WO2017061739A1 - 극저온 프로브 스테이션 - Google Patents

극저온 프로브 스테이션 Download PDF

Info

Publication number
WO2017061739A1
WO2017061739A1 PCT/KR2016/011028 KR2016011028W WO2017061739A1 WO 2017061739 A1 WO2017061739 A1 WO 2017061739A1 KR 2016011028 W KR2016011028 W KR 2016011028W WO 2017061739 A1 WO2017061739 A1 WO 2017061739A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
cryogenic
wire connection
probe station
wire
Prior art date
Application number
PCT/KR2016/011028
Other languages
English (en)
French (fr)
Inventor
박승영
최연석
조영훈
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2017061739A1 publication Critical patent/WO2017061739A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present invention relates to a cryogenic probe station.
  • a cryogenic probe station capable of obtaining continuous data regardless of a temperature sweep by enabling the use of a wire connection stage as well as a conventional probe contact stage. It is about.
  • a probe station refers to a probe type contact device for measuring electrical characteristics of a fine semiconductor device or other electrical and electronic devices.
  • These probe stations have recently measured the electrical and magnetic properties of analytes in cryogenic environments using cryogenic fluids such as liquid helium and liquid nitrogen to explore physical properties and observe temperature-dependent properties.
  • the conventional probe station is, for example, a probe station which is an inspection device for electrical component parts, as disclosed in Korean Patent Registration No. 876138, a box-shaped case having a sealed structure, mounted inside the case, and the component parts being raised A fixed chuck, a chuck driving stage for independently moving the chuck in the front-back direction and the left-right direction, a probe for probing a sample, a holder connected to the probe, and a probe for adjusting and moving the holder in the up-down direction and the left-right direction from the outside.
  • An optical microscope installed on the upper surface of the case to observe the driving stage, the contact between the device component and the probe, a microscope adjusting stage for positioning the optical microscope in the vertical and horizontal directions, and the internal structure of the case can be observed.
  • the chuck driving stage includes an x axis stage for moving the chuck in the x axis direction, an x axis moving device and an x axis moving rail for moving the x axis stage, and a y axis stage for moving the chuck in the y axis direction. And a y-axis moving device and a y-axis moving rail for moving the y-axis stage.
  • an object of the present invention is to provide a cryogenic probe station capable of obtaining continuous data regardless of a temperature sweep.
  • a cryogenic probe station for measuring electrical characteristics of a sample in a cryogenic atmosphere, comprising: a vacuum chamber configured to create a vacuum atmosphere; A wire connection stage mounted in the vacuum chamber to support a sample to be measured from below and to apply and detect an electrical signal; A wealth stage receiving portion having a receiving groove formed to receive and detach the wire connection stage; A cryogenic endotherm configured to provide cryogenic cold air through a heat conductor in the rich zone receiving portion; And a magnetic field generating unit installed to be spaced apart from the rich stage receiving unit by a predetermined distance to generate a magnetic field.
  • the cryogenic probe station includes a feed through configured to receive and provide an electrical signal to the wire-connected stage; And a plurality of conductors, one end of which is connected to the feed trough and the other end of which is connected to the wealth band receiving portion, to electrically connect the feed trough and the wired wire stage.
  • the cryogenic probe station further includes a probe installed on an upper portion of the magnetic field generating portion and the stage receiving portion to read a sample placed on the upper portion of the wire connection stage;
  • the probe may include a probe in contact with a sample, an insulation film provided on the probe to prevent a wire and a short circuit, and a probe arm to fix the probe.
  • a plurality of the stage holder and the feed through may be formed.
  • the wire-connected stage may be disposed in the longitudinal center and the horizontal center of the magnetic field generating unit.
  • the cryogenic probe station further includes a stage band crimping unit configured to press-fit the wire-connected stage stage to the receiving groove of the stage stage receiving portion;
  • the wire connecting stage and the stage receiving unit are configured to be electrically connected by female and male connectors; Left and right ends of the wire-connected stage and the stage receiving portion may be configured to be in contact with the heat conduction.
  • a temperature sensor and a magnetic sensor may be mounted on at least one of the wire connection stage and the stage receiving portion.
  • the wire connecting stage when the wire connecting stage is inserted into the receiving groove, the wire connecting stage is fixed to the receiving groove by the force of a spring and the wire connecting stage and the Contact spring links configured to heat-exchange the rich zone accommodating part may be formed at both left and right sides of the accommodating groove of the rich air bag accommodating part.
  • the wire-connected stage and the stage receiving portion are coupled by female and male connectors;
  • a feed-through configured to provide and receive electrical signals via wires to one of the female and male connectors;
  • the conductive wire may be anchored by an anchor to the thermal conductor.
  • the printed circuit board portion constituting the upper portion of the wire connection type stage;
  • a leakage current shielding surface formed of a copper foil pattern on the insulating plate and being a sample contact surface;
  • Two contact electrodes spaced apart by a predetermined distance from both the left and right sides of the leakage current shielding surface and installed on the insulating plate;
  • a ground surface formed of a copper foil pattern at a lower portion of the insulating plate and being a cold head contact surface.
  • a plurality of via holes are formed between the leakage current shielding surface and the ground surface;
  • a conductive metal may be attached to the inner wall of the via hole.
  • the printed circuit board portion constituting the upper portion of the wire connection stage, the insulating plate having a through hole formed in the center, two contact electrodes provided on both the upper left and right sides of the insulating plate, and the through A copper plate inserted into the ball and fixed by soldering;
  • a leakage current shielding surface and a grounding surface are formed on each of the upper and lower portions of the copper plate;
  • Copper foil is coated on an inner wall of the insulating plate facing the copper plate;
  • An upper surface of the copper plate is higher than an upper surface of the insulating plate;
  • the lower surface of the copper plate may be lower than the lower surface of the insulating plate.
  • cryogenic probe station According to the cryogenic probe station according to the embodiment of the present invention, a method of measuring electrical characteristics by placing a sample on a wire connection stage is adopted, and a thin wire having good elasticity despite the temperature change is continuously attached to the sample. Due to the change in the length of the probe and the probe arm according to the continuous temperature change, there is an excellent effect that the data can be continuously obtained without causing damage to the sample or discontinuous data acquisition during the temperature sweep.
  • the accommodating groove is formed in the accommodating stage accommodating portion so as to accommodate and detach the accommodating wire stage, there is another excellent effect of easily replacing the wire connection stage.
  • FIG. 1 is a longitudinal sectional view of a cryogenic probe station according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal cross-sectional view of a cryogenic probe station according to a second embodiment of the present invention.
  • FIG 3 is a longitudinal cross-sectional view illustrating a coupling structure of the stage holder and the wire connection stage of the cryogenic probe station according to the third embodiment of the present invention.
  • FIG. 4 is a longitudinal cross-sectional view showing a coupling structure of the stage holder and the wire connection stage of the cryogenic probe station according to the fourth embodiment of the present invention.
  • FIG. 5 is a longitudinal cross-sectional view illustrating a coupling structure of a stage holder and a wire-connected stage of a cryogenic probe station according to a fifth exemplary embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view of a cryogenic probe station according to a sixth embodiment of the present invention.
  • FIG. 7 is a longitudinal cross-sectional view of a printed circuit board part of a wire-connected material stage constituting a cryogenic probe station according to a seventh embodiment of the present invention.
  • FIG. 8 is a longitudinal cross-sectional view of a printed circuit board part of a wire-connected material stage constituting a cryogenic probe station according to an eighth embodiment of the present invention.
  • FIG. 9 is a longitudinal cross-sectional view of a printed circuit board part of a wire-connected material stage constituting a cryogenic probe station according to a ninth embodiment of the present invention.
  • FIG. 10 is a longitudinal cross-sectional view showing the structure of a typical wire connection stage.
  • FIG. 1 is a longitudinal sectional view of a cryogenic probe station according to a first embodiment of the present invention.
  • the cryogenic probe station includes a vacuum chamber 110, a wire connection type stage 120, a material stage receiving unit 130, a cryogenic endotherm 140,
  • the magnetic field generator 150 includes a feed through 160, a plurality of conductive wires 165, and a probe 170.
  • the vacuum chamber 110 is configured to create a vacuum atmosphere to measure the electrical characteristics of the sample, there is a wire connection stage 120, stage stage receiving unit 130, cryogenic endotherm 140, magnetic field generator 150, a feed through 160, a plurality of conductive wires 165, and a probe 170 are provided.
  • the wire connection stage 120 supports the sample to be measured from below and serves to apply and detect an electrical signal.
  • the wire connection type stage 120 is fixed to the upper portion of the stage body by a fixing bolt on which a printed circuit board is placed, and the lower portion of the stage body is electrically connected to the male connector of the stage receiving portion. It is equipped with a connector portion consisting of a female connector.
  • Receiving groove receiving portion 130 is formed with a receiving groove 135 to accommodate and detach the wire connection-type rich stage 120.
  • the lower portion of the rich zone receiving unit 130 is connected to the cryogenic endothermic unit 140 through the thermal conductor C, so that the heat generated from the wire connection type stage 120 is cooled by the cryogenic endothermic unit 140.
  • the stage holder 130 may be provided in a plural number, and each stage holder may be accommodated and separated from a separate wire-connected stage, and each of the stage holders may have a plurality of separate conductors. And a feed through.
  • the cryogenic endothermic portion 140 is configured in the lower portion of the vacuum chamber 110 to provide cryogenic cold air through the heat conductor C to the rich zone receiving portion 130.
  • the magnetic field generating unit 150 is installed to be spaced apart from the wealth receiving unit 130 by a predetermined distance to generate a magnetic field. Although the number of the magnetic field generating unit 150 is illustrated as one, the number can be changed according to the magnetic field generating strength.
  • the feed through 160 is a type of connector configured to receive and provide an electrical signal to the wire connection stage 120.
  • the plurality of conductive wires 165 are connected to the feed through 160 at one end thereof and the other end thereof to the material receiving unit 130 to electrically connect the feed through 160 and the wire connection stage 120.
  • the stage holder 130 is configured to provide and receive electrical signals to the wired stage stage 120.
  • the probe 170 is installed on the magnetic field generating unit 150 and the upper stage receiving unit 130 to read a sample placed on the upper portion of the wire connecting stage 120 and is not necessarily required as an optional matter. .
  • the probe 170 holds a probe 174 in contact with the sample for measurement and a probe arm 172 configured to hold the probe 174 and to conduct the signal and pass it to an external inspection device (not shown).
