WO2017065220A1 - Dc/dcコンバータおよびその制御回路、システム電源 - Google Patents

Dc/dcコンバータおよびその制御回路、システム電源 Download PDF

Info

Publication number
WO2017065220A1
WO2017065220A1 PCT/JP2016/080393 JP2016080393W WO2017065220A1 WO 2017065220 A1 WO2017065220 A1 WO 2017065220A1 JP 2016080393 W JP2016080393 W JP 2016080393W WO 2017065220 A1 WO2017065220 A1 WO 2017065220A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel transistor
transistor
driver
converter
control circuit
Prior art date
Application number
PCT/JP2016/080393
Other languages
English (en)
French (fr)
Inventor
政嗣 永里
村上 和宏
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2017545459A priority Critical patent/JP6465992B2/ja
Publication of WO2017065220A1 publication Critical patent/WO2017065220A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a DC / DC converter.
  • FIG. 1 is a circuit diagram of a synchronous rectification step-down (Buck) DC / DC converter.
  • the DC / DC converter 900 receives a DC input voltage VIN at an input terminal 902 and generates a stepped down output voltage VOUT at an output terminal 904.
  • the DC / DC converter 900 includes a switching transistor M1, a synchronous rectification transistor M2, an inductor L1, and an output capacitor C1.
  • the topology of the output circuit including the switching transistor M1, the synchronous rectification transistor M2, the inductor L1, and the output capacitor C1 is a general one of a synchronous rectification step-down DC / DC converter.
  • the pulse generator 910 is a pulse signal whose duty ratio, frequency, or a combination thereof changes so that the state of a load (not shown) connected to the DC / DC converter 900 or the output terminal 904 approaches a target state.
  • S1 and S2 are generated.
  • the pulse generator 910 in the DC / DC converter 900 with a constant voltage output, the pulse generator 910 generates the pulse signals S1 and S2 so that the output voltage VOUT approaches the target voltage V REF, and the DC / DC converter with a constant current output.
  • the pulse signals S1 and S2 are generated so that the current I OUT flowing through the load approaches the target value I REF .
  • the first driver 906 switches the switching transistor M1 based on the first pulse signal S1.
  • the second driver 908 switches the synchronous rectification transistor M2 based on the second pulse signal S2.
  • the switching transistor M1 is a P-channel MOSFET.
  • the upper power supply terminal of the first driver 906 is supplied with the input voltage of the input terminal 902 (or another power supply voltage V DD ), and the lower power supply terminal is supplied with the ground voltage V SS ( ⁇ 0 V). Is done. Therefore, the gate voltage V G1 of the switching transistor M1 swings between the power supply voltage V DD and the ground voltage V SS .
  • the efficiency of the DC / DC converter 900 is determined based on the electric power input from the input terminal 902 and the electric power extracted from the output terminal 904, and the difference between them is an internal loss of the DC / DC converter 900.
  • One of the causes of the loss of the DC / DC converter 900 is (1) heat loss due to the on-resistance of the switching transistor M1 and the synchronous rectification transistor M2.
  • Another one is (2) switching loss of the switching transistor M1 and the synchronous rectification transistor M2.
  • the switching loss is mainly electric power required to charge / discharge the gate capacitances of the switching transistor M1 and the synchronous rectification transistor M2.
  • the loss of the DC / DC converter 900 includes the power consumption of the pulse generator 910 and the like.
  • the gate capacitance in order to reduce the heat loss of (1), if the element size is increased in order to reduce the on-resistance of the switching transistor M1 (synchronous rectification transistor M2), the gate capacitance also increases.
  • the switching loss of (2) is in an increasing relationship. In other words, heat loss and switching loss are in a trade-off relationship.
  • the present invention has been made in view of such a problem, and one of the exemplary purposes of an aspect thereof is to provide a DC / DC converter with improved efficiency.
  • One embodiment of the present invention relates to a control circuit for a DC / DC converter having a P-channel transistor and an N-channel transistor.
  • the control circuit generates a first pulse signal for instructing on / off of the P channel transistor and a second pulse signal for instructing on / off of the N channel transistor so that the state of the DC / DC converter or the load approaches the target value.
  • a common line connected to the upper power supply terminal, and the voltage of the common line is connected to the voltage of the first line connected to the upper power supply terminal of the first driver and the lower power supply terminal of the second driver. It is stabilized at a predetermined voltage value between the voltages of the second line.
  • the discharge current is sunk by the first driver.
  • this discharge current has been discarded to the ground, but in this embodiment, it is supplied to the common line and stored.
  • the second driver drives the gate capacitance of the N-channel transistor using the discharge current sunk by the first driver. That is, since the drive current of the P-channel transistor can be recovered to the common line and reused for the N-channel transistor, switching loss can be reduced.
  • the gate voltage of the P-channel transistor swings with the common line voltage at the low level. Therefore, the switching loss of the P-channel transistor is reduced as compared with the case where the low level is the ground voltage.
  • the gate voltage of the N-channel transistor swings with the common line voltage at the high level. Therefore, the switching loss of the N channel transistor is reduced as compared with the case where the high level is a power supply voltage or the like.
  • the control circuit according to an aspect may further include a regulator that stabilizes the voltage of the common line at a predetermined voltage value.
  • the current flowing through the first driver may be larger than the current flowing through the second driver.
  • the regulator may have a current sink capability. Thereby, the voltage of the common line can be kept constant.
  • the current flowing through the second driver may be larger than the current flowing through the first driver.
  • the regulator may have a current source capability. Thereby, the voltage of the common line can be kept constant.
  • the regulator may have both current sink capability and current source capability.
  • the voltage of the common line can be kept constant regardless of the magnitude relationship between the currents flowing through the first driver and the second driver.
  • the DC / DC converter may be a step-down type, the P channel transistor may be a switching transistor, and the N channel transistor may be a synchronous rectification transistor.
  • the DC / DC converter may be a boost type
  • the N channel transistor may be a switching transistor
  • the P channel transistor may be a synchronous rectification transistor.
  • control circuit may be integrated on a single semiconductor substrate. “Integrated integration” includes the case where all of the circuit components are formed on a semiconductor substrate and the case where the main components of the circuit are integrated. A resistor, a capacitor, or the like may be provided outside the semiconductor substrate.
  • the P channel transistor and the N channel transistor may be integrated in the control circuit.
