 전기적으로 접속되고, 상기 제어부(3)로 인버터 제어됨으로써 각각의 회전수가 제어된다.
상기 제 1 냉매관(26)과 제 3 냉매관(30)에는 바이패스 냉매관(37)의 일단과 타단이 접속되고, 상기 바이패스 냉매관(37)에 제 2 팽창 밸브(38)가 접속되고, 상기 제 2 팽창 밸브(38)는 상기 제 1 팽창 밸브(29)와 함께 상기 제어부(3)에 전기적으로 접속되고, 상기 제어부(3)에 의해 개도가 제어된다.
상기 제 1 팽창 밸브(29) 및 제 2 팽창 밸브(38)는 스텝핑 모터에 의해 개도를 조정하는 구성의 전자 팽창 밸브인 것이 바람직하다.
상기 제 1 냉매관(26)에는 상기 압축기(25)로부터 토출된 냉매의 온도를 측정하는 제 1 온도 센서(41)가 접속되고, 상기 제 4 냉매관(31)에는 상기 압축기(25)에 흡입되는 냉매의 온도를 측정하는 제 2 온도 센서(42)가 접속되고, 상기 제 2 냉매관(28)에는 상기 제 1 팽창 밸브(29)에 보내지는 냉매의 압력을 측정하는 제 1 압력 센서(43)가 접속되고, 상기 제 4 냉매관(31)에는 상기 압축기(25)에 흡입되는 냉매의 압력을 측정하는 제 2 압력 센서(44)가 접속되어 있다. 상기 온도 센서(41,42) 및 압력 센서(43,44)는 상기 제어부(3)에 전기적으로 접속되고, 이들의 측정 결과에 의거해서 상기 제어부(3)에서 장치 전체의 제어가 행해지게 되어 있다.
또한, 상기 냉동 회로(2)에 있어서 상기 압축기(25)의 출구(25a)로부터 상기 콘덴서(27)를 거쳐 상기 제 1 팽창 밸브(29)의 입구(29a)에 이르기까지의 부분은 냉매압력이 높은 고압측 부분이며, 한편, 상기 제 1 팽창 밸브(29)의 출구(29b)로부터 상기 증발기(32)를 거쳐 상기 압축기(25)의 입구(25b)에 이르기까지의 부분은 냉매압력이 낮은 저압측 부분이다.
도 2에는 상기 항온액 순환 장치를 운전할 때의 상기 압축기(25) 및 팬(34a)의 제어의 일례에 관한 타이밍 챠트가 나타내어져 있다. 이 제어예는 발열하는 부하(4)를 항온액으로 냉각하는 경우이며, 이하에 이 타이밍 챠트에 따라서 상기 항온액 순환 장치의 운전 방법에 대해서 설명한다.
우선, 시간(t0)에서 항온액 회로(1)의 펌프(10)가 구동되어서 부하(4)에 대한 항온액(L)의 공급이 개시됨과 아울러, 또는 일정 시간 경과후에 냉동 회로(2)에 있어서의 상기 압축기(25)의 운전이 개시되고, 인버터 제어에 의해 상기 압축기(25)의 회전수는 제어되고, 정상 운전시의 회전수인 고회전수를 향해서 점차 상승해 간다.
이 때, 상기 콘덴서(27)의 팬(34a)은 상기 압축기(25)가 기동된 후에도 당분간은 기동되지 않거나, 또는 기동된 후 최소 회전수의 부근에서 회전된다.
또한, 상기 압축기(25)의 기동 및 회전수의 상승에 의해 상기 냉동 회로(2)에 있어서는 상기 제 1 압력 센서(43)에서 측정되는 고압측 부분의 냉매압력이 점차 상승해 간다.
그리고, 상기 고압측 부분의 냉매압력이 시간(t1)에 기준 압력영역에 도달하면 상기 팬의 회전수가 인버터 제어에 의해 증대된다. 이것에 의해, 상기 콘덴서(27)에 대한 냉각풍(A)의 풍량이 증대하므로 상기 콘덴서(27)에 있어서의 냉매의 응축 온도의 상승은 완만해지고, 이것에 따라 상기 냉매압력의 상승도 마찬가지로 완만해진다. 이 냉매압력은 상기 팬(34a)의 회전수(냉각풍(A)의 풍량)나 냉각풍(A)의 온도 등에 의해 그 상승도가 다르고, 경우에 따라서는 저하하는 등 증감 변화된다.