  • the probe 174 may be provided with an insulation coating (not shown) that prevents short circuits with the wires connected to the wire connection type stage 120.
  • cryogenic probe station configured as described above, a method of measuring electrical characteristics by placing a sample on a wire connection type stage 120 as well as a probe contact measuring method using a conventional probe.
  • the heat generated from the wire-shaped stage 120 is cooled to the cryogenic endothermic unit 140 through the stage receiving unit 130 and the heat conductor (C)
  • the conventional continuous temperature There is an effect that the data can be acquired continuously without causing scratch damage of the sample due to the change of the length of the probe and the probe arm according to the change and discontinuous data acquisition during temperature sweep.
  • the accommodating groove 135 is formed in the stage accommodating portion 130 to accommodate and detach the wire connection-type scaffold 120. There is an effect that can easily replace the connection stage 120.
  • FIG. 2 is a longitudinal sectional view of the cryogenic probe station according to the second embodiment of the present invention, and the same parts as in the first embodiment will be denoted by the same reference numerals, and redundant description thereof will be omitted.
  • the vertical length of the accommodation groove 135 'formed in the stage holder 130' is longer than that of the first embodiment, and is accommodated in the accommodation groove 135 '.
  • the wire connection type stage 120 is disposed at the center in the longitudinal and transverse directions between the two magnetic field generating units 150.
  • the wire connection type stage 120 is disposed in the receiving groove 135 ′ of the stage receiving unit 130 ′, but the arrangement position is an example of the longitudinal center and the transverse center in the magnetic field generating unit 150, The arrangement position may be a vertically movable position in the accommodation groove (135 ').
  • the wire connection type stage 120 accommodated in the accommodation groove 135 'of the stage holder 130' has a magnetic field generator 150. Since it is disposed in the longitudinal center, the transverse direction of the strong magnetic field generated from the magnetic field generating unit 150, the effect of the sample can be tested in a high magnetic field environment compared to the conventional probe contact measurement method.
  • FIG. 3 is a longitudinal sectional view showing a coupling structure of a stage holder and a wire-connected stage of a cryogenic probe station according to a third embodiment of the present invention. The description will be omitted.
  • the cryogenic probe station according to the third embodiment of the present invention further includes a stage band pressing part L configured to press-fit the wire connection stage 120 to the receiving groove 135 of the stage receiving part 130.
  • the rich stage crimping part L is fixed to the rich stage accommodating portion 130 by the fixing member B, and the central portion thereof is opened.
  • the wire connection type stage 120 and the stage receiving portion 130 are configured to be electrically connected by female and male connectors N1 and N2.
  • the left and right ends of the wire connection type stage 120 and the stage receiving portion 130 are configured to be in thermal contact by the thermal conductive contact portion D.
  • the wire connection stage 120 is crimped and secured to the foundation stage receiving unit 130 by the stage stage crimping unit L and the wire connection stage ( Since the left and right ends of the 120 and the stage receiving portion 130 are configured to be in thermal conduction contact by the heat conducting contact portion D, the heat generated from the wire-connected stage 120 may be quickly transferred through the stage receiving portion 130. There is an outstanding effect that it can be reversed.
  • FIG. 4 is a longitudinal sectional view showing the coupling structure of the stage holder and the wire connection stage of the cryogenic probe station according to the fourth embodiment of the present invention. The description will be omitted.
  • the temperature sensor S1 and the magnetic sensor S2 are mounted on both the wire connection stage 120 and the stage receiving unit 130.
  • the temperature sensor S1 and the magnetic sensor S2 are mounted on both the wire connection stage 120 and the stage receiving unit 130, but the wire connection stage 120 and the stage reception are accommodated. It may be attached to any one of the units 130.
  • the temperature sensor S1 and the magnetic sensor S2 are mounted on at least one of the stage holder 130 and the wire connection stage 120. Therefore, there is an effect that it is possible to quickly and accurately detect whether the temperature or the magnetic field of the wire connection stage 120 reaches the target value.
  • FIG. 5 is a longitudinal sectional view showing a coupling structure of a stage holder and a wire-connected stage of a cryogenic probe station according to a fifth embodiment of the present invention. The description will be omitted.
  • the cryogenic probe station accommodates the wire connection stage 120 by a spring force when the wire connection stage 120 is inserted into the accommodation groove 135 ′′.
  • Contact spring links 137 configured to heat the wire-connected stage 120 and the stage receiver 130 " as well as fixing them to the left and right sides of the receiving groove 135 " It is formed on both sides.
  • the contact spring links 137 are formed at both the left and right sides of the receiving groove 135 ′′ of the rich base accommodating portion 130 ′′, the wire connection is performed.
  • the wire connection type stage 120 can be securely fixed to the receiving groove 135 ′′ by the spring force and the heat exchanger can be made smoothly. There is an effect that the temperature difference between the connection stage 120 and the cryogenic endotherm (not shown) can be minimized.
  • FIG. 6 is a longitudinal cross-sectional view of a cryogenic probe station according to a sixth embodiment of the present invention.
  • the same parts as those of the above embodiments will be denoted by the same reference numerals, and redundant description thereof will be omitted.
  • the wire connection type stage 120 and the stage holder 130 "are coupled by female and male connectors N1 and N2, and female and male connectors N1, N2) further comprises a feed-through 160 configured to receive and provide an electrical signal through the conductor 165, the conductor 165 being anchored by an anchor A to the thermal conductor C. anchoring).
  • cryogenic probe station According to the cryogenic probe station according to the sixth embodiment of the present invention configured as described above, it is connected to any one of the female and male connectors N1 and N2 for coupling the wire connecting stage 120 and the stage receiving unit 130 ′′. Since the conductive wire 165 is anchored to the thermal conductor C by the anchor A, the heat generated from the wire connection type stage 120 is directly cooled by the cryogenic heat absorbing part 140, thereby providing an excellent cooling effect. In addition, since the heat flowing from the feed through 160 is absorbed by the anchor A, it does not reach the stage 120. Therefore, when the cryogenic cooling is performed, the temperature of the connection stage 120 is extremely lowered. It has an easy effect.
  • FIG. 7 is a longitudinal sectional view showing a printed circuit board of a wire-connected stage of a cryogenic probe station according to a seventh embodiment of the present invention, in which parts identical to those of the above embodiments are denoted by the same reference numerals, and redundant descriptions thereof will be omitted.
  • the printed circuit board 122 constituting the upper portion of the wire connection stage 120 has an insulating plate 122a, a leakage current shielding surface 122b, and two contact electrodes. And a ground plane 122d and a ground plane 122d.
  • the leakage current shielding surface 122b is formed of a copper foil pattern on the upper portion of the insulating plate 122a.
  • the leakage current shielding surface 122b has an effect of shielding the leakage current leaked to the ground surface. do.
  • an insulating layer (not shown) using a solder mask, polyimide, or other insulating material may be further provided on the leakage current shielding surface 122b.
  • the two contact electrodes 122c are installed on the upper side of the insulating plate 122a spaced apart by a predetermined distance to both the left and right sides of the leakage current shielding surface 122b, and are electrically connected to the wires connected to the sample for connection. It serves as.
  • two contact electrodes 122c are installed, but a plurality of contact electrodes 122c may be mounted.
  • the ground surface 122d is formed of a copper foil pattern under the insulating plate 122a and becomes a cold head contact surface.
  • the printed circuit board unit 122 constituting the upper portion of the wire connection type stage 120 has a triaxial cable having a signal line, a guard line, and a ground line ( By having a configuration corresponding to a tri-axial cable, there is an effect that the leakage current is significantly smaller.
  • FIG. 8 is a longitudinal sectional view showing a printed circuit board of a wire-connected stage of a cryogenic probe station according to an eighth embodiment of the present invention, in which parts identical to those of the above embodiments are denoted by the same reference numerals, and description thereof will not be repeated. Let's do it.
  • a plurality of via holes H are formed between the leakage current shielding surface 122b and the ground surface 122d, and the conductive metal is formed on the inner wall of the via hole H. Has an attached configuration. Therefore, in such a structure, since the potential of the leakage current shielding surface 122b becomes the same as that of the ground plane, there is no leakage current shielding function.
  • a plurality of via holes H may be formed between the leakage current shielding surface 122b and the grounding surface 122d to form a thermal conductive path.
  • the thermal conductivity can be significantly improved between the ground plane 122d in contact with the cold head and the leakage current shielding plane 122b on which the sample is attached in the wire connection stage.
  • FIG. 9 is a longitudinal sectional view showing a printed circuit board of a wire-connected stage of a cryogenic probe station according to a ninth embodiment of the present invention, in which parts identical to those of the above embodiments are denoted by the same reference numerals, and description thereof will not be repeated. Let's do it.
  • the printed circuit board part 122 "constituting the upper portion of the wire absent material stage includes an insulating plate 122a", two contact electrodes 122c, and a copper plate P. Has a configuration to include.
  • Insulating plate 122a is formed with through-hole G in which copper plate P is inserted and fixed in the center part.
  • the two contact electrodes 122c are provided on both upper left and right sides of the insulating plate 122a ", and serve as electrodes for wiring.
  • the copper plate P is inserted into the through hole G and is fixed by soldering.
  • a leakage current shielding surface 122b 'and a grounding surface 122d' are formed on the upper and lower portions of the copper plate P, respectively.
  • the inner wall of the insulating plate (122a ") facing the copper plate (P) has a copper foil coating (122e), so that lead is easily penetrated and the copper plate (P) can be firmly fixed to the inner wall of the insulating plate (122a"). Since the upper surface of the copper plate P is higher than the upper surface of the insulating plate 122a ", the sample placed on the leakage current shielding surface 122b 'is not limited in size.
  • the lower surface of the copper plate P is the insulating plate 122a". Since it is lower than the lower surface of, the copper plate P is exactly in contact with the cold head (not shown).
  • the cryogenic probe station configured as described above, since the inner wall of the insulating plate 122a "facing the copper plate P is made of a copper foil coating 122e, lead is easily introduced into the copper plate P. There is an effect that it can be firmly fixed to the inner wall of the insulating plate (122a ").
  • the cryogenic probe station since the upper surface of the copper plate (P) is higher than the upper surface of the insulating plate (122a "), the sample placed on the leakage current shielding surface (122b ') is limited in size It does not receive the effect.
  • the cryogenic probe station since the lower surface of the copper plate P is lower than the lower surface of the insulating plate 122a ", the copper plate P is in contact with the cold head, thereby providing high thermal conductivity. It works.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