  • the DC / DC converter includes an input terminal that receives an input voltage, a P-channel transistor, a switching transistor having a first terminal connected to the input terminal, an inductor having one end connected to the second terminal of the switching transistor, An output capacitor connected to the other end of the inductor and an N-channel transistor, a synchronous rectification transistor whose first terminal is connected to one end of the inductor and whose second terminal is grounded, and driving a P-channel transistor and an N-channel transistor And any one of the above-described control circuits.
  • the DC / DC converter is an input terminal that receives an input voltage, an inductor having one end connected to the input terminal, and an N-channel transistor, a first terminal connected to one end of the inductor, and a second terminal connected to ground.
  • a transistor, a P-channel transistor, a synchronous rectification transistor having a first terminal connected to one end of the inductor, an output capacitor connected to a second terminal of the P-channel transistor, and driving the P-channel transistor and the N-channel transistor And any one of the control circuits described above.
  • the system power supply may include the above-described DC / DC converter.
  • switching loss can be reduced and efficiency can be improved.
  • FIG. 1 is a circuit diagram of a DC / DC converter according to a first embodiment.
  • FIG. 3 is an operation waveform diagram of the control circuit of FIG. 2. It is a circuit diagram of the DC / DC converter which concerns on 2nd Embodiment. It is a block diagram of the system power supply using the DC / DC converter which concerns on embodiment.
  • the state in which the member A is connected to the member B means that the member A and the member B are physically directly connected, or the member A and the member B are electrically connected. The case where it is indirectly connected through another member that does not affect the state is also included.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • Signal A (voltage, current) is in response to signal B (voltage, current)” means that signal A has a correlation with signal B. Specifically, (i) signal A Is signal B, (ii) signal A is proportional to signal B, (iii) signal A is obtained by level shifting signal B, and (iv) signal A is obtained by amplifying signal B. If (v) signal A is obtained by inverting signal B, it means (vi) or any combination thereof. It will be understood by those skilled in the art that the “depending” range is determined depending on the type and application of the signals A and B.
  • FIG. 2 is a circuit diagram of the DC / DC converter 100 according to the first embodiment.
  • the DC / DC converter 100 is a synchronous rectification step-down (Buck) converter, which receives a DC input voltage VIN at an input terminal 102 and generates a stepped-down output voltage VOUT at an output terminal 104.
  • the DC / DC converter 100 includes an output circuit 110 and a control circuit 200.
  • a DC / DC converter with a constant voltage output will be described as an example.
  • the output circuit 110 includes a switching transistor M1, a synchronous rectification transistor M2, an inductor L1, an output capacitor C1, and resistors R1 and R2.
  • the switching transistor M1 is a P-channel transistor 202
  • the synchronous rectification transistor M2 is an N-channel transistor 204, which are constituted by MOSFETs and are built in the control circuit 200.
  • a connection point between the switching transistor M1 and the synchronous rectification transistor M2 is referred to as an LX terminal.
  • the inductor L1 is provided between the LX terminal and the output terminal 104.
  • the output capacitor C1 is connected to the output terminal 104.
  • the resistors R 1 and R 2 supply a detection voltage V S obtained by dividing the output voltage V OUT to be controlled to the VS terminal of the control circuit 200.
  • the resistors R1 and R2 may be built in the control circuit 200.
  • the control circuit 200 includes a pulse generator 210, a first driver 206, a second driver 208, and a regulator 216 in addition to a P-channel transistor 202, which is a switching transistor M1, and an N-channel transistor 204, which is a synchronous rectification transistor M2.
  • P-channel transistor 202 which is a switching transistor M1
  • N-channel transistor 204 which is a synchronous rectification transistor M2.
  • This is a functional IC (Integrated Circuit) integrated on a semiconductor substrate.
  • the source of the P-channel transistor 202 is connected to the VIN terminal, and its drain is connected to the LX terminal.
  • the drain of the N-channel transistor 204 is connected to the LX terminal, and the source is connected to the GND terminal.
  • the pulse generator 210 has a first pulse signal S1 for instructing on / off of the P-channel transistor 202 and a second pulse for instructing on / off of the N-channel transistor 204 so that the state of the DC / DC converter 100 or the load approaches the target value.
  • a signal S2 is generated.
  • the DC / DC converter 100 has a constant voltage output, and the pulse generator 210 controls the output voltage VOUT of the DC / DC converter 100 as a control target. Specifically, the pulse generator 210 generates the pulse signals S1 and S2 so that the detection voltage V S fed back to the VS terminal approaches the target value V REF .
  • the pulse generator 210 may use a known technique, and its control method and configuration are not particularly limited.
  • a control method a voltage mode, a peak current mode, an average current mode, a hysteresis control (Bang-Bang control), a bottom detection on-time fixed (COT: Constant On Time) method, or the like can be adopted.
  • a modulation method of the pulse signals S1 and S2 pulse width modulation or pulse frequency modulation can be employed.
  • the configuration of the pulse generator 210 may be configured by an analog circuit using an error amplifier or a comparator, may be configured by a processor that performs digital arithmetic processing, or may be configured by a combination of an analog circuit and a digital circuit. May be. Further, the pulse generator 210 may switch the control method according to the state of the load.
  • the first driver 206 drives the P-channel transistor 202 based on the first pulse signal S1.
  • the second driver 208 drives the N-channel transistor 204 based on the second pulse signal S2.
  • the common line 212 is connected to the lower power supply terminal of the first driver 206 and the upper power supply terminal of the second driver 208.
  • the upper power supply terminal of the first driver 206 is connected to the first line (power supply line) 218 on the high potential side
  • the lower power supply terminal of the second driver 208 is connected to the second line (ground line) 220 on the low potential side.
  • the first line 218 may be connected to the VIN terminal or may be connected to a power supply circuit (not shown).
  • V COM Voltage (referred to the common voltage) V COM of the common line 212
  • the voltage V DD of the first line 218 is stabilized to a predetermined voltage value between the voltage V SS of the second line 220.
  • the regulator 216 stabilizes the voltage V COM of the common line 212 to a predetermined voltage value.
  • the voltage V COM may be determined so as to satisfy the following expression in relation to the gate-source threshold voltage THP of the P-channel transistor 202 and the gate-source threshold voltage V THN of the N-channel transistor 204. .