이 때 상기 팬의 회전수는 상기 냉매압력의 상승도나 증감 등에 따라 최대 회전수이하의 범위내에서 인버터 제어에 의해 증감 제어되지만, 상기 냉매압력이 상기 기준 압력영역 부근에 있어서 더 상승 경향을 나타내면 그 이상의 압력상승을 억제해서 상기 기준 압력영역 부근 또는 상기 기준 압력영역이하의 냉매압력을 유지할 수 있도록 상기 팬의 회전수는 점차 상승한다. 한편, 상기 압축기(25)의 회전수는 부하를 냉각할 필요가 있을 경우, 곧 정상 운전시의 회전수인 상기 고회전수에 도달하고, 그 회전수 부근에서 제어된다.
그리고, 상기 냉매압력이 상기 기준 압력영역을 초과해서 상승을 더 계속한 경우 상기 팬(34a)의 회전수는 최대 회전수까지 상승한다. 이 상태는 상기 팬(34a)과 콘덴서(27)가 풀가동하고 있는 상태이며, 통상은 이 상태에서 상기 냉매압력의 상승은 보다 완만해지거나 또는 그 상승은 중지되고, 항온액 순환 장치는 안정 운전되게 된다.
그러나, 상기 팬(34a)과 콘덴서(27)가 풀가동하고 있음에도 불구하고, 주위온도의 영향 등에 의해 상기 냉매압력의 상승이 계속되어 시간(t2)에 있어서 상기 냉매압력이 상한값에 도달한 경우에는 상기 팬(34a)의 회전수를 최대 회전수로 유지한 채, 상기 압축기(25)의 회전수가 인버터 제어에 의해 상기 고회전수로부터 감소된다. 이것에 의해, 상기 압축기(25)로부터 토출되는 냉매유량이 감소되므로 상기 콘덴서(27)에 있어서의 응축 온도가 내려가고, 상기 고압측 부분에 있어서의 냉매압력의 상승은 억제된다. 이 경우, 도 2에 나타낸 바와 같이, 상기 압축기(25)의 회전수를 냉매압력이 상한값으로 유지되는 저회전수까지 저하시키는 제어를 행함으로써 상기 냉매압력은 상한값 부근에서 거의 일정해진다.
이 결과, 냉동 회로(2)에 의해 항온액(L)을 냉각하는 능력은 저하되지만, 상기 항온액(L)의 온도제어는 계속해서 행할 수 있어 냉동 회로를 정지하거나, 또는 항온액 순환 장치 전체의 운전을 정지할 필요가 없다.
이렇게 해서 상기 항온액 순환 장치에 있어서는 냉동 회로(2)에 있어서의 고압측 부분의 냉매압력에 따라 압축기(25)의 회전수와 공냉식 콘덴서(27)의 팬(34a)의 회전수를 인버터 제어함으로써 상기 압축기(25)를 정지시키지 않고 상기 냉매압력을 저하시키는 것이 가능하게 되고, 이 결과, 장치 전체를 정지시키지 않고 항온액의 온도제어를 계속적으로 행할 수 있다.
상기 압축기(25) 및 팬(34a)의 회전수의 제어와 병행해서 상기 제 1 팽창 밸브(29) 및 제 2 팽창 밸브(38)의 개도의 제어도 행해지며, 상기 증발기(32)를 흐르는 냉매의 유량이나 온도 등이 조정됨으로써 상기 항온액(L)의 온도 조정이 행해진다.
또한, 냉동 회로(2)의 바이패스 냉매관(37)에 접속된 상기 제 2 팽창 밸브(38)는 압축기(25)로부터 토출되는 고온고압의 냉매 가스의 일부를 제 1 팽창 밸브(29)와 증발기(32) 사이의 저온저압의 제 4 냉매 배관내에 공급함으로써 상기 제 4 냉매 배관내를 흐르는 냉매의 온도를 높여서 열교환기(11)의 냉각 능력을 조정하거나, 냉동 회로(2)의 고압측 부분의 냉매압력을 조정하는 등의 역할을 하는 것이다.
1: 항온액 회로
2: 냉동 회로
3: 제어부
4: 부하
25: 압축기
27: 콘덴서
29: 팽창 밸브
32: 증발기
34a: 팬
L: 항온액
A: 냉각풍

