WO2017061541A1 - 液晶配向膜製造用組成物、該組成物を用いた液晶配向膜及びその製造方法、並びに液晶配向膜を有する液晶表示素子及びその製造方法 - Google Patents

液晶配向膜製造用組成物、該組成物を用いた液晶配向膜及びその製造方法、並びに液晶配向膜を有する液晶表示素子及びその製造方法 Download PDF

Info

Publication number
WO2017061541A1
WO2017061541A1 PCT/JP2016/079784 JP2016079784W WO2017061541A1 WO 2017061541 A1 WO2017061541 A1 WO 2017061541A1 JP 2016079784 W JP2016079784 W JP 2016079784W WO 2017061541 A1 WO2017061541 A1 WO 2017061541A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
carbon atoms
liquid crystal
side chain
Prior art date
Application number
PCT/JP2016/079784
Other languages
English (en)
French (fr)
Inventor
佳和 原田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020187012779A priority Critical patent/KR20180063269A/ko
Priority to CN201680071493.5A priority patent/CN108369358B/zh
Priority to JP2017544219A priority patent/JP6925584B2/ja
Publication of WO2017061541A1 publication Critical patent/WO2017061541A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a composition for producing a liquid crystal alignment film, and more particularly to a composition for producing a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element.
  • the present invention also relates to a liquid crystal alignment film produced using the composition, in particular, a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element, a substrate having the film, and a method for producing the same.
  • this invention relates to the liquid crystal display element which has this liquid crystal aligning film or board
  • the present invention relates to a composition for producing a liquid crystal alignment film, particularly a lateral electric field drive type, in which the light irradiation amount range is expanded and the production efficiency of the liquid crystal alignment film is increased in the photo-alignment method used for the alignment treatment of the liquid crystal alignment film.
  • Composition for manufacturing liquid crystal alignment film for liquid crystal display element, liquid crystal alignment film manufactured using the composition or substrate having liquid crystal alignment film, liquid crystal display element having them, liquid crystal alignment film, and substrate having liquid crystal alignment film Alternatively, the present invention relates to a method for manufacturing a liquid crystal display element.
  • the liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years.
  • the liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
  • the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
  • the liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate.
  • alignment control ability is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
  • a photo-alignment method is known as an alignment treatment method for a liquid crystal alignment film for imparting alignment control ability.
  • the photo-alignment method eliminates the need for rubbing, does not cause the generation of dust and static electricity, and can perform the alignment treatment even on the substrate of the liquid crystal display element having the uneven surface. There is an advantage that you can.
  • the photo-alignment method a decomposition-type photo-alignment method, a photo-crosslinking type or a photo-isomerization type photo-alignment method, and the like are known.
  • the decomposition type photo-alignment method is, for example, that a polyimide film is irradiated with polarized ultraviolet rays, and an anisotropic decomposition is generated by utilizing the polarization direction dependency of ultraviolet absorption of the molecular structure. This is a method of aligning the liquid crystal by the method (for example, see Patent Document 1).
  • the photo-crosslinking type or photoisomerization type photo-alignment method uses, for example, polyvinyl cinnamate, irradiates polarized ultraviolet rays, and performs a dimerization reaction (cross-linking reaction) at the double bond portion of two side chains parallel to the polarized light. This is a method of generating and aligning the liquid crystal in a direction orthogonal to the polarization direction (see, for example, Non-Patent Document 1).
  • Patent Document 3 discloses a liquid crystal alignment film obtained by using a photo-alignment method by photocrosslinking, photoisomerization or photo-fleece rearrangement.
  • the photo-alignment method has a great advantage because it eliminates the rubbing process itself as compared with the rubbing method conventionally used industrially as an alignment treatment method for liquid crystal display elements. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light.
  • the alignment controllability of the main component used in the photo-alignment method is too sensitive to the amount of polarized light, the alignment may be incomplete in part or all of the liquid crystal alignment film, and stable liquid crystal alignment cannot be realized. Occurs.
  • an object of the present invention is to increase the range of the light irradiation amount in which the alignment control ability is stably generated, and to efficiently obtain a high-quality liquid crystal alignment film, in particular, a composition for manufacturing a liquid crystal alignment film, particularly a lateral electric field drive.
  • An object of the present invention is to provide a composition for producing a liquid crystal alignment film for a liquid crystal display device.
  • the object of the present invention is to provide a liquid crystal alignment film or a substrate having a liquid crystal alignment film produced using the composition, a liquid crystal display device having them, particularly a lateral electric field.
  • An object of the present invention is to provide a drive type liquid crystal display element.
  • the objective of this invention provides the manufacturing method of a liquid crystal aligning film, the board
  • a side chain polymer having a side chain that exhibits liquid crystallinity in a predetermined temperature range and has a photoreactive group that causes photocrosslinking, photoisomerization, or photofleece rearrangement (B) an organic solvent, and (C) a composition for producing a liquid crystal alignment film containing an additive, particularly a composition for producing a liquid crystal alignment film for a transverse electric field drive type liquid crystal display element, (C) The said composition whose minimum triplet energy of an additive is lower than the minimum triplet energy of the compound originating in a photoreactive group.
  • a composition for producing a liquid crystal alignment film which can efficiently obtain a liquid crystal alignment film with good quality by expanding the range of light irradiation amount in which alignment control ability is stably generated.
  • a composition for producing a liquid crystal alignment film can be provided.
  • a liquid crystal alignment film or a substrate having a liquid crystal alignment film manufactured using the composition, a liquid crystal display device having them, particularly a lateral electric field drive type A liquid crystal display element can be provided.
  • a method for producing a liquid crystal alignment film, a substrate having a liquid crystal alignment film, or a liquid crystal display element, particularly a lateral electric field drive type liquid crystal display element is provided. it can.
  • the present application extends the range of light irradiation in a composition for producing a liquid crystal alignment film, in particular, a composition for producing a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element, more particularly a photo-alignment method used for alignment treatment of a liquid crystal alignment film.
  • a composition having improved production efficiency of the liquid crystal alignment film is provided.
  • this application provides the liquid crystal aligning film manufactured using this composition, especially the liquid crystal aligning film for lateral electric field drive type liquid crystal display elements, the board
  • this application provides the liquid crystal display element which has this liquid crystal aligning film or board
  • composition for producing a liquid crystal alignment film of the present application in particular, the composition for producing a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element (A) a side chain polymer having a side chain that exhibits liquid crystallinity in a predetermined temperature range and has a photoreactive group that causes photocrosslinking, photoisomerization, or photofleece rearrangement, (B) contains an organic solvent, and (C) an additive.
  • the additive (C) is characterized in that its lowest triplet energy is lower than the lowest triplet energy of the compound derived from the photoreactive group.
  • the side chain polymer is a side chain polymer having a side chain that exhibits liquid crystallinity in a predetermined temperature range.
  • the side chain has a photoreactive group that causes photocrosslinking, photoisomerization, or photofleece rearrangement.
  • the (A) side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 100 ° C. to 300 ° C.
  • the side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm.
  • the (A) side chain polymer preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of 100 ° C to 300 ° C.
  • a side chain having a photoreactive group is bonded to the main chain, and can react with light to cause a crosslinking reaction, an isomerization reaction, or a light fleece rearrangement.
  • the structure of the side chain having a photoreactive group is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time.
  • the structure of the side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used as a liquid crystal alignment film.
  • the polymer structure has, for example, a main chain and a side chain bonded to the main chain, and the side chain includes a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip.
  • a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip.
  • a side chain polymer having a photoreactive group that can exhibit liquid crystallinity examples include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone
  • a structure having a chain is preferred.
  • A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
  • Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
  • the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
  • R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
  • X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
  • X may be the same or different;
  • Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring;
  • the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
  • l1 is 0 or 1;
  • l2 is an integer from 0 to 2; when l1 and l2 are both 0,
  • A represents a single bond when T is a single bond; when l1 is 1, B represents a single bond when T is a single bond;
  • H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
  • the side chain may be any one selected from the group consisting of the following formulas (7) to (10).
  • the side chain may be any one selected from the group consisting of the following formulas (11) to (13).
  • A, X, l, m, m2 and R have the same definition as above.
  • the side chain may be a side chain represented by the following formula (14) or (15).
  • A, Y 1 , X, 1, m1, and m2 have the same definition as above.
  • the side chain may be a side chain represented by the following formula (16) or (17).
  • A, X, l and m have the same definition as above.
  • the side chain type polymer may have a side chain other than the side chain having a photoreactive group.
  • the (A) side chain polymer may have any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
  • A, B, q1 and q2 have the same definition as above;
  • Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in the formulas (25) to (26), the sum of all m is 2 or more, and the formulas (27) to (28 ), The sum of all m
  • the above side chain type polymer is obtained by polymerizing a photoreactive side chain monomer having a side chain having the above photoreactive group, or the photoreactive side chain monomer and other monomers such as a liquid crystalline side. It can be obtained by polymerizing with a chain monomer.
  • the photoreactive side chain monomer is a monomer capable of forming a polymer having a side chain having a photoreactive group at the side chain site of the polymer when the polymer is formed.
  • the photoreactive group possessed by the side chain the following structures and derivatives thereof are preferred.
  • photoreactive side chain monomer examples include radical polymerizable groups such as hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, etc.
  • the liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at a side chain site. Even if the side chain has a mesogenic group such as biphenyl or phenylbenzoate alone, or a group that forms a mesogen structure by hydrogen bonding between side chains such as benzoic acid. Good.
  • the mesogenic group having a side chain the following structure is preferable.
  • liquid crystalline side chain monomers include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and other radical polymerizable groups