  • V COM may be a midpoint voltage between V DD and V SS or may be set to another voltage.
  • the regulator 216 may be a linear regulator, a switching regulator (DC / DC converter), or a voltage clamp circuit, and stabilizes the voltage V COM of the common line 212 within a desired voltage range. If possible, the configuration is not particularly limited. When the current I DD1 flowing from the lower power supply terminal of the first driver 206 and the current I DD2 flowing to the upper power supply terminal of the second driver 208 are compared, if I DD1 > I DD2 , the regulator 216 If the configuration has a current source capability, the voltage V COM of the common line 212 can be stabilized. If I DD1 ⁇ I DD2 , the regulator 216 has a current sink capability. The voltage V COM can be stabilized. Alternatively, the regulator 216 may be configured to be capable of both sink and source. In the following description, it is assumed that I DD1 > I DD2 .
  • the element size of the P channel MOSFET becomes larger.
  • the transistor size of the P-channel transistor 202 is larger than the size of the N-channel transistor 204.
  • I DD1 > I DD2 is satisfied , and thus the regulator 216 is required to have a current sink capability.
  • the regulator 216 may be a shunt regulator.
  • a smoothing capacitor 214 is externally attached to the common line 212 via a COM terminal.
  • the smoothing capacitor 214 may be built in the control circuit 200.
  • FIG. 3 is an operation waveform diagram of the control circuit 200 of FIG. FIG. 3 shows ON / OFF states of the switching transistor M1 and the synchronous rectification transistor M2, gate voltages V G1 and V G2 of the switching transistor M1 and the synchronous rectification transistor M2, current I DD1 of the first driver 206, and the second driver.
  • a current I DD2 of 208 is shown.
  • a dead time is inserted in order to prevent the switching transistor M1 and the synchronous rectification transistor M2 from being turned on at the same time, but the dead time is ignored here for the sake of simplification of explanation. .
  • the first driver 206 drives the gate voltage V G1 of the P-channel transistor 202 to the common voltage V COM during the ON period of the switching transistor M1, and drives the gate voltage V G1 to the power supply voltage V DD during the OFF period. . That is, the gate voltage V G1 swings with V DD ⁇ V COM as an amplitude.
  • the first driver 206 sources current to the gate of the P-channel transistor 202 when turning off the switching transistor M1. It also sinks current from the gate when turning off. This sink current is shown as a current IDD1 flowing from the lower power supply terminal to the common line 212.
  • the second driver 208 drives the gate voltage V G2 of the N-channel transistor 204 to the common voltage V COM during the ON period of the synchronous rectification transistor M2, and sets the gate voltage V G2 to the ground voltage V SS during the OFF period. drive. That is, the gate voltage V G2 swings with V COM as the amplitude.
  • the second driver 208 sinks current from the gate of the N-channel transistor 204 when turning off the synchronous rectification transistor M2. It also sources current into the gate when it turns on. This source current is shown as current I DD2 flowing from common line 212.
  • the current I DD1 flowing through the first driver 206 is once recovered by the common line 212 and used as the current I DD2 to the second driver 208. If I DD1 > I DD2 , the current I DD2 , that is, the power required for switching the N-channel transistor 204 can be all covered by the current from the first driver 206.
  • the control circuit 200 of FIG. 2 since all of the current I 2 is covered by current I 1, as a whole DC / DC converter 100 only I 1 is the switching loss.
  • the switching loss can be reduced as compared with the DC / DC converter 900 of FIG.
  • the regulator 216 wastes the difference between the currents I DD1 and I DD2 (that is, the surplus current). Therefore, a circuit block (load) different from the second driver 208 may be connected to the COM terminal. Thereby, the surplus current I DD1 -I DD2 can be used effectively.
  • I DD1 -I DD2 ⁇ I DD3 When a load is connected, the regulator 216 is required to have a current source capability.
  • FIG. 4 is a circuit diagram of a DC / DC converter 100a according to the second embodiment.
  • This DC / DC converter 100 a is a synchronous rectification type boost converter, which receives a DC input voltage VIN at an input terminal 102 and generates a boosted output voltage VOUT at an output terminal 104.
  • the DC / DC converter 100a includes an output circuit 110a and a control circuit 200a.
  • the output circuit 110a includes a switching transistor M3, a synchronous rectification transistor M4, an inductor L2, an output capacitor C2, and resistors R3 and R4.
  • the switching transistor M3 is an N-channel transistor 204
  • the synchronous rectification transistor M4 is a P-channel transistor 202, and these are configured by MOSFETs.
  • the configuration of the control circuit 200a is substantially the same as the control circuit 200 of FIG.
  • the switching loss can be reduced as in the DC / DC converter 100 of the first embodiment.
  • FIG. 5 is a block diagram of a system power supply using the DC / DC converter according to the embodiment.
  • the system power supply 300 has a multi-channel (three channels in this embodiment) configuration, generates a different power supply voltage VOUT for each of the channels CH1 to CH3, and can supply it to various loads.
  • the system power supply 300 may include any combination of the above-described step-down DC / DC converter 100, step-up DC / DC converter 100a, and linear regulator.
  • the first channel CH1 is the step-down DC / DC converter 100
  • the second channel CH2 is the step-up DC / DC converter 100a
  • the third channel is a linear regulator (LDO: Low : Drop Output).
  • the linear regulator may be provided for a plurality of channels.
  • the system power supply 300 includes a power management IC 302 and other peripheral circuit components.
  • the power management IC 400 includes a control circuit 200 of the DC / DC converter 100, a control circuit 200a of the DC / DC converter 100a, a linear regulator 402, an interface circuit 404, a sequencer 406, and the like.
  • the power management IC 400 includes various protection circuits and the like.
  • the interface circuit 404 is provided for transmitting / receiving control signals and data to / from an external host processor.
  • the interface circuit 404 may conform to an I 2 C (Inter IC) bus.
  • the sequencer 406 controls the activation order and timing of the multi-channel power supply circuit.
  • the P channel transistor 202 and the N channel transistor 204 may be externally attached to the control circuit 200.
  • the P-channel transistor 202 and the N-channel transistor 204 may be externally attached to the control circuit 200a.
  • the present invention is not limited to this, and may be an IGBT (Insulated Gate Bipolar Transistor).
  • the present invention is also applicable to a buck-boost converter including two pairs of P-channel transistors and N-channel transistors.
  • Control Circuit 202 202 P-channel transistor 204 N-channel transistor 206 First driver 208 Second driver 210 Pulse generator 212 Common line 214 Smoothing capacitor 216 Regulator 218 First Line, 220 ... No. Line, 300 ... system power, 400 ... power management IC, 402 ... linear regulator, 404 ... interface circuit, 406 ... sequencer.
  • the present invention can be used for a power supply circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

パルス発生器210は、DC/DCコンバータ100もしくは負荷の状態が目標値に近づくように、Pチャンネルトランジスタ202およびNチャンネルトランジスタ204それぞれのオンオフを指示する第1パルス信号S1および第2パルス信号S2を生成する。第1ドライバ206、第2ドライバ208はそれぞれ、第1パルス信号S1、第2パルス信号S2にもとづきPチャンネルトランジスタ202、Nチャンネルトランジスタ204を駆動する。コモンライン212は、第1ドライバ206の下側電源端子と第2ドライバ208の上側電源端子に接続される。コモンライン212の電圧VCOMは、第1ドライバ206の上側電源端子の電圧VDDと、第2ドライバ208の下側電源端子の電圧VSSの間の所定電圧値に安定化される。

Description

DC/DCコンバータおよびその制御回路、システム電源
 本発明は、DC/DCコンバータに関する。
 さまざまな電子機器において、ある電圧値の直流電圧を別の電圧値の直流電圧に変換するDC/DCコンバータが使用される。図1は、同期整流型の降圧(Buck)DC/DCコンバータの回路図である。DC/DCコンバータ900は、入力端子902に直流入力電圧VINを受け、出力端子904に降圧された出力電圧VOUTを発生する。DC/DCコンバータ900は、スイッチングトランジスタM1、同期整流トランジスタM2、インダクタL1、出力キャパシタC1を含む。スイッチングトランジスタM1、同期整流トランジスタM2、インダクタL1、出力キャパシタC1を含む出力回路のトポロジーは、同期整流型の降圧DC/DCコンバータの一般的なそれである。
 パルス発生器910は、DC/DCコンバータ900あるいは出力端子904に接続される負荷(不図示)の状態が目標とする状態に近づくように、デューティ比、周波数、あるいはそれらの組み合わせが変化するパルス信号S1、S2を生成する。たとえば定電圧出力のDC/DCコンバータ900においては、パルス発生器910は、出力電圧VOUTが目標電圧VREFに近づくように、パルス信号S1,S2を生成し、定電流出力のDC/DCコンバータ900においては、負荷に流れる電流IOUTが目標値IREFに近づくようにパルス信号S1,S2を生成する。
 第1ドライバ906は、第1パルス信号S1にもとづいてスイッチングトランジスタM1をスイッチングする。また第2ドライバ908は、第2パルス信号S2にもとづいて同期整流トランジスタM2をスイッチングする。図1ではスイッチングトランジスタM1はPチャンネルMOSFETである。第1ドライバ906の上側電源端子には、入力端子902の入力電圧(あるいはそれとは別の電源電圧VDD)が供給され、その下側電源端子には、接地電圧VSS(≒0V)が供給される。したがってスイッチングトランジスタM1のゲート電圧VG1は、電源電圧VDDと接地電圧VSSの間でスイングし、VG1=VDDのときスイッチングトランジスタM1はオフ、VG1=VSSのときスイッチングトランジスタM1はオンとなる。
 同期整流トランジスタM2はNチャンネルMOSFETである。第2ドライバ908の上側電源端子には、第1ドライバ906と同様に、入力端子902の入力電圧(あるいはそれとは別の電源電圧VDD)が供給され、その下側電源端子には、接地電圧VSS(≒0V)が供給される。したがって同期整流トランジスタM2のゲート電圧VG2は、電源電圧VDDと接地電圧VSSの間でスイングし、VG2=VDDのとき同期整流トランジスタM2はオン、VG2=VSSのとき同期整流トランジスタM2はオフとなる。
 DC/DCコンバータ900の効率は、入力端子902から投入される電力と、出力端子904から取り出される電力にもとづいて定まり、それらの差分は、DC/DCコンバータ900の内部の損失である。このDC/DCコンバータ900の損失の要因のひとつは、(1)スイッチングトランジスタM1および同期整流トランジスタM2のオン抵抗による熱損失である。また別のひとつは、(2)スイッチングトランジスタM1および同期整流トランジスタM2のスイッチング損失である。スイッチング損失は、主として、スイッチングトランジスタM1および同期整流トランジスタM2それぞれのゲート容量を充放電するために要する電力である。そのほか、DC/DCコンバータ900の損失には、パルス発生器910の消費電力なども含まれる。
 一般的には、(1)の熱損失を低減するために、スイッチングトランジスタM1(同期整流トランジスタM2)のオン抵抗を低減すべく、その素子サイズを大きくすれば、そのゲート容量も大きくなるため、(2)のスイッチング損失は増加する関係にある。つまり熱損失とスイッチング損失はトレードオフの関係にあるといえる。
 同様の問題は、同期整流型の昇圧(Boost)DC/DCコンバータにおいても生じうる。
 本発明はかかる課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、効率を改善したDC/DCコンバータの提供にある。
 本発明のある態様は、Pチャンネルトランジスタと、Nチャンネルトランジスタと、を有するDC/DCコンバータの制御回路に関する。制御回路は、DC/DCコンバータもしくは負荷の状態が目標値に近づくように、Pチャンネルトランジスタのオンオフを指示する第1パルス信号およびNチャンネルトランジスタのオンオフを指示する第2パルス信号を生成するパルス発生器と、第1パルス信号にもとづきPチャンネルトランジスタを駆動する第1ドライバと、第2パルス信号にもとづきNチャンネルトランジスタを駆動する第2ドライバと、第1ドライバの下側電源端子と第2ドライバの上側電源端子に接続されるコモンラインと、を備え、コモンラインの電圧が、第1ドライバの上側電源端子と接続される第1ラインの電圧と、第2ドライバの下側電源端子と接続される第2ラインの電圧の間の所定電圧値に安定化される。
 Pチャンネルトランジスタのゲート電圧をローレベルに変化させるとき、その放電電流は、第1ドライバによってシンクされる。従来ではこの放電電流は接地に捨てられていたところ、この態様ではコモンラインに供給されて蓄えられる。そして第2ドライバは、第1ドライバがシンクした放電電流を利用して、Nチャンネルトランジスタのゲート容量を駆動する。つまりPチャンネルトランジスタの駆動電流をコモンラインに回収し、Nチャンネルトランジスタに再利用できるため、スイッチング損失を低減できる。加えてPチャンネルトランジスタのゲート電圧は、コモンラインの電圧をローレベルとしてスイングする。したがってローレベルが接地電圧である場合に比べて、Pチャンネルトランジスタのスイッチング損失が低減される。同様にNチャンネルトランジスタのゲート電圧は、コモンラインの電圧をハイレベルとしてスイングする。したがってハイレベルが電源電圧などである場合に比べて、Nチャンネルトランジスタのスイッチング損失が低減される。
 ある態様の制御回路は、コモンラインの電圧を所定電圧値に安定化するレギュレータをさらに備えてもよい。
 第1ドライバに流れる電流は第2ドライバに流れる電流より大きくてもよい。レギュレータは、電流シンク能力を有してもよい。これによりコモンラインの電圧を一定に保つことができる。
 第2ドライバに流れる電流は第1ドライバに流れる電流より大きくてもよい。レギュレータは、電流ソース能力を有してもよい。これによりコモンラインの電圧を一定に保つことができる。
 レギュレータは、電流シンク能力と電流ソース能力の両方を有してもよい。この場合、第1ドライバと第2ドライバに流れる電流の大小関係によらずに、コモンラインの電圧を一定に保つことができる。
 DC/DCコンバータは降圧型であり、Pチャンネルトランジスタはスイッチングトランジスタであり、Nチャンネルトランジスタは同期整流トランジスタであってもよい。
 DC/DCコンバータは昇圧型であり、Nチャンネルトランジスタはスイッチングトランジスタであり、Pチャンネルトランジスタは同期整流トランジスタであってもよい。
 ある態様において制御回路はひとつの半導体基板に一体集積化されてもよい。「一体集積化」とは、回路の構成要素のすべてが半導体基板上に形成される場合や、回路の主要構成要素が一体集積化される場合が含まれ、回路定数の調節用に一部の抵抗やキャパシタなどが半導体基板の外部に設けられていてもよい。
 PチャンネルトランジスタおよびNチャンネルトランジスタは制御回路に集積化されていてもよい。
 本発明の別の態様はDC/DCコンバータに関する。DC/DCコンバータは、入力電圧を受ける入力端子と、Pチャンネルトランジスタであり、第1端子が入力端子と接続されるスイッチングトランジスタと、一端がスイッチングトランジスタの第2端子と接続されているインダクタと、インダクタの他端と接続される出力キャパシタと、Nチャンネルトランジスタであり、第1端子がインダクタの一端と接続され、第2端子が接地される同期整流トランジスタと、PチャンネルトランジスタおよびNチャンネルトランジスタを駆動する上述のいずれかの制御回路と、を備えてもよい。
 本発明の別の態様もDC/DCコンバータに関する。DC/DCコンバータは、入力電圧を受ける入力端子と、一端が入力端子と接続されるインダクタと、Nチャンネルトランジスタであり、第1端子がインダクタの一端と接続され、第2端子が接地されるスイッチングトランジスタと、Pチャンネルトランジスタであり、第1端子がインダクタの一端と接続される同期整流トランジスタと、Pチャンネルトランジスタの第2端子と接続される出力キャパシタと、PチャンネルトランジスタおよびNチャンネルトランジスタを駆動する上述のいずれかの制御回路と、を備えてもよい。
 本発明の別の態様は、システム電源に関する。システム電源は、上述DC/DCコンバータを備えてもよい。
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明のある態様によれば、スイッチング損失を低減し、効率を改善できる。
同期整流型の降圧(Buck)DC/DCコンバータの回路図である。 第1の実施の形態に係るDC/DCコンバータの回路図である。 図2の制御回路の動作波形図である。 第2の実施の形態に係るDC/DCコンバータの回路図である。 実施の形態に係るDC/DCコンバータを利用したシステム電源のブロック図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合や、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 また、「信号A(電圧、電流)が信号B(電圧、電流)に応じている」とは、信号Aが信号Bと相関を有することを意味し、具体的には、(i)信号Aが信号Bである場合、(ii)信号Aが信号Bに比例する場合、(iii)信号Aが信号Bをレベルシフトして得られる場合、(iv)信号Aが信号Bを増幅して得られる場合、(v)信号Aが信号Bを反転して得られる場合、(vi)あるいはそれらの任意の組み合わせ、等を意味する。「応じて」の範囲は、信号A、Bの種類、用途に応じて定まることが当業者には理解される。
(第1の実施の形態)
 図2は、第1の実施の形態に係るDC/DCコンバータ100の回路図である。DC/DCコンバータ100は、同期整流型の降圧(Buck)コンバータであり、入力端子102に直流入力電圧VINを受け、出力端子104に降圧された出力電圧VOUTを発生する。DC/DCコンバータ100は、出力回路110および制御回路200を備える。本実施の形態では、一例として定電圧出力のDC/DCコンバータを説明する。
 出力回路110は、スイッチングトランジスタM1、同期整流トランジスタM2、インダクタL1、出力キャパシタC1、抵抗R1,R2を含む。本実施の形態においてスイッチングトランジスタM1はPチャンネルトランジスタ202であり、同期整流トランジスタM2はNチャンネルトランジスタ204であり、それらはMOSFETで構成され、制御回路200に内蔵されている。
 スイッチングトランジスタM1と同期整流トランジスタM2の接続点をLX端子と称する。インダクタL1は、LX端子と出力端子104の間に設けられる。出力キャパシタC1は、出力端子104に接続される。抵抗R1、R2は、制御対象である出力電圧VOUTを分圧して得られる検出電圧Vを制御回路200のVS端子に供給する。抵抗R1,R2は制御回路200に内蔵されてもよい。
 制御回路200は、スイッチングトランジスタM1であるPチャンネルトランジスタ202、同期整流トランジスタM2であるNチャンネルトランジスタ204に加えて、パルス発生器210、第1ドライバ206、第2ドライバ208、レギュレータ216を備え、ひとつの半導体基板に一体集積化された機能IC(Integrated Circuit)である。Pチャンネルトランジスタ202のソースはVIN端子と、そのドレインはLX端子と接続される。またNチャンネルトランジスタ204のドレインはLX端子と接続され、そのソースはGND端子と接続される。
 パルス発生器210は、DC/DCコンバータ100もしくは負荷の状態が目標値に近づくように、Pチャンネルトランジスタ202のオンオフを指示する第1パルス信号S1およびNチャンネルトランジスタ204のオンオフを指示する第2パルス信号S2を生成する。上述のようにDC/DCコンバータ100は、定電圧出力であり、パルス発生器210は、DC/DCコンバータ100の出力電圧VOUTを制御対象とする。具体的にはパルス発生器210は、VS端子にフィードバックされた検出電圧Vが、その目標値VREFに近づくように、パルス信号S1、S2を生成する。
 パルス発生器210は、公知技術を用いればよく、その制御方式、構成は特に限定されない。制御方式に関しては、電圧モード、ピーク電流モード、平均電流モード、ヒステリシス制御(Bang-Bang制御)、ボトム検出オン時間固定(COT:Constant On Time)方式などを採用しうる。またパルス信号S1,S2の変調方式としては、パルス幅変調やパルス周波数変調などが採用しうる。パルス発生器210の構成に関しては、エラーアンプやコンパレータを用いたアナログ回路で構成してもよいし、デジタル演算処理を行うプロセッサで構成してもよいし、アナログ回路とデジタル回路の組み合わせで構成してもよい。またパルス発生器210は、負荷の状態に応じて制御方式を切りかえてもよい。
 第1ドライバ206は、第1パルス信号S1にもとづきPチャンネルトランジスタ202を駆動する。第2ドライバ208は、第2パルス信号S2にもとづきNチャンネルトランジスタ204を駆動する。
 コモンライン212は、第1ドライバ206の下側電源端子と第2ドライバ208の上側電源端子に接続される。また第1ドライバ206の上側電源端子は、高電位側の第1ライン(電源ライン)218と接続され、第2ドライバ208の下側電源端子は低電位側の第2ライン(接地ライン)220と接続される。第1ライン218はVIN端子と接続されてもよいし、図示しない電源回路と接続されてもよい。
 コモンライン212の電圧(コモン電圧という)VCOMは、第1ライン218の電圧VDDと、第2ライン220の電圧VSSの間の所定電圧値に安定化される。レギュレータ216は、コモンライン212の電圧VCOMを所定電圧値に安定化する。なお電圧VCOMは、Pチャンネルトランジスタ202のゲートソース間しきい値電圧THP、Nチャンネルトランジスタ204のゲートソース間しきい値電圧VTHNに関連して、以下の式を満たすように定めればよい。
 VDD-VCOM>VTHP
 VCOM-VSS>VTHN
 VCOMは、VDDとVSSの中点電圧としてもよいし、別の電圧に定めてもよい。
 レギュレータ216はリニアレギュレータであってもよいし、スイッチングレギュレータ(DC/DCコンバータ)であってもよく、あるいは電圧クランプ回路であってもよく、コモンライン212の電圧VCOMを所望電圧範囲に安定化できればその構成は特に限定されない。なお、第1ドライバ206の下側電源端子から流れる電流IDD1と、第2ドライバ208の上側電源端子に流れる電流IDD2を比較したときに、IDD1>IDD2である場合には、レギュレータ216は電流ソース能力を有する構成とすれば、コモンライン212の電圧VCOMを安定化でき、IDD1<IDD2である場合には、レギュレータ216は電流シンク能力を有する構成とすれば、コモンライン212の電圧VCOMを安定化できる。あるいはレギュレータ216は、シンクおよびソースの両方が可能な構成としてもよい。以下の説明では、IDD1>IDD2であるものとする。
 PチャンネルMOSFETとNチャンネルMOSFETとを比較すると、同じ電流供給能力(オン抵抗)を得るためには、PチャンネルMOSFETの方が素子サイズが大きくなる。多くの電源回路においてそうであるように、Pチャンネルトランジスタ202とNチャンネルトランジスタ204のオン抵抗を揃えた場合、Pチャンネルトランジスタ202のトランジスタサイズの方がNチャンネルトランジスタ204のサイズより大きくなる。この場合、Pチャンネルトランジスタ202のゲート容量CG1の方がNチャンネルトランジスタ204のゲート容量CG2よりも大きいため、IDD1>IDD2となり、したがってレギュレータ216には電流シンク能力が要求される。たとえばレギュレータ216は、シャントレギュレータであってもよい。コモンライン212の電圧VCOMの安定性を確保するために、コモンライン212には、COM端子を介して平滑キャパシタ214が外付けされる。平滑キャパシタ214は、制御回路200に内蔵されてもよい。
 以上がDC/DCコンバータ100の構成である。続いてその動作を説明する。
 図3は、図2の制御回路200の動作波形図である。図3には、スイッチングトランジスタM1、同期整流トランジスタM2それぞれのオン、オフ状態、スイッチングトランジスタM1、同期整流トランジスタM2それぞれのゲート電圧VG1,VG2、第1ドライバ206の電流IDD1、第2ドライバ208の電流IDD2が示される。