Claims (4)

  1. 온도 조정된 항온액을 부하에 공급하는 항온액 회로와, 상기 항온액의 온도를 그 항온액과 냉매의 열교환에 의해 조정하는 냉동 회로와, 장치 전체를 제어하는 제어부를 갖고,
    상기 냉동 회로는 가스상 냉매를 압축해서 고온고압의 가스상 냉매로 하는 압축기와, 그 압축기로부터 보내지는 고온고압의 가스상 냉매를 냉각해서 고압의 액상 냉매로 하는 공냉식의 콘덴서와, 그 콘덴서에 냉각풍을 송풍하는 팬과, 상기 콘덴서로부터 보내지는 고압의 액상 냉매를 팽창시켜서 저온저압의 액상 냉매로 하는 팽창 밸브와, 그 팽창 밸브로부터 보내지는 저온저압의 액상 냉매를 상기 항온액과의 열교환에 의해 증발시켜서 저압의 가스상 냉매로 하고, 이 저압의 가스상 냉매를 상기 압축기로 보내는 증발기와, 상기 팽창 밸브의 입구측의 냉매압력을 측정하는 압력 센서를 갖고,
    상기 제어부는 상기 압축기의 기동 후 상기 압력 센서로 측정되는 냉매압력이 기준 압력영역에 도달하지 못한 경우에는 상기 팬을 기동하지 않거나 또는 기동해서 최소 회전수로 유지하고, 상기 냉매압력이 상기 기준 압력영역에 도달하면 상기 팬의 회전수를 인버터 제어함으로써 상기 냉매압력을 제어하고, 상기 압축기의 회전수가 정상 운전시의 회전수인 고회전수에 도달함과 아울러 상기 팬의 회전수가 최대 회전수에 도달한 후에, 상기 냉매압력이 더 상승을 계속해서 상한값에 도달한 경우에는 상기 팬의 회전수를 최대 회전수로 유지한 채, 상기 압축기의 회전수를 상기 고회전수로부터 감소시키는 제어를 행하도록 구성된 것을 특징으로 하는 항온액 순환 장치.
  2. 제 1 항에 있어서,
    상기 제어부는 상기 냉매압력이 상한값에 도달했을 때 상기 압축기의 회전수를 상기 고회전수로부터 상기 상한값 부근에서 냉매압력이 일정해지는 저회전수까지 감소시키는 것을 특징으로 하는 항온액 순환 장치.
  3. 온도 조정된 항온액을 부하에 공급하는 항온액 회로와, 상기 항온액의 온도를 그 항온액과 냉매의 열교환에 의해 조정하는 냉동 회로를 갖고 있으며, 상기 냉동 회로는 가스상 냉매를 압축해서 고온고압의 가스상 냉매로 하는 압축기와, 그 압축기로부터 보내지는 고온고압의 가스상 냉매를 냉각해서 고압의 액상 냉매로 하는 공냉식의 콘덴서와, 그 콘덴서에 냉각풍을 송풍하는 팬과, 상기 콘덴서로부터 보내지는 고압의 액상 냉매를 팽창시켜서 저온저압의 액상 냉매로 하는 팽창 밸브와, 그 팽창 밸브로부터 보내지는 저온저압의 액상 냉매를 상기 항온액과의 열교환에 의해 증발시켜서 저압의 가스상 냉매로 하고, 이 저압의 가스상 냉매를 상기 압축기로 보내는 증발기와, 상기 팽창 밸브의 입구측의 냉매압력을 측정하는 압력 센서를 갖는 항온액 순환 장치를 운전하기 위한 방법으로서,
    상기 압축기의 기동 후 상기 압력 센서로 측정되는 냉매압력이 기준 압력영역에 도달하지 못한 경우에는 상기 팬을 기동하지 않거나 또는 기동해서 최소 회전수로 유지하고, 상기 냉매압력이 상기 기준 압력영역에 도달하면 상기 팬의 회전수를 인버터 제어함으로써 상기 냉매압력을 제어하고, 상기 압축기의 회전수가 정상 운전시의 회전수인 고회전수에 도달함과 아울러 상기 팬의 회전수가 최대 회전수에 도달한 후에, 상기 냉매압력이 더 상승을 계속해서 상한값에 도달한 경우에는 상기 팬의 회전수를 최대 회전수로 유지한 채, 상기 압축기의 회전수를 상기 고회전수로부터 감소시키는 제어를 행하는 것을 특징으로 하는 항온액 순환 장치의 운전 방법.
  4. 제 3 항에 있어서,
    상기 냉매압력이 상한값에 도달했을 때 상기 압축기의 회전수를 상기 고회전수로부터 상기 상한값 부근에서 냉매압력이 일정해지는 저회전수까지 감소시키는 것을 특징으로 하는 항온액 순환 장치의 운전 방법.
KR1020140082419A 2013-07-04 2014-07-02 항온액 순환 장치 및 그 운전 방법 KR101602741B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2013-141070 2013-07-04
JP2013141070A JP5707621B2 (ja) 2013-07-04 2013-07-04 恒温液循環装置及びその運転方法