  • a structure having a polymerizable group composed of at least one selected from the group consisting of siloxanes and a side chain composed of at least one of the above formulas (21) to (31) is preferable.
  • the photoreactive and / or liquid crystalline side chain monomers may include, but are not limited to, compounds represented by the following formulas (A01) to (A20).
  • R represents a hydrogen atom or a methyl group
  • S represents an alkylene group having 2 to 10 carbon atoms
  • R 10 represents Br or CN
  • S represents an alkylene group having 2 to 10 carbon atoms
  • u represents Represents 0 or 1
  • Py represents a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group.
  • V represents 1 or 2.
  • the side chain type polymer can be obtained by a polymerization reaction of the above-described photoreactive side chain monomer having a side chain having a photoreactive group. Further, it can be obtained by copolymerization of a photoreactive side chain monomer that does not exhibit liquid crystallinity and a liquid crystalline side chain monomer, or by copolymerization of a photoreactive side chain monomer that exhibits liquid crystallinity and a liquid crystalline side chain monomer. it can. It can also be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
  • Examples of other monomers include industrially available monomers capable of radical polymerization reaction. Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • acrylate compound examples include those described in [0152] of WO2014 / 054785.
  • methacrylic acid ester compound examples include those described in [0153] of WO2014 / 054785.
  • Examples of the vinyl compound, styrene compound, and maleimide compound include those described in [0154] of WO2014 / 054785.
  • the production method of the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystalline side chain monomer or photoreactive side chain monomer. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
  • RAFT reversible addition-cleavage chain transfer
  • a radical thermal polymerization initiator is a compound that generates radicals when heated to a decomposition temperature or higher.
  • examples of such radical thermal polymerization initiators include those described in [0157] of WO2014 / 054785. Such radical thermal polymerization initiators can be used singly or in combination of two or more.
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • examples of such radical photopolymerization initiators include those described in [0158] of WO2014 / 054785. These compounds may be used alone or in combination of two or more.
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.
  • the organic solvent used in the polymerization reaction for obtaining the side chain polymer is not particularly limited as long as the produced polymer can be dissolved. Specific examples thereof include those described in [0161] of WO2014 / 054785.
  • organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer
  • the polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 ° C. to 150 ° C., but is preferably in the range of 50 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the molecular weight of the obtained polymer is decreased when the ratio of the radical polymerization initiator is large relative to the monomer, and the molecular weight of the obtained polymer is increased when the ratio is small, the ratio of the radical initiator is
  • the content is preferably 0.1 mol% to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added during the polymerization.
  • the polymer may be precipitated by introducing the reaction solution into a poor solvent.
  • the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water.
  • the polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the (A) side chain polymer of the present invention is measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of forming the coating film, and uniformity of the coating film.
  • the weight average molecular weight is preferably 2,000 to 1,000,000, more preferably 5,000 to 200,000.
  • the composition used in the present invention is preferably prepared as a coating solution so as to be suitable for forming a liquid crystal alignment film. That is, the composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the resin component is a resin component containing the side chain polymer already described.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • all of the above-described resin components may be the above-described side chain type polymers, but other polymers are mixed in a range that does not impair the liquid crystal development ability and the photosensitive performance. May be.
  • the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
  • Such other polymers include, for example, poly (meth) acrylate, polyamic acid, polyimide, polyamic acid ester, polyurea, diisocyanate compound and tetracarboxylic acid derivative, polyamic acid-polyurea obtained by polymerizing diamine compound.
  • a polymer that is made of polyimide-polyurea or the like obtained by further imidization and is not the above-described side chain type polymer can be mentioned.
  • Organic solvent used in the composition of the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl
  • the composition of the present application has an additive (C), and the additive (C) has the lowest triplet energy of the compound derived from the photoreactive group in the side chain of the side chain polymer. It is characterized by being lower than the term energy.
  • the photo-alignment method used for the alignment treatment of the liquid crystal alignment film obtained from the composition by using the (C) additive having the above characteristics that is, the (C) additive having a specific lowest triplet energy, light irradiation
  • the production range of the liquid crystal alignment film can be increased by expanding the amount range.
  • the triplet energy represents the energy possessed by a molecule in a triplet state when a molecule receiving light energy is excited.
  • the energy difference between the lowest excited triplet state (T1) and the molecule in the ground state is referred to as the lowest triplet energy.
  • the triplet means that when a molecule is excited by receiving light energy, it has one unpaired electron in each of two orbitals. At this time, the direction of spin of the two unpaired electrons Are the same as a triplet state, and a state in which two spin directions are opposite is called a singlet state.
  • triplet states have a lower energy than the corresponding singlet state, but excited triplets have a long lifetime and therefore have many opportunities for reaction, and many characteristic photoreactions are due to excited triplets.
  • the lifetime of high excited states other than the lowest excited state (S1 in the singlet state and T1 in the triplet state) is short, and quickly settles to S1 and T1. Therefore, even when excited to S2 and S3 using light having a short wavelength and high energy, light emission and reaction often occur in S1 and T1, which are the lowest excited states.
  • the lowest triplet energy can be measured as follows. As a premise of measurement, a molecule in an excited triplet state may undergo a radiative transition process in which it emits phosphorescence and returns to a ground singlet state in addition to causing various photoreactions. Here, if the phosphorescence emitted from the lowest triplet excited state is measured with a spectrophotometer or the like, the lowest triplet energy can be estimated. That is, the lowest triplet energy can be calculated from the measured phosphorescence spectrum. The phosphorescence spectrum can be measured using a commercially available spectrophotometer.
  • a general method for measuring phosphorescence spectrum is a method in which a target compound is dissolved in a solvent and irradiated with excitation light at a low temperature (for example, 4th edition Experimental Chemistry Course 7 p384-398 (1992) The Chemical Society of Japan). Or the method of measuring the phosphorescence spectrum by irradiating excitation light at low temperature and depositing the compound of interest on a silicon substrate to form a thin film (see, for example, JP-A 2007-2007). No. 022986).
  • the excited triplet level can be calculated by reading the wavelength of the first peak on the short wavelength side of the phosphorescence spectrum or the wavelength of the rising position on the short wavelength side and converting it to the energy value of light per mole according to the following formula.
  • N A is Avogadro constant
  • E is the lowest triplet energy value
  • h is Planck's constant (6.63 ⁇ 10 ⁇ 34 Js)
  • c is the speed of light (3.00 ⁇ 10 8).
  • represents the wavelength (nm) of the rising position on the short wavelength side of the phosphorescence spectrum.
  • the side chain of the side chain type polymer has the following formula (A-1) (wherein Y 2 and R have the same definition as above. * Is the formula (A-1)
  • the compound derived from the photoreactive group is represented by the formula ( A-2) (wherein Y 2 and R have the same definitions as above)
  • the lowest triplet energy of the additive is represented by formula (A-2) Preferably lower than the lowest triplet energy of the compound.
  • the side chain of the side chain type polymer has the following formula (A-3) (wherein Y 1 has the same definition as above. * Is represented by formula (A-3)).
  • the compound derived from the photoreactive group is represented by the formula (A-4 ) (Wherein Y 1 has the same definition as above), and (C) the lowest triplet energy of the compound represented by formula (A-4) is the lowest triplet energy of the additive. It should be lower than energy.
  • the group represented by the formula (A-1) is a group represented by the following formula (A-1-1), and the compound represented by the formula (A-2) is represented by the following formula (A-2- When it is a compound represented by 1);
  • the group represented by the formula (A-1) is a group represented by the following formula (A-1-2), and the compound represented by the formula (A-2) is represented by the following formula (A-2-2) In the case of a compound represented by: Note that * has the same definition as above.
  • the group represented by the formula (A-3) is a group represented by the following formula (A-3-1), and the compound represented by the formula (A-4) is represented by the following formula (A- Examples of the compound represented by 4-1) include, but are not limited to: Note that * has the same definition as above.
  • examples of the additive (C) include compounds represented by the following formulas (C-1) to (C-27), but are not limited thereto.
  • the additive (C) is considered to act as a quencher.
  • the side chain polymer has a group represented by the formula (A-1) or (A-3) as a photoreactive group, specifically, a cinnamic acid group
  • a cinnamic acid group that is a photoreactive group in the side chain polymer is The side chain type polymer (A) reacts sensitively to irradiation light.
  • the above-mentioned action is not limited to the (A) side chain polymer having a cinnamic acid group, but has other photoreactive groups such as a chalcone skeleton, a coumarin skeleton, a stilbene skeleton, and an azobenzene skeleton ( A) The same occurs in the side chain type polymer.
  • photoreactive groups other than the photoreactive group containing a cinnamic acid group will be described.
  • One or more additives may be contained in the composition. At that time, the content of the additive (C) in the composition is 0.01 parts by mass to 200 parts by mass, preferably 0.05 parts by mass to 100 parts by mass of the resin component contained in the composition. It is good that it is 100 parts by mass. Further, the (C) additive may be used as the (B) organic solvent if the (C) additive used is liquid. In that case, when a coating film is obtained by heating with an oven or the like, most of it evaporates and disappears.
  • the content of the additive (C) is 2% by mass to 80% by mass of the total organic solvent (B), preferably The amount is preferably 5% by mass to 50% by mass.
  • the composition used in the present invention may contain other components in addition to the (A) side chain polymer, (B) organic solvent, and (C) additive.
  • examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when the composition is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate. It is not limited to. Specific examples of the solvent (poor solvent) for improving the film thickness uniformity and the surface smoothness include those described in [0171] of WO2014 / 054785.
  • solvents as described above it is preferably 5% by mass to 80% by mass, more preferably 20% by mass, so that the solubility of the entire solvent contained in the composition is not significantly reduced. % By mass to 60% by mass.
  • Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical) It is done.
  • the use ratio of these surfactants is preferably 0.01 parts by weight to 2 parts by weight, more preferably 0.01 parts by weight to 1 part by weight with respect to 100 parts by weight of the resin component contained in the composition.
  • Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds described in [0174] of WO2014 / 054785.
  • phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed
  • An agent may be contained in the composition. Specific phenoplast additives are shown below, but are not limited to this structure.
  • epoxy group-containing compound examples include those described in [0177] of WO2014 / 054785.
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the composition.
  • the amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • composition of the present application in addition to the above-described ones, in the range where the effects of the present invention are not impaired, for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, Furthermore, a crosslinkable compound may be added for the purpose of increasing the hardness and density of the liquid crystal alignment film.
  • liquid crystal alignment film using the above composition is subjected to a photo-alignment method by irradiation of polarized light on a coating film obtained using the composition in the same manner as in WO2014 / 054785 (the contents of which are incorporated herein in its entirety by reference). It can be obtained by using.
  • a liquid crystal display element particularly a lateral electric field drive type liquid crystal display element
  • the second substrate uses a conductive film, particularly a substrate having a conductive film for driving a lateral electric field, and has the above-mentioned steps [I] to [III], so that the orientation control ability can be improved.
  • a second substrate having the applied liquid crystal alignment film can be obtained.
  • the second substrate is replaced with a conductive film, particularly a substrate having a lateral electric field driving conductive film, instead of using a substrate that does not have the conductive film.
  • a coating film is formed by applying the above-described composition onto a substrate having a conductive film, particularly a conductive film for driving a lateral electric field.
  • ⁇ Board> Although it does not specifically limit about a board
  • the substrate has a conductive film, particularly a conductive film for driving a lateral electric field.
  • the conductive film include, but are not limited to, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) when the liquid crystal display element is a transmission type.
  • examples of the conductive film include a material that reflects light such as aluminum, but are not limited thereto.
  • a method for forming a conductive film on a substrate a conventionally known method can be used.
  • the method for applying the above-described composition onto a substrate having a conductive film is not particularly limited.
  • the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
  • the solvent is evaporated at 50 to 200 ° C., preferably 50 to 150 ° C., by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer. If the thickness of the coating film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is.
  • step [II] the coating film obtained in step [I] is irradiated with polarized ultraviolet rays.
  • the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • the ultraviolet rays to be used ultraviolet rays having a wavelength of 100 nm to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film used.
  • ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the irradiation amount of polarized ultraviolet rays depends on the coating film used.
  • the amount of irradiation is polarized ultraviolet light that realizes the maximum value of ⁇ A (hereinafter also referred to as ⁇ Amax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light.
  • the amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.
  • step [III] the ultraviolet-irradiated coating film polarized in step [II] is heated.
  • An orientation control ability can be imparted to the coating film by heating.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.
  • the heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature).
  • the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when a photosensitive side chain polymer that can exhibit liquid crystallinity is observed in bulk.
  • the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the temperature range of the liquid crystal expression temperature of the side chain polymer used, and 10 ° C.
  • the liquid crystal expression temperature is not less than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). It means a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
  • the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. And a board
  • the step [IV] is performed by using the substrate (first substrate) obtained in [III] and having a liquid crystal alignment film on the conductive film, and the conductive materials obtained in the above [I ′] to [III ′].
  • a liquid crystal cell is produced by a known method by arranging a liquid crystal alignment film-provided substrate (second substrate) having no film so that both liquid crystal alignment films face each other through liquid crystal, and a transverse electric field is produced. This is a step of manufacturing a drive type liquid crystal display element.
  • the steps [I ′] to [III ′] are the same as the steps [I] to [III] except that, in the step [I], a substrate not having the conductive film is used instead of the substrate having the conductive film.
  • the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • Etc. can be illustrated.
  • the diameter of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply
  • high-efficiency anisotropy is introduced into the side chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured.
  • the coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. .
  • a substrate for a liquid crystal display element produced by the composition of the present invention or the method of the present invention particularly a substrate for a lateral electric field drive type liquid crystal display element or a liquid crystal display element having the substrate, particularly a lateral electric field drive type.
  • the liquid crystal display element has excellent reliability.
  • the composition of the present invention or the method of the present invention can expand the range of light irradiation amount (so-called “irradiation amount margin”) in which the alignment control ability of the liquid crystal alignment film is stably generated, the liquid crystal alignment film In this manufacturing process, even when the polarized light irradiation time slightly deviates from the control value, a liquid crystal alignment film having the same quality can be obtained, and the manufacturing efficiency of the liquid crystal alignment film can be increased.
  • a substrate for a liquid crystal display element manufactured by the composition of the present invention or the method of the present invention particularly a substrate for a horizontal electric field drive type liquid crystal display element or a liquid crystal display element having the substrate, particularly a horizontal electric field drive type liquid crystal display element, It can be suitably used for a large-screen and high-definition liquid crystal television.
  • T-1 benzanthrone
  • T-2 acridine
  • T-3 pyrene
  • T-4 9-fluorenone
  • T-5 benzyl
  • T-6 2-acetonaphthone
  • T-7 1,10-phenanthroline
  • T-8 2- Methylbenzophenone
  • Example 1 Additive T-1 (0.010 g) was added to the methacrylate polymer solution PMA-1 (5.00 g) obtained above, and the mixture was stirred at room temperature for 1 hour to obtain liquid crystal aligning agent A-1.
  • Example 2 to 5 and Comparative Examples 1 to 4 Liquid crystal aligning agents A-2 to A-5 of Examples 2 to 5 were obtained by the same method as in Example 1 with the compositions shown in Table 1. In Comparative Examples 1 to 4, liquid crystal aligning agents B-1 to B-4 were prepared in the same manner.
  • a substrate for photoreaction rate measurement was prepared in the following procedure.
  • a quartz substrate having a size of 40 mm ⁇ 40 mm and a thickness of 1.0 mm was used as the substrate.
  • the liquid crystal aligning agent A-1 obtained in Example 1 was filtered through a filter having a filter pore size of 1.0 ⁇ m, spin-coated on a quartz substrate, dried on a hot plate at 70 ° C. for 90 seconds, and a film thickness of 100 nm was obtained.
  • a liquid crystal alignment film was formed.
  • the surface of the coating film was irradiated with ultraviolet rays of 313 nm through a polarizing plate so as to have a density of 30 mJ / cm 2 to obtain a substrate with a liquid crystal alignment film that had undergone photoreaction.
  • liquid crystal aligning agents A-2 to A-5 and B-1 to B-4 obtained in Examples 2 to 5 and Comparative Examples 1 to 4 the same method as that for the liquid crystal aligning agent A-1 was used. A substrate for reaction rate measurement was prepared.
  • the photoreaction rate of the liquid crystal alignment film after photoreaction produced by the above operation was calculated using the absorbance and the following equation.
  • an ultraviolet-visible-near infrared spectrophotometer U-3100PC manufactured by Shimadzu Corporation was used.
  • a (initial) represents the absorbance before UV irradiation
  • a (exposed) represents the absorbance after UV irradiation. At this time, the closer the photoreaction rate is to 0, the more no photoreaction occurs.
  • an in-plane orientation degree measurement substrate was prepared using the liquid crystal aligning agent A-1 obtained above.
  • a quartz substrate having a size of 40 mm ⁇ 40 mm and a thickness of 1.0 mm was used.
  • the liquid crystal alignment agent A-1 obtained in Example 1 was filtered through a 1.0 ⁇ m filter, spin-coated on a quartz substrate, dried on a hot plate at 70 ° C. for 90 seconds, and then a liquid crystal alignment with a film thickness of 100 nm. A film was formed.
  • liquid crystal aligning agents A-2 to A-5 and B-1 to B-4 obtained in Examples 2 to 5 and Comparative Examples 1 to 4 obtained in Examples 2 to 5 and Comparative Examples 1 to 4 the same method as that for the liquid crystal aligning agent A-1 was used.
  • a substrate for measuring the degree of internal orientation was prepared.
  • a para represents the absorbance in the direction parallel to the irradiated polarized UV direction
  • a per represents the absorbance in the direction perpendicular to the irradiated polarized UV direction.
  • a large represents the absorbance having a larger value by comparing the absorbance in the parallel direction and the vertical direction
  • a small represents the absorbance having a smaller value by comparing the absorbance in the parallel direction and the vertical direction.
  • the absolute value of the in-plane orientation degree is closer to 1, indicating that the orientation is more uniform.
  • Table 2 shows the calculated photoreaction rate and the absolute value of the in-plane orientation degree S.
  • the in-plane orientation degree was shown using the following criteria. ⁇ : Absolute value of S is 0.6 or more ⁇ : Absolute value of S is 0.5 or more to less than 0.6 ⁇ : Absolute value of S is 0.4 or more to less than 0.5
  • the lowest triplet energy values are the new chemical series photochemistry (Yuhuabo), Handbook of Photochemistry, Third Edition (CRC Press), Photochem. Photobiol. Sci., 2011, 10, 1902-1909, etc. It is the value described in.
  • the value of the lowest triplet energy of Comparative Example 1 indicates the lowest triplet energy of cinnamic acid derived from cinnamic acid groups that are photoreactive groups in the polymer.
  • the liquid crystal aligning agents of Examples 1 to 5 to which the additive of the present invention was added had a lower photoreactivity than the liquid crystal aligning agent of Comparative Example 1 to which nothing was added. It was confirmed that In addition, an increase in the in-plane orientation degree S indicating optical anisotropy was confirmed under the conditions where the photoreaction rate was lowered. Furthermore, the smaller the triplet energy value of the additive is than “240” which is the lowest triplet energy value of cinnamic acid, the lower the photoreaction rate and the desired in-plane orientation degree S is. It was found that the value approached 1. That is, in the presence of the additive of the present invention, the photosensitivity of the photoreactive group is slowed down, so that adjustment to the optimum UV irradiation region is possible even under an excessive amount of ultraviolet irradiation. ing.
  • the photoreaction rate can be suppressed to an arbitrary ratio by adjusting the type and amount of the additive. That is, it is possible to finely adjust the optimum UV irradiation amount, and it is possible to obtain a liquid crystal alignment film with higher alignment by adjusting the irradiation amount to maximize the anisotropy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本発明は、配向制御能が安定して生じる光照射量の範囲を拡大させて、品質のよい液晶配向膜を効率よく得られる、液晶配向膜製造用組成物を提供する。 本発明は、(A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、(B)有機溶媒、及び(C)添加剤を含有する液晶配向膜製造用組成物であって、(C)添加剤は、その最低三重項エネルギーが光反応性基に由来する化合物の最低三重項エネルギーよりも低いことを特徴とする上記組成物を提供する。