 実際の制御回路200においては、スイッチングトランジスタM1、同期整流トランジスタM2が同時オンするのを防止するためにデッドタイムが挿入されるが、ここでは説明の簡約化のため、デッドタイムは無視している。
 第1ドライバ206は、スイッチングトランジスタM1のオン期間においてPチャンネルトランジスタ202のゲート電圧VG1を、コモン電圧VCOMにドライブし、オフ期間において、そのゲート電圧VG1を、電源電圧VDDにドライブする。つまり、ゲート電圧VG1は、VDD-VCOMを振幅としてスイングする。第1ドライバ206は、スイッチングトランジスタM1をターンオフするときに、Pチャンネルトランジスタ202のゲートに電流をソースする。またターンオフするときに、ゲートから電流をシンクする。このシンク電流が、下側電源端子からコモンライン212に流れる電流IDD1として示される。
 また第2ドライバ208は、同期整流トランジスタM2のオン期間においてNチャンネルトランジスタ204のゲート電圧VG2を、コモン電圧VCOMにドライブし、オフ期間において、そのゲート電圧VG2を、接地電圧VSSにドライブする。つまり、ゲート電圧VG2は、VCOMを振幅としてスイングする。第2ドライバ208は、同期整流トランジスタM2をターンオフするときに、Nチャンネルトランジスタ204のゲートから電流をシンクする。またターンオンするときに、ゲートに電流をソースする。このソース電流が、コモンライン212から流れ込む電流IDD2として示される。
 第1ドライバ206に流れる電流IDD1は、コモンライン212に一旦回収され、第2ドライバ208への電流IDD2として利用される。IDD1>IDD2であれば、電流IDD2、すなわちNチャンネルトランジスタ204のスイッチングに要する電力は、すべて第1ドライバ206からの電流でまかなうことができる。
 この点について図1と対比して説明する。図1のDC/DCコンバータ900において、PチャンネルトランジスタであるスイッチングトランジスタM1のゲート電圧VG1をローレベルに変化させるとき、その放電電流は、第1ドライバ906によってシンクされ、接地に捨てられている。それに加えて、Nチャンネルトランジスタである同期整流トランジスタM2のゲート電圧VG2をローレベルに変化させるとき、その放電電流は、第2ドライバ908によってシンクされ、接地に捨てられる。スイッチングトランジスタM1のゲート容量をCG1、同期整流トランジスタM2のゲート容量をCG2、スイッチング周波数をfとすると、スイッチングトランジスタM1、同期整流トランジスタM2それぞれのスイッチングに要する電流I、Iは、
 I=f×CG1×(VDD-VSS)  …(1A)
 I=f×CG2×(VDD-VSS)  …(1B)
となり、DC/DCコンバータ900全体としては、I+Iがスイッチング損失となる。
 一方、図2の制御回路200では、電流Iのすべてが電流Iでまかなわれるため、DC/DCコンバータ100全体としては、Iのみがスイッチング損失となる。このように実施の形態に係るDC/DCコンバータ100によれば、図1のDC/DCコンバータ900に比べてスイッチング損失を低減できる。
 加えて、図2のDC/DCコンバータ100では、Pチャンネルトランジスタ202のゲート電圧VG1は、コモンライン212の電圧VCOMをローレベルとしてスイングするため、そのスイッチングに要する電流Iは、
 I=f×CG1×(VDD-VCOM)  …(2A)
となる。これを式(1A)と比較すると、VCOM>VSSであるため、式(2A)の電流Iの方が小さくなり、Pチャンネルトランジスタのスイッチング損失が低減される。
 同様にNチャンネルトランジスタ204のゲート電圧VG2は、コモンライン212の電圧VCOMをハイレベルとしてスイングするため、そのスイッチングに要する電流Iは、
 I=f×CG2×(VCOM-VSS)  …(2B)
となる。これを式(1B)と比較すると、VCOM<VDDであるため、式(2B)の電流Iの方が小さくなり、Nチャンネルトランジスタのスイッチング損失が低減される。
 なお、IDD1>IDD2である場合、レギュレータ216によって電流IDD1とIDD2の差分(つまり余剰電流)を無駄に消費することとなる。そこでCOM端子に、第2ドライバ208とは別の回路ブロック(負荷)を接続してもよい。これにより、余剰電流IDD1-IDD2を有効に利用することができる。
 IDD1-IDD2<IDD3
である負荷が接続される場合、レギュレータ216には電流ソース能力が要求される。
(第2の実施の形態)
 図4は、第2の実施の形態に係るDC/DCコンバータ100aの回路図である。このDC/DCコンバータ100aは、同期整流型の昇圧(Boost)コンバータであり、入力端子102に直流入力電圧VINを受け、出力端子104に昇圧された出力電圧VOUTを発生する。DC/DCコンバータ100aは、出力回路110aおよび制御回路200aを備える。
 出力回路110aは、スイッチングトランジスタM3、同期整流トランジスタM4、インダクタL2、出力キャパシタC2、抵抗R3,R4を含む。本実施の形態においてスイッチングトランジスタM3はNチャンネルトランジスタ204であり、同期整流トランジスタM4はPチャンネルトランジスタ202であり、それらはMOSFETで構成される。制御回路200aの構成については、実質的に図2の制御回路200と同じである。
 図4のDC/DCコンバータ100aにおいても、第1の実施の形態のDC/DCコンバータ100と同様に、スイッチング損失を低減することができる。
 最後にDC/DCコンバータの例示的な用途を説明する。図5は、実施の形態に係るDC/DCコンバータを利用したシステム電源のブロック図である。
 システム電源300は、多チャンネル(この実施の形態では3チャンネル)構成を有しており、チャンネルCH1~CH3ごとに異なる電源電圧VOUTを発生し、さまざまな負荷に供給可能となっている。
 システム電源300は、上述した降圧型のDC/DCコンバータ100、昇圧型のDC/DCコンバータ100a、リニアレギュレータの任意の組み合わせを含みうる。図5では、第1チャンネルCH1が降圧DC/DCコンバータ100であり、第2チャンネルCH2が昇圧DC/DCコンバータ100aであり、第3チャンネルはリニアレギュレータ(LDO:Low Drop Output)である。リニアレギュレータは複数チャンネル分、設けられてもよい。
 システム電源300は、パワーマネージメントIC302と、その他の周辺回路部品を含む。パワーマネージメントIC400は、DC/DCコンバータ100の制御回路200、DC/DCコンバータ100aの制御回路200a、リニアレギュレータ402、インタフェース回路404、シーケンサ406等を含む。そのほかパワーマネージメントIC400には、各種保護回路などが内蔵される。
 インタフェース回路404は、外部のホストプロセッサとの間で、制御信号やデータを送受信するために設けられる。たとえばインタフェース回路404は、IC(Inter IC)バスに準拠してもよい。シーケンサ406は、多チャンネルの電源回路の起動の順序やタイミングを制御する。
 以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。
(第1変形例)
 図2において、Pチャンネルトランジスタ202、Nチャンネルトランジスタ204は制御回路200に外付けされてもよい。同様に図4においてPチャンネルトランジスタ202、Nチャンネルトランジスタ204は制御回路200aに外付けされてもよい。
(第2変形例)
 実施の形態ではPチャンネルトランジスタ202、Nチャンネルトランジスタ204がMOSFETである場合を説明したが、本発明はそれには限定されず、IGBT(Insulated Gate Bipolar Transistor)であってもよい。
(第3変形例)
 本発明は、PチャンネルトランジスタとNチャンネルトランジスタを2対含むような昇降圧コンバータにも適用可能である。
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
900…DC/DCコンバータ、902…入力端子、904…出力端子、906…第1ドライバ、908…第2ドライバ、910…パルス発生器、L1…インダクタ、C1…出力キャパシタ、L2…インダクタ、C2…出力キャパシタ、100…DC/DCコンバータ、110…出力回路、M1…スイッチングトランジスタ、M2…同期整流トランジスタ、M3…スイッチングトランジスタ、M4…同期整流トランジスタ、102…入力端子、104…出力端子、200…制御回路、202…Pチャンネルトランジスタ、204…Nチャンネルトランジスタ、206…第1ドライバ、208…第2ドライバ、210…パルス発生器、212…コモンライン、214…平滑キャパシタ、216…レギュレータ、218…第1ライン、220…第2ライン、300…システム電源、400…パワーマネージメントIC、402…リニアレギュレータ、404…インタフェース回路、406…シーケンサ。
 本発明は、電源回路に利用できる。