본 발명은 기존의 탐침 접촉식 재물대뿐만 아니라 전선 결선식 재물대를 사용할 수 있도록 함으로써 온도 스위프(sweep)에 관계없이 연속적인 데이터를 얻을 수 있는 극저온 프로브 스테이션에 관한 것이다. 본 발명에 의한 극저온 프로브 스테이션은 진공 분위기를 만들도록 구성된 진공 챔버; 측정하고자 하는 시료를 하부에서 지지하며 전기 신호를 인가하고 감지하도록 상기 진공 챔버 내에 장착된 전선 결선식 재물대; 상기 전선 결선식 재물대를 수용 및 분리 가능하도록 형성된 수용홈을 구비한 재물대 수용부; 상기 재물대 수용부에 열전도체를 통해 극저온의 냉기를 제공하도록 구성된 극저온 흡열부; 및 상기 재물대 수용부로부터 일정거리만큼 이격되어 설치되어서 자기장을 발생시키는 자기장 발생부를 포함한다.

Description

극저온 프로브 스테이션
본 발명은 극저온 프로브 스테이션(probe station)에 관한 것으로, 특히 기존의 탐침 접촉식 재물대뿐만 아니라 전선 결선식 재물대를 사용 가능하게 함으로써 온도 스위프(sweep)에 관계없이 연속적인 데이터를 얻을 수 있는 극저온 프로브 스테이션에 관한 것이다.
일반적으로 프로브 스테이션은 미세한 반도체 소자나 기타 전기 전자 소자의 전기적인 특성을 측정하기 위한 탐침형 접촉장치를 말한다. 이러한 프로브 스테이션은 최근 들어 물리적 특성의 탐구 및 온도 의존적 특성을 관측하기 위하여 액체헬륨이나 액체질소와 같은 극저온 유체를 통해 극저온 환경에서 분석대상 시료의 전기적, 자기적 특성을 측정하고 있다.
종래의 프로브 스테이션은, 예컨대 국내 특허 등록 제876138호 공보에 개시된 바와 같이, 전기적 소자 부품의 검사 장치인 프로브 스테이션에 있어서, 밀폐된 구조를 가지는 박스형 케이스, 상기 케이스 내부에 장착되며 소자 부품이 올려지고 고정되는 척, 상기 척을 전후방향과 좌우방향으로 독립적으로 이동시키는 척 구동 스테이지, 샘플의 프로빙을 위한 프로브, 상기 프로브와 연결된 홀더, 상기 홀더를 외부에서 상하방향과 좌우방향으로 조절하여 이동시키는 프로브 구동 스테이지, 소자 부품과 프로브의 접촉을 관찰하기 위해 상기 케이스의 상면에 설치되는 광학 현미경, 상기 광학 현미경을 상하방향과 좌우방향으로 위치조절하기 위한 현미경 조절 스테이지, 상기 케이스의 내부 구조를 관찰할 수 있도록 상기 케이스 상면과 전면에 설치되는 개폐가 가능한 투명창, 상기 케이스 내부에 기체를 유입 및 유출시키기 위한 연결관, 및 상기 프로브를 통해 전달되는 전기적 신호를 분석 장치에 전달하는 프로브 연결선을 구비하고; 상기 척 구동 스테이지는 상기 척을 x축 방향으로 이동시키기 위한 x축 스테이지, 상기 x축 스테이지를 이동시키기 위한 x축 이동 장치와 x축 이동 레일, 상기 척을 y축 방향으로 이동시키기 위한 y축 스테이지, 및 상기 y축 스테이지를 이동시키기 위한 y축 이동 장치와 y축 이동 레일로 구성되는 것을 특징으로 한다.
그러나 종래의 프로브 스테이션은 오직 접촉식 프로브를 구비하고 있으며, 이 접촉식 프로브는 열팽창 계수가 상이한 재질로 되어 있는 탐침 및 이 탐침이 연결된 프로브 암으로 이루어져 있다. 따라서 극저온 프로브스테이션으로 활용하고자 하는 경우에 지속적인 온도 변화에 따라 탐침과 프로브 암의 길이에 있어 변화가 발생하므로 온도를 스위프하는 동안에는 시료 또는 시료에 구비된 전극을 긁어 손상시키므로 탐침을 들어 올려 접촉을 해지해야 하고 온도가 안정한 경우에만 시료에 탐침을 접촉하여 계측을 수행해야 하기 때문에 온도 스위프시 불연속적인 데이터만을 얻게 되어 연속적인 데이터를 얻을 수 없다는 문제점이 있었다.
따라서, 본 발명은 상기와 같은 점을 고려하여 이루어진 것으로서, 본 발명의 목적은 온도 스위프에 관계없이 연속적인 데이터를 얻을 수 있는 극저온 프로브 스테이션을 제공하는 데에 있다.
상기의 목적을 달성하기 위해 본 발명의 실시형태에 의한 극저온 프로브 스테이션은 극저온 분위기에서 시료의 전기적 특징을 측정하는 극저온 프로브 스테이션으로서: 진공 분위기를 만들도록 구성된 진공 챔버; 측정하고자 하는 시료를 하부에서 지지하며 전기 신호를 인가하고 감지하도록 상기 진공 챔버 내에 장착된 전선 결선식 재물대; 상기 전선 결선식 재물대를 수용 및 분리 가능하도록 형성된 수용홈을 구비한 재물대 수용부; 상기 재물대 수용부에 열전도체를 통해 극저온의 냉기를 제공하도록 구성된 극저온 흡열부; 및 상기 재물대 수용부로부터 일정거리만큼 이격되어 설치되어서 자기장을 발생시키는 자기장 발생부를 포함하는 것을 특징으로 한다.
상기 실시형태에 의한 극저온 프로브 스테이션은 상기 전선 결선식 재물대에 전기 신호를 제공함과 아울러 수신하도록 구성된 피드 쓰루; 및 상기 피드 쓰루와 상기 전선 결선식 재물대를 전기 접속하기 위해 일단은 상기 피드 쓰루에 연결되고 타단은 상기 재물대 수용부에 연결된 복수의 도선을 더 포함할 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션은 상기 자기장 발생부 및 재물대 수용부의 상부에 설치되어 상기 전선 결선식 재물대의 상부에 놓인 시료를 검침하는 프로브를 더 포함하며; 상기 프로브는 시료에 접촉하는 탐침, 상기 탐침에 구비되어 결선된 전선과 합선을 막아주는 절연 피막, 및 상기 탐침을 고정시키는 프로브 암을 포함할 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션에 있어서, 상기 재물대 수용부 및 피드 쓰루는 복수개 형성될 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션에 있어서, 상기 전선 결선식 재물대는 상기 자기장 발생부 내부의 종, 횡 방향 중심부에 배치될 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션은 상기 전선 결선식 재물대를 상기 재물대 수용부의 수용홈에 압착고정하도록 구성된 재물대 압착부를 더 포함하며; 상기 전선 결선식 재물대와 상기 재물대 수용부는 암, 수 커넥터에 의해 전기 접속되도록 구성되며; 상기 전선 결선식 재물대의 좌, 우측 단부와 상기 재물대 수용부는 열전도 접촉되도록 구성될 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션에 있어서, 상기 전선 결선식 재물대와 상기 재물대 수용부 중 하나 이상에는 온도센서 및 자기센서가 장착될 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션에 있어서, 상기 전선 결선식 재물대가 상기 수용홈에 삽입될 때 스프링의 힘에 의해 상기 전선 결선식 재물대를 상기 수용홈에 고정시킴과 아울러 상기 전선 결선식 재물대와 상기 재물대 수용부를 열교환시키도록 구성된 컨택 스프링 링크가 상기 