WO2017061511A1 - 形状計測システム及び形状計測方法 - Google Patents

形状計測システム及び形状計測方法 Download PDF

Info