Claims (12)

  1.  PチャンネルトランジスタとNチャンネルトランジスタを有するDC/DCコンバータの制御回路であって、
     前記DC/DCコンバータもしくは負荷の状態が目標値に近づくように、前記Pチャンネルトランジスタのオンオフを指示する第1パルス信号および前記Nチャンネルトランジスタのオンオフを指示する第2パルス信号を生成するパルス発生器と、
     前記第1パルス信号にもとづき前記Pチャンネルトランジスタを駆動する第1ドライバと、
     前記第2パルス信号にもとづき前記Nチャンネルトランジスタを駆動する第2ドライバと、
     前記第1ドライバの下側電源端子と前記第2ドライバの上側電源端子に接続されるコモンラインと、
     を備え、前記コモンラインの電圧が、前記第1ドライバの上側電源端子と接続される第1ラインの電圧と、前記第2ドライバの下側電源端子と接続される第2ラインの電圧の間の所定電圧値に安定化されることを特徴とする制御回路。
  2.  前記コモンラインの電圧を前記所定電圧値に安定化するレギュレータをさらに備えることを特徴とする請求項1に記載の制御回路。
  3.  前記第1ドライバに流れる電流は前記第2ドライバに流れる電流より大きく、
     前記レギュレータは、電流シンク能力を有することを特徴とする請求項2に記載の制御回路。
  4.  前記第2ドライバに流れる電流は前記第1ドライバに流れる電流より大きく、
     前記レギュレータは、電流ソース能力を有することを特徴とする請求項2に記載の制御回路。
  5.  前記コモンラインには、平滑キャパシタが接続されることを特徴とする請求項1から4のいずれかに記載の制御回路。
  6.  前記DC/DCコンバータは降圧型であり、前記Pチャンネルトランジスタはスイッチングトランジスタであり、前記Nチャンネルトランジスタは同期整流トランジスタであることを特徴とする請求項1から5のいずれかに記載の制御回路。
  7.  前記DC/DCコンバータは昇圧型であり、前記Nチャンネルトランジスタはスイッチングトランジスタであり、前記Pチャンネルトランジスタは同期整流トランジスタであることを特徴とする請求項1から5のいずれかに記載の制御回路。
  8.  ひとつの半導体基板に一体集積化されることを特徴とする請求項1から7のいずれかに記載の制御回路。
  9.  前記Pチャンネルトランジスタおよび前記Nチャンネルトランジスタは前記制御回路に集積化されていることを特徴とする請求項1から8のいずれかに記載の制御回路。
  10.  入力電圧を受ける入力端子と、
     Pチャンネルトランジスタであり、第1端子が前記入力端子と接続されるスイッチングトランジスタと、
     一端が前記スイッチングトランジスタの第2端子と接続されているインダクタと、
     前記インダクタの他端と接続される出力キャパシタと、
     Nチャンネルトランジスタであり、第1端子が前記インダクタの前記一端と接続され、第2端子が接地される同期整流トランジスタと、
     前記Pチャンネルトランジスタおよび前記Nチャンネルトランジスタを駆動する請求項1から6のいずれかに記載の制御回路と、
     を備えることを特徴とするDC/DCコンバータ。
  11.  入力電圧を受ける入力端子と、
     一端が前記入力端子と接続されるインダクタと、
     Nチャンネルトランジスタであり、第1端子が前記インダクタの前記一端と接続され、第2端子が接地されるスイッチングトランジスタと、
     Pチャンネルトランジスタであり、第1端子が前記インダクタの前記一端と接続される同期整流トランジスタと、
     前記Pチャンネルトランジスタの第2端子と接続される出力キャパシタと、
     前記Pチャンネルトランジスタおよび前記Nチャンネルトランジスタを駆動する請求項1から6のいずれかに記載の制御回路と、
     を備えることを特徴とするDC/DCコンバータ。
  12.  請求項10または11に記載のDC/DCコンバータを備えることを特徴とするシステム電源。
PCT/JP2016/080393 2015-10-16 2016-10-13 Dc/dcコンバータおよびその制御回路、システム電源 WO2017065220A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017545459A JP6465992B2 (ja) 2015-10-16 2016-10-13 Dc/dcコンバータおよびその制御回路、システム電源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-204984 2015-10-16
JP2015204984 2015-10-16