재물대 수용부의 수용홈의 좌, 우 양측에 형성될 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션에 있어서, 상기 전선 결선식 재물대와 상기 재물대 수용부는 암, 수 커넥터에 의해 결합되며; 상기 암, 수 커넥터 중 하나에 도선을 통해 전기 신호를 제공함과 아울러 수신하도록 구성된 피드 쓰루를 더 포함하며; 상기 도선은 상기 열전도체에 앵커에 의해 앵커링될 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션에 있어서, 상기 전선 결선식 재물대의 상부를 구성하는 인쇄회로기판부는 절연판; 상기 절연판의 상부에 동박 패턴으로 이루어져 있으며 시료 접촉면인 누설전류 차폐면; 상기 누설전류 차폐면의 좌, 우 양측으로 일정거리만큼 이격되어 상기 절연판의 상부에 설치된 두개의 접촉 전극; 및 상기 절연판의 하부에 동박 패턴으로 이루어져 있으며 콜드 헤드 접촉면인 접지면을 포함할 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션에 있어서, 상기 누설전류 차폐면과 상기 접지면 사이에는 복수의 비아홀이 형성되어 있으며; 상기 비아홀의 내벽에는 전도성 금속이 부착될 수 있다.
상기 실시형태에 의한 극저온 프로브 스테이션에 있어서, 상기 전선 결선식 재물대의 상부를 구성하는 인쇄회로기판부는 중심부에 관통공이 형성된 절연판, 상기 절연판의 상부 좌, 우 양측에 설치된 두개의 접촉 전극, 및 상기 관통공에 삽입되어 납땜으로 고정된 구리판을 포함하며; 상기 구리판의 상, 하부 각각에는 누설전류 차폐면 및 접지면이 형성되어 있으며; 상기 구리판과 마주하는 상기 절연판의 내벽에는 동박이 코팅되어 있으며; 상기 구리판의 상부면은 상기 절연판의 상부면보다 높으며; 상기 구리판의 하부면은 상기 절연판의 하부면보다 낮을 수 있다.
본 발명의 실시형태에 의한 극저온 프로브 스테이션에 의하면 전선 결선식 재물대에 시료를 올려놓고 전기적인 특성을 측정하는 방식을 채용하였으며, 온도 변화에도 불구하고 탄력성이 좋은 가느다란 전선이 시료에 계속 부착되어 있으므로 종래의 지속적인 온도 변화에 따른 탐침과 프로브 암의 길이 변화로 인하여 시료를 긁는 손상을 유발하거나 온도 스위프시의 불연속적인 데이터 획득이 발생됨이 없이 연속적으로 데이터를 획득할 수 있다는 뛰어난 효과가 있다.
또한, 본 발명의 실시형태에 의한 극저온 프로브 스테이션에 의하면 재물대 수용부에는 전선 결선식 재물대를 수용 및 분리 가능하도록 수용홈이 형성되어 있으므로 전선 결선식 재물대를 간편하게 교체할 수 있다는 다른 뛰어난 효과가 있다.
도 1은 본 발명의 제 1 실시예에 의한 극저온 프로브 스테이션의 종단면도이다.
도 2는 본 발명의 제 2 실시예에 의한 극저온 프로브 스테이션의 종단면도이다.
도 3은 본 발명의 제 3 실시예에 의한 극저온 프로브 스테이션을 구성하는 재물대 수용부와 전선 결선식 재물대의 결합구조를 나타낸 종단면도이다.
도 4는 본 발명의 제 4 실시예에 의한 극저온 프로브 스테이션을 구성하는 재물대 수용부와 전선 결선식 재물대의 결합구조를 나타낸 종단면도이다.
도 5는 본 발명의 제 5 실시예에 의한 극저온 프로브 스테이션을 구성하는 재물대 수용부와 전선 결선식 재물대의 결합구조를 나타낸 종단면도이다.
도 6은 본 발명의 제 6 실시예에 의한 극저온 프로브 스테이션의 종단면도이다.
도 7은 본 발명의 제 7 실시예에 의한 극저온 프로브 스테이션을 구성하는 전선 결선식 재물대의 인쇄회로 기판부를 나타낸 종단면도이다.
도 8은 본 발명의 제 8 실시예에 의한 극저온 프로브 스테이션을 구성하는 전선 결선식 재물대의 인쇄회로 기판부를 나타낸 종단면도이다.
도 9는 본 발명의 제 9 실시예에 의한 극저온 프로브 스테이션을 구성하는 전선 결선식 재물대의 인쇄회로 기판부를 나타낸 종단면도이다.
도 10은 일반적인 전선 결선식 재물대의 구조를 나타낸 종단면이다.
이하, 본 발명의 실시예를 도면을 참조하여 상세히 설명하기로 한다.
[제 1 실시예]
도 1은 본 발명의 제 1 실시예에 의한 극저온 프로브 스테이션의 종단면도이다.
본 발명의 제 1 실시예에 의한 극저온 프로브 스테이션은, 도 1에 도시된 바와 같이, 진공 챔버(110), 전선 결선식 재물대(120), 재물대 수용부(130), 극저온 흡열부(140), 자기장 발생부(150), 피드 쓰루(feed through)(160), 복수의 도선(165), 및 프로브(probe)(170)를 포함한다.
진공 챔버(110)는 시료의 전기적 특징을 측정하기 위해 진공 분위기를 만들도록 구성되어 있으며, 내부에는 전선 결선식 재물대(120), 재물대 수용부(130), 극저온 흡열부(140), 자기장 발생부(150), 피드 쓰루(160), 복수의 도선(165) 및 프로브(170)가 설치되어 있다.
전선 결선식 재물대(120)는 측정하고자 하는 시료를 하부에서 지지하며 전기 신호를 인가하고 감지하는 역할을 한다. 일반적으로 전선 결선식 재물대(120)는 도 10에 도시된 바와 같이 재물대 몸체의 상부에는 시료가 놓이는 인쇄회로기판부가 고정볼트에 의해 고정되어 있으며, 재물대 몸체의 하부에는 재물대 수용부의 수커넥터와 전기 접속되는 암커넥터로 이루어진 커넥터부가 장착되어 있다.
재물대 수용부(130)에는 전선 결선식 재물대(120)를 수용 및 분리 가능하도록 수용홈(135)이 형성되어 있다. 재물대 수용부(130)의 하부는 열전도체(C)를 통해 극저온 흡열부(140)와 연결되어 있어 전선 결선식 재물대(120)로부터 발생된 열은 극저온 흡열부(140)에 의해 냉각된다. 재물대 수용부(130)는 한 개인 것을 예로 들었으나 복수로 구비될 수 있으며, 이때 각각의 재물대 수용부는 별도의 전선 결선식 재물대의 수용 및 분리가 가능하며, 각각의 재물대 수용부에는 별도의 복수 도선 및 피드 쓰루를 구비할 수 있다.
극저온 흡열부(140)는 재물대 수용부(130)에 열전도체(C)를 통해 극저온의 냉기를 제공하도록 진공챔버(110)의 하부에 구성되어 있다.
자기장 발생부(150)는 재물대 수용부(130)로부터 일정거리만큼 이격되어 설치되어서 자기장을 발생시키는 역할을 한다. 자기장 발생부(150)의 개수를 1개인 것으로 예시하였으나 자기장 발생 강도에 따라서 그 개수는 변경가능하다.
피드 쓰루(160)는 전선 결선식 재물대(120)에 전기 신호를 제공함과 아울러 수신하도록 구성된 커넥터의 일종이다.
복수의 도선(165)은 피드 쓰루(160)와 전선 결선식 재물대(120)를 전기 접속하기 위해 일단은 피드 쓰루(160)에 연결되고 타단은 재물대 수용부(130)에 연결되어 있다. 재물대 수용부(130)는 전선 결선식 재물대(120)에 전기 신호를 제공하고 수신하도록 구성되어 있다.
프로브(170)는 자기장 발생부(150) 및 재물대 수용부(130)의 상부에 설치되어 전선 결선식 재물대(120)의 상부에 놓인 시료를 검침하는 역할을 하며, 선택적인 사항으로서 반드시 필요하지는 않다. 프로브(170)는 계측하기 위해 시료에 접촉하는 탐침(174) 및 이 탐침(174)을 고정시킴과 아울러 신호를 전도시켜 외부 검사장치(도시안됨)로 전달하도록 구성된 프로브 암(probe arm)(172)을 구비한다. 또한, 탐침(174)에는 전선 결선식 재물대(120)에 결선된 전선과의 합선을 막아주는 절연 피막(미도시)을 구비할 수 있다.
상기와 같이 구성된 본 발명의 제 1 실시예에 의한 극저온 프로브 스테이션에 의하면 기존의 프로브를 사용한 탐침 접촉식 계측방식 뿐만 아니라 전선 결선식 재물대(120)에 시료를 올려놓고 전기적인 특성을 측정하는 방식을 추가로 채용하였으며, 또한 이 전선식 재물대(120)로부터 발생된 열을 재물대 수용부(130) 및 열전도체(C)를 통해 극저온 흡열부(140)에서 냉각시키는 구성을 가지기 때문에, 종래의 지속적인 온도 변화에 따른 탐침과 프로브 암의 길이 변화로 인한 시료의 긁힘 손상과 온도 스위프시의 불연속적인 데이터 획득이 발생됨이 없이 연속적으로 데이터를 획득할 수 있다는 효과가 있다.
또한, 상기와 같이 구성된 본 발명의 제 1 실시예에 의한 극저온 프로브 스테이션에 의하면 재물대 수용부(130)에는 전선 결선식 재물대(120)를 수용 및 분리 가능하도록 수용홈(135)이 형성되어 있으므로 전선 결선식 재물대(120)를 간편하게 교체할 수 있다는 효과가 있다.
[제 2 실시예]
도 2는 본 발명의 제 2 실시예에 의한 극저온 프로브 스테이션의 종단면도로서, 제 1 실시예와 동일한 부분에 대해서는 동일부호를 붙이고 중복된 설명은 생략하기로 한다.
본 발명의 제 2 실시예에 의한 극저온 프로브 스테이션은 재물대 수용부(130')에 형성된 수용홈(135')의 수직 길이가 제 1 실시예에 비해 길며, 이 수용홈(135')에 수용되는 전선 결선식 재물대(120)는 2개의 자기장 발생부(150) 사이의 종, 횡 방향 중심부에 배치되어 있다.
한편, 전선 결선식 재물대(120)는 재물대 수용부(130')의 수용홈(135')에 배치되는데, 배치위치는 자기장 발생부(150) 내부의 종, 횡 방향 중심부인 것을 예로 들었으나, 그 배치위치는 수용홈(135') 내의 상하 이동 가능한 위치가 될 수 있다.
상기와 같이 구성된 본 발명의 제 2 실시예에 의한 극저온 프로브 스테이션에 의하면 재물대 수용부(130')의 수용홈(135')에 수용되는 전선 결선식 재물대(120)는 자기장 발생부(150) 내부의 종, 횡 방향 중심부에 배치되어 있으므로 자기장 발생부(150)로부터 발생되는 자기장의 영향을 강하게 받게 됨으로써, 종래의 탐침 접촉식 계측 방식에 비해 높은 자기장 환경에서 시료의 실험이 가능하다는 효과가 있다.
[제 3 실시예]
도 3은 본 발명의 제 3 실시예에 의한 극저온 프로브 스테이션을 구성하는 재물대 수용부와 전선 결선식 재물대의 결합구조를 나타낸 종단면도로서, 상기 실시예 들과 동일한 부분에 대해서는 동일부호를 붙이고 중복된 설명은 생략하기로 한다.
본 발명의 제 3 실시예에 의한 극저온 프로브 스테이션은 전선 결선식 재물대(120)를 재물대 수용부(130)의 수용홈(135)에 압착고정하도록 구성된 재물대 압착부(L)를 더 포함한다.
재물대 압착부(L)는 고정부재(B)에 의해 재물대 수용부(130)에 고정되며 중심부는 개구되어 있다.
전선 결선식 재물대(120)와 재물대 수용부(130)는 암, 수 커넥터(N1, N2)에 의해 전기 접속되도록 구성되어 있다.
전선 결선식 재물대(120)의 좌, 우측 단부와 재물대 수용부(130)는 열전도 접촉부(D)에 의해 열전도 접촉되도록 구성되어 있다.
상기와 같이 구성된 본 발명의 제 3 실시예에 의한 극저온 프로브 스테이션에 의하면 전선 결선식 재물대(120)가 재물대 압착부(L)에 의해 재물대 수용부(130)에 압착고정됨과 아울러 전선 결선식 재물대(120)의 좌, 우측 단부와 재물대 수용부(130)가 열전도 접촉부(D)에 의해 열전도 접촉되도록 구성되어 있으므로 전선 결선식 재물대(120)로부터 발생된 열이 재물대 수용부(130)를 통해 신속하게 전도될 수 있다는 뛰어난 효과가 있다.
[제 4 실시예]
도 4는 본 발명의 제 4 실시예에 의한 극저온 프로브 스테이션을 구성하는 재물대 수용부와 전선 결선식 재물대의 결합구조를 나타낸 종단면도로서, 상기 실시예 들과 동일한 부분에 대해서는 동일부호를 붙이고 중복된 설명은 생략하기로 한다.
본 발명의 제 4 실시예에 의한 극저온 프로브 스테이션은 전선 결선식 재물대(120)와 재물대 수용부(130) 모두에 온도센서(S1) 및 자기센서(S2)가 장착되어 있다.
한편, 상기 실시예에서는 전선 결선식 재물대(120)와 재물대 수용부(130) 모두에 온도센서(S1) 및 자기센서(S2)가 장착된 것을 예로 들었으나 전선 결선식 재물대(120)와 재물대 수용부(130) 중 어느 하나에 장착되어도 좋다.
상기와 같이 구성된 본 발명의 제 4 실시예에 의한 극저온 프로브 스테이션에 의하면 재물대 수용부(130)와 전선 결선식 재물대(120) 중 하나 이상에 온도 센서(S1) 및 자기센서(S2)가 장착되어 있으므로 전선 결선식 재물대(120)의 온도 또는 자기장이 목표치에 도달하는지의 여부를 신속정확하게 감지할 수 있다는 효과가 있다.
[제 5 실시예]
도 5는 본 발명의 제 5 실시예에 의한 극저온 프로브 스테이션을 구성하는 재물대 수용부와 전선 결선식 재물대의 결합구조를 나타낸 종단면도로서, 상기 실시예 들과 동일 부분에 대해서는 동일부호를 붙이고 중복된 설명은 생략하기로 한다.
본 발명의 제 5 실시예에 의한 극저온 프로브 스테이션은 전선 결선식 재물대(120)가 수용홈(135")에 삽입될 때 스프링의 힘에 의해 전선 결선식 재물대(120)를 수용홈(135")에 고정시킴과 아울러 전선 결선식 재물대(120)와 재물대 수용부(130")를 열교환시키도록 구성된 컨택 스프링 링크(137)가 재물대 수용부(130")의 수용홈(135")의 좌, 우 양측에 형성되어 있다.
상기와 같이 구성된 본 발명의 제 5 실시예에 의한 극저온 프로브 스테이션에 의하면 재물대 수용부(130")의 수용홈(135") 좌, 우 양측에 컨택 스프링 링크(137)가 형성되어 있으므로, 전선 결선식 재물대(120)가 수용홈(135")에 수직으로 삽입시 스프링 힘에 의해 수용홈(135")에 전선 결선식 재물대(120)를 확실하게 고정시킬 수 있음과 아울러 열교환을 원할하게 함으로써 전선 결선식 재물대(120)와 극저온 흡열부(도시안됨)의 온도차를 최소화할 수 있다는 효과가 있다.
[제 6 실시예]
도 6은 본 발명의 제 6 실시예에 의한 극저온 프로브 스테이션의 종단면도로서, 상기 실시예들과 동일 부분에 대해서는 동일 부호를 붙이고 중복된 설명은 생략하기로 한다.
본 발명의 제 6 실시예에 의한 극저온 프로브 스테이션은 전선 결선식 재물대(120)와 재물대 수용부(130")가 암, 수 커넥터(N1, N2)에 의해 결합되며, 암, 수 커넥터(N1, N2) 중 어느 하나에 도선(165)을 통해 전기 신호를 제공함과 아울러 수신하도록 구성된 피드 쓰루(160)를 더 포함하며, 도선(165)은 열전도체(C)에 앵커(A)에 의해 앵커링(anchoring)되어 있다.
상기와 같이 구성된 본 발명의 제 6 실시예에 의한 극저온 프로브 스테이션에 의하면 전선 결선식 재물대(120)와 재물대 수용부(130")를 결합시키는 암, 수 커넥터(N1, N2)중 어느 하나에 연결된 도선(165)이 열전도체(C)에 앵커(A)에 의해 앵커링되어 있으므로, 전선 결선식 재물대(120)에서 발생된 열은 극저온 흡열부(140)에 의해 직접 냉각됨으로써 냉각효과가 뛰어나다는 효과가 있다. 또한 피드 쓰루(160)로부터 유입되는 열이 앵커(A)에 의하여 흡수되므로 재물대(120)에 도달하지 못하고 차단된다. 따라서 극저온 냉각시 결선식 재물대(120)의 온도를 극도로 낮추기에 용이한 효과가 있다.
[제 7 실시예]
도 7은 본 발명의 제 7 실시예에 의한 극저온 프로브 스테이션을 구성하는 전선 결선식 재물대의 인쇄회로 기판부를 나타낸 종단면도로서, 상기 실시예들과 동일한 부분에 대해서는 동일 부호를 붙이고 중복된 설명은 생략하기로 한다.
본 발명의 제 7 실시예에 의한 극저온 프로브 스테이션은 전선 결선식 재물대(120)의 상부를 구성하는 인쇄회로기판부(122)가 절연판(122a), 누설전류 차폐면(122b), 2개의 접촉 전극(122c) 및 접지면(122d)을 포함하는 구성을 가진다.
누설전류 차폐면(122b)은 절연판(122a)의 상부에 동박 패턴으로 이루어져 있으며 시료에 인가하는 전압과 같은 수준의 전압을 인가하면 접지면으로 누설되는 누설전류가 차폐되는 효과가 있으며, 시료 접촉면이 된다. 또한 절연이 지극히 중요한 경우 누설전류 차폐면(122b) 상부에 솔더마스크 또는 폴리이미드 또는 기타 절연 물질을 이용한 절연층(미도시)을 추가로 구비할 수도 있다.
2개의 접촉 전극(122c)은 누설전류 차폐면(122b)의 좌, 우 양측으로 일정거리만큼 이격되어 절연판(122a)의 상부에 설치되며, 시료에 결선된 전선을 전기적으로 연결하여 결선을 위한 전극으로서의 역할을 한다. 상기 접촉 전극(122c)은 2개가 설치된 것을 예로 들었으나 다수개 장착될 수 있다.
접지면(122d)은 절연판(122a)의 하부에 동박 패턴으로 이루어져 있으며 콜드 헤드 접촉면이 된다.
상기와 같이 구성된 본 발명의 제 7 실시예에 의한 극저온 프로브 스테이션에 의하면 전선 결선식 재물대(120)의 상부를 구성하는 인쇄회로기판부(122)가 신호선, 가드선, 접지선이 구비된 삼축 케이블(tri-axial cable)에 대응하는 구성을 가짐으로써 누설전류가 현저히 적다는 효과가 있다.
[제 8 실시예]
도 8은 본 발명의 제 8 실시예에 의한 극저온 프로브 스테이션을 구성하는 전선 결선식 재물대의 인쇄회로 기판부를 나타낸 종단면도로서, 상기 실시예들과 동일한 부분에 대해서는 동일부호를 붙이고 중복된 설명은 생략하기로 한다.
본 발명의 제 8 실시예에 의한 극저온 프로브 스테이션은 누설전류 차폐면(122b)과 접지면(122d) 사이에 복수의 비아홀(H)이 형성되어 있으며, 이 비아홀(H)의 내벽에는 전도성 금속이 부착되어 있는 구성을 가진다. 따라서 이러한 구조에서는 누설전류 차폐면(122b)의 전위가 접지면의 전위와 같아지므로 누설전류 차폐기능은 없다.
상기와 같이 구성된 본 발명의 제 8 실시예에 의한 극저온 프로브 스테이션에 의하면 누설전류 차폐면(122b)과 접지면(122d) 사이에 열전도 경로를 형성할 수 있는 복수의 비아홀(H)이 형성되어 있음으로써 전선 결선식 재물대에서 콜드 헤드와 접촉하는 접지면(122d)과 시료가 부착되는 누설전류 차폐면(122b)간에 열전도를 대폭 향상시킬 수 있다는 효과가 있다.
[제 9 실시예]
도 9는 본 발명의 제 9 실시예에 의한 극저온 프로브 스테이션을 구성하는 전선 결선식 재물대의 인쇄회로 기판부를 나타낸 종단면도로서, 상기 실시예들과 동일한 부분에 대해서는 동일부호를 붙이고 중복된 설명은 생략하기로 한다.
본 발명의 제 9 실시예에 의한 극저온 프로브 스테이션은 전선 결석식 재물대의 상부를 구성하는 인쇄회로기판부(122")가 절연판(122a"), 2개의 접촉 전극(122c) 및 구리판(P)을 포함하는 구성을 가진다.
절연판(122a")은 중심부에 구리판(P)이 삽입 고정되는 관통공(G)이 형성되어 있다.
2개의 접촉 전극(122c)은 절연판(122a")의 상부 좌, 우 양측에 설치되어 있어 결선을 위한 전극으로서의 역할을 한다.
구리판(P)은 관통공(G)에 삽입되어 납땜으로 고정되어 있다. 구리판(P)의 상, 하부 각각에는 누설전류 차폐면(122b') 및 접지면(122d')이 형성되어 있다. 구리판(P)과 마주하는 절연판(122a")의 내벽에는 동박 코팅(122e)이 되어 있어 납이 스며들기 쉽고 구리판(P)이 절연판(122a")의 내벽에 견고하게 고정될 수 있다. 구리판(P)의 상부면은 절연판(122a")의 상부면보다 높으므로 누설전류 차폐면(122b')에 놓이는 시료는 크기에 제약을 받지 않는다. 구리판(P)의 하부면은 절연판(122a")의 하부면보다 낮으므로 구리판(P)이 콜드 헤드(도시안됨)에 정확하게 접촉된다.
상기와 같이 구성된 본 발명의 제 9 실시예에 의한 극저온 프로브 스테이션에 의하면 구리판(P)과 마주하는 절연판(122a")의 내벽에는 동박 코팅(122e)이 되어 있으므로 납이 스며들기 쉽고 구리판(P)이 절연판(122a")의 내벽에 견고하게 고정될 수 있다는 효과가 있다.
또한, 본 발명의 제 9 실시예에 의한 극저온 프로브 스테이션에 의하면, 구리판(P)의 상부면이 절연판(122a")의 상부면보다 높으므로 누설전류 차폐면(122b')에 놓이는 시료는 크기에 제약을 받지 않는다는 효과가 있다.
더욱이, 본 발명의 제 9 실시예에 의한 극저온 프로브 스테이션에 의하면, 구리판(P)의 하부면이 절연판(122a")의 하부면보다 낮으므로 구리판(P)이 콜드 헤드에 정확하게 접촉됨으로써 열전도도가 높다는 효과가 있다.
도면과 명세서에는 최적의 실시예가 개시되었으며, 특정한 용어들이 사용되었으나 이는 단지 본 발명의 실시형태를 설명하기 위한 목적으로 사용된 것이지 의미를 한정하거나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (12)