Publications (2)

Publication Number Publication Date
KR20150005460A KR20150005460A (ko) 2015-01-14
KR101602741B1 true KR101602741B1 (ko) 2016-03-11

Family

ID=52106454

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140082419A KR101602741B1 (ko) 2013-07-04 2014-07-02 항온액 순환 장치 및 그 운전 방법

Country Status (6)

Country Link
US (1) US9625197B2 (ko)
JP (1) JP5707621B2 (ko)
KR (1) KR101602741B1 (ko)
CN (1) CN104279782B (ko)
DE (1) DE102014109331B4 (ko)
TW (1) TWI558962B (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677649B1 (ko) * 2014-12-23 2016-11-18 엘지전자 주식회사 냉장고
CN106671728A (zh) * 2015-11-06 2017-05-17 福特环球技术公司 空调系统及其控制方法
CN106766441A (zh) 2015-11-25 2017-05-31 开利公司 制冷系统及其节流控制方法
CN106524663A (zh) * 2016-12-14 2017-03-22 青岛海尔股份有限公司 提高直线压缩机稳定性的冰箱及其控制方法
CN106813455A (zh) * 2016-12-14 2017-06-09 青岛海尔股份有限公司 提高直线压缩机稳定性的冰箱及其控制方法
JP6388987B1 (ja) * 2017-08-14 2018-09-12 伸和コントロールズ株式会社 液体供給装置及び液体温調システム
CN110118422B (zh) * 2018-02-07 2021-07-13 台达电子工业股份有限公司 冷气空调系统及其操作方法
JP7436980B2 (ja) * 2020-01-22 2024-02-22 日本エア・リキード合同会社 液化装置
JP2022166631A (ja) 2021-04-21 2022-11-02 Smc株式会社 冷凍式チラー
CN114845525A (zh) * 2022-04-21 2022-08-02 中国电子科技集团公司第十四研究所 一种自适应恒温控制的大型两相流冷却系统
CN115817113B (zh) * 2022-12-22 2024-06-11 中国重汽集团济南动力有限公司 一种纯电车风扇控制方法及汽车

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022337A (ja) * 2000-07-13 2002-01-23 Smc Corp 冷却装置の液温制御装置
JP2003002044A (ja) * 2001-06-26 2003-01-08 Hitachi Ltd 車両用空気調和機