Description

液晶配向膜製造用組成物、該組成物を用いた液晶配向膜及びその製造方法、並びに液晶配向膜を有する液晶表示素子及びその製造方法
 本発明は、液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物に関する。
 また、本発明は、該組成物を用いて製造される液晶配向膜、特に横電界駆動型液晶表示素子用液晶配向膜及び該膜を有する基板、並びにその製造方法に関する。
 さらに、本発明は、該液晶配向膜又は基板を有する液晶表示素子及びその製造方法に関する。
 特に、本発明は、液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めた液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物、該組成物を用いて製造される液晶配向膜又は液晶配向膜を有する基板、それらを有する液晶表示素子、並びに液晶配向膜、液晶配向膜を有する基板又は液晶表示素子の製造方法に関する。
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。
 すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。
 配向制御能を付与するための液晶配向膜の配向処理方法として、従来からのラビング法の他に、光配向法が知られている。光配向法は、従来のラビング法と比較して、ラビングを不要とし、発塵や静電気の発生の懸念が無く、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができる、という利点がある。
 光配向法には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。
 光配向法として、分解型の光配向法、光架橋型や光異性化型の光配向法などが知られている。
 分解型の光配向法は、例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して異方的な分解を生じさせ、分解せずに残されたポリイミドにより液晶を配向させる手法である(例えば、特許文献1を参照)。
 光架橋型や光異性化型の光配向法は、例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせ、偏光方向と直交した方向に液晶を配向させる手法である(例えば、非特許文献1を参照)。また、アゾベンゼンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のアゾベンゼン部で異性化反応を生じさせ、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献2を参照)。さらに、特許文献3は、光架橋、光異性化又は光フリース転位による光配向法を用いて得られる液晶配向膜を開示する。
特許第3893659号公報 特開平2-37324号公報 WO2014/054785
M. Shadt et al., Jpn. J. Appl. Phys. 31, 2155 (1992). K. Ichimura et al., Chem. Rev. 100, 1847 (2000).
 以上のように、光配向法は、液晶表示素子の配向処理方法として従来から工業的に利用されてきたラビング法と比べてラビング工程そのものを不要とするため、大きな利点を備える。そして、ラビングによって配向制御能がほぼ一定となるラビング法に比べ、光配向法では、偏光した光の照射量を変化させて配向制御能を制御することができる。
 しかしながら、光配向法において用いる主成分の配向制御能が偏光した光の照射量に敏感すぎると、液晶配向膜の一部又は全体において配向が不完全になり、安定な液晶の配向が実現できない場合が生じる。
 そこで、本発明の目的は、配向制御能が安定して生じる光照射量の範囲を拡大させて、品質のよい液晶配向膜を効率よく得られる、液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物を提供することにある。
 また、本発明の目的は、上記目的以外に、又は上記目的に加えて、該組成物を用いて製造される液晶配向膜又は液晶配向膜を有する基板、それらを有する液晶表示素子、特に横電界駆動型液晶表示素子を提供することにある。
 さらに、本発明の目的は、上記目的以外に、又は上記目的に加えて、液晶配向膜、液晶配向膜を有する基板、又は液晶表示素子、特に横電界駆動型液晶表示素子の製造方法を提供することにある。
 本発明者は、以下の発明を見出した。
 <1> (A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、
 (B)有機溶媒、及び
 (C)添加剤
を含有する液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用の液晶配向膜製造用組成物であって、
(C)添加剤の最低三重項エネルギーが、光反応性基に由来する化合物の最低三重項エネルギーよりも低いことを特徴とする、上記組成物。
 本発明により、配向制御能が安定して生じる光照射量の範囲を拡大させて、品質のよい液晶配向膜を効率よく得られる、液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物を提供することができる。
 また、本発明により、上記効果以外に、又は上記効果に加えて、該組成物を用いて製造される液晶配向膜又は液晶配向膜を有する基板、それらを有する液晶表示素子、特に横電界駆動型液晶表示素子を提供することができる。
 さらに、本発明により、上記効果以外に、又は上記効果に加えて、液晶配向膜、液晶配向膜を有する基板、又は液晶表示素子、特に横電界駆動型液晶表示素子の製造方法を提供することができる。
 本願は、液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物、より特に液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めた組成物を提供する。
 また、本願は、該組成物を用いて製造される液晶配向膜、特に横電界駆動型液晶表示素子用液晶配向膜及び該膜を有する基板、並びにその製造方法を提供する。
 さらに、本願は、該液晶配向膜又は基板を有する液晶表示素子及びその製造方法を提供する。
<液晶配向膜製造用組成物>
 本願の液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物は、
 (A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、
 (B)有機溶媒、及び
 (C)添加剤
を含有する。
 ここで、(C)添加剤は、その最低三重項エネルギーが、光反応性基に由来する化合物の最低三重項エネルギーよりも低いことを特徴とする。
 本願の組成物を用いることにより、該組成物から得られる液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めることができる。
<<(A)側鎖型高分子>>
 (A)側鎖型高分子は、所定の温度範囲で液晶性を発現する側鎖を備えた側鎖型高分子である。また、該側鎖は、光架橋、光異性化、または光フリース転位を起こす光反応性基を有する。
 (A)側鎖型高分子は、250nm~400nmの波長範囲の光で反応し、かつ100℃~300℃の温度範囲で液晶性を示すのがよい。
 (A)側鎖型高分子は、250nm~400nmの波長範囲の光に反応するのが好ましい。
 (A)側鎖型高分子は、100℃~300℃の温度範囲で液晶性を示すためにメソゲン基を有することが好ましい。
 (A)側鎖型高分子は、主鎖に光反応性基を有する側鎖が結合しており、光に感応して架橋反応、異性化反応、または光フリース転位を起こすことができる。光反応性基を有する側鎖の構造は特に限定されないが、光に感応して架橋反応、または光フリース転位を起こす構造が望ましく、架橋反応を起こすものがより望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。液晶性を発現し得る側鎖型高分子の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、該側鎖型高分子を液晶配向膜とした際に、安定な液晶配向を得ることができる。
 該高分子の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする光反応性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。
 液晶性を発現し得る、光反応性基を有する側鎖型高分子の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)から(6)の少なくとも1種からなる側鎖を有する構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 q1とq2は、一方が1で他方が0である;
 q3は0または1である;
 P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
 l1は0または1である;
 l2は0~2の整数である;
 l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
 l1が1であるときは、Tが単結合であるときはBも単結合を表す;
 H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。
 側鎖は、下記式(7)~(10)からなる群から選ばれるいずれか1種であるのがよい。
 式中、A、B、D、Y、X、Y、及びRは、上記と同じ定義を有する;
 lは1~12の整数を表す;
 mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
 nは0~12の整数(ただしn=0のときBは単結合である)を表す。
Figure JPOXMLDOC01-appb-C000010
 側鎖は、下記式(11)~(13)からなる群から選ばれるいずれか1種であるのがよい。
 式中、A、X、l、m、m2及びRは、上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000011
 側鎖は、下記式(14)又は(15)で表される側鎖であるのがよい。
 式中、A、Y、X、l、m1及びm2は上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000012
 側鎖は、下記式(16)又は(17)で表される側鎖であるのがよい。
 式中、A、X、l及びmは、上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000013
<<液晶性側鎖を有する側鎖型高分子>>
 (A)側鎖型高分子は、光反応性基を有する側鎖以外の側鎖を有してもよい。例えば、(A)側鎖型高分子は、下記式(21)~(31)からなる群から選ばれるいずれか1種の液晶性側鎖を有してもよい。
 式中、A、B、q1及びq2は上記と同じ定義を有する;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
 lは1~12の整数を表し、mは0から2の整数を表し、但し、式(25)~(26)において、全てのmの合計は2以上であり、式(27)~(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
 Rは、水素原子、-NO、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
 Z、Zは単結合、-CO-、-CHO-、-CH=N-、-CF-を表す。
Figure JPOXMLDOC01-appb-C000014
<<側鎖型高分子の製法>>
 上記の側鎖型高分子は、上記の光反応性基を有する側鎖を有する光反応性側鎖モノマーを重合することによって、又は該光反応性側鎖モノマーとその他のモノマー、例えば液晶性側鎖モノマーとを重合することによって得ることができる。
[光反応性側鎖モノマー] 
 光反応性側鎖モノマーとは、高分子を形成した場合に、高分子の側鎖部位に光反応性基を有する側鎖を有する高分子を形成することができるモノマーのことである。
 側鎖が有する光反応性基としては下記の構造およびその誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000015
 光反応性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(1)~(6)の少なくとも1種からなる側鎖、好ましくは、例えば、上記式(7)~(10)の少なくとも1種からなる側鎖、上記式(11)~(13)の少なくとも1種からなる側鎖、上記式(14)又は(15)で表される側鎖、上記式(16)又は(17)で表される側鎖、を有する構造であることが好ましい。
[液晶性側鎖モノマー]
 液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
 側鎖が有するメソゲン基として、ビフェニルやフェニルベンゾエートなどの単独でメソゲン構造となる基であっても、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖を有するメソゲン基としては下記の構造が好ましい。
Figure JPOXMLDOC01-appb-C000016
 液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(21)~(31)の少なくとも1種からなる側鎖を有する構造であることが好ましい。
 本願は、光反応性及び/又は液晶性側鎖モノマーとして、以下の式(A01)~(A20)で表される化合物を挙げることができるが、これらに限定されない。
 式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;R10はBrまたはCNを示す;Sは炭素数2~10のアルキレン基を表す;uは0または1を表す;及びPyは2-ピリジル基、3-ピリジル基または4-ピリジル基を表す。また、vは1または2を表す。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 (A)側鎖型高分子は、上述した光反応性基を有する側鎖を有する光反応性側鎖モノマーの重合反応により得ることができる。また、液晶性を発現しない光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合や、液晶性を発現する光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合によって得ることができる。
 液晶性の発現能を損なわない範囲でその他のモノマーと共重合することもできる。
 その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
 その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。
 アクリル酸エステル化合物としては、例えば、WO2014/054785号公報の[0152]に記載されるものを挙げることができる。
 メタクリル酸エステル化合物としては、例えば、WO2014/054785号公報の[0153]に記載されるものを挙げることができる。
 ビニル化合物、スチレン化合物又はマレイミド化合物としては、例えば、WO2014/054785号公報の[0154]に記載されるものを挙げることができる。
 本実施の形態の側鎖型高分子の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや光反応性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、WO2014/054785号公報の[0157]に記載されるものを挙げることができる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、WO2014/054785号公報の[0158]に記載されるものを挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。
 ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。
 側鎖型高分子を得るための重合反応に用いる有機溶媒としては、生成した高分子が溶解するものであれば特に限定されない。その具体例としてWO2014/054785号公報の[0161]に記載されるものを挙げることができる。
 これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
 また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
 ラジカル重合の際の重合温度は30℃~150℃の任意の温度を選択することができるが、好ましくは50℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、モノマー濃度が、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1モル%~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。
[重合体の回収]
 上述の反応により得られた、側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明の(A)側鎖型高分子の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~200000である。
[組成物の調製]
 本発明に用いられる組成物は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる組成物は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、既に説明した側鎖型高分子を含む樹脂成分である。その際、樹脂成分の含有量は、1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3質量%~10質量%である。
 本実施形態の組成物において、前述の樹脂成分は、全てが上述した側鎖型高分子であってもよいが、液晶発現能および感光性能を損なわない範囲でそれら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5質量%~80質量%、好ましくは1質量%~50質量%である。
 そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド、ポリアミック酸エステル、ポリウレア、ジイソシアネート化合物とテトラカルボン酸誘導体、ジアミン化合物とを重合することにより得られるポリアミック酸-ポリウレア、さらにイミド化することにより得られるポリイミド-ポリウレア等からなり、上述した側鎖型高分子ではない重合体等が挙げられる。
<<(B)有機溶媒>>
 本発明の組成物に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
<<(C)添加剤>>
 本願の組成物は(C)添加剤を有し、該(C)添加剤は、その最低三重項エネルギーが、側鎖型高分子の側鎖に有する光反応性基に由来する化合物の最低三重項エネルギーよりも低いことを特徴とする。
 上記特性を有する(C)添加剤、即ち特定の最低三重項エネルギーを有する(C)添加剤を用いることにより、該組成物から得られる液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めることができる。
 ここで、三重項エネルギーとは、光のエネルギーを受けた分子が励起し、三重項状態となっている分子が有しているエネルギーを表す。特に、最低励起三重項状態(T1)と基底状態にある分子のエネルギー差を最低三重項エネルギーという。
 また、三重項とは、分子が光のエネルギーを受けて励起状態となった場合、2つの軌道に1個ずつの不対電子を持つが、このとき、2個の不対電子のスピンの方向が同じ状態を三重項状態といい、2つのスピンの方向が逆の状態を一重項状態という。一般に、三重項状態は対応する一重項状態よりエネルギーが低いが、励起三重項は寿命が長いことから反応の機会が多く、特色ある光反応の多くは励起三重項によるものである。
 一般に最低励起状態(一重項状態ならS1、三重項状態ならT1)以外の高い励起状態の寿命は短く、速やかにS1、T1に落ち着く。それゆえ、短波長のエネルギーの高い光を用いてS2、S3へ励起しても発光や反応は最低励起状態であるS1,T1で起こることが多い。
 最低三重項エネルギーは、次のように測定することができる。
 測定の前提として、励起三重項状態にある分子は、様々な光反応を起こすほかに、燐光を発し基底一重項状態へと戻る放射遷移過程を取ることがある。ここで、最低三重項励起状態から発せられる燐光を分光光度計等で測定すれば最低三重項エネルギーが推測できることとなる。
 即ち、最低三重項エネルギーは、測定した燐光スペクトルより算出できる。燐光スペクトルは市販の分光光度計を用いて測定できる。
 一般的な燐光スペクトルの測定方法は、対象となる化合物を溶媒に溶解し、低温下励起光を照射して測定する方法(例えば、第4版実験化学講座7 p384-398(1992)日本化学会編 丸善、を参照のこと)、あるいは、シリコン基板上に対象となる化合物を蒸着して薄膜とし、低温下励起光を照射して燐光スペクトルを測定する方法などがある(例えば、特開2007-022986号公報を参照のこと)。
 励起三重項レベルは、燐光スペクトルの短波長側の第1ピークの波長あるいは短波長側の立ち上がり位置の波長を読み取り、下記の式に従って1モルあたりの光のエネルギー値に換算することによって算出できる。なお、下記数式(E1)中、Nはアボガドロ定数、Eは最低三重項エネルギーの値、hはプランク定数(6.63×10-34Js)を、cは光速(3.00×10m/s)を、λは燐光スペクトルの短波長側の立ち上がり位置の波長(nm)を表す。
Figure JPOXMLDOC01-appb-M000020
 例えば、(A)側鎖型高分子の側鎖が以下の式(A-1)(式中、Y、及びRは、上記と同じ定義を有する。*は、式(A-1)で表される基が側鎖型高分子の側鎖の一部であり、*で結合していることを表す。)で表される基を有する場合、光反応性基由来の化合物は、式(A-2)(式中、Y、及びRは上記と同じ定義を有する)で表される化合物であり、(C)添加剤の最低三重項エネルギーが、式(A-2)で表される化合物の最低三重項エネルギーよりも低いのがよい。
 また、(A)側鎖型高分子の側鎖が以下の式(A-3)(式中、Yは、上記と同じ定義を有する。*は、式(A-3)で表される基が側鎖型高分子の側鎖の一部であり、*で結合していることを表す。)で表される基を有する場合、光反応性基由来の化合物は、式(A-4)(式中、Yは上記と同じ定義を有する)で表される化合物であり、(C)添加剤の最低三重項エネルギーが、式(A-4)で表される化合物の最低三重項エネルギーよりも低いのがよい。
Figure JPOXMLDOC01-appb-C000021
 例えば、式(A-1)で表される基が下記式(A-1-1)で表される基であり、式(A-2)で表される化合物が下記式(A-2-1)で表される化合物である場合;
 式(A-1)で表される基が下記式(A-1-2)で表される基であり、式(A-2)で表される化合物が下記式(A-2-2)で表される化合物である場合、などを挙げることができるがこれらに限定されない。なお、*は、上述と同じ定義を有する。
 また、例えば、式(A-3)で表される基が下記式(A-3-1)で表される基であり、式(A-4)で表される化合物が下記式(A-4-1)で表される化合物である場合、などを挙げることができるがこれらに限定されない。なお、*は、上述と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000022
 また、この場合、(C)添加剤として、下記式(C-1)~(C-27)で表される化合物を挙げることができるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000023
 本発明において、(C)添加剤は、消光剤として作用するものと考えられる。以下、例として、(A)側鎖型高分子が、光反応性基として、式(A-1)又は(A-3)で表される基を有する場合、具体的にはケイ皮酸基を有する場合について考慮する。
 (C)添加剤を添加しない状況では、配向制御のための光を(A)側鎖型高分子に照射すると、(A)側鎖型高分子における光反応性基であるケイ皮酸基を励起することとなり、(A)側鎖型高分子は、照射光に敏感に反応する。
 一方、ケイ皮酸の励起三重項エネルギーよりも低い添加剤を導入することにより、(A)側鎖型高分子におけるケイ皮酸基での励起状態のエネルギーが、消光剤として作用する添加剤へと移動し、失活し消光する。このため、光反応性基であるケイ皮酸基を有する(A)側鎖型高分子の光反応率が低下し、照射光又は光照射量への感度が低下することにより、配向制御能が安定して生じる光照射量の範囲を拡大させることができる。
 上記作用は、ケイ皮酸基を有する(A)側鎖型高分子に限らず、他の光反応性基、例えばカルコン骨格、クマリン骨格、スチルベン骨格、アゾベンゼン骨格などの光反応性基を有する(A)側鎖型高分子においても、同様に生じる。
 ケイ皮酸基を含む光反応性基以外の光反応性基について、以降、説明する。
 (C)添加剤は、組成物中に1種または2種以上含んでいてもよい。
 その際、組成物中における(C)添加剤の含有量は、組成物に含有される樹脂成分の100質量部に対して0.01質量部~200質量部、好ましくは0.05質量部~100質量部であるのがよい。
 また、(C)添加剤は、用いる(C)添加剤が液体であれば、(B)有機溶媒として使用してもよい。その場合、オーブン等による加熱によって塗膜を得る際に、大部分が蒸発し消失してしまう。該消失分を考慮すると、(C)添加剤を(B)有機溶媒として用いる場合、該(C)添加剤の含有量は、(B)有機溶媒全体の2質量%~80質量%、好ましくは5質量%~50質量%であるのがよい。
 本発明に用いられる組成物は、上記(A)側鎖型高分子、(B)有機溶媒、及び(C)添加剤の他に、その他の成分を含有してもよい。その例としては、組成物を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等を挙げることができるが、これに限定されない。
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、WO2014/054785号公報の[0171]に記載されるものを挙げることができる。
 これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、組成物に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは20質量%~60質量%である。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤およびノ二オン系界面活性剤等が挙げられる。
 より具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、WO2014/054785号公報の[0174]に記載される官能性シラン含有化合物などが挙げられる。
 さらに、基板と液晶配向膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系やエポキシ基含有化合物の添加剤を、組成物中に含有させても良い。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。
Figure JPOXMLDOC01-appb-C000024
 具体的なエポキシ基含有化合物としては、WO2014/054785号公報の[0177]に記載されるものを挙げることができる。
 基板との密着性を向上させる化合物を使用する場合、その使用量は、組成物に含有される樹脂成分の100質量部に対して0.1質量部~30質量部であることが好ましく、より好ましくは1質量部~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本願の組成物には、上述したものの他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。
<上記組成物を用いた液晶配向膜及びその製造方法>、<液晶配向膜を有する基板の製造方法>及び<液晶表示素子の製造方法>
 上記組成物を用いた液晶配向膜は、WO2014/054785(この内容は本願に参照としてその全体が含まれる)と同様に、該組成物を用いて得られる塗膜に偏光照射による光配向法を用いることにより、得ることができる。
 具体的には、
 [I] 上述の組成物を、導電膜、特に横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
 [II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
 [III] [II]で得られた塗膜を加熱する工程;
を有することによって、配向制御能が付与された液晶配向膜、特に特に横電界駆動型液晶表示素子用液晶配向膜を得ることができ、該液晶配向膜を有する基板を得ることができる。
 また、上記で得られた基板(第1の基板)の他に、第2の基板を準備することにより、液晶表示素子、特に横電界駆動型液晶表示素子を得ることができる。
 第2の基板は、第1の基板と同様に、導電膜、特に横電界駆動用の導電膜を有する基板を用いて、上記工程[I]~[III]を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
 また、第2の基板は、導電膜、特に横電界駆動用の導電膜を有する基板に代えて、該導電膜を有しない基板を用いる以外、上記工程[I]~[III](導電膜を有しない基板を用いるため、便宜上、本願において、工程[I’]~[III’]と略記する場合がある)を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
 液晶表示素子、特に横電界駆動型液晶表示素子の製造方法は、
 [IV] 上記で得られた第1及び第2の基板を、液晶を介して第1及び第2の基板の液晶配向膜が相対するように、対向配置して液晶表示素子を得る工程;
を有する。これにより、液晶表示素子、特に横電界駆動型液晶表示素子を得ることができる。
 以下、本発明の製造方法の有する[I]~[III]、および[IV]の各工程について説明する。
<工程[I]>
 工程[I]では、導電膜、特に横電界駆動用の導電膜を有する基板上に、上述の組成物を塗布して塗膜を形成する。
<基板>
 基板については、特に限定はされないが、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、またはアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。
 また、反射型の液晶表示素子への適用を考慮し、シリコンウェハなどの不透明な基板も使用できる。
<導電膜>
 基板は、導電膜、特に横電界駆動用の導電膜を有する。
 該導電膜として、液晶表示素子が透過型である場合、ITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide:酸化インジウム亜鉛)などを挙げることができるが、これらに限定されない。
 また、反射型の液晶表示素子の場合、導電膜として、アルミなどの光を反射する材料などを挙げることができるがこれらに限定されない。
 基板に導電膜を形成する方法は、従来公知の手法を用いることができる。
 上述した組成物を導電膜を有する基板上に塗布する方法は特に限定されない。
 塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
 導電膜を有する基板上に組成物を塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~200℃、好ましくは50~150℃で溶媒を蒸発させて塗膜を得ることができる。このときの乾燥温度は、側鎖型高分子の液晶相発現温度よりも低いことが好ましい。
 塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~150nmである。
 尚、[I]工程の後、続く[II]工程の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
<工程[II]>
 工程[II]では、工程[I]で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290nm~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
 偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1%~50%の範囲内とすることがより好ましい。
<工程[III]>
 工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
 加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
 加熱温度は、側鎖型高分子が液晶性を発現する温度(以下、液晶発現温度という)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、液晶性を発現し得る感光性の側鎖型高分子をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、使用する側鎖型高分子の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
 なお、液晶発現温度は、側鎖型高分子または塗膜表面が固体相から液晶相に相転移がおきるガラス転移温度(Tg)以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。
 以上の工程を有することにより、本発明の製造方法では、高効率な、塗膜への異方性の導入を実現することができる。そして、高効率に液晶配向膜付基板を製造することができる。
<工程[IV]>
 [IV]工程は、[III]で得られた、導電膜上に液晶配向膜を有する基板(第1の基板)と、同様に上記[I’]~[III’]で得られた、導電膜を有しない液晶配向膜付基板(第2の基板)とを、液晶を介して、双方の液晶配向膜が相対するように対向配置して、公知の方法で液晶セルを作製し、横電界駆動型液晶表示素子を作製する工程である。なお、工程[I’]~[III’]は、工程[I]において、導電膜を有する基板の代わりに、該導電膜を有しない基板を用いた以外、工程[I]~[III]と同様に行うことができる。工程[I]~[III]と工程[I’]~[III’]との相違点は、上述した導電膜の有無だけであるため、工程[I’]~[III’]の説明を省略する。
 液晶セル又は液晶表示素子の作製の一例を挙げるならば、上述の第1及び第2の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このとき、片側の基板には横電界駆動用の櫛歯のような構造の電極を有する基板を用いることが好ましい。このときのスペーサの径は、好ましくは1μm~30μm、より好ましくは2μm~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。
 本発明の塗膜付基板の製造方法は、組成物を基板上に塗布し塗膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。
 本発明に用いる塗膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、側鎖型高分子に光反応性基として光架橋性基を有する構造の場合、側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。
 なお、光反応性基として光架橋性基、光フリース転位基又は異性化を起こす基を有する構造の側鎖型高分子を用いる光配向法については、WO2014/054785(この文献の内容はその全体を参照として本願に含まれる)に詳述されており、本願でも同様である。
 以上のようにして、本発明の組成物又は本発明の方法によって製造された液晶表示素子用基板、特に横電界駆動型液晶表示素子用基板又は該基板を有する液晶表示素子、特に横電界駆動型液晶表示素子は、信頼性に優れたものとなる。
 また、本発明の組成物又は本発明の方法により、液晶配向膜の配向制御能が安定して生じる光照射量の範囲(いわゆる「照射量マージン」)を拡大させることができるため、液晶配向膜の製造工程において、偏光光照射の時間などが、制御値から多少ぶれたとしても、品質が変わらない液晶配向膜を得ることができ、液晶配向膜の製造効率を上げることができる。よって、本発明の組成物又は本発明の方法によって製造された液晶表示素子用基板、特に横電界駆動型液晶表示素子用基板又は該基板を有する液晶表示素子、特に横電界駆動型液晶表示素子は、大画面で高精細の液晶テレビなどに好適に利用できる。
 以下、実施例を用いて本発明を説明するが、本発明は、該実施例に限定されるものではない。
 実施例において使用した(メタ)アクリレート化合物及び添加剤の略号とその構造を以下に示す。
<(メタ)アクリレート化合物>
 MA-1は特許文献(WO2011-084546)に記載の合成法にて合成した。
 MA-2は特許文献(特開平9-118717)に記載の合成法にて合成した。
Figure JPOXMLDOC01-appb-C000025
<添加剤>
 T-1~T-8は市販品(東京化成工業(株)製)を用いた。
T-1:ベンズアントロン
T-2:アクリジン
T-3:ピレン
T-4:9-フルオレノン
T-5:ベンジル
T-6:2-アセトナフトン
T-7:1,10-フェナントロリン
T-8:2-メチルベンゾフェノン
Figure JPOXMLDOC01-appb-C000026
 実施例等で使用した有機溶媒の略号は以下の通りである。
 NEP: N-エチル-2-ピロリドン
 PB:  プロピレングリコールモノブチルエーテル
 THF: テトラヒドロフラン
(重合例1)
 MA-1(13.3g、40.0mmol)とMA-2(18.4g、60.0mmol)とをTHF(182.3g)中に溶解し、ダイアフラムポンプで脱気を行った後、2,2’-アゾビスイソブチロニトリル(0.82g、5.0mmol)を加え、再び脱気を行った。この後50℃で30時間反応させメタクリレートのポリマー溶液を得た。
 このポリマー溶液をジエチルエーテル(1500ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末を得た。
 得られた粉末10.0gにNEP(127g)を加え、室温で16時間攪拌して溶解させた。この溶液にPB(113g)を加え攪拌することによりメタクリレートポリマー溶液PMA-1を得た。
(実施例1)
 上記で得られたメタクリレートポリマー溶液PMA-1(5.00g)に添加剤T-1(0.010g)を加え、室温にて1時間撹拌することにより液晶配向剤A-1を得た。
(実施例2~5、及び比較例1~4)
 表1に示す組成で、実施例1と同様の方法を用いて実施例2~5の液晶配向剤A-2~A-5を得た。
 また、比較例1~4も同様の方法で液晶配向剤B-1~B-4を調製した。
Figure JPOXMLDOC01-appb-T000027
<光反応率測定用基板の作成>
 上記で得られた液晶配向剤A-1を用いて下記に示すような手順で光反応率測定用基板の作製を行った。基板は、40mm×40mmの大きさで、厚さが1.0mmの石英基板を用いた。
 実施例1で得られた液晶配向剤A-1をフィルター孔径1.0μmのフィルターで濾過した後、石英基板上にスピンコートし、70℃のホットプレート上で90秒間乾燥後、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの紫外線を30mJ/cmとなるよう照射し、光反応済みの液晶配向膜付き基板を得た。
 実施例2~5及び比較例1~4で得られた液晶配向剤A-2~A-5及びB-1~B-4に関しても、液晶配向剤A-1と同様の方法を用いて光反応率測定用基板を作成した。
<光反応率の測定>
 上記の操作によって作製した光反応済みの液晶配向膜の光反応率を、吸光度と下式を用いて算出した。
 なお、吸光度の測定には、島津製作所製の紫外線可視近赤外分析光度計U-3100PCを使用した。
Figure JPOXMLDOC01-appb-M000028
 ここで、A(initial)は、UV照射前の吸光度、A(exposed)は、UV照射後の吸光度を表す。このとき、光反応率は0に近い程、光反応が生じていないことを示す。
<面内配向度(In-plane order parameter)測定用基板の作成>
 さらに、液晶配向膜の光学的異方性の確認のため、上記で得られた液晶配向剤A-1を用いて、面内配向度測定用基板の作製を行った。基板は40mm×40mmの大きさで、厚さが1.0mmの石英基板を用いた。
 実施例1で得られた液晶配向剤A-1を1.0μmのフィルターで濾過した後、石英基板上にスピンコートし、70℃のホットプレート上で90秒間乾燥後、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの紫外線を30mJ/cmとなるよう照射した後に140℃のホットプレートで10分間加熱し、液晶配向膜付き基板を得た。
 実施例2~5及び比較例1~4で得られた液晶配向剤A-2~A-5及びB-1~B-4に関しても、液晶配向剤A-1と同様の方法を用いて面内配向度測定用基板を作成した。
<面内配向度の測定>
 上記で作製した液晶配向膜付き基板を用い、液晶配向膜の光学的異方性を測定するために、偏光の吸光度から面内配向度であるSを下式より算出した。
 なお、吸光度の測定には、島津製作所製の紫外線可視近赤外分析光度計U-3100PCを使用した。
Figure JPOXMLDOC01-appb-M000029
 ここで、Aparaは、照射した偏光UV方向に対して平行方向の吸光度、Aperは、照射した偏光UV方向に対して垂直方向の吸光度を表す。Alargeは、平行方向と垂直方向の吸光度を比較して値が大きい方の吸光度、Asmallは、平行方向と垂直方向の吸光度を比較して値が小さい方の吸光度を表す。面内配向度の絶対値が、1に近い程より一様な配向状態となっていることを示している。
 算出した光反応率と、面内配向度Sの絶対値を表2に示す。なお、面内配向度については下記の基準を用いて示した。
  ◎:Sの絶対値が0.6以上
  ○:Sの絶対値が0.5以上~0.6未満
  △:Sの絶対値が0.4以上~0.5未満
Figure JPOXMLDOC01-appb-T000030
 なお、表2中、最低三重項エネルギーの値は、化学新シリーズ 光化学(裳華房)、Handbook of Photochemistry, Third Edition(CRC Press)、Photochem. Photobiol. Sci., 2011,10, 1902-1909等に記載されている値である。
 また、比較例1の最低三重項エネルギーの値は、ポリマー中の光反応性基であるケイ皮酸基に由来するケイ皮酸の最低三重項エネルギーを示す。
 表2に示すように、本発明の添加剤を添加した実施例1~5の液晶配向剤は、何も添加をしていない比較例1の液晶配向剤と比べて、光反応率が低下していることが確認された。
 また、光反応率が低下した条件では、光学的異方性を示す面内配向度Sの増大が確認された。
 さらに、添加剤の最低三重項エネルギーの値が、ケイ皮酸の最低三重項エネルギー値である「240」よりも小さければ小さいほど、光反応率が低下し、且つ面内配向度Sが所望の値である1に近づくことがわかった。
 すなわち、本発明の添加剤の存在下では光反応性基の光感度が鈍化するため、紫外線照射量が過剰な条件下にあっても、最適UV照射領域への調節が可能となることを示している。
 紫外線照射が過剰な条件下にあっても最適UV照射領域への調節が可能となる結果、UV照射工程におけるプロセスマージンが拡大し、製造歩留まり性の向上に寄与することが期待できる。さらに、添加剤の種類と導入量を調節することで、光反応率を任意の割合に抑えることが可能となる。すなわち、最適UV照射量の微調節が可能となり、異方性が最大となる照射量に調節することで、より配向性が高い液晶配向膜を得ることが可能となる。
 ここで、実施例1~5において、桂皮酸の励起三重項エネルギーよりも低い添加剤の導入は桂皮酸の光反応率を減少させる効果があったことから、すなわち、消光剤として働いたことが予想される。つまり、桂皮酸の励起状態のエネルギーが添加剤へのエネルギー移動により失活する消光過程を経たため、桂皮酸の光反応率が低下したものと考えられる。また、添加剤と桂皮酸の最低三重項エネルギー差が大きくなるほど、光反応率が低下する傾向にあったことから、添加剤の最低三重項エネルギーが小さいほど、より有利に消光過程を取ることが可能なものと示唆される。
 よって、桂皮酸に限らずとも、例えばカルコン骨格やクマリン骨格、スチルベン骨格、アゾベンゼン骨格においても、これらの光反応性基よりも低い最低三重項エネルギーを有する添加剤が存在する条件で紫外線照射による光反応を行った場合、光反応性基の一部が消光過程を経ることから、添加剤が存在しない状態よりも光反応率は同等、もしくは低下することが予想される。その結果、光反応性基が桂皮酸でない同様の液晶配向剤であっても、実施例1~5と同様に、光反応率の制御が可能となりUV照射工程のプロセスマージン拡大に寄与し、異方性が最大となる照射量へ紫外線照射量を調節することが可能となるであろう。

Claims (14)

  1.  (A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、
     (B)有機溶媒、及び
     (C)添加剤
    を含有する液晶配向膜製造用組成物であって、
    前記(C)添加剤の最低三重項エネルギーは、前記光反応性基に由来する化合物の最低三重項エネルギーよりも低いことを特徴とする、上記組成物。
  2.  前記(A)側鎖型高分子が、下記式(1)~(6)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     q1とq2は、一方が1で他方が0である;
     q3は0または1である;
     P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
     l1は0または1である;
     l2は0~2の整数である;
     l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
     l1が1であるときは、Tが単結合であるときはBも単結合を表す;
     H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。)
    からなる群から選ばれる、光反応性基を有する側鎖を少なくとも1種有する請求項1記載の組成物。
    Figure JPOXMLDOC01-appb-C000001
  3.  前記(A)側鎖型高分子が、下記式(7)~(10)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは1~12の整数を表す;
     mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
     nは0~12の整数(ただしn=0のときBは単結合である)を表す;
     Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す)
    からなる群から選ばれる、光反応性基を有する側鎖を少なくとも1種有する請求項1記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
  4.  前記(A)側鎖型高分子が、下記式(11)~(13)
    (式中、Aは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは、1~12の整数を表し、mは0~2の整数を表し、m2は1~3の整数を表す;
     Rは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良いか、又はヒドロキシ基もしくは炭素数1~6のアルコキシ基を表す)
    からなる群から選ばれる、光反応性基を有する側鎖を少なくとも1種有する請求項1記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
  5.  前記(A)側鎖型高分子が、下記式(14)又は(15)
    (式中、Aはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは1~12の整数を表し、m1、m2は1~3の整数を表す)
    で表される、光反応性基を有する側鎖を有する請求項1記載の組成物。
    Figure JPOXMLDOC01-appb-C000004
  6.  前記(A)側鎖型高分子が、下記式(16)又は(17)(式中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは、1~12の整数を表し、mは0~2の整数を表す)
    で表される、光反応性基を有する側鎖を有する請求項1記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
  7.  前記(A)側鎖型高分子の前記側鎖が、
    下記式(A-1)
    (式中、Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
    *は、式(A-1)で表される基が前記(A)側鎖型高分子の前記側鎖の一部であり、*で結合していることを表す)
    で表される基を有し、
     光反応性基由来の化合物が式(A-2)(式中、R、Yは上述と同じ定義を有する)で表される化合物であり、
     前記(C)添加剤の最低三重項エネルギーが、前記式(A-2)で表される化合物の最低三重項エネルギーよりも低い;又は
     前記(A)側鎖型高分子の前記側鎖が、
    下記式(A-3)
    (式中、Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
    *は、式(A-3)で表される基が前記(A)側鎖型高分子の前記側鎖の一部であり、*で結合していることを表す)
    で表される基を有し、
     光反応性基由来の化合物が式(A-4)(式中、Yは上述と同じ定義を有する)で表される化合物であり、
     前記(C)添加剤の最低三重項エネルギーが、前記式(A-4)で表される化合物の最低三重項エネルギーよりも低い;
    請求項1~6のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000006
  8.  前記(C)添加剤が、下記式(C-1)~(C-27)で表される化合物からなる群から選ばれる少なくとも1種である請求項7記載の組成物。
    Figure JPOXMLDOC01-appb-C000007
  9.  前記(A)側鎖型高分子が、下記式(21)~(31)
    (式中、A及びBは上記と同じ定義を有する;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
     q1とq2は、一方が1で他方が0である;
     lは1~12の整数を表し、mは0から2の整数を表し、但し、式(25)~(26)において、全てのmの合計は2以上であり、式(27)~(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
     Rは、水素原子、-NO、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
     Z、Zは単結合、-CO-、-CHO-、-CH=N-、-CF-を表す)からなる群から選ばれるいずれか1種の液晶性側鎖を有する請求項1~8のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000008
  10.  [I] 請求項1~9のいずれか1項に記載の組成物を、導電膜を有する基板上に塗布して塗膜を形成する工程;
     [II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
     [III] [II]で得られた塗膜を加熱する工程;
    を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。
  11.  請求項10記載の方法により製造された液晶配向膜を有する基板。
  12.  請求項10記載の基板を有する液晶表示素子。
  13.  請求項10記載の基板(第1の基板)を準備する工程;
     [I’] 第2の基板上に 請求項1~9のいずれか1項に記載の組成物を、塗布して塗膜を形成する工程;
     [II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
     [III’] [II’]で得られた塗膜を加熱する工程;
    を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する第2の基板を得る工程;及び
     [IV] 液晶を介して前記第1及び第2の基板の液晶配向膜が相対するように、前記第1及び第2の基板を対向配置して液晶表示素子を得る工程;
    を有することにより、液晶表示素子を得る、該液晶表示素子の製造方法。
  14.  請求項13記載の方法により製造された液晶表示素子。
PCT/JP2016/079784 2015-10-07 2016-10-06 液晶配向膜製造用組成物、該組成物を用いた液晶配向膜及びその製造方法、並びに液晶配向膜を有する液晶表示素子及びその製造方法 WO2017061541A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187012779A KR20180063269A (ko) 2015-10-07 2016-10-06 액정 배향막 제조용 조성물, 그 조성물을 사용한 액정 배향막 및 그 제조 방법, 그리고 액정 배향막을 갖는 액정 표시 소자 및 그 제조 방법
CN201680071493.5A CN108369358B (zh) 2015-10-07 2016-10-06 液晶取向膜制造用组合物、使用该组合物的液晶取向膜和其制造方法、以及具有液晶取向膜的液晶表示元件和其制造方法
JP2017544219A JP6925584B2 (ja) 2015-10-07 2016-10-06 液晶配向膜製造用組成物、該組成物を用いた液晶配向膜及びその製造方法、並びに液晶配向膜を有する液晶表示素子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015199617 2015-10-07
JP2015-199617 2015-10-07