Publications (1)

Publication Number Publication Date
WO2017065220A1 true WO2017065220A1 (ja) 2017-04-20

Family

ID=58517227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080393 WO2017065220A1 (ja) 2015-10-16 2016-10-13 Dc/dcコンバータおよびその制御回路、システム電源

Country Status (2)

Country Link
JP (1) JP6465992B2 (ja)
WO (1) WO2017065220A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196201A (ja) * 2017-05-15 2018-12-06 ローム株式会社 Dc/dcコンバータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262551A (ja) * 2000-02-07 2002-09-13 Fiderikkusu:Kk ボルテージステップダウンdc−dcコンバータ
JP2004096866A (ja) * 2002-08-30 2004-03-25 Fujitsu Ltd 同期整流コンバータ
JP2008228462A (ja) * 2007-03-13 2008-09-25 Fujitsu Ltd 同期整流方式dc−dcコンバータの制御回路
JP2013539341A (ja) * 2010-08-30 2013-10-17 日本テキサス・インスツルメンツ株式会社 Dc−dcコンバータ
JP2015091209A (ja) * 2013-11-07 2015-05-11 富士通株式会社 充放電信号回路およびdcdcコンバータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262551A (ja) * 2000-02-07 2002-09-13 Fiderikkusu:Kk ボルテージステップダウンdc−dcコンバータ
JP2004096866A (ja) * 2002-08-30 2004-03-25 Fujitsu Ltd 同期整流コンバータ
JP2008228462A (ja) * 2007-03-13 2008-09-25 Fujitsu Ltd 同期整流方式dc−dcコンバータの制御回路
JP2013539341A (ja) * 2010-08-30 2013-10-17 日本テキサス・インスツルメンツ株式会社 Dc−dcコンバータ
JP2015091209A (ja) * 2013-11-07 2015-05-11 富士通株式会社 充放電信号回路およびdcdcコンバータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196201A (ja) * 2017-05-15 2018-12-06 ローム株式会社 Dc/dcコンバータ
US10581329B2 (en) 2017-05-15 2020-03-03 Rohm Co., Ltd. Synchronous rectification type DC/DC converter

Also Published As

Publication number Publication date
JP6465992B2 (ja) 2019-02-06
JPWO2017065220A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
US10333384B2 (en) System and method for a switch driver
US8248046B2 (en) DC-DC converter for pulse frequency modulation control and power supply system
US9548654B2 (en) DC-DC converter with temperature, process and voltage compensated dead time delay
US7741901B2 (en) Circuit for charging a bootstrap capacitor in a voltage converter
JP5877074B2 (ja) コンパレータ、それを用いたオシレータ、dc/dcコンバータの制御回路、dc/dcコンバータ、電子機器
US10008932B2 (en) Synchronous rectification DC/DC converter
US9054583B2 (en) Power-supply apparatus
KR101223799B1 (ko) Dc 공급 전압을 발생시키기 위한 모놀리식 ac/dc 변환기
JP2017085725A (ja) 降圧dc/dcコンバータおよびその制御回路、車載用電源装置
TWI479780B (zh) 降壓轉換器
US9584115B2 (en) Duty cycle-controlled load switch
JP2007124748A (ja) Dc−dcコンバータ、dc−dcコンバータの制御回路及びdc−dcコンバータの制御方法
US9543933B2 (en) Control circuit, DCDC converter, and driving method
CN107431427B (zh) 在组合开关与线性调节器中使用pmos电源开关
US20130099834A1 (en) Ramp signal generation circuit and ramp signal adjustment circuit
US11209464B2 (en) Current detection circuit and power converter
JP6458659B2 (ja) スイッチング素子の駆動装置
JP6637717B2 (ja) Dc/dcコンバータおよびその制御回路、システム電源
JP2018129907A (ja) Dc/dcコンバータおよびその制御回路、制御方法、車載電装機器
JP6886343B2 (ja) Dc/dcコンバータ
JP6465992B2 (ja) Dc/dcコンバータおよびその制御回路、システム電源
US8570777B2 (en) Power supply circuit with spike suppression circuit
US11223272B2 (en) Uninterrupted current sense
CN107302309B (zh) 用于零电压转变功率转换器的自适应计时的方法及设备
US11916480B2 (en) Switched mode power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855473

Country of ref document: EP

Kind code of ref document: A1