  1. 극저온 분위기에서 시료의 전기적 특징을 측정하는 극저온 프로브 스테이션으로서:
    진공 분위기를 만들도록 구성된 진공 챔버;
    측정하고자 하는 시료를 하부에서 지지하며 전기 신호를 인가하고 감지하도록 상기 진공 챔버 내에 장착된 전선 결선식 재물대;
    상기 전선 결선식 재물대를 수용 및 분리 가능하도록 형성된 수용홈을 구비한 재물대 수용부;
    상기 재물대 수용부에 열전도체를 통해 극저온의 냉기를 제공하도록 구성된 극저온 흡열부; 및
    상기 재물대 수용부로부터 일정거리만큼 이격되어 설치되어서 자기장을 발생시키는 자기장 발생부를 포함하는 극저온 프로브 스테이션.
  2. 제 1 항에 있어서,
    상기 전선 결선식 재물대에 전기 신호를 제공함과 아울러 수신하도록 구성된 피드 쓰루; 및
    상기 피드 쓰루와 상기 전선 결선식 재물대를 전기 접속하기 위해 일단은 상기 피드 쓰루에 연결되고 타단은 상기 재물대 수용부에 연결된 복수의 도선을 더 포함하는 극저온 프로브 스테이션.
  3. 제 1 항에 있어서,
    상기 자기장 발생부 및 재물대 수용부의 상부에 설치되어 상기 전선 결선식 재물대의 상부에 놓인 시료를 검침하는 프로브를 더 포함하며;
    상기 프로브는
    시료에 접촉하는 탐침,
    상기 탐침에 구비되어 결선된 전선과 합선을 막아주는 절연 피막, 및
    상기 탐침을 고정시키는 프로브 암을 포함하는 극저온 프로브스테이션.
  4. 제 2 항에 있어서,
    상기 재물대 수용부 및 피드 쓰루는 복수개 형성되어 있는 극저온 프로브 스테이션.
  5. 제 1 항에 있어서,
    상기 전선 결선식 재물대는 상기 자기장 발생부 내부의 종, 횡 방향 중심부에 배치된 극저온 프로브 스테이션.
  6. 제 1 항에 있어서,
    상기 전선 결선식 재물대를 상기 재물대 수용부의 수용홈에 압착고정하도록 구성된 재물대 압착부를 더 포함하며;
    상기 전선 결선식 재물대와 상기 재물대 수용부는 암, 수 커넥터에 의해 전기 접속되도록 구성되며;
    상기 전선 결선식 재물대는 탈부착이 가능하도록 구성되며;
    상기 전선 결선식 재물대의 좌, 우측 단부와 상기 재물대 수용부는 열전도 접촉되도록 구성되는 극저온 프로브 스테이션.
  7. 제 6 항에 있어서,
    상기 전선 결선식 재물대와 상기 재물대 수용부 중 하나 이상에는 온도센서 및 자기센서가 장착되는 극저온 프로브 스테이션.
  8. 제 1 항에 있어서,
    상기 전선 결선식 재물대가 상기 수용홈에 삽입될 때 스프링의 힘에 의해 상기 전선 결선식 재물대를 상기 수용홈에 고정시킴과 아울러 상기 전선 결선식 재물대와 상기 재물대 수용부를 열교환시키도록 구성된 컨택 스프링 링크가 상기 재물대 수용부의 수용홈의 좌, 우 양측에 형성되는 극저온 프로브 스테이션.
  9. 제 8 항에 있어서,
    상기 전선 결선식 재물대와 상기 재물대 수용부는 암, 수 커넥터에 의해 결합되며;
    상기 암, 수 커넥터 중 하나에 도선을 통해 전기 신호를 제공함과 아울러 수신하도록 구성된 피드 쓰루를 더 포함하며;
    상기 도선은 상기 열전도체에 앵커에 의해 앵커링되는 극저온 프로브 스테이션.
  10. 제 1 항에 있어서,
    상기 전선 결선식 재물대의 상부를 구성하는 인쇄회로기판부는,
    절연판;
    상기 절연판의 상부에 동박 패턴으로 이루어져 있으며 시료 접촉면인 누설전류 차폐면;
    상기 누설전류 차폐면의 좌, 우 양측으로 일정거리만큼 이격되어 상기 절연판의 상부에 설치된 두개의 접촉 전극; 및
    상기 절연판의 하부에 동박 패턴으로 이루어져 있으며 콜드 헤드 접촉면인 접지면을 포함하는 극저온 프로브 스테이션.
  11. 제 10 항에 있어서,
    상기 누설전류 차폐면과 상기 접지면 사이에는 복수의 비아홀이 형성되어 있으며;
    상기 비아홀의 내벽에는 전도성 금속이 부착되어 있는 극저온 프로브 스테이션.
  12. 제 1 항에 있어서,
    상기 전선 결선식 재물대의 상부를 구성하는 인쇄회로기판부는,
    중심부에 관통공이 형성된 절연판,
    상기 절연판의 상부 좌, 우 양측에 설치된 두개의 접촉 전극, 및
    상기 관통공에 삽입되어 납땜으로 고정된 구리판을 포함하며;
    상기 구리판의 상, 하부 각각에는 누설전류 차폐면 및 접지면이 형성되어 있으며;
    상기 구리판과 마주하는 상기 절연판의 내벽에는 동박이 코팅되어 있으며;
    상기 구리판의 상부면은 상기 절연판의 상부면보다 높으며;
    상기 구리판의 하부면은 상기 절연판의 하부면보다 낮은 극저온 프로브 스테이션.
PCT/KR2016/011028 2015-10-08 2016-09-30 극저온 프로브 스테이션 WO2017061739A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0141652 2015-10-08
KR1020150141652A KR101698429B1 (ko) 2015-10-08 2015-10-08 극저온 프로브 스테이션

Publications (1)

Publication Number Publication Date
WO2017061739A1 true WO2017061739A1 (ko) 2017-04-13

Family

ID=57989562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011028 WO2017061739A1 (ko) 2015-10-08 2016-09-30 극저온 프로브 스테이션

Country Status (2)

Country Link
KR (1) KR101698429B1 (ko)
WO (1) WO2017061739A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389455A (zh) * 2017-09-05 2017-11-24 中国工程物理研究院流体物理研究所 用于磁驱动斜波压缩中样品初始温度的降温装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534590U (ja) * 1991-10-11 1993-05-07 日本電気株式会社 混成ic検査装置
US20050110508A1 (en) * 2003-11-21 2005-05-26 Agilent Technologies, Inc. Apparatus and test method for isolation and electrical shielding prober chuck stage
US20070030021A1 (en) * 1999-06-30 2007-02-08 Cascade Microtech Inc. Probe station thermal chuck with shielding for capacitive current
KR101359333B1 (ko) * 2012-08-31 2014-02-12 한국전기연구원 다중 전극 셀 테스트 장치
KR101478288B1 (ko) * 2014-10-31 2015-01-02 한국기초과학지원연구원 극저온유체의 재응축형 극저온 프로브스테이션

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986805B1 (ko) * 2008-11-21 2010-10-11 에코피아 주식회사 온도 가변형 프로브 스테이션

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534590U (ja) * 1991-10-11 1993-05-07 日本電気株式会社 混成ic検査装置
US20070030021A1 (en) * 1999-06-30 2007-02-08 Cascade Microtech Inc. Probe station thermal chuck with shielding for capacitive current
US20050110508A1 (en) * 2003-11-21 2005-05-26 Agilent Technologies, Inc. Apparatus and test method for isolation and electrical shielding prober chuck stage
KR101359333B1 (ko) * 2012-08-31 2014-02-12 한국전기연구원 다중 전극 셀 테스트 장치
KR101478288B1 (ko) * 2014-10-31 2015-01-02 한국기초과학지원연구원 극저온유체의 재응축형 극저온 프로브스테이션

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389455A (zh) * 2017-09-05 2017-11-24 中国工程物理研究院流体物理研究所 用于磁驱动斜波压缩中样品初始温度的降温装置及方法

Also Published As

Publication number Publication date
KR101698429B1 (ko) 2017-01-20

Similar Documents

Publication Publication Date Title
WO2012002612A1 (ko) 프로브
US9069008B2 (en) Inspection apparatus for semiconductor devices and chuck stage for the inspection apparatus that is movable with respect to the front and back side electrodes
WO2015012498A1 (ko) 도전성 커넥터 및 그 제조방법
WO2014204161A2 (ko) 검사용 인서트
US20070279075A1 (en) Apparatus and Method for Terminating Probe Apparatus of Semiconductor Wafer
WO2021241992A1 (ko) 전기접속용 커넥터
WO2020226194A1 (ko) 프로브 조립체 및 이를 포함하는 마이크로 진공 프로브 스테이션
WO2021137527A1 (ko) 테스트 소켓 조립체
WO2011004956A1 (en) Probe card
WO2015102389A1 (ko) 가스 절연 개폐기의 부분 방전 검출 장치
WO2023128428A1 (ko) 신호 손실 방지용 테스트 소켓
WO2020022745A1 (ko) 검사용 도전 시트
WO2023003255A1 (ko) 접촉 프로브
WO2017061739A1 (ko) 극저온 프로브 스테이션
WO2017200267A1 (ko) 온도측정 웨이퍼 센서 및 그 제조방법
WO2024147491A1 (ko) 신호 손실 방지용 테스트 소켓
WO2020050645A1 (ko) 전기적 검사용 프로브 카드 및 프로브 카드의 프로브 헤드
WO2015076614A1 (ko) 하나의 절연성 몸체로 구성되는 소켓
WO2021157970A1 (ko) 전기접속용 커넥터
WO2020218690A1 (ko) 저온 초정밀 열수송 측정용 프로브 시스템 및 이를 포함하는 측정장치
WO2023136439A1 (ko) 테스트 핀
WO2022092812A1 (ko) 전기 접속용 커넥터
WO2017061656A1 (ko) 켈빈 테스트용 프로브, 켈빈 테스트용 프로브 모듈 및 그 제조방법
WO2021242078A1 (ko) 전기접속용 커넥터
WO2018199601A1 (ko) 센서 탑재 웨이퍼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853855

Country of ref document: EP

Kind code of ref document: A1