Publications (1)

Publication Number Publication Date
WO2017061541A1 true WO2017061541A1 (ja) 2017-04-13

Family

ID=58487880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079784 WO2017061541A1 (ja) 2015-10-07 2016-10-06 液晶配向膜製造用組成物、該組成物を用いた液晶配向膜及びその製造方法、並びに液晶配向膜を有する液晶表示素子及びその製造方法

Country Status (5)

Country Link
JP (1) JP6925584B2 (ja)
KR (1) KR20180063269A (ja)
CN (1) CN108369358B (ja)
TW (1) TWI722026B (ja)
WO (1) WO2017061541A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281493A (ja) * 1996-04-11 1997-10-31 Matsushita Electric Ind Co Ltd 液晶分子の配向膜の製造方法
JP2003073562A (ja) * 2001-09-03 2003-03-12 Rikogaku Shinkokai 液晶配向用光配向樹脂組成物、液晶光配向樹脂膜、および液晶光配向樹脂膜を用いた液晶光学素子
JP2014029465A (ja) * 2012-06-29 2014-02-13 Jsr Corp 光配向用液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子、化合物、並びに重合体
WO2015122336A1 (ja) * 2014-02-13 2015-08-20 大日本印刷株式会社 光配向性を有する熱硬化性組成物、配向層、配向層付基材、位相差板およびデバイス
WO2016113930A1 (ja) * 2015-01-15 2016-07-21 日産化学工業株式会社 光反応性の水素結合性高分子液晶を用いた液晶配向剤、及び液晶配向膜

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (ja) 1988-07-27 1990-02-07 Sanyo Electric Co Ltd ポリイミド配向膜の製造方法
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
EP1229066A1 (en) * 2001-02-05 2002-08-07 Rolic AG Photoactive polymer
JP5454772B2 (ja) * 2008-11-17 2014-03-26 Jsr株式会社 液晶配向剤、液晶配向膜およびその形成方法ならびに液晶表示素子
JP5522385B2 (ja) * 2010-03-04 2014-06-18 Jnc株式会社 液晶表示素子、その液晶表示素子を作製する工程で用いられる液晶配向剤、およびその液晶配向剤を用いて形成される液晶配向膜
JP5712856B2 (ja) * 2010-09-22 2015-05-07 Jnc株式会社 感光性化合物および該化合物からなる感光性ポリマー
JP5854205B2 (ja) * 2011-11-21 2016-02-09 Jsr株式会社 液晶配向剤
CN107473969B (zh) * 2012-10-05 2020-10-16 日产化学工业株式会社 具有水平电场驱动型液晶显示元件用液晶取向膜的基板的制造方法
JP2014206715A (ja) * 2013-03-19 2014-10-30 日産化学工業株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
WO2014185410A1 (ja) * 2013-05-13 2014-11-20 日産化学工業株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
TWI628219B (zh) * 2013-05-13 2018-07-01 日產化學工業股份有限公司 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板的製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281493A (ja) * 1996-04-11 1997-10-31 Matsushita Electric Ind Co Ltd 液晶分子の配向膜の製造方法
JP2003073562A (ja) * 2001-09-03 2003-03-12 Rikogaku Shinkokai 液晶配向用光配向樹脂組成物、液晶光配向樹脂膜、および液晶光配向樹脂膜を用いた液晶光学素子
JP2014029465A (ja) * 2012-06-29 2014-02-13 Jsr Corp 光配向用液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子、化合物、並びに重合体
WO2015122336A1 (ja) * 2014-02-13 2015-08-20 大日本印刷株式会社 光配向性を有する熱硬化性組成物、配向層、配向層付基材、位相差板およびデバイス
WO2016113930A1 (ja) * 2015-01-15 2016-07-21 日産化学工業株式会社 光反応性の水素結合性高分子液晶を用いた液晶配向剤、及び液晶配向膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOBUHIRO KAWATSUKI ET AL.: "Sanjuko Hikari Zokanzai o Fukumu Kobunshi Ekisho Film no Hikari Haiko", DAI 54 KAI SYMPOSIUM ON MACROMOLECULES YOKOSHU, vol. 54, no. 2, 5 September 2005 (2005-09-05), pages 2K12 *

Also Published As

Publication number Publication date
JPWO2017061541A1 (ja) 2018-08-02
CN108369358A (zh) 2018-08-03
JP6925584B2 (ja) 2021-08-25
TW201727339A (zh) 2017-08-01
TWI722026B (zh) 2021-03-21
KR20180063269A (ko) 2018-06-11
CN108369358B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN107473969B (zh) 具有水平电场驱动型液晶显示元件用液晶取向膜的基板的制造方法
WO2014148569A1 (ja) 横電界駆動型液晶表示素子の製造方法
JP6823458B2 (ja) 横電界駆動型液晶表示素子用液晶配向膜製造用組成物、該組成物を用いた液晶配向膜及びその製造方法、並びに液晶配向膜を有する液晶表示素子及びその製造方法
WO2015002292A1 (ja) 偏光紫外線異方性化材料
WO2014196590A1 (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
TWI644931B (zh) 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板之製造方法
JP6872315B2 (ja) 重合体組成物および横電界駆動型液晶表示素子用液晶配向膜
TWI626269B (zh) 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板之製造方法
TWI695847B (zh) 液晶定向劑、液晶定向膜及液晶顯示元件
TWI628209B (zh) 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板的製造方法
TWI668491B (zh) 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板之製造方法
JP6753410B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
CN107924092B (zh) 液晶取向膜制造用组合物、使用该组合物的液晶取向膜及其制造方法、以及具有液晶取向膜的液晶表示元件及其制造方法
JP6925584B2 (ja) 液晶配向膜製造用組成物、該組成物を用いた液晶配向膜及びその製造方法、並びに液晶配向膜を有する液晶表示素子及びその製造方法
KR102674353B1 (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187012779

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16853693

Country of ref document: EP

Kind code of ref document: A1