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068703B2 (ja) * 1987-11-13 1994-02-02 株式会社東芝 空気調和装置
US5735134A (en) 1996-05-30 1998-04-07 Massachusetts Institute Of Technology Set point optimization in vapor compression cycles
CN2277111Y (zh) * 1996-10-17 1998-03-25 李金龙 仪器设备用恒温冷却水机
JPH10311642A (ja) * 1997-05-13 1998-11-24 Matsushita Refrig Co Ltd 冷蔵庫
JP3334660B2 (ja) * 1998-05-19 2002-10-15 三菱電機株式会社 冷凍サイクルの制御装置およびその制御方法
US6272870B1 (en) * 1999-10-27 2001-08-14 Emerson Electric Co. Refrigeration system having a pressure regulating device
US6516622B1 (en) 2000-06-13 2003-02-11 Belair Technologies, Llc Method and apparatus for variable frequency controlled compressor and fan
JP3856025B2 (ja) 2000-06-21 2006-12-13 松下電器産業株式会社 ヒートポンプ給湯機
JP4582473B2 (ja) * 2001-07-16 2010-11-17 Smc株式会社 恒温液循環装置
US6672090B1 (en) * 2002-07-15 2004-01-06 Copeland Corporation Refrigeration control
CN100359274C (zh) 2003-01-06 2008-01-02 Smc株式会社 恒温液循环装置
US7174732B2 (en) * 2003-10-02 2007-02-13 Honda Motor Co., Ltd. Cooling control device for condenser
US7237395B2 (en) * 2003-12-22 2007-07-03 General Electric Company Methods and apparatus for controlling refrigerators
JP4268931B2 (ja) * 2004-12-30 2009-05-27 中山エンジニヤリング株式会社 冷蔵・冷凍設備及びその制御方法
JP4592616B2 (ja) * 2006-02-27 2010-12-01 三洋電機株式会社 冷凍サイクル装置
KR100775067B1 (ko) 2006-04-28 2007-11-08 나까야마 엔지니어링 카부시키가이샤 냉장·냉동설비 및 그 제어방법
US8011191B2 (en) 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
CN103105023B (zh) 2011-11-14 2016-03-16 力博特公司 用于气冷式冷凝器在精确制冷时的风扇速度控制
CN202371848U (zh) 2011-12-22 2012-08-08 宁波惠康实业有限公司 恒温冷却水箱系统
JP6021945B2 (ja) * 2012-12-26 2016-11-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022337A (ja) * 2000-07-13 2002-01-23 Smc Corp 冷却装置の液温制御装置
JP2003002044A (ja) * 2001-06-26 2003-01-08 Hitachi Ltd 車両用空気調和機

Also Published As

Publication number Publication date
TW201525386A (zh) 2015-07-01
CN104279782A (zh) 2015-01-14
JP5707621B2 (ja) 2015-04-30
US20150007599A1 (en) 2015-01-08
CN104279782B (zh) 2018-09-04
JP2015014417A (ja) 2015-01-22
TWI558962B (zh) 2016-11-21
DE102014109331B4 (de) 2022-01-05
US9625197B2 (en) 2017-04-18
DE102014109331A1 (de) 2015-01-08
KR20150005460A (ko) 2015-01-14

Similar Documents

Publication Publication Date Title
KR101602741B1 (ko) 항온액 순환 장치 및 그 운전 방법
EP2320151B1 (en) Air-conditioning device
JP6454564B2 (ja) ターボ冷凍機
JP2011510256A (ja) 二酸化炭素冷媒蒸気圧縮システム
JP2009229012A (ja) 冷凍装置
JP2010249452A (ja) 空気調和装置
CN108779939B (zh) 制冷装置
KR20080081002A (ko) 플래시 탱크 냉각 제어
JP2012072920A (ja) 冷凍装置
CN112682883B (zh) 一种空调及空调恒风量静压自适应控制方法
JP2018096621A (ja) 冷媒回路システムおよび冷媒回路システムの制御方法
JP2017044454A (ja) 冷凍サイクル装置及び冷凍サイクル装置の制御方法
JP5943869B2 (ja) 空気調和機
JP2009002635A (ja) 熱源機およびその制御方法、並びに、熱源システムおよびその運転方法
US20190299132A1 (en) A method for controlling a vapour compression system during gas bypass valve malfunction
JP6576468B2 (ja) 空気調和機
JP2004353916A (ja) 温度制御方法及び空調機
JP3668750B2 (ja) 空気調和装置
JP6479203B2 (ja) 冷凍サイクル装置
JP2015129598A (ja) 温度調整装置
EP2479516A2 (en) Heat pump
JP2013174374A (ja) チリングユニット
JP7278408B2 (ja) 液面検知装置、およびそれを備えた空気調和装置
JP6212730B2 (ja) 温度調整装置
JP2008249240A (ja) コンデンシングユニット及びそれを備えた冷凍装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant