WO2017064970A1 - 活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及びフィルム - Google Patents

活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及びフィルム Download PDF

Info

Publication number
WO2017064970A1
WO2017064970A1 PCT/JP2016/077248 JP2016077248W WO2017064970A1 WO 2017064970 A1 WO2017064970 A1 WO 2017064970A1 JP 2016077248 W JP2016077248 W JP 2016077248W WO 2017064970 A1 WO2017064970 A1 WO 2017064970A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
film
resin composition
active energy
Prior art date
Application number
PCT/JP2016/077248
Other languages
English (en)
French (fr)
Inventor
東美 申
伊藤 正広
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020187011073A priority Critical patent/KR20180067549A/ko
Priority to CN201680059910.4A priority patent/CN108137726B/zh
Priority to JP2017515861A priority patent/JP6187845B1/ja
Publication of WO2017064970A1 publication Critical patent/WO2017064970A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/005Dendritic macromolecules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/20Polymers characterized by their physical structure
    • C08J2400/202Dendritic macromolecules, e.g. dendrimers or hyperbranched polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to an active energy ray-curable resin composition excellent in compatibility with various resin materials and excellent in various properties such as hardness, smoothness and blocking resistance in a cured product, and a coating comprising the resin composition
  • the present invention relates to a coating film comprising the coating material and a film having the coating layer.
  • the inorganic fine particle dispersed resin material obtained by dispersing inorganic fine particles in the resin component has higher hardness of the cured coating film, adjustment of the refractive index, and blocking resistance compared to the resin material consisting only of organic materials. In recent years, it has attracted attention as a new material that can be provided with high performance and new functions.
  • the inorganic fine particle dispersed resin material has various uses. For example, it is widely used as a hard coat agent for protecting molded articles, display surfaces, and various film materials from scratches.
  • an inorganic fine particle dispersed resin material a polymer obtained by adding acrylic acid to an acrylic polymer of glycidyl methacrylate, trimethylolpropane triacrylate, polyfunctional urethane acrylate, and silica having an average particle size in the range of 297 to 540 nm
  • a resin composition for an antiglare film containing fine particles is known (see Patent Document 1).
  • such a dispersion can obtain a coating film having a high hardness as compared with a hard coating agent composed only of an organic system, it contains only about 17% of silica fine particles in the nonvolatile content of the resin composition. It did not reach the recent market requirement level where high surface hardness is required.
  • Such a dispersion can provide a coating film having a high hardness compared to a hard coating agent composed only of an organic system, since the average particle size of the inorganic fine particles in the dispersion is small, the demand for coating film hardness is increasing more and more recently. The coating film hardness sufficient for the level was not obtained.
  • the problem to be solved by the present invention is an active energy ray-curable resin composition that is excellent in compatibility with various resin materials and excellent in various properties such as hardness, smoothness, and blocking resistance in a cured product.
  • An object of the present invention is to provide a paint containing a resin composition, a coating film comprising the coating composition, and a film having the coating layer.
  • the present inventors have determined that the size of the inorganic fine particles in the active energy ray-curable resin composition is in the range of an average particle size of 80 to 250 nm, as a matrix resin
  • the active energy ray-curable resin composition is excellent in compatibility with various resin materials and excellent in various properties such as hardness, smoothness and blocking resistance in a cured product.
  • the present invention has been completed.
  • the present invention contains inorganic fine particles (A) having an average particle size in the range of 80 to 250 nm and the matrix resin (B), and the mass of the inorganic fine particles (A) and the matrix resin (B).
  • the ratio [(A) / (B)] is in the range of 30/70 to 70/30, and the matrix resin (B) contains the dendrimer type poly (meth) acrylate compound (B1) as an essential component. It relates to an active energy ray-curable resin composition.
  • the present invention further relates to a paint containing the resin composition.
  • the present invention further relates to a coating film comprising the paint.
  • the present invention further relates to a laminated film having one or more layers made of the coating film.
  • an active energy ray-curable resin composition having excellent compatibility with various resin materials and excellent properties such as hardness, smoothness, and blocking resistance in a cured product, and the resin composition It is possible to provide a laminated film having a coating material comprising, a coating film comprising the coating material, and a layer comprising the coating film.
  • the active energy ray-curable resin composition of the present invention contains inorganic fine particles (A) having an average particle size in the range of 80 to 250 nm and a matrix resin (B), and the inorganic fine particles (A) and the matrix
  • the mass ratio [(A) / (B)] to the resin (B) is in the range of 30/70 to 70/30, and the matrix resin (B) requires the dendrimer type poly (meth) acrylate compound (B1). It is characterized by being a component of
  • the active energy ray-curable resin composition of the present invention contains the inorganic fine particles (A) having an average particle diameter in the range of 80 to 250 nm, thereby allowing various properties such as hardness, smoothness, and blocking resistance in the cured product. Excellent performance.
  • the average particle diameter of the inorganic fine particles (A) is less than 80 nm, the surface hardness of the obtained coating film decreases, and when it exceeds 250 nm, the smoothness of the obtained coating film decreases.
  • the average particle diameter of the inorganic fine particles (A) is more preferably in the range of 90 to 180 nm, and more preferably in the range of 100 to 150 nm because the cured product is further excellent in various properties such as hardness, smoothness, and blocking resistance. A range is particularly preferred.
  • the average particle size of the inorganic fine particles (A) is a value obtained by measuring the particle size in the active energy ray-curable resin composition under the following conditions.
  • Particle size measuring device “ELSZ-2” manufactured by Otsuka Electronics Co., Ltd.
  • Particle size measurement sample A composition in which an active energy ray-curable resin composition is a methyl isobutyl ketone solution having a nonvolatile content of 1% by mass.
  • the inorganic fine particles (A) contained in the active energy ray-curable resin composition of the present invention are the inorganic particles (a) used as a raw material as a matrix resin (B), or a mixture of a matrix resin (B) and an organic solvent. It is obtained by dispersing it in Examples of the inorganic particles (a) include fine particles such as silica, alumina, zirconia, titania, barium titanate, and antimony trioxide. These may be used alone or in combination of two or more.
  • silica particles are preferred because they are readily available and easy to handle.
  • examples of the silica particles include various silica particles such as fumed silica, wet silica called precipitation method silica, gel silica, sol-gel silica, and the like, and any of them may be used.
  • the inorganic particles (a) may be those obtained by introducing functional groups on the surface of fine particles with various silane coupling agents. By introducing a functional group on the surface of the inorganic particles (a), the miscibility with the organic component such as the matrix resin (B) is increased, and the storage stability is improved.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- Glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyl Diethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (amino Til) -3-aminopropyl
  • Styrene-type silane coupling agents such as p-styryltrimethoxysilane
  • Ureido-based silane coupling agents such as 3-ureidopropyltriethoxysilane
  • Chloropropyl silane coupling agents such as 3-chloropropyltrimethoxysilane
  • Sulfide-based silane coupling agents such as bis (triethoxysilylpropyl) tetrasulfide
  • Examples include isocyanate-based silane coupling agents such as 3-isocyanatopropyltriethoxysilane. These silane coupling agents may be used alone or in combination of two or more. Among these, a (meth) acryloxy-based silane coupling agent has excellent miscibility with organic components such as the matrix resin (B), and a cured coating film having high surface hardness and excellent smoothness can be obtained. 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane are more preferable.
  • the matrix resin (B) used in the present invention contains a dendrimer type poly (meth) acrylate compound (B1) as an essential component.
  • the dendrimer type poly (meth) acrylate compound is a compound having a regular multi-branched structure and having a (meth) acryloyl group at the end of each branched chain.
  • a hyperbranched type or It is called a star polymer. Examples of such compounds include, but are not limited to, those represented by the following structural formulas (B-1) to (B-8), and a regular multi-branched structure is not limited thereto. Any compound can be used as long as the compound has a (meth) acryloyl group at the end of each branched chain.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrocarbon group having 1 to 4 carbon atoms.
  • the dendrimer-type poly (meth) acrylate compound (B1) having such a molecular structure “Biscoat # 1000” [weight average molecular weight (Mw) 1,500 to 2,000, manufactured by Osaka Organic Chemical Co., Ltd.
  • the dendrimer type poly (meth) acrylate compounds (B1) an active energy ray curable type having excellent compatibility with various resin materials and excellent properties such as hardness, smoothness and blocking resistance in a cured product. Since it becomes a resin composition, the average (meth) acryloyl group number per molecule is preferably in the range of 5 to 50, and particularly preferably in the range of 10 to 30. The weight average molecular weight (Mw) is preferably in the range of 500 to 30,000.
  • the weight average molecular weight (Mw) is a value measured under the following conditions using a gel permeation chromatograph (GPC).
  • Measuring device HLC-8220 manufactured by Tosoh Corporation Column: Tosoh Corporation guard column H XL -H + Tosoh Corporation TSKgel G5000H XL + Tosoh Corporation TSKgel G4000H XL + Tosoh Corporation TSKgel G3000H XL + Tosoh Corporation TSKgel G2000H XL Detector: RI (differential refractometer) Data processing: Tosoh Corporation SC-8010 Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; Polystyrene sample; 0.4% by weight tetrahydrofuran solution in terms of resin solids filtered through microfilter (100 ⁇ l)
  • the matrix resin (B) other resins other than the dendrimer type poly (meth) acrylate compound (B1) may be used in combination.
  • Other resins include, for example, other (meth) acrylate compounds (B2) other than the dendrimer type poly (meth) acrylate compound (B1), and other resins (B3) not having a (meth) acryloyl group. Can be mentioned.
  • Examples of the other (meth) acrylate compound (B2) include various (meth) acrylate monomers, urethane (meth) acrylate, and (meth) acryloyl group-containing acrylic resins.
  • Examples of the (meth) acrylate monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) ) Acrylate, t-butyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) Acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, benzyl
  • Examples thereof include (meth) acrylates in which a part of the various polyfunctional (meth) acrylates described above is substituted with an alkyl group or ⁇ -caprolactone.
  • urethane (meth) acrylate examples include urethane (meth) acrylate using a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate compound as raw materials.
  • Examples of the polyisocyanate compound used as a raw material for the urethane (meth) acrylate include various diisocyanate monomers and a nurate polyisocyanate compound having an isocyanurate ring structure in the molecule.
  • diisocyanate monomer examples include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, and m-tetramethylxylylene.
  • Aliphatic diisocyanates such as range isocyanate;
  • Cycloaliphatic diisocyanates such as cyclohexane-1,4-diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methylcyclohexane diisocyanate;
  • 1,5-naphthylene diisocyanate 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylene diisocyanate
  • aromatic diisocyanates such as 1,4-phenylene diisocyanate and tolylene diisocyanate.
  • Examples of the nurate polyisocyanate compound having an isocyanurate ring structure in the molecule include those obtained by reacting a diisocyanate monomer with a monoalcohol and / or a diol.
  • Examples of the diisocyanate monomer used in the reaction include the various diisocyanate monomers described above, and each may be used alone or in combination of two or more.
  • Monoalcohols used in the reaction are hexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, n-heptadecanol, n- Octadecanol, n-nonadecanol and the like can be mentioned, and the diol includes ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1, Examples include 3-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, and the like. These monoalcohols and diols may be used alone or in combination of two or more.
  • Examples of the hydroxyl group-containing (meth) acrylate compound used as a raw material for the urethane (meth) acrylate include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, glycerin diacrylate, trimethylolpropane diacrylate, Aliphatic (meth) acrylate compounds such as pentaerythritol triacrylate and dipentaerythritol pentaacrylate;
  • the method for producing the urethane (meth) acrylate includes, for example, the polyisocyanate compound, the hydroxyl group-containing (meth) acrylate compound, the isocyanate group of the polyisocyanate compound, and the hydroxyl group-containing (meth) acrylate compound.
  • the molar ratio [(NCO) / (OH)] to the hydroxyl group possessed is used in a ratio in the range of 1 / 0.95 to 1 / 1.05, and within the temperature range of 20 to 120 ° C., if necessary
  • the method performed using a well-known and usual urethanization catalyst etc. are mentioned.
  • the weight average molecular weight (Mw) of the urethane (meth) acrylate is preferably in the range of 800 to 20,000, more preferably in the range of 900 to 1,000.
  • the (meth) acryloyl group-containing acrylic resin is obtained, for example, by reacting (meth) acrylic acid with a glycidyl group-containing acrylic resin intermediate, or reacting glycidyl (meth) acrylate with a carboxyl group-containing acrylic resin intermediate. Can be obtained.
  • the glycidyl group-containing acrylic resin intermediate is obtained, for example, by acrylic polymerization with a glycidyl group-containing acrylic monomer such as glycidyl (meth) acrylate and other (meth) acrylate compounds.
  • (meth) acrylate compounds used here are, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) acrylate-n-butyl, (meth) acrylic acid -T-butyl, hexyl (meth) acrylate, hepsyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, (meth) (Meth) acrylic acid esters having an alkyl group having 1 to 22 carbon atoms such as tetradecyl acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, octadecyl (meth) acrylate, docosyl (meth) acrylate;
  • (Meth) acrylic acid esters having an alicyclic alkyl group such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate ;
  • Unsaturated dicarboxylic acid esters such as dimethyl fumarate, diethyl fumarate, dibutyl fumarate, dimethyl itaconate, dibutyl itaconate, methyl ethyl fumarate, methyl butyl fumarate, methyl ethyl itaconate;
  • Styrene derivatives such as styrene, ⁇ -methylstyrene, chlorostyrene;
  • Diene compounds such as butadiene, isoprene, piperylene, dimethylbutadiene;
  • Vinyl halides such as vinyl chloride and vinyl bromide and vinylidene halides
  • Unsaturated ketones such as methyl vinyl ketone and butyl vinyl ketone;
  • Vinyl esters such as vinyl acetate and vinyl butyrate
  • Vinyl ethers such as methyl vinyl ether and butyl vinyl ether
  • Vinyl cyanides such as acrylonitrile, methacrylonitrile, vinylidene cyanide
  • N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide;
  • Fluorine-containing ⁇ -olefins such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, bromotrifluoroethylene, pentafluoropropylene or hexafluoropropylene;
  • (Per) fluoroalkyl / perfluorovinyl ether having 1 to 18 carbon atoms in the (per) fluoroalkyl group such as trifluoromethyl trifluorovinyl ether, pentafluoroethyl trifluorovinyl ether or heptafluoropropyl trifluorovinyl ether;
  • Silyl group-containing (meth) acrylates such as 3-methacryloxypropyltrimethoxysilane
  • the carboxyl group-containing acrylic resin intermediate is obtained, for example, by acrylic polymerization with a glycol carboxyl group-containing acrylic monomer such as (meth) acrylic acid and the other (meth) acrylate compounds described above.
  • the weight-average molecular weight (Mw) of the (meth) acryloyl group-containing acrylic resin is preferably in the range of 5,000 to 80,000.
  • the (meth) acryloyl group equivalent is preferably in the range of 220 g / eq to 1650 g / eq.
  • the other (meth) acrylate compounds (B2) may be used alone or in combination of two or more. Among them, it is preferable to use a (meth) acrylate monomer or urethane (meth) acrylate because it becomes an active energy ray-curable resin composition excellent in various properties such as hardness, smoothness, and blocking resistance in the cured product. A trifunctional or higher functional group is particularly preferable.
  • the trifunctional or higher functional (meth) acrylate monomer is preferably pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, or dipentaerythritol hexa (meth) acrylate.
  • trifunctional or higher functional urethane (meth) acrylate has a diisocyanate compound and 2 (meth) acryloyl groups in the molecular structure such as glycerin diacrylate, trimethylolpropane diacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate and the like.
  • Urethane (meth) acrylate made from a hydroxyl group-containing (meth) acrylate compound having at least two raw materials is preferable, and urethane (meth) acrylate compound containing three or more diisocyanate compounds and three (meth) acryloyl groups as raw materials ( More preferred is (meth) acrylate.
  • Examples of the other resin (B3) having no (meth) acryloyl group include a polyester resin, an acrylic resin, and a polyurethane resin. These may be used alone or in combination of two or more. Of these, acrylic resins are preferred because they have excellent adhesion and water resistance to various plastic films and plastic substrates.
  • the dendrimer-type poly (meth) acrylate compound (B1) is contained in 5 to 100 parts by mass of the matrix resin (B). The range is preferably 100 parts by mass, and more preferably in the range of 10 to 60 parts by mass.
  • the active energy ray-curable resin composition of the present invention preferably contains a photopolymerization initiator in addition to the inorganic fine particles (A) and the matrix resin (B).
  • a photopolymerization initiator include benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 4,4′-bisdimethylaminobenzophenone, 4,4′-bisdiethylaminobenzophenone, 4,4′-dichlorobenzophenone, Various benzophenones such as Michler's ketone, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone;
  • Xanthones such as xanthone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, and 2,4-diethylthioxanthone; thioxanthones; various acyloin ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether;
  • ⁇ -diketones such as benzyl and diacetyl; sulfides such as tetramethylthiuram disulfide and p-tolyl disulfide; various benzoic acids such as 4-dimethylaminobenzoic acid and ethyl 4-dimethylaminobenzoate;
  • photopolymerization initiators 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy- 2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2′-dimethoxy-1,2-diphenylethane-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2 , 4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholino
  • One or more mixed systems selected from the group of phenyl) -butan-1-one It allows more active against a broad range of wavelengths of light is preferred because highly curable coating is obtained using.
  • the amount of the photopolymerization initiator used is an amount that can sufficiently exhibit the function as a photopolymerization initiator, and is preferably within a range that does not cause precipitation of crystals and physical properties of the coating film. It is preferably used in the range of 0.05 to 20 parts by mass, more preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the active energy ray-curable resin composition.
  • the active energy ray-curable resin composition of the present invention may use various photosensitizers in combination with the photopolymerization initiator.
  • the photosensitizer include amines, ureas, sulfur-containing compounds, phosphorus-containing compounds, chlorine-containing compounds, nitriles, and other nitrogen-containing compounds.
  • the active energy ray-curable resin composition of the present invention may contain an organic solvent.
  • organic solvent used here include ketone solvents such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK); cyclic ether solvents such as tetrahydrofuran (THF) and dioxolane; esters such as methyl acetate, ethyl acetate, and butyl acetate.
  • Aromatic solvents such as toluene and xylene; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether; ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl Examples include glycol ether solvents such as ether. These may be used alone or in combination of two or more.
  • a ketone solvent is preferable and methyl ethyl ketone or methyl isobutyl ketone is more preferable because it becomes an active energy ray-curable resin composition excellent in storage stability and smoothness of a cured coating film.
  • the organic solvent is mainly used for the purpose of adjusting the viscosity of the active energy ray-curable resin composition, and an arbitrary amount may be added according to the intended use.
  • the active energy ray-curable resin composition of the present invention may contain various additives as necessary.
  • Additives used here include, for example, organic solvents, dispersion aids, ultraviolet absorbers, antioxidants, silicone additives, organic beads, fluorine additives, rheology control agents, defoaming agents, mold release agents, and charging agents. Examples thereof include an inhibitor, an antifogging agent, a colorant, an organic solvent, and an inorganic filler.
  • dispersion aid examples include phosphate ester compounds such as isopropyl acid phosphate, triisodecyl phosphite, ethylene oxide-modified phosphate dimethacrylate, and the like. These may be used alone or in combination of two or more. Among these, ethylene oxide-modified phosphoric dimethacrylate is preferable because it is excellent in dispersion assist performance.
  • examples of commercially available dispersion aids include “Kayamar PM-21” and “Kayamer PM-2” manufactured by Nippon Kayaku Co., Ltd., “Light Ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd., and the like.
  • Examples of the ultraviolet absorber include 2- [4- ⁇ (2-hydroxy-3-dodecyloxypropyl) oxy ⁇ -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, 3,5-triazine, 2- [4- ⁇ (2-hydroxy-3-tridecyloxypropyl) oxy ⁇ -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3 Triazine derivatives such as 1,5-triazine, 2- (2'-xanthenecarboxy-5'-methylphenyl) benzotriazole, 2- (2'-o-nitrobenzyloxy-5'-methylphenyl) benzotriazole, 2- And xanthenecarboxy-4-dodecyloxybenzophenone, 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone, and the like. These may be used alone or in combination of two or more.
  • antioxidants examples include hindered phenol-based antioxidants, hindered amine-based antioxidants, organic sulfur-based antioxidants, and phosphate ester-based antioxidants. These may be used alone or in combination of two or more.
  • silicon-based additive examples include dimethylpolysiloxane, methylphenylpolysiloxane, cyclic dimethylpolysiloxane, methylhydrogenpolysiloxane, polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, and fluorine-modified dimethyl.
  • examples include polyorganosiloxanes having alkyl groups and phenyl groups, such as polysiloxane copolymers and amino-modified dimethylpolysiloxane copolymers, polydimethylsiloxanes having polyether-modified acrylic groups, and polydimethylsiloxanes having polyester-modified acrylic groups. It is done. These may be used alone or in combination of two or more.
  • organic beads examples include polymethyl methacrylate beads, polycarbonate beads, polystyrene beads, polyacryl styrene beads, silicone beads, glass beads, acrylic beads, benzoguanamine resin beads, melamine resin beads, polyolefin resin beads, Examples thereof include polyester resin beads, polyamide resin beads, polyimide resin beads, polyfluorinated ethylene resin beads, and polyethylene resin beads.
  • a preferable value of the average particle diameter of these organic beads is in the range of 1 to 10 ⁇ m. These may be used alone or in combination of two or more.
  • fluorine-based additive examples include DIC Corporation “Mega Fuck” series. These may be used alone or in combination of two or more.
  • release agent examples include “Tegorad 2200N”, “Tegorad 2300”, “Tegorad 2100” manufactured by Evonik Degussa, “UV3500” manufactured by BYK Chemie, “Paintad 8526” manufactured by Toray Dow Corning, and “SH-29PA”. Or the like. These may be used alone or in combination of two or more.
  • antistatic agent examples include pyridinium, imidazolium, phosphonium, ammonium, or lithium salts of bis (trifluoromethanesulfonyl) imide or bis (fluorosulfonyl) imide. These may be used alone or in combination of two or more.
  • additives can be added in any amount depending on the desired performance and the like, but usually used in the range of 0.01 to 40 parts by mass in 100 parts by mass of the active energy ray-curable resin composition. It is preferable.
  • the active energy ray-curable resin composition of the present invention uses, for example, a dispersion machine having a stirring blade such as a disper or a turbine blade, a dispersion machine such as a paint shaker, a roll mill, a ball mill, an attritor, a sand mill, a bead mill, and the like. It can be produced by a method in which (a) is mixed and dispersed in the matrix resin (B). Among these, it is preferable to use a ball mill or a bead mill because a uniform and stable dispersion can be obtained.
  • the inorganic fine particles (a) are mixed and dispersed in the matrix resin (B).
  • the inorganic fine particles (a) are dispersed in the entire amount of the matrix resin (B), and the active energy ray-curable resin composition is manufactured at once.
  • the inorganic fine particles (a) may be dispersed in a part of the matrix resin (B) to produce a pre-dispersion, and then the remaining matrix resin (B) may be blended.
  • Various additives may be added in the dispersion step, or may be added after the inorganic fine particles (a) are dispersed in the matrix resin (B).
  • the ball mill that can be preferably used in producing the active energy ray-curable resin composition of the present invention has, for example, a vessel filled with a medium inside, a rotating shaft, and a rotating shaft coaxial with the rotating shaft.
  • a stirring blade that is rotated by the rotational drive of the rotating shaft, a raw material supply port installed in the vessel, a dispersion outlet installed in the vessel, and a portion where the rotating shaft passes through the vessel.
  • the shaft seal device has a structure in which the shaft seal device has two mechanical seal units, and the seal portions of the two mechanical seal units are sealed with an external seal liquid.
  • a wet ball mill is mentioned.
  • the method for producing the active energy ray-curable resin composition of the present invention includes, for example, a vessel filled with a medium inside, a rotating shaft, a rotating shaft coaxially with the rotating shaft, A stirring blade that is rotated by rotation driving, a raw material supply port installed in the vessel, a dispersion outlet installed in the vessel, and a shaft seal device in which the rotary shaft is disposed in a portion that passes through the vessel.
  • a wet ball mill having a structure in which the shaft seal device has two mechanical seal units, and the seal portions of the two mechanical seal units are sealed with an external seal liquid. From the supply port, a raw material containing the inorganic fine particles (a) and the matrix resin (B) is supplied to the vessel.
  • the inorganic fine particles (a) are pulverized and the inorganic fine particles (a) are dispersed in the matrix resin (B). And then discharging from the outlet.
  • the wet ball mill shown in FIG. 1 has a vessel (p1) filled with media therein, a rotating shaft (q1), a rotating shaft coaxially with the rotating shaft (q1), and is rotated by the rotational drive of the rotating shaft.
  • the stirring blade (r1), the raw material supply port (s1) installed in the vessel (p1), the dispersion outlet (t1) installed in the vessel (p1), and the rotating shaft pass through the vessel A shaft seal device (u1) disposed on the portion to be operated.
  • the shaft seal device (u1) has two mechanical seal units and has a structure in which the seal portions of the two mechanical seal units are sealed with an external seal liquid.
  • the shaft seal device (u1) for example, one having the structure shown in FIG.
  • the raw material is supplied to the vessel (p1) through the supply port (s1) in FIG.
  • the vessel (p1) is filled with a medium, and the raw material and the medium are stirred and mixed by the stirring blade (r1) that is rotated by the rotation of the rotating shaft (q1), and the inorganic fine particles (a) are pulverized.
  • the inorganic fine particles (a) are dispersed in the matrix resin (B).
  • the inside of the rotating shaft (p1) is a cavity having an opening on the discharge port (t1) side.
  • a screen-type separator 2 is installed in the cavity as a separator, and a flow path leading to the discharge port (t1) is provided inside the separator 2.
  • the dispersion in the vessel (p1) is pushed by the supply pressure of the raw material, and is conveyed from the opening of the rotary shaft (p1) to the separator 2 inside thereof.
  • the media remains in the vessel (p1), and only the dispersion is discharged from the outlet. It is discharged from (t1).
  • the wet ball mill has a shaft seal device (u1) as shown in FIG.
  • the rotary ring 3 fixed on the shaft (q1) and the fixed ring 4 fixed on the housing 1 of the shaft seal device in FIG. 1 form a seal portion.
  • Two mechanical seal units having the arranged structure are provided, and the rotation ring 3 and the stationary ring 4 in the unit are aligned in the same direction in the two units.
  • the seal portion refers to a pair of sliding surfaces formed by the rotating ring 3 and the fixed ring 4.
  • the liquid seal space 11 is supplied with an external seal liquid (R) supplied from an external seal liquid tank 7 by a pump 8 through the external seal liquid supply port 5 and through the external seal liquid discharge port 6. By being returned to the tank 7, it is circulated and supplied. As a result, the liquid seal space 11 is filled with the external seal liquid (R) in a liquid-tight manner, and the gap 9 formed between the rotating ring 3 and the fixed ring 4 in the seal portion is formed with the external seal liquid (R). ).
  • the sealing liquid (R) lubricates and cools the sliding surfaces of the rotating ring 3 and the stationary ring 4.
  • the force P1 that the stationary ring 4 is pressed against the rotating ring 3 by the inflow pressure of the external sealing liquid (R), the force P2 that the stationary ring 4 is pressed against the rotating ring 3 by the spring 10, and the external sealing liquid (R) are set so that the force with which the stationary ring 4 is separated from the rotating ring 3 by the inflow pressure is balanced with P3.
  • the gap 9 between the stationary ring 4 and the rotating ring 3 that is the sliding surface is filled with the external sealing liquid (R) in a liquid-tight manner, and the matrix resin (B) does not enter the gap 9. .
  • the shaft seal device such as the shaft seal device (u1) is, for example, a tandem mechanical seal.
  • examples of commercially available wet ball mill Y having the tandem mechanical seal as a shaft seal device include “LMZ” series manufactured by Ashizawa Finetech Co., Ltd.
  • the external sealing liquid (R) is a non-reactive liquid, and examples thereof include the various organic solvents described above. Among these, a ketone solvent is preferable and methyl ethyl ketone or methyl isobutyl ketone is more preferable because it becomes an active energy ray-curable resin composition excellent in storage stability and smoothness of a cured coating film.
  • various micro beads are used.
  • the material for the microbeads include zirconia, glass, titanium oxide, copper, and zirconia silicate. Among these, zirconia microbeads are preferred because they are the hardest and less worn.
  • the media has good separation of the media from the slurry in the screen-type separator 2 in FIG. 1, the dispersion time is relatively short because of the high pulverization ability of the inorganic fine particles (a),
  • the average particle diameter is preferably in the range of 10 to 1000 ⁇ m in terms of median diameter because the inorganic fine particles (a) are not so strong in impact and the inorganic fine particles (a) are hardly overdispersed.
  • the above-mentioned overdispersion phenomenon refers to a phenomenon in which a new active surface is generated due to destruction of inorganic fine particles and reaggregation occurs.
  • the overdispersion phenomenon occurs, the dispersion is gelled.
  • the filling rate of the media in the vessel (p1) in FIG. 1 is in the range of 75 to 90% by volume of the vessel internal volume in that the power required for dispersion is minimized and pulverization can be performed most efficiently. It is preferable.
  • the stirring blade (r1) has a large impact when the medium collides with the inorganic fine particles (a) and increases the dispersion efficiency, so that the peripheral speed of the tip is in the range of 5 to 20 m / sec. It is preferably driven to rotate, and more preferably in the range of 8 to 20 m / sec.
  • the production method may be a batch type or a continuous type. Further, in the case of a continuous type, it may be a circulation type that is supplied again after the slurry is taken out or a non-circulation type. Among these, the circulation type is preferable in that the production efficiency is high and the homogeneity of the obtained dispersion is excellent.
  • This dispersion step is preferably performed in a two-stage process using relatively small particles having a median diameter in the range of 15 to 400 ⁇ m as a medium.
  • a relatively large medium having a median diameter in the range of 400 to 1000 ⁇ m is used. Since such a medium has a large impact force when it collides with the inorganic fine particles (a), the fine particles of the inorganic fine particles (a) having a large particle size are highly pulverizable. Grind to a particle size of.
  • a relatively small medium having a median diameter in the range of 15 to 400 ⁇ m is used. Although such a medium has a small impact force when colliding with the inorganic fine particles (a), since the number of particles contained in the same volume is larger than that of a medium having a large particle size, the inorganic fine particles (a) The number of collisions with will increase.
  • the pre-dispersion step is preferably performed in a range in which the slurry circulates in the vessel (p1) for 1 to 3 cycles.
  • the active energy ray-curable resin composition of the present invention can be used for paint applications.
  • the coating material can be used as a coating layer that protects the surface of the substrate by applying the coating onto various substrates and irradiating and curing the active energy rays.
  • the coating material of the present invention may be directly applied to the surface protection member, or a material applied on a plastic film may be used as the protective film.
  • the paint of the present invention When the paint of the present invention is applied on a plastic film, it may be applied on one side or on both sides.
  • the coating film obtained using the paint of the present invention is characterized by high surface hardness and excellent transparency, so it can be applied to various types of plastic film with a film thickness according to the application, and used as a protective film or film It can be used as a molded product.
  • the plastic film is, for example, a plastic film made of polycarbonate, polymethyl methacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cellulose resin, ABS resin, AS resin, norbornene resin, cyclic olefin, polyimide resin, or the like. And plastic sheets.
  • the triacetyl cellulose film is a film that is particularly suitably used for polarizing plates of liquid crystal displays.
  • the thickness is generally as thin as 40 to 100 ⁇ m, the surface even when a hard coat layer is provided. It is difficult to make the hardness sufficiently high, and there is a feature that it is easily curled.
  • the coating film made of the resin composition of the present invention has a high surface hardness, excellent curl resistance, toughness and transparency even when a triacetyl cellulose film is used as a base material, and is preferably used. I can do it.
  • the coating amount when applying the coating material of the present invention is such that the film thickness after drying is in the range of 4 to 20 ⁇ m, preferably in the range of 6 to 15 ⁇ m. It is preferable.
  • the coating method at that time include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, and screen printing.
  • the polyester film is, for example, polyethylene terephthalate, and the thickness thereof is generally about 100 to 300 ⁇ m. Although it is a cheap and easy to process film, it is a film used for various applications such as a touch panel display. However, it is very soft and has a feature that it is difficult to sufficiently increase the surface hardness even when a hard coat layer is provided.
  • the coating amount when applying the coating material of the present invention is in the range of 5 to 100 ⁇ m, preferably 7 to 80 ⁇ m after drying, depending on the application. It is preferable to apply as described above.
  • the paint of the present invention is excellent in curling resistance. Since it has characteristics, curling hardly occurs even when it is applied with a relatively high film thickness exceeding 30 ⁇ m, and it can be suitably used.
  • the coating method at that time include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, and screen printing.
  • polymethyl methacrylate film is generally relatively thick and durable, with a thickness of about 100 to 2,000 ⁇ m. Therefore, it is suitable for applications that require particularly high surface hardness, such as the front plate of liquid crystal displays. It is the film used for.
  • the coating amount when applying the coating material of the present invention is in the range of 5 to 100 ⁇ m, preferably 7 to 80 ⁇ m after drying, depending on the application. It is preferable to apply so that it becomes.
  • a coating when a coating is applied on a relatively thick film such as a polymethyl methacrylate film to a film thickness exceeding 30 ⁇ m, it becomes a laminated film having a high surface hardness, but the transparency tends to decrease.
  • the coating material of the present invention has very high transparency as compared with the conventional coating material, a laminated film having both high surface hardness and transparency can be obtained.
  • the coating method at that time include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, and screen printing.
  • Examples of the active energy rays irradiated when the paint of the present invention is cured to form a coating film include ultraviolet rays and electron beams.
  • an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, or a metal halide lamp is used as a light source, and the amount of light, the arrangement of the light source, etc. are adjusted as necessary.
  • a high-pressure mercury lamp it is preferable to cure at a conveyance speed of 5 to 50 m / min with respect to one lamp having a light quantity that is usually in the range of 80 to 160 W / cm.
  • an electron beam accelerator having an accelerating voltage that is usually in the range of 10 to 300 kV at a conveyance speed of 5 to 50 m / min.
  • the base material to which the paint of the present invention is applied can be suitably used not only as a plastic film but also as a surface coating agent for various plastic molded products, for example, cellular phones, electric appliances, automobile bumpers and the like.
  • examples of the method for forming the coating film include a coating method, a transfer method, and a sheet bonding method.
  • the coating method is a method in which the paint is spray-coated or coated as a top coat on a molded product using a printing device such as a curtain coater, roll coater, gravure coater, etc., and then cured by irradiation with active energy rays. is there.
  • a transfer material obtained by applying the above-described coating material of the present invention on a substrate sheet having releasability is adhered to the surface of the molded product, and then the substrate sheet is peeled off to top coat the surface of the molded product.
  • curing by irradiation with active energy rays, or by bonding the transfer material to the surface of the molded article, curing by irradiation with active energy rays, and then peeling the substrate sheet A method of transferring the top coat to the surface is mentioned.
  • a protective sheet having a coating film made of the paint of the present invention on a base sheet, or a protective sheet having a coating film made of the paint and a decorative layer on a base sheet is plastic molded.
  • a protective layer is formed on the surface of the molded product by bonding to the product.
  • the coating material of the present invention can be preferably used for the transfer method and the sheet adhesion method.
  • a transfer material is first prepared.
  • the transfer material can be produced, for example, by applying the paint alone or mixed with a polyisocyanate compound onto a base sheet and heating to semi-cure (B-stage) the coating film. .
  • the B-staging step is further performed. You may use together with a polyisocyanate compound for the purpose of performing efficiently.
  • the above-described paint of the present invention is applied onto a base sheet.
  • the method for applying the paint include a gravure coating method, a roll coating method, a spray coating method, a lip coating method, a coating method such as a comma coating method, and a printing method such as a gravure printing method and a screen printing method.
  • the coating thickness is preferably such that the thickness of the cured coating film is 0.5 to 30 ⁇ m because the wear resistance and chemical resistance are good, and it is preferably 1 to 6 ⁇ m. It is more preferable to paint so that
  • the heating is usually 55 to 160 ° C, preferably 100 to 140 ° C.
  • the heating time is usually 30 seconds to 30 minutes, preferably 1 to 10 minutes, more preferably 1 to 5 minutes.
  • the surface protective layer of the molded product using the transfer material may be formed by, for example, bonding the B-staged resin layer of the transfer material and the molded product, and then irradiating active energy rays to cure the resin layer.
  • the B-staged resin layer of the transfer material is adhered to the surface of the molded product, and then the base sheet of the transfer material is peeled to remove the B-staged resin layer of the transfer material.
  • energy rays are cured by irradiation with active energy rays to cure the resin layer by cross-linking (transfer method), or the transfer material is sandwiched in a mold and the resin is placed in the cavity.
  • a transfer material is adhered to the surface, the substrate sheet is peeled off and transferred onto the molded product, and then the energy beam is cured by irradiation with active energy rays to crosslink and cure the resin layer. And the like (molding simultaneous transfer method).
  • the sheet bonding method is specifically a resin layer formed by bonding a base sheet of a protective layer forming sheet prepared in advance and a molded product, and then thermally curing by heating to form a B-stage.
  • a method of performing cross-linking curing (post-adhesion method), and the protective layer forming sheet is sandwiched in a molding die, and a resin is injected and filled in the cavity to obtain a resin molded product, and at the same time, the surface and the protective layer are formed.
  • a method in which a resin sheet is bonded and then thermally cured by heating to crosslink and cure the resin layer (molding simultaneous bonding method).
  • the coating film of the present invention is a coating film formed by applying and curing the coating material of the present invention on the above-described plastic film, or coating and curing the coating material of the present invention as a surface protective agent for plastic molded products.
  • the film of the present invention is a film having a coating film formed on a plastic film.
  • a film obtained by applying the paint of the present invention on a plastic film and irradiating an active energy ray is used as a protective film for a polarizing plate used for a liquid crystal display, a touch panel display or the like. It is preferable to use as the coating film hardness.
  • the coating film hardness when the paint of the present invention is applied to a protective film of a polarizing plate used for a liquid crystal display, a touch panel display, etc., and the film is formed by irradiating and curing active energy rays, the cured coating film has a high hardness. It becomes a protective film that combines high transparency.
  • an adhesive layer may be formed on the traditional side of the coating layer to which the paint of the present invention is applied.
  • the weight average molecular weight (Mw) is a value measured under the following conditions using a gel permeation chromatograph (GPC).
  • Measuring device HLC-8220 manufactured by Tosoh Corporation Column: Tosoh Corporation guard column H XL -H + Tosoh Corporation TSKgel G5000H XL + Tosoh Corporation TSKgel G4000H XL + Tosoh Corporation TSKgel G3000H XL + Tosoh Corporation TSKgel G2000H XL Detector: RI (differential refractometer) Data processing: Tosoh Corporation SC-8010 Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; Polystyrene sample; 0.4% by weight tetrahydrofuran solution in terms of resin solids filtered through microfilter (100 ⁇ l)
  • Inorganic particles (a) used in Examples of the present application (A-1): “NIPSIL SS-50F” wet silica manufactured by Tosoh Silica Co., Ltd. (a-2): “NIPSIL SAZ-20B” wet silica manufactured by Tosoh Silica Co., Ltd. (a-3): Japan “Aerosil R7200” fumed silica having (meth) acryloyl group on the particle surface of “Aerosil R7200” manufactured by Aerosil Co., Ltd. (a-4): “Aerosil R8200” fumed silica manufactured by Nippon Aerosil Co., Ltd.
  • Dendrimer type poly (meth) acrylate compound (B1) used in Examples of the present application (B1-1): “Miramer SP-1106” manufactured by MIWON, weight average molecular weight (Mw) 1,630, average (meth) acryloyl group number 18 per molecule (B1-2): “Biscoat # 1000” manufactured by Osaka Organic Chemical Co., Ltd., weight average molecular weight (Mw) 1,500 to 2,000, average (meth) acryloyl group number 14 per molecule (B1-3): “SIRIUS 501” weight average molecular weight (Mw) 15,000-23,000, manufactured by Osaka Organic Chemical Co., Ltd.
  • (meth) acrylate compounds (B2) used in Examples of the present application (Meth) acrylate monomer (B2-1): “Aronix M-404” dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate manufactured by Toagosei Co., Ltd. are contained at a mass ratio of 30/70 to 40/60 blend
  • urethane (meth) acrylate (B2-2) The property values of the urethane (meth) acrylate (B2-2) were as follows. Weight average molecular weight (Mw): 1,500, theoretical acryloyl group equivalent: 120 g / eq
  • Example 1 The active energy ray-curable resin composition was adjusted in the following manner, and various evaluations were performed. The results are shown in Table 1.
  • laminated film A was obtained in the same manner as in the evaluation of the appearance of the coating film.
  • a laminated film B was obtained in the same manner using an ultraviolet curable hard coat agent (“Unidic 17-806” manufactured by DIC Corporation) instead of the active energy ray curable resin composition. 2. Evaluation When two films are stacked so that the coated surfaces of laminated films A and B are in contact with each other, they are rubbed together under a load, and they slide smoothly (with anti-blocking properties) Yes, when they do not slide (block) x It was determined.
  • the active energy ray-curable resin composition is applied onto a 125 ⁇ m thick polyethylene terephthalate (PET) film with a bar coater so that the film thickness after curing is 2 ⁇ m, and dried at 70 ° C. for 1 minute. , by curing by passing through the irradiation amount of 250 mJ / cm 2 using a high pressure mercury lamp under nitrogen to afford the PET laminate film having a cured coating film.
  • PET polyethylene terephthalate
  • the active energy ray-curable resin composition was applied onto a 60 ⁇ m thick triacetylcellulose (TAC) film with a bar coater so that the film thickness after curing was 5 ⁇ m, and dried at 70 ° C. for 1 minute.
  • TAC triacetylcellulose
  • a TAC laminated film having a cured coating film was obtained by passing it through a high-pressure mercury lamp under nitrogen at a dose of 250 mJ / cm 2 and curing it. 2.
  • the cured coating film on the laminated film is subjected to a pencil scratch test with a load of 750 g for a material based on a polyethylene terephthalate film and a load of 500 g for a material based on a triacetyl cellulose film. evaluated. The test was conducted five times, and the hardness one degree lower than the hardness at which scratches were made once or more was defined as the pencil hardness of the coating film.
  • Examples 2-8, Comparative Examples 1-5 The active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that the blending composition at the time of preparing the dispersion was changed to the ratios shown in Tables 1 and 2, and these were evaluated in the same manner as in Example 1. . The results are shown in Tables 1 and 2. In addition, since the active energy ray-curable resin composition prepared in Comparative Examples 3 and 4 was overdispersed and precipitated during the storage stability test, no other evaluation was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

様々な樹脂材料との相溶性に優れ、かつ、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に優れる活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む塗料、該塗料からなる塗膜、及び該塗膜からなる層を有する積層フィルムを提供すること。平均粒子径が80~250nmの範囲である無機微粒子(A)と、マトリックス樹脂(B)とを含有し、前記無機微粒子(A)と前記マトリックス樹脂(B)との質量比[(A)/(B)]が30/70~70/30の範囲であり、前記マトリックス樹脂(B)がデンドリマー型ポリ(メタ)アクリレート化合物(B1)を必須の成分とすることを特徴とする活性エネルギー線硬化型樹脂組成物。

Description

活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及びフィルム
 本発明は、様々な樹脂材料との相溶性に優れ、かつ、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に優れる活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む塗料、該塗料からなる塗膜、及び該塗膜層を有するフィルムに関する。
 樹脂成分中に無機微粒子を分散させて得られる無機微粒子分散型樹脂材料は、有機系材料のみからなる樹脂材料と比較して、硬化塗膜の高硬度化、屈折率の調整、耐ブロッキング性の付与など、高性能化や新機能の付与が可能となる新規材料として近年注目を集めている。無機微粒子分散型樹脂材料の用途は様々であるが、例えば、成形品やディスプレイ表面、各種フィルム材料を傷付きから保護するためのハードコート剤として広く用いられている。無機微粒子の添加による高性能化をより顕著なものとするために無機微粒子をより多く含有する樹脂材料の開発が期待されているが、多量の無機微粒子を含有する樹脂材料は無機微粒子の経時的な沈殿が生じやすく保存安定性に劣る他、有機系樹脂材料との相溶性が低い場合がある、塗膜の透明性や平滑性が低下する等の欠点があった。
 無機微粒子分散型樹脂材料として、グリシジルメタアクリレートのアクリル重合体にアクリル酸を付加して得られるポリマー、トリメチロールプロパントリアクリレート、多官能ウレタンアクリレート、及び平均粒子径が297~540nmの範囲であるシリカ微粒子を含有する防眩フィルム用樹脂組成物が知られている(特許文献1参照)。このような分散体は、有機系のみからなるハードコート剤と比較すると高硬度な塗膜が得られるものの、樹脂組成物の不揮発分中にシリカ微粒子を17%程度しか含有していないため、より高い表面硬度が求められる近年の市場要求レベルに達するものではなかった。また、防眩フィルム用途の樹脂組成物であるため、含有するシリカ微粒子の粒子径が非常に大きく、透明性の高い硬化塗膜を実現するものではなかった。この他、アクリロイル基当量が214g/eq、水酸基価が262mgKOH/g、重量平均分子量が40,000のアクリル重合体と、平均粒子径が55~90nmの範囲であるアルミナ微粒子やジルコニア微粒子とを含有する反応性分散体が知られている(特許文献2参照)。このような分散体は、有機系のみからなるハードコート剤と比較すると高硬度な塗膜が得られるものの、分散体中の無機微粒子の平均粒子径が小さいため、昨今益々高まる塗膜硬度の要求レベルに対し十分な塗膜硬度が得られるものではなかった。
特開2008-62539号公報 特開2007-289943号公報
 本発明が解決しようとする課題は、様々な樹脂材料との相溶性に優れ、かつ、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に優れる活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む塗料、該塗料からなる塗膜、及び該塗膜層を有するフィルムを提供することにある。
 本発明者らは、上記の課題を解決するため鋭意検討した結果、活性エネルギー線硬化型樹脂組成物中の無機微粒子の大きさを平均粒子径が80~250nmの範囲とすること、マトリックス樹脂としてデンドリマー型ポリ(メタ)アクリレートを用いることにより、様々な樹脂材料との相溶性に優れ、かつ、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に優れる活性エネルギー線硬化型樹脂組成物となることを見出し、本発明を完成させるに至った。
 即ち、本発明は、平均粒子径が80~250nmの範囲である無機微粒子(A)と、マトリックス樹脂(B)とを含有し、前記無機微粒子(A)と前記マトリックス樹脂(B)との質量比[(A)/(B)]が30/70~70/30の範囲であり、前記マトリックス樹脂(B)がデンドリマー型ポリ(メタ)アクリレート化合物(B1)を必須の成分とすることを特徴とする活性エネルギー線硬化型樹脂組成物に関する。
 本発明は更に、前記樹脂組成物を含む塗料に関する。
 本発明は更に、前記塗料からなる塗膜に関する。
 本発明は更に、前記塗膜からなる層を一層以上有する積層フィルムに関する。
 本発明によれば、様々な樹脂材料との相溶性に優れ、かつ、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に優れる活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む塗料、該塗料からなる塗膜、及び該塗膜からなる層を有する積層フィルムを提供できる。
本発明の樹脂組成物を製造する際に用いることが出来る湿式ボールミルの縦断面図である。 本発明の樹脂組成物を製造する際に用いることが出来る湿式ボールミルの軸封装置の縦断面図である。
本願発明の活性エネルギー線硬化型樹脂組成物は、平均粒子径が80~250nmの範囲である無機微粒子(A)と、マトリックス樹脂(B)とを含有し、前記無機微粒子(A)と前記マトリックス樹脂(B)との質量比[(A)/(B)]が30/70~70/30の範囲であり、前記マトリックス樹脂(B)がデンドリマー型ポリ(メタ)アクリレート化合物(B1)を必須の成分とすることを特徴とする。
 本発明の活性エネルギー線硬化型樹脂組成物は、平均粒子径が80~250nmの範囲である前記無機微粒子(A)を含有することにより、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に優れるものとなる。前記無機微粒子(A)の平均粒子径が80nm未満の場合には得られる塗膜の表面硬度が低下し、250nmを超える場合には得られる塗膜の平滑性が低下する。更に、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に一層優れることから、前記無機微粒子(A)の平均粒子径が90~180nmの範囲であることがより好ましく、100~150nmの範囲であることが特に好ましい。
 尚、本願発明において前記無機微粒子(A)の平均粒子径は、活性エネルギー線硬化型樹脂組成物中の粒子径を以下の条件で測定した値である。
粒子径測定装置:大塚電子株式会社製「ELSZ-2」
粒子径測定サンプル:活性エネルギー線硬化型樹脂組成物を不揮発分1質量%のメチルイソブチルケトン溶液としたもの。
 本願発明の活性エネルギー線硬化型樹脂組成物が含有する前記無機微粒子(A)は、原料となる無機粒子(a)をマトリックス樹脂(B)、或いはマトリックス樹脂(B)と有機溶剤との配合物に分散させることにより得られる。前記無機粒子(a)は、例えば、シリカ、アルミナ、ジルコニア、チタニア、チタン酸バリウム、三酸化アンチモン等の微粒子が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。
 これら無機粒子(a)の中でも、入手が容易で扱いが簡便なことからシリカ粒子が好ましい。シリカ粒子は、例えば、フュームドシリカや、沈殿法シリカ、ゲルシリカ、ゾルゲルシリカ等と呼ばれる湿式シリカなど各種のシリカ粒子が挙げられ、いずれを用いても良い。
 前記無機粒子(a)は、各種シランカップリング剤にて微粒子表面に官能基を導入したものでも良い。該無機粒子(a)の表面に官能基を導入することにより、前記マトリックス樹脂(B)等の有機成分との混和性が高まり、保存安定性が向上する。
 前記シランカップリング剤は、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル・ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、特殊アミノシラン、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、トリクロロビニルシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等、ビニル系のシランカップリング剤;
 ジエトキシ(グリシディルオキシプロピル)メチルシラン、2-(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-ブリシドキシプロピルトリエトキシシラン等、エポキシ系のシランカップリング剤;
 p-スチリルトリメトキシシラン等、スチレン系のシランカップリング剤;
 3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等、(メタ)アクリロキシ系のシランカップリング剤;
 N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1、3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等、アミノ系のシランカップリング剤;
 3-ウレイドプロピルトリエトキシシラン等、ウレイド系のシランカップリング剤;
 3-クロロプロピルトリメトキシシラン等、クロロプロピル系のシランカップリング剤;
 3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキンシラン等、メルカプロ系のシランカップリング剤;
 ビス(トリエトキシシリルプロピル)テトラスルファイド等、スルフィド系のシランカップリング剤;
 3-イソシアネートプロピルトリエトキシシラン等、イソシアネート系のシランカップリング剤が挙げられる。これらシランカップリング剤はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、前記マトリックス樹脂(B)などの有機成分との混和性に優れ、表面硬度が高く平滑性にも優れる硬化塗膜が得られることから、(メタ)アクリロキシ系のシランカップリング剤が好ましく、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシランがより好ましい。
 本発明で用いるマトリックス樹脂(B)は、デンドリマー型ポリ(メタ)アクリレート化合物(B1)を必須の成分とする。デンドリマー型ポリ(メタ)アクリレート化合物とは、規則性のある多分岐構造を有し、各分岐鎖の末端に(メタ)アクリロイル基を有する化合物のことをいい、デンドリマー型の他、ハイパーブランチ型或いはスターポリマーなどと呼ばれている。このような化合物は、例えば、下記構造式(B-1)~(B-8)で表されるものなどが挙げられるが、これらに限定されるものではなく、規則性のある多分岐構造を有し、各分岐鎖の末端に(メタ)アクリロイル基を有する化合物であればいずれのものも用いることができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
(式中Rは水素原子又はメチル基を表し、Rは炭素原子数1~4の炭化水素基を表す。)
 本発明では、このような分子構造を有するデンドリマー型ポリ(メタ)アクリレート化合物(B1)として、大阪有機化学株式会社製「ビスコート#1000」[重量平均分子量(Mw)1,500~2,000、一分子あたりの平均(メタ)アクリロイル基数14]、「ビスコート1020」[重量平均分子量(Mw)1,000~3,000]、「SIRIUS501」[重量平均分子量(Mw)15,000~23,000]、MIWON社製「SP-1106」[重量平均分子量(Mw)1,630、一分子あたりの平均(メタ)アクリロイル基数18]、SARTOMER社製「CN2301」、「CN2302」[一分子あたりの平均(メタ)アクリロイル基数16]、「CN2303」[一分子あたりの平均(メタ)アクリロイル基数6]、「CN2304」[一分子あたりの平均(メタ)アクリロイル基数18]、新日鉄住金化学株式会社製「エスドリマーHU-22」、新中村化学株式会社製「A-HBR-5」、第一工業製薬株式会社製「ニューフロンティアR-1150」、日産化学株式会社製「ハイパーテックUR-101」等の市販品を用いても良い。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記デンドリマー型ポリ(メタ)アクリレート化合物(B1)の中でも、様々な樹脂材料との相溶性に優れ、かつ、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に優れる活性エネルギー線硬化型樹脂組成物となることから、一分子あたりの平均(メタ)アクリロイル基数が5~50の範囲であるものが好ましく、10~30の範囲であることが特に好ましい。また、その重量平均分子量(Mw)が500~30,000の範囲であることが好ましい。
 尚、本発明において、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により測定される値である。
 測定装置 ; 東ソー株式会社製 HLC-8220
 カラム  ; 東ソー株式会社製ガードカラムHXL-H
       +東ソー株式会社製 TSKgel G5000HXL
       +東ソー株式会社製 TSKgel G4000HXL
       +東ソー株式会社製 TSKgel G3000HXL
       +東ソー株式会社製 TSKgel G2000HXL
 検出器  ; RI(示差屈折計)
 データ処理:東ソー株式会社製 SC-8010
 測定条件: カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    1.0ml/分
 標準   ;ポリスチレン
 試料   ;樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 本発明では、前記マトリックス樹脂(B)として、デンドリマー型ポリ(メタ)アクリレート化合物(B1)以外のその他の樹脂を併用しても良い。その他の樹脂は、例えば、前記デンドリマー型ポリ(メタ)アクリレート化合物(B1)以外のその他の(メタ)アクリレート化合物(B2)や、(メタ)アクリロイル基を有さないその他の樹脂(B3)等が挙げられる。
 前記その他の(メタ)アクリレート化合物(B2)は、例えば、各種の(メタ)アクリレート単量体や、ウレタン(メタ)アクリレート、(メタ)アクリロイル基含有アクリル樹脂等が挙げられる。
 前記(メタ)アクリレート単量体は、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N-ビニルピロリドン、テトラヒドロフルフリールアクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、リン酸(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド変性フェノキシ(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレートなどのモノ(メタ)アクリレート;
 ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、プロポキシ化ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどのジ(メタ)アクリレート;
 トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス2―ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等のトリ(メタ)アクリレート;
ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレート;
および、上記した各種多官能(メタ)アクリレートの一部をアルキル基やε-カプロラクトンで置換した(メタ)アクリレート等が挙げられる。
 前記ウレタン(メタ)アクリレートは、例えば、例えば、ポリイソシアネート化合物と、水酸基含有(メタ)アクリレート化合物とを原料とするウレタン(メタ)アクリレートが挙げられる。
 前記ウレタン(メタ)アクリレートの原料として用いる前記ポリイソシアネート化合物は、各種のジイソシアネートモノマーや、分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物などが挙げられる。
 前記ジイソシアネートモノマーは、例えば、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート等の脂肪族ジイソシアネート;
 シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4,4′-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート等の脂環式ジイソシアネート;
 1,5-ナフチレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、4,4′-ジフェニルジメチルメタンジイソシアネート、4,4′-ジベンジルジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート等の芳香族ジイソシアネートなどが挙げられる。
 前記分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物は、例えば、ジイソシアネートモノマーとモノアルコールおよび/又はジオールとを反応させて得られるものが挙げられる。該反応で用いるジイソシアネートモノマーとしては前記した各種のジイソシアネートモノマーが挙げられ、それぞれ単独で使用しても良いし、二種類以上を併用しても良い。また、該反応で用いるモノアルコールは、ヘキサノール、オクタノール、n-デカノール、n-ウンデカノール、n-ドデカノール、n-トリデカノール、n-テトラデカノール、n-ペンタデカノール、n-ヘプタデカノール、n-オクタデカノール、n-ノナデカノール等が挙げられ、ジオールは、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等が挙げられる。これらモノアルコールやジオールはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記ウレタン(メタ)アクリレートの原料として用いる前記水酸基含有(メタ)アクリレート化合物は、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、グリセリンジアクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等の脂肪族(メタ)アクリレート化合物;
 アクリル酸4-ヒドロキシフェニル、アクリル酸β-ヒドロキシフェネチル、アクリル酸4-ヒドロキシフェネチル、アクリル酸1-フェニル-2-ヒドロキシエチル、アクリル酸3-ヒドロキシ-4-アセチルフェニル、2-ヒドロキシ-3-フェノキシプロピルアクリレート等の分子構造中に芳香環を有する(メタ)アクリレート化合物等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記ウレタン(メタ)アクリレートを製造する方法は、例えば、前記ポリイソシアネート化合物と、前記水酸基含有(メタ)アクリレート化合物とを、前記ポリイソシアネート化合物が有するイソシアネート基と、前記水酸基含有(メタ)アクリレート化合物が有する水酸基とのモル比[(NCO)/(OH)]が、1/0.95~1/1.05の範囲となる割合で用い、20~120℃の温度範囲内で、必要に応じて公知慣用のウレタン化触媒を用いて行う方法などが挙げられる。
 前記ウレタン(メタ)アクリレートの重量平均分子量(Mw)は、800~20,000の範囲であることが好ましく、900~1,000の範囲であることがより好ましい。
 前記(メタ)アクリロイル基含有アクリル樹脂は、例えば、グリシジル基含有アクリル樹脂中間体に(メタ)アクリル酸を反応させて得られるものや、カルボキシル基含有アクリル樹脂中間体にグリシジル(メタ)アクリレートを反応させて得られるもの等が挙げられる。
 前記グリシジル基含有アクリル樹脂中間体は、例えば、グリシジル(メタ)アクリレート等のグリシジル基含有アクリル単量体と、その他の(メタ)アクリレート化合物とアクリル重合させて得られる。ここで用いるその他の(メタ)アクリレート化合物は、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ドコシル等の炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステル;
 (メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等の脂環式のアルキル基を有する(メタ)アクリル酸エステル;
 (メタ)アクリル酸ベンゾイルオキシエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸フェノキシジエチレングリコール、(メタ)アクリル酸2-ヒドロキシ-3-フェノキシプロピル等の芳香環を有する(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキエチル;(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸グリセロール;ラクトン変性(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコールなどのポリアルキレングリコール基を有する(メタ)アクリル酸エステル等のヒドロキシアルキル基を有するアクリル酸エステル;
 フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチル、イタコン酸ジメチル、イタコン酸ジブチル、フマル酸メチルエチル、フマル酸メチルブチル、イタコン酸メチルエチルなどの不飽和ジカルボン酸エステル;
 スチレン、α-メチルスチレン、クロロスチレンなどのスチレン誘導体;
 ブタジエン、イソプレン、ピペリレン、ジメチルブタジエンなどのジエン系化合物;
 塩化ビニル、臭化ビニルなどのハロゲン化ビニルやハロゲン化ビニリデン;
 メチルビニルケトン、ブチルビニルケトンなどの不飽和ケトン;
 酢酸ビニル、酪酸ビニルなどのビニルエステル;
 メチルビニルエーテル、ブチルビニルエーテルなどのビニルエーテル;
 アクリロニトリル、メタクリロニトリル、シアン化ビニリデンなどのシアン化ビニル;
 アクリルアミドやそのアルキド置換アミド;
 N-フェニルマレイミド、N-シクロヘキシルマレイミドなどのN-置換マレイミド;
 フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、ブロモトリフルオロエチレン、ペンタフルオロプロピレンもしくはヘキサフルオロプロピレンの如きフッ素含有α-オレフィン;
 トリフルオロメチルトリフルオロビニルエーテル、ペンタフルオロエチルトリフルオロビニルエーテルもしくはヘプタフルオロプロピルトリフルオロビニルエーテルの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル・パーフルオロビニルエーテル;
 2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,2H,2H-ヘプタデカフルオロデシル(メタ)アクリレートもしくはパーフルオロエチルオキシエチル(メタ)アクリレートの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル(メタ)アクリレート;
 3-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート;
 N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートもしくはN,N-ジエチルアミノプロピル(メタ)アクリレート等のN,N-ジアルキルアミノアルキル(メタ)アクリレート等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。
 前記カルボキシル基含有アクリル樹脂中間体は、例えば、(メタ)アクリル酸等のグリカルボキシル基含有アクリル単量体と、前述のその他の(メタ)アクリレート化合物とアクリル重合させて得られる。
 前記(メタ)アクリロイル基含有アクリル樹脂は、重量平均分子量(Mw)が5,000~80,000の範囲であることが好ましい。また、その(メタ)アクリロイル基当量は、220g/eq~1650g/eqの範囲であることが好ましい。
 前記その他の(メタ)アクリレート化合物(B2)はそれぞれ単独で用いても良いし、二種類以上を併用しても良い。中でも、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に優れる活性エネルギー線硬化型樹脂組成物となることから、(メタ)アクリレート単量体又はウレタン(メタ)アクリレートを用いることが好ましく、3官能以上のものが特に好ましい。3官能以上の(メタ)アクリレート単量体は、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが好ましい。また、3官能以上のウレタン(メタ)アクリレートは、ジイソシアネート化合物と、グリセリンジアクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等の分子構造中に(メタ)アクリロイル基を2つ以上有する水酸基含有(メタ)アクリレート化合物とを原料とするウレタン(メタ)アクリレートが好ましく、ジイソシアネート化合物と(メタ)アクリロイル基を3つ以上有する水酸基含有(メタ)アクリレート化合物とを原料とするウレタン(メタ)アクリレートがより好ましい。
 前記(メタ)アクリロイル基を有さないその他の樹脂(B3)は、例えば、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、各種のプラスチックフィルムやプラスチック基材に対する密着性や耐水性にすぐれることからアクリル樹脂が好ましい。
 前記マトリックス樹脂(B)として、デンドリマー型ポリ(メタ)アクリレート化合物(B1)以外のその他の樹脂を併用する場合、様々な樹脂材料との相溶性に優れ、かつ、硬化物における硬度や平滑性、耐ブロッキング性等の諸性能に優れる活性エネルギー線硬化型樹脂組成物となることから、マトリックス樹脂(B)100質量部中、前記デンドリマー型ポリ(メタ)アクリレート化合物(B1)の含有量が5~100質量部の範囲であることが好ましく、10~60質量部の範囲であることがより好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は、前記無機微粒子(A)及び前記マトリックス樹脂(B)の他、光重合開始剤を含有することが好ましい。該光重合開始剤は、例えば、ベンゾフェノン、3,3′-ジメチル-4-メトキシベンゾフェノン、4,4′-ビスジメチルアミノベンゾフェノン、4,4′-ビスジエチルアミノベンゾフェノン、4,4′-ジクロロベンゾフェノン、ミヒラーズケトン、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなど各種のベンゾフェノン;
キサントン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントンなどのキサントン、チオキサントン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなど各種のアシロインエーテル;
ベンジル、ジアセチルなどのα-ジケトン類;テトラメチルチウラムジスルフィド、p-トリルジスルフィドなどのスルフィド類;4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸エチルなど各種の安息香酸;
3,3′-カルボニル-ビス(7-ジエチルアミノ)クマリン、1-ヒドロキシシクロへキシルフェニルケトン、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-ベンゾイル-4′-メチルジメチルスルフィド、2,2′-ジエトキシアセトフェノン、ベンジルジメチルケタ-ル、ベンジル-β-メトキシエチルアセタール、o-ベンゾイル安息香酸メチル、ビス(4-ジメチルアミノフェニル)ケトン、p-ジメチルアミノアセトフェノン、α,α-ジクロロ-4-フェノキシアセトフェノン、ペンチル-4-ジメチルアミノベンゾエート、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾリルニ量体、2,4-ビス-トリクロロメチル-6-[ジ-(エトキシカルボニルメチル)アミノ]フェニル-S-トリアジン、2,4-ビス-トリクロロメチル-6-(4-エトキシ)フェニル-S-トリアジン、2,4-ビス-トリクロロメチル-6-(3-ブロモ-4-エトキシ)フェニル-S-トリアジンアントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。
 前記光重合開始剤の中でも、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オンの群から選ばれる1種または2種類以上の混合系を用いることにより、より広範囲の波長の光に対して活性を示し、硬化性の高い塗料が得られるため好ましい。
 前記光重合開始剤の市販品は、例えば、チバスペシャルティケミカルズ社製「イルガキュア-184」、「イルガキュア-149」、「イルガキュア-261」、「イルガキュア-369」、「イルガキュア-500」、「イルガキュア-651」、「イルガキュア-754」、「イルガキュア-784」、「イルガキュア-819」、「イルガキュア-907」、「イルガキュア-1116」、「イルガキュア-1664」、「イルガキュア-1700」、「イルガキュア-1800」、「イルガキュア-1850」、「イルガキュア-2959」、「イルガキュア-4043」、「ダロキュア-1173」;ビーエーエスエフ社製「ルシリンTPO」;日本化薬株式会社製「カヤキュア-DETX」、「カヤキュア-MBP」、「カヤキュア-DMBI」、「カヤキュア-EPA」、「カヤキュア-OA」;ストウファ・ケミカル社製「バイキュア-10」、「バイキュア-55」;アクゾ社製「トリゴナルP1」;サンドズ社製「サンドレイ1000」;アプジョン社製「ディープ」;ワードブレンキンソップ社製「クオンタキュア-PDO」、「クオンタキュア-ITX」、「クオンタキュア-EPD」等が挙げられる。
 前記光重合開始剤の使用量は、光重合開始剤としての機能を十分に発揮しうる量であり、かつ、結晶の析出や塗膜物性の劣化が生じない範囲が好ましく、具体的には、活性エネルギー線硬化型樹脂組成物100質量部に対して0.05~20質量部の範囲で用いることが好ましく、0.1~10質量部の範囲で用いることがより好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は前記光重合開始剤と併せて種々の光増感剤を使用しても良い。光増感剤は、例えば、アミン類、尿素類、含硫黄化合物、含燐化合物、含塩素化合物またはニトリル類もしくはその他の含窒素化合物等が挙げられる。
 本発明の活性エネルギー線硬化型樹脂組成物は有機溶剤を含有しても良い。ここで用いる有機溶剤は、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン溶剤;テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル;トルエン、キシレン等の芳香族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル等のグリコールエーテル系溶剤が挙げられる。これらはそれぞれ単独で使用しても良いし、2種類以上を併用しても良い。これらの中でも、保存安定性や硬化塗膜の平滑性に優れる活性エネルギー線硬化型樹脂組成物となることからケトン溶剤が好ましく、メチルエチルケトン又はメチルイソブチルケトンがより好ましい。有機溶剤は主に活性エネルギー線硬化型樹脂組成物の粘度を調整する目的で使用され、目的の用途等に応じて任意の量を添加して良い。
 本発明の活性エネルギー線硬化型樹脂組成物は、必要に応じて各種の添加剤を含有しても良い。ここで用いる添加剤は、例えば、有機溶剤、分散補助剤、紫外線吸収剤、酸化防止剤、シリコン系添加剤、有機ビーズ、フッ素系添加剤、レオロジーコントロール剤、脱泡剤、離型剤、帯電防止剤、防曇剤、着色剤、有機溶剤、無機フィラー等が挙げられる。
 前記分散補助剤は、例えば、イソプロピルアシッドホスフェート、トリイソデシルホスファイト、エチレンオキサイド変性リン酸ジメタクリレート等のリン酸エステル化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。これらの中でも、分散補助性能に優れる点で、エチレンオキサイド変性リン酸ジメタクリレートが好ましい。これら分散補助剤の市販品は、例えば、日本化薬株式会社製「カヤマーPM-21」、「カヤマーPM-2」、共栄社化学株式会社製「ライトエステルP-2M」等が挙げられる。
 前記紫外線吸収剤は、例えば、2-[4-{(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-{(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等のトリアジン誘導体、2-(2′-キサンテンカルボキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-o-ニトロベンジロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-キサンテンカルボキシ-4-ドデシロキシベンゾフェノン、2-o-ニトロベンジロキシ-4-ドデシロキシベンゾフェノン等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記酸化防止剤は、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、有機硫黄系酸化防止剤、リン酸エステル系酸化防止剤等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記シリコン系添加剤は、例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、環状ジメチルポリシロキサン、メチルハイドロゲンポリシロキサン、ポリエーテル変性ジメチルポリシロキサン共重合体、ポリエステル変性ジメチルポリシロキサン共重合体、フッ素変性ジメチルポリシロキサン共重合体、アミノ変性ジメチルポリシロキサン共重合体など如きアルキル基やフェニル基を有するポリオルガノシロキサン、ポリエーテル変性アクリル基を有するポリジメチルシロキサン、ポリエステル変性アクリル基を有するポリジメチルシロキサン等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記有機ビーズは、例えば、ポリメタクリル酸メチルビーズ、ポリカーボネートビーズ、ポリスチレンビーズ、ポリアクリルスチレンビーズ、シリコーンビ-ズ、ガラスビーズ、アクリルビーズ、ベンゾグアナミン系樹脂ビーズ、メラミン系樹脂ビーズ、ポリオレフィン系樹脂ビーズ、ポリエステル系樹脂ビーズ、ポリアミド樹脂ビーズ、ポリイミド系樹脂ビーズ、ポリフッ化エチレン樹脂ビーズ、ポリエチレン樹脂ビーズ等が挙げられる。これら有機ビーズの平均粒径の好ましい値は1~10μmの範囲である。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記フッ素系添加剤は、例えば、DIC株式会社「メガファック」シリーズ等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記離型剤は、例えば、エボニックデグザ社製「テゴラッド2200N」、「テゴラッド2300」、「テゴラッド2100」、ビックケミー社製「UV3500」、東レ・ダウコーニング社製「ペインタッド8526」、「SH-29PA」等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記帯電防止剤は、例えば、ビス(トリフルオロメタンスルホニル)イミド又はビス(フルオロスルホニル)イミドのピリジニウム、イミダゾリウム、ホスホニウム、アンモニウム、又はリチウム塩が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 これら各種の添加剤は、所望の性能等に応じて任意の量添加することができるが、通常、活性エネルギー線硬化型樹脂組成物100質量部中、0.01~40質量部の範囲で用いることが好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は、例えば、ディスパー、タービン翼等攪拌翼を有する分散機、ペイントシェイカー、ロールミル、ボールミル、アトライター、サンドミル、ビーズミル等の分散機を用い、前記無機微粒子(a)をマトリックス樹脂(B)中に混合分散する方法にて製造することができる。なかでも、均一かつ安定な分散体が得られることから、ボールミル又はビーズミルを用いることが好ましい。前記無機微粒子(a)をマトリックス樹脂(B)中に混合分散する方法は、例えば、マトリックス樹脂(B)全量に無機微粒子(a)を分散させて一括で活性エネルギー線硬化型樹脂組成物を製造する方法でも良いし、マトリックス樹脂(B)の一部に無機微粒子(a)を分散させてプレ分散体を製造した後、残りのマトリックス樹脂(B)を配合する方法でも良い。また、各種の添加剤は分散工程で添加しても良いし、無機微粒子(a)をマトリックス樹脂(B)中に分散した後添加しても良い。
 本発明の活性エネルギー線硬化型樹脂組成物を製造する際に好ましく用いることが出来るボールミルは、例えば、内部にメディアが充填されたベッセル、回転シャフト、前記回転シャフトと同軸状に回転軸を有し、前記回転シャフトの回転駆動により回転する攪拌翼、前記ベッセルに設置された原料の供給口、前記ベッセルに設置された分散体の排出口、及び前記回転シャフトがベッセルを貫通する部分に配設された軸封装置を有し、前記軸封装置が、2つのメカニカルシールユニットを有し、かつ、該2つのメカニカルシールユニットのシール部が外部シール液によりシールされた構造を有する軸封装置である湿式ボールミルが挙げられる。
 即ち、本発明の活性エネルギー線硬化型樹脂組成物を製造する方法は、例えば、内部にメディアが充填されたベッセル、回転シャフト、前記回転シャフトと同軸状に回転軸を有し、前記回転シャフトの回転駆動により回転する攪拌翼、前記ベッセルに設置された原料の供給口、前記ベッセルに設置された分散体の排出口、及び前記回転シャフトがベッセルを貫通する部分に配設された軸封装置を有する湿式ボールミルであって、前記軸封装置が2つのメカニカルシールユニットを有し、かつ、該2つのメカニカルシールユニットのシール部が外部シール液によりシールされた構造を有する軸封装置である湿式ボールミルの前記供給口から、前記無機微粒子(a)及び前記マトリックス樹脂(B)を含む原料を前記ベッセルに供給し、前記ベッセル内で回転シャフト及び攪拌翼を回転させて、メディアと原料とを攪拌混合することにより、前記無機微粒子(a)の粉砕と、該無機微粒子(a)の前記マトリックス樹脂(B)への分散とを行い、次いで前記排出口から排出する方法が挙げられる。
 このような製造方法について、前記湿式ボールミルの具体的な構造の一例を示した図面により、更に詳しく説明する。
 図1に示す湿式ボールミルは、内部にメディアが充填されたベッセル(p1)、回転シャフト(q1)、前記回転シャフト(q1)と同軸状に回転軸を有し、前記回転シャフトの回転駆動により回転する攪拌翼(r1)、前記ベッセル(p1)に設置された原料の供給口(s1)、前記ベッセル(p1)に設置された分散体の排出口(t1)、及び前記回転シャフトがベッセルを貫通する部分に配設された軸封装置(u1)を有する。ここで、前記軸封装置(u1)は、2つのメカニカルシールユニットを有し、かつ、該2つのメカニカルシールユニットのシール部が外部シール液によりシールされた構造を有するものであり、このような軸封装置(u1)は、例えば、図2に示される構造を有するものが挙げられる。
 図1に示す湿式ボールミルにおいて、原料は図1中の供給口(s1)を経てベッセル(p1)に供給される。前記ベッセル(p1)内にはメディアが充填されており、回転シャフト(q1)の回転駆動により回転する攪拌翼(r1)によって原料とメディアとが攪拌混合され、前記無機微粒子(a)の粉砕と、該無機微粒子(a)の前記マトリックス樹脂(B)への分散が行われる。前記回転シャフト(p1)はその内側が、排出口(t1)側に開口部を有する空洞となっている。該空洞内にはセパレータとしてスクリーンタイプのセパレータ2が設置されており、該セパレータ2の内側に排出口(t1)へと続く流路が設けられている。前記ベッセル(p1)内の分散体は、原料の供給圧によって押され、前記回転シャフト(p1)の開口部から、その内側の前記セパレータ2まで運ばれる。前記セパレータ2が粒子径の大きいメディアを通さず、粒子径の小さい無機微粒子(A)を含む分散体のみを通過させることにより、前記メディアはベッセル(p1)内に留まり、分散体のみが排出口(t1)から排出される。
 前記湿式ボールミルは、図2に示すような軸封装置(u1)を有す。前記軸封装置(u1)は、前記シャフト(q1)上に固定される回転環3と、図1中の軸封装置のハウジング1に固定される固定環4とがシール部を形成するように配設された構造を有有するメカニカルシールユニットを2つ有し、かつ、該ユニットにおける回転環3と固定環4との並びが2つのユニットで同方向を向いている。ここでシール部とは、前記回転環3と固定環4とによって形成される一対の摺動面を言う。また、2つのメカニカルシールユニット間には液封空間11があり、これに連通する外部シール液供給口5と外部シール液排出口6とを有する。前記液封空間11には、外部シール液タンク7からポンプ8によって供給される外部シール液(R)が、前記外部シール液供給口5を経て供給され、前記外部シール液排出口6を経て前記タンク7に戻されることにより循環供給される。これにより、前記液封空間11に外部シール液(R)が液密に充填されると共に、前記シール部において回転環3と固定環4との間に形成される間隙9が外部シール液(R)で満たされる。このシール液(R)によって、前記回転環3と前記固定環4との摺動面の潤滑と冷却が行われる。
 また、外部シール液(R)の流入圧により固定環4が回転環3へ押し付けられる力P1と、スプリング10により固定環4が回転環3へ押し付けられる力P2と、外部シール液(R)の流入圧により固定環4が回転環3から引き離される力をP3とのバランスが成り立つようにシール液(R)の流入圧とスプリング10の圧が設定されている。これにより、摺動面である固定環4と回転環3との間隙9には外部シール液(R)が液密に充填され、該間隙9には前記マトリックス樹脂(B)が入りこむことが無い。該間隙9に前記マトリックス樹脂(B)が流入する場合には、前記回転環3と前記固定環4との摺動によりメカノラジカルが発生し、前記マトリックス樹脂(B)が有する(メタ)アクリロイル基が重合を起こしてゲル化や増粘を生じることがあるが、前記軸封装置(u1)のような軸封装置を有する本願発明の湿式ボールミルを用いることにより、そのようなリスクが回避される。
 前記軸封装置(u1)のような軸封装置は、例えば、タンデム型メカニカルシール等が上げられる。また、軸封装置として前記タンデム型メカニカルシールを有する湿式ボールミルYの市販品は、例えば、アシザワ・ファインテック株式会社製「LMZ」シリーズ等が挙げられる。
 前記外部シール液(R)は、非反応性の液体であり、例えば、前述した各種の有機溶剤等が挙げられる。これらの中でも、保存安定性や硬化塗膜の平滑性に優れる活性エネルギー線硬化型樹脂組成物となることからケトン溶剤が好ましく、メチルエチルケトン又はメチルイソブチルケトンがより好ましい。
 図1中のベッセル(p1)内に充填されるメディアは、例えば、種々の微小ビーズが用いられる。微小ビーズの素材は、例えば、ジルコニア、ガラス、酸化チタン、銅、珪酸ジルコニア等が挙げられる。これらの中でも、最も硬く磨耗が少ないことからジルコニアの微小ビーズが好ましい。
 前記メディアは、図1中のスクリーンタイプのセパレータ2でのスラリーとのメディアの分離が良好であること、前記無機微粒子(a)の粉砕能が高いため分散時間が比較的短時間となること、前記無機微粒子(a)への衝撃が強すぎず無機微粒子(a)の過分散現象が生じ難いことから、平均粒子径がメジアン径で10~1000μmの範囲であるものが好ましい。
 前記過分散現象とは、無機微粒子の破壊により新たな活性表面が生成し、再凝集を起こす現象をいう。過分散現象が生じた場合、分散液はゲル化する。
 図1中のベッセル(p1)内のメディアの充填率は、分散に要する動力が最小となり、最も効率的に粉砕を行うことができる点で、ベッセル内容積の75~90体積%の範囲であることが好ましい。
 前記攪拌翼(r1)は、メディアと前記無機微粒子(a)とが衝突する際の衝撃が大きく、分散効率が高まることから、先端部の周速が5~20m/secの範囲となるように回転駆動されることが好ましく、8~20m/secの範囲であることがより好ましい。
 このような湿式ボールミルを用いて本発明の樹脂組成物を製造する際、その製造方法は回分式であっても連続式であっても良い。また、連続式の場合には、スラリーの取り出し後再度供給する循環型であっても、非循環型であっても良い。これらの中でも、生産効率が高くなり、また、得られる分散体の均質性にも優れる点で循環型であることが好ましい。
 また、このような湿式ボールミルを用いて本発明の樹脂組成物を製造する際には、メジアン径が400~1000μmの範囲である比較的大きい粒子をメディアとして用いてプレ分散工程を行った後、メジアン径が15~400μmの範囲である比較的小さい粒子をメディアとして用いて本分散工程を行う、二段工程で行うことが好ましい。
 前記プレ分散工程では、メジアン径が400~1000μmの範囲である比較的大きいメディアを用いる。このようなメディアは無機微粒子(a)と衝突した際に与える衝撃力が大きいため、粒径が大きい無機微粒子(a)の粉砕性が高く、これを用いて原料の無機微粒子(A)をある程度の粒子径まで粉砕する。前記本分散工程では、メジアン径が15~400μmの範囲である比較的小さいメディアを用いる。このようなメディアは無機微粒子(a)と衝突した際に与える衝撃力は小さいが、粒径が大きいメディアと比べて同一体積中に含まれる粒子の数が多くなることから、無機微粒子(a)との衝突回数が多くなる。したがって、プレ分散工程である程度まで粉砕された無機微粒子(a)を更に微細な粒子へと粉砕する目的で用いられる。ここで、前記プレ分散工程が長すぎると、前記過分散現象が生じる恐れがあるため、該プレ分散工程はスラリーが前記ベッセル(p1)内を1~3サイクル循環する範囲で行うことが好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は、塗料用途に用いることが出来る。該塗料は、各種基材上に塗布し、活性エネルギー線を照射して硬化させることにより、基材表面を保護するコート層として用いることができる。この場合、本発明の塗料を被表面保護部材に直接塗布して用いても良いし、プラスチックフィルム上に塗布したものを保護フィルムとして用いてもよい。或いは、本発明の塗料をプラスチックフィルム上に塗布し、塗膜を形成したものを反射防止フィルム、拡散フィルム、及びプリズムシート等の光学フィルムとして用いても良い。本発明の塗料をプラスチックフィルム上に塗布する場合には、その片面に塗布しても良いし、両面に塗布しても良い。また、所望の性能に応じて、本発明の塗膜からなる層を複数層有する多層フィルムとしても良い。本発明の塗料を用いて得られる塗膜は表面硬度が高く透明性にも優れる特徴があるため、様々な種類のプラスチックフィルム上に用途に応じた膜厚で塗布し、保護フィルム用途やフィルム状成形品として用いることが出来る。
 前記プラスチックフィルムは、例えば、ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース樹脂、ABS樹脂、AS樹脂、ノルボルネン系樹脂、環状オレフィン、ポリイミド樹脂等からなるプラスチックフィルムやプラスチックシートが挙げられる。
 上記プラスチックフィルムのうち、トリアセチルセルロースフィルムは、液晶ディスプレイの偏光版用途に特に好適に用いられるフィルムであるが、一般に厚さが40~100μmと薄いため、ハードコート層を設置した場合にも表面硬度を十分に高くすることが難しく、また、大きくカールしやすい特徴がある。本願発明の樹脂組成物からなる塗膜は、トリアセチルセルロースフィルムを基材として用いた場合にも、表面硬度が高く、耐カール性や靭性、透明性にも優れるという効果を奏し、好適に用いることが出来る。該トリアセチルセルロースフィルムを基材として用いる場合、本願発明の塗料を塗布する際の塗布量は、乾燥後の膜厚が4~20μmの範囲、好ましくは6~15μmの範囲となるように塗布することが好ましい。その際の塗布方法は、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷法等が挙げられる。
 上記プラスチックフィルムのうち、ポリエステルフィルムは、例えば、ポリエチレンテレフタレートが挙げられ、その厚さは一般に100~300μm程度である。安価で加工しやすいことからタッチパネルディスプレイなど様々な用途に用いられるフィルムであるが、非常に柔らかく、ハードコート層を設置した場合にも表面硬度を十分に高くすることが難しい特徴がある。該ポリエチレンフィルムを基材として用いる場合、本願発明の塗料を塗布する際の塗布量は、その用途に合わせて、乾燥後の膜厚が5~100μmの範囲、好ましくは7~80μmの範囲となるように塗布することが好ましい。一般に、30μmを超えるような膜厚で塗料を塗布した場合には、比較的薄い膜厚で塗布した場合と比較して大きくカールし易い傾向があるが、本願発明の塗料は耐カール性に優れる特徴を有するため、30μmを越える比較的高い膜厚で塗った場合にもカールが生じ難く、好適に用いることが出来る。その際の塗布方法は、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷法等が挙げられる。
 上記プラスチックフィルムのうち、ポリメチルメタクリレートフィルムは、一般に厚さが100~2,000μm程度と比較的厚く丈夫であるため、液晶ディスプレイの前面板用途など、特に高い表面硬度を要求される用途に好適に用いられるフィルムである。該ポリメチルメタクリレートフィルムを基材として用いる場合、本願発明の塗料を塗布する際の塗布量は、その用途に合わせて、乾燥後の膜厚が5~100μmの範囲、好ましくは7~80μmの範囲となるように塗布することが好ましい。一般に、ポリメチルメタクリレートフィルムのような比較的厚いフィルムの上に30μmを超えるような膜厚で塗料を塗布した場合には、表面硬度の高い積層フィルムとなる反面、透明性が低下する傾向があるが、本願発明の塗料は従来の塗料と比べて非常に高い透明性を有するため、高い表面硬度と透明性とを兼備する積層フィルムが得られる。その際の塗布方法は、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷法等が挙げられる。
 本発明の塗料を硬化させ塗膜とする際に照射する活性エネルギー線は、例えば、紫外線や電子線が挙げられる。紫外線により硬化させる場合には、光源としてキセノンランプ、高圧水銀灯、メタルハライドランプを有する紫外線照射装置が使用され、必要に応じて光量、光源の配置などが調整される。高圧水銀灯を使用する場合には、通常80~160W/cmの範囲である光量を有したランプ1灯に対して搬送速度5~50m/分の範囲で硬化させることが好ましい。一方、電子線により硬化させる場合には、通常10~300kVの範囲である加速電圧を有する電子線加速装置にて、搬送速度5~50m/分の範囲で硬化させることが好ましい。
 また、本発明の塗料を塗布する基材は、プラスチックフィルムのみならず、各種のプラスチック成形品、例えば、携帯電話、電家製品、自動車のバンパー等の表面コーティング剤としても好適に用いることができる。この場合、その塗膜の形成方法としては、例えば、塗装法、転写法、シート接着法等が挙げられる。
 前記塗装法は、前記塗料をスプレーコートするか、もしくはカーテンコーター、ロールコーター、グラビアコーター等の印刷機器を用いて成形品にトップコートとして塗装した後、活性エネルギー線を照射して硬化させる方法である。
 前記転写法は、離型性を有する基体シート上に前記した本発明の塗料を塗布して得られる転写材を成形品表面に接着させた後、基体シートを剥離して成型品表面にトップコートを転写し、次いで活性エネルギー線を照射し硬化させる方法、又は、該転写材を成形品表面に接着させた後、活性エネルギー線を照射して硬化させ、次いで基体シートを剥離する事により成型品表面にトップコートを転写する方法が挙げられる。
 他方、前記シート接着法は、基体シート上に前記本発明の塗料からなる塗膜を有する保護シート、又は、基体シート上に前記塗料からなる塗膜と加飾層とを有する保護シートをプラスチック成形品に接着することにより、成形品表面に保護層を形成する方法である。
 これらの中でも、本発明の塗料は転写法及びシート接着法用途に好ましく用いることができる。
 前記転写法では先ず転写材を作成する。該転写材は、例えば、前記塗料を単独、またはポリイソシアネート化合物と混合したものを基材シート上に塗布し、加熱して塗膜を半硬化(B-ステージ化)させて製造することができる。
 ここで、本発明の活性エネルギー線硬化型化合物が含有する前記アクリル重合体(X)や、前記化合物(c)が、分子構造中水酸基を有する化合物である場合、前記B-ステージ化工程をより効率的に行う目的で、ポリイソシアネート化合物と併用してもよい。
 転写材を製造するには、まず、基材シート上に前記した本発明の塗料を塗装する。前記塗料を塗装する方法は、例えば、グラビアコート法、ロールコート法、スプレーコート法、リップコート法、コンマコート法などのコート法、グラビア印刷法、スクリーン印刷法などの印刷法等が挙げられる。塗装する際の膜厚は、耐摩耗性および耐薬品性が良好となることから、硬化後の塗膜の厚さが0.5~30μmとなる様に塗装するのが好ましく、1~6μmとなるように塗装することがより好ましい。
 前期方法で基材シート上に前記塗料を塗装した後、加熱乾燥させて塗膜を半硬化(B-ステージ化)させる。加熱は通常55~160℃、好ましくは100~140℃である。加熱時間は通常30秒~30分間、好ましくは1~10分、より好ましくは1~5分である。
 前記転写材を用いた成形品の表面保護層の形成は、例えば、前記転写材のB-ステージ化された樹脂層と成形品とを接着した後、活性エネルギー線を照射して樹脂層を硬化させて行う。具体的には、例えば、転写材のB-ステージ化された樹脂層を成形品表面に接着させ、その後、転写材の基体シートを剥離することにより転写材のB-ステージ化された樹脂層を成形品表面上に転写させた後、活性エネルギー線照射によりエネルギー線硬化させて樹脂層の架橋硬化を行う方法(転写法)や、前記転写材を成形金型内に挟み込み、キャビテイ内に樹脂を射出充満させ、樹脂成形品を得るのと同時にその表面に転写材を接着させ、基体シートを剥離して成形品上に転写した後、活性エネルギー線照射によりエネルギー線硬化せしめて樹脂層の架橋硬化を行う方法(成形同時転写法)等が挙げられる。
 次にシート接着法は、具体的には、予め作成しておいた保護層形成用シートの基体シートと成形品とを接着させた後、加熱により熱硬化せしめてB-ステージ化してなる樹脂層の架橋硬化を行う方法(後接着法)や、前記保護層形成用シートを成形金型内に挟み込み、キャビテイ内に樹脂を射出充満させ、樹脂成形品を得るのと同時にその表面と保護層形成用シートを接着させ後、加熱により熱硬化せしめて樹脂層の架橋硬化を行う方法(成形同時接着法)等が挙げられる。
 次に、本発明の塗膜は、前記したプラスチックフィルム上に本発明の塗料を塗布、硬化させて形成された塗膜、又は、プラスチック成形品の表面保護剤として本発明の塗料をコーティング、硬化して形成された塗膜であり、また、本発明のフィルムは、プラスチックフィルム上に塗膜が形成されたフィルムである。
 前記フィルムの各種用途のなかでも、前記した通り、プラスチックフィルム上に本発明の塗料を塗布、活性エネルギー線を照射して得られるフィルムを、液晶ディスプレイやタッチパネルディスプレイ等に用いられる偏光板用保護フィルムとして用いることが塗膜硬度に優れる点から好ましい。具体的には、液晶ディスプレイやタッチパネルディスプレイ等に用いられる偏光板の保護フィルム上に本発明の塗料を塗布、活性エネルギー線を照射・硬化させてなるフィルムにした場合、硬化塗膜が高硬度と高い透明性とを兼備した保護フィルムとなる。偏光板の保護フィルム用途においては、本発明の塗料を塗布したコーティング層の繁体側の面には粘着剤層が形成されていてもよい。
 以下に本発明を具体的な製造例、実施例を挙げてより具体的に説明するが、本発明はこれら実施例に限定されるものではない。例中の部及び%は、特に記載のない限り、すべて質量基準である。
 本発明の実施例では、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により測定した値である。
 測定装置 ; 東ソー株式会社製 HLC-8220
 カラム  ; 東ソー株式会社製ガードカラムHXL-H
       +東ソー株式会社製 TSKgel G5000HXL
       +東ソー株式会社製 TSKgel G4000HXL
       +東ソー株式会社製 TSKgel G3000HXL
       +東ソー株式会社製 TSKgel G2000HXL
 検出器  ; RI(示差屈折計)
 データ処理:東ソー株式会社製 SC-8010
 測定条件: カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    1.0ml/分
 標準   ;ポリスチレン
 試料   ;樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
本願実施例で用いた無機粒子(a)
・(a-1):東ソー・シリカ株式会社製「NIPSIL SS-50F」湿式シリカ
・(a-2):東ソー・シリカ株式会社製「NIPSIL SAZ-20B」湿式シリカ
・(a-3):日本アエロジル株式会社製「アエロジルR7200」粒子表面に(メタ)アクリロイル基を有するフュームドシリカ
・(a-4):日本アエロジル株式会社製「アエロジルR8200」フュームドシリカ
本願実施例で用いたデンドリマー型ポリ(メタ)アクリレート化合物(B1)
・(B1-1):MIWON社製「Miramer SP-1106」重量平均分子量(Mw)1,630、一分子あたりの平均(メタ)アクリロイル基数18
・(B1-2):大阪有機化学株式会社製「ビスコート#1000」重量平均分子量(Mw)1,500~2,000、一分子あたりの平均(メタ)アクリロイル基数14
・(B1-3):大阪有機化学株式会社製「SIRIUS 501」重量平均分子量(Mw)15,000~23,000
本願実施例で用いたその他の(メタ)アクリレート化合物(B2)
・(メタ)アクリレート単量体(B2-1):東亞合成株式会社製「アロニックスM-404」ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートとを質量比30/70~40/60で含有する混合物
・ウレタン(メタ)アクリレート(B2-2)
 撹拌装置を備えた反応装置にヘキサメチレンジイソシアネート85質量部、ジブチル錫ジラウリート0.2質量部及びメトキノン0.2質量部を加え、攪拌しながら60℃まで昇温した。次いで、ペンタエリスリトールトリアクリレート(東亞合成株式会社製「アロニクスM-305」)493質量部を10回に分けて10分毎に仕込んだ。更に10時間反応させ、赤外線スペクトルで2250cm-1のイソシアネート基の吸収が消失したことを確認して反応を終了し、ウレタン(メタ)アクリレート(B2-2)を得た。該ウレタン(メタ)アクリレート(B2-2)の各性状値は以下のようであった。重量平均分子量(Mw):1,500、理論アクリロイル基当量:120g/eq
・(メタ)アクリロイル基含有アクリル樹脂(B2-3)
 撹拌装置、冷却管、滴下ロートおよび窒素導入管を備えた反応装置に、メチルイソブチルケトン181質量部を仕込み、撹拌しながら系内温度が110℃になるまで昇温し、次いで、グリシジルメタアクリレート288質量部、メチルメタアクリレート192質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート(日本乳化剤株式会社製「パーブチルO」)19.2質量部からなる混合液を3時間かけて滴下ロートより滴下した後、110℃で15時間保持した。次いで、90℃まで降温した後、メトキノン0.64質量部およびアクリル酸147質量部を仕込んだ後、トリフェニルホスフィン3.1質量部を添加後、さらに100℃まで昇温して8時間保持し、(メタ)アクリロイル基含有アクリル樹脂(B2-3)のメチルイソブチルケトン溶液1200質量部(不揮発分50.0質量%)を得た。該(メタ)アクリロイル基含有アクリル樹脂(B2-3)の各性状値は以下のようであった。重量平均分子量(Mw):12,000、固形分換算の理論アクリロイル基当量:321g/eq、水酸基価86mgKOH/g
本願実施例で用いた(メタ)アクリロイル基を有さないその他の樹脂(B3)
・アクリル樹脂(B3-1):DIC株式会社製「アクリディック WFU-580」
・アクリル樹脂(B3-2):DIC株式会社製「アクリディック BL-616」
・アクリル樹脂(B3-3):DIC株式会社製「アクリディック WXU-880」
実施例1
 下記要領で活性エネルギー線硬化型樹脂組成物を調整し、各種評価を行った。結果を表1に示す。
◆活性エネルギー線硬化型樹脂組成物の調整
 前記無機粒子(a-1)(「NIPSIL SS-50F」)55質量部、前記デンドリマー型ポリ(メタ)アクリレート化合物(B1-1)(「Miramer SP1106」)15質量部、(メタ)アクリレート単量体(B2-1)(「アロニックスM-404」)30質量部、メチルイソブチルケトン80質量部及びプロピレングリコールモノメチルエーテル20質量部を配合し、不揮発分50質量%のスラリーとしたものを、湿式ボールミル(アシザワ株式会社製「スターミルLMZ015」)を用いて混合分散し、分散体を得た。
 前記湿式ボールミルによる分散の各条件は以下の通りである。
メディア:メジアン径100μmのジルコニアビーズ
ミルの内容積に対する樹脂組成物の充填率:70体積%
攪拌翼の先端部の周速:11m/sec
樹脂組成物の流速:200ml/min
分散時間:50分
 得られた分散体に、光開始剤(チバスペシャルティケミカルズ社製「イルガキュア#184」)2質量部を加え、更にメチルイソブチルケトンを加えて不揮発分率を40質量%に調製し、活性エネルギー線硬化型樹脂組成物を得た。
◆無機微粒子(A)の平均粒子径の測定
 活性エネルギー線硬化型樹脂組成物中の無機微粒子(A)の平均粒子径は、粒子径測定装置(大塚電子株式会社製「ELSZ-2」)を用いて測定した。
◆貯蔵安定性の評価
 前記活性エネルギー線硬化型樹脂組成物を、40℃の温度条件下で1ヶ月間静置し、各経過時における沈降物の有無を評価した。
○:沈降物が見られない
△:3週間後に沈降物が見られる
×:1週間後に沈降物が見られる
◆塗膜外観の評価
1.積層フィルムの作成
 前記活性エネルギー線硬化型樹脂組成物を、厚さ75μmのポリエチレンテレフタレートフィルム上に、硬化後の膜厚が3μmとなるようにバーコーターで塗布し、70℃で1分乾燥させ、窒素下で高圧水銀灯を用いて250mJ/cmの照射量で通過させて硬化させることにより、硬化塗膜を有する積層フィルムを得た。
2.評価
 積層フィルム上の塗膜外観を目視観察し、表面が平滑であるものを○、表面に凹凸やブツ、干渉縞等の荒れが見られるものを×として評価した。
◆塗膜透明性の評価
1.積層フィルムの作成
 前記塗膜外観の評価と同様にして積層フィルムを得た。
2.評価
 スガ試験機株式会社製「ヘーズコンピュータHZ-2」を用いて積層フィルム上の硬化塗膜のヘーズ値を測定した。
◆耐ブロッキング性の評価
1.積層フィルムの作成
 前記塗膜外観の評価と同様にして積層フィルムAを得た。活性エネルギー線硬化型樹脂組成物の代わりに紫外線硬化型ハードコート剤(DIC株式会社製「ユニディック 17-806」)を用い、同様の方法で積層フィルムBを得た。
2.評価
 積層フィルムAとBとの塗装面同士が接するように二枚のフィルムを重ね、荷重をかけて擦り合わせ、スムーズに滑る場合(アンチブロッキング性がある)〇、滑らない場合(ブロッキングする)×と判定した。
◆耐カール性の評価
1.積層フィルムの作成
 前記活性エネルギー線硬化型樹脂組成物を、厚さ50μmのポリエチレンテレフタレートフィルム上に、硬化後の膜厚が3μmとなるようにバーコーターで塗布し、70℃で1分乾燥させ、窒素下で高圧水銀灯を用いて250mJ/cmの照射量で通過させて硬化させることにより、硬化塗膜を有する積層フィルムを得た。
2.評価
 積層フィルムを10cm四方に切り、4角の水平からの浮きを測定し、その平均値で評価した。値が小さいほどカールが小さく、耐カール性に優れた塗膜である。
◆表面硬度の評価
1.積層フィルムの作成
 前記活性エネルギー線硬化型樹脂組成物を厚さ125μmのポリエチレンテレフタレート(PET)フィルム上に硬化後の膜厚が2μmとなるようにバーコーターで塗布し、70℃で1分乾燥させ、窒素下で高圧水銀灯を用いて250mJ/cmの照射量で通過させて硬化させることにより、硬化塗膜を有するPET積層フィルムを得た。
 同様に、前記活性エネルギー線硬化型樹脂組成物を厚さ60μmのトリアセチルセルロース(TAC)フィルム上に、硬化後の膜厚が5μmとなるようにバーコーターで塗布し、70℃で1分乾燥させ、窒素下で高圧水銀灯を用いて250mJ/cmの照射量で通過させて硬化させることにより、硬化塗膜を有するTAC積層フィルムを得た。
2.評価
 上記積層フィルム上の硬化塗膜について、JIS K 5400に従い、ポリエチレンテレフタレートフィルムを基材とするものについては荷重750g、トリアセチルセルロールフィルムを基材とするものについては荷重500gの鉛筆引っかき試験によって評価した。5回試験を行い、1回以上傷がついた硬度の一つ下の硬度を、その塗膜の鉛筆硬度とした。
◆アクリル樹脂との相溶性
1.相溶性の評価
 前記活性エネルギー線硬化型樹脂組成物80質量部と、前記アクリル樹脂(B3-1)~(B3-3)の何れか20質量部とを配合して混合した際、透明な混合物が得られたものを○、濁りが生じたものを×として評価した。
2.塗膜の評価
 前記前記活性エネルギー線硬化型樹脂組成物80質量部と、前記アクリル樹脂(B3-1)~(B3-3)の何れか20質量部との混合物を、厚さ75μmのポリエチレンテレフタレートフィルム上に、硬化後の膜厚が3μmとなるようにバーコーターで塗布し、70℃で1分乾燥させ、窒素下で高圧水銀灯を用いて250mJ/cmの照射量で通過させて硬化させることにより、硬化塗膜を有する積層フィルムを得た。積層フィルム上の塗膜外観を目視観察し、表面が平滑であるものを○、表面に凹凸やブツ、干渉縞等の荒れが見られるものを×として評価した。
実施例2~8、比較例1~5
 分散体調整時の配合組成を表1、2に示す割合とした以外は実施例1と同様にして活性エネルギー線硬化型樹脂組成物を調整し、これらについて実施例1と同様の評価を行った。結果を表1、2に示す。なお、比較例3、4で調整した活性エネルギー線硬化型樹脂組成物は過分散が生じ、貯蔵安定性試験時に沈殿が生じたため、その他の評価を行わなかった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (6)

  1. 平均粒子径が80~250nmの範囲である無機微粒子(A)と、マトリックス樹脂(B)とを含有し、前記無機微粒子(A)と前記マトリックス樹脂(B)との質量比[(A)/(B)]が30/70~70/30の範囲であり、前記マトリックス樹脂(B)がデンドリマー型ポリ(メタ)アクリレート化合物(B1)を必須の成分とすることを特徴とする活性エネルギー線硬化型樹脂組成物。
  2. 前記無機微粒子(A)がシリカである請求項1記載の活性エネルギー線硬化型樹脂組成物。
  3. 前記デンドリマー型ポリ(メタ)アクリレート化合物(B1)の一分子あたりの平均(メタ)アクリロイル基数が10~30の範囲である請求項1記載の活性エネルギー線硬化型樹脂組成物。
  4. 請求項1~3の何れか一つ記載の活性エネルギー線硬化型樹脂組成物を含有する塗料。
  5. 請求項4記載の塗料を硬化させてなる塗膜。
  6. 請求項5記載の塗膜からなる層を一層以上有する積層フィルム。
PCT/JP2016/077248 2015-10-13 2016-09-15 活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及びフィルム WO2017064970A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187011073A KR20180067549A (ko) 2015-10-13 2016-09-15 활성 에너지선 경화형 수지 조성물, 도료, 도막, 및 필름
CN201680059910.4A CN108137726B (zh) 2015-10-13 2016-09-15 活性能量射线固化型树脂组合物、涂料、涂膜和薄膜
JP2017515861A JP6187845B1 (ja) 2015-10-13 2016-09-15 活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及びフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-201974 2015-10-13
JP2015201974 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017064970A1 true WO2017064970A1 (ja) 2017-04-20

Family

ID=58517672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077248 WO2017064970A1 (ja) 2015-10-13 2016-09-15 活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及びフィルム

Country Status (5)

Country Link
JP (1) JP6187845B1 (ja)
KR (1) KR20180067549A (ja)
CN (1) CN108137726B (ja)
TW (1) TWI711661B (ja)
WO (1) WO2017064970A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097203A (ja) * 2018-12-19 2020-06-25 Dic株式会社 積層体及びその用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533707B (zh) * 2018-05-14 2023-09-05 Nbd纳米技术公司 有机硅烷涂布组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250307A (ja) * 2007-03-05 2008-10-16 Nippon Shokubai Co Ltd 画像形成用感光性樹脂組成物
WO2010116821A1 (ja) * 2009-03-30 2010-10-14 株式会社 きもと 組成物および積層体
WO2013164941A1 (ja) * 2012-05-02 2013-11-07 横浜ゴム株式会社 硬化性樹脂組成物
JP2014077102A (ja) * 2012-10-12 2014-05-01 Kawamura Institute Of Chemical Research 有機無機複合体膜、及びその製造方法
JP2015110745A (ja) * 2013-11-01 2015-06-18 セメダイン株式会社 光硬化型導電性組成物
JP2015203834A (ja) * 2014-04-16 2015-11-16 日本化薬株式会社 液晶滴下工法用液晶シール剤及びそれを用いた液晶表示セル
WO2016129507A1 (ja) * 2015-02-13 2016-08-18 三菱化学株式会社 硬化性組成物、硬化物及び積層体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062539A (ja) 2006-09-08 2008-03-21 Nakajima Kogyo Kk 防眩フィルム
JP5407114B2 (ja) 2006-03-30 2014-02-05 荒川化学工業株式会社 反応性分散体を含有する活性エネルギー線硬化型コーティング剤組成物、反応性分散体の製造方法および硬化被膜
CN101153127A (zh) * 2007-09-06 2008-04-02 湖南阳光新材料有限公司 一种可紫外光固化的白色组合物
KR101459121B1 (ko) * 2011-11-10 2014-11-07 제일모직주식회사 하드코팅필름, 이에 포함되는 하드코팅필름용 조성물, 이를 포함하는 편광판 및 이를 포함하는 액정 표시 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250307A (ja) * 2007-03-05 2008-10-16 Nippon Shokubai Co Ltd 画像形成用感光性樹脂組成物
WO2010116821A1 (ja) * 2009-03-30 2010-10-14 株式会社 きもと 組成物および積層体
WO2013164941A1 (ja) * 2012-05-02 2013-11-07 横浜ゴム株式会社 硬化性樹脂組成物
JP2014077102A (ja) * 2012-10-12 2014-05-01 Kawamura Institute Of Chemical Research 有機無機複合体膜、及びその製造方法
JP2015110745A (ja) * 2013-11-01 2015-06-18 セメダイン株式会社 光硬化型導電性組成物
JP2015203834A (ja) * 2014-04-16 2015-11-16 日本化薬株式会社 液晶滴下工法用液晶シール剤及びそれを用いた液晶表示セル
WO2016129507A1 (ja) * 2015-02-13 2016-08-18 三菱化学株式会社 硬化性組成物、硬化物及び積層体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097203A (ja) * 2018-12-19 2020-06-25 Dic株式会社 積層体及びその用途
JP7346817B2 (ja) 2018-12-19 2023-09-20 Dic株式会社 積層体及びその用途

Also Published As

Publication number Publication date
CN108137726B (zh) 2020-05-08
JP6187845B1 (ja) 2017-08-30
CN108137726A (zh) 2018-06-08
TWI711661B (zh) 2020-12-01
KR20180067549A (ko) 2018-06-20
JPWO2017064970A1 (ja) 2017-10-12
TW201726780A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
JP5858278B2 (ja) 活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型樹脂組成物の製造方法、塗料、塗膜、及びフィルム
JP5472544B2 (ja) 活性エネルギー線硬化型樹脂組成物、その製造方法、塗料、塗膜、及びフィルム
JP5035652B2 (ja) 分散体の製造方法、分散体、塗料、塗膜、及びフィルム
JP5605525B2 (ja) 活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型樹脂組成物の製造方法、塗料、塗膜、及びフィルム
JP6032383B1 (ja) 活性エネルギー線硬化性樹脂組成物、塗料、塗膜、及びフィルム
JP5935952B2 (ja) 活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及び積層フィルム
JP6032382B2 (ja) 活性エネルギー線硬化性樹脂組成物、その製造方法、塗料、塗膜、及び積層フィルム
WO2012176570A1 (ja) 活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型樹脂組成物の製造方法、塗料、塗膜、及びフィルム
JP6187845B1 (ja) 活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及びフィルム
JP6958553B2 (ja) 活性エネルギー線硬化型樹脂組成物及び積層フィルム
JP6168341B2 (ja) 活性エネルギー線硬化型樹脂組成物、その製造方法、塗料、塗膜、及びフィルム
JP5939361B2 (ja) 活性エネルギー線硬化型樹脂組成物、塗料、塗膜、及び積層フィルム
JP2016121206A (ja) 活性エネルギー線硬化性樹脂組成物、これを含有する塗料、その塗膜、及び該塗膜を有する積層フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017515861

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011073

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16855224

Country of ref document: EP

Kind code of ref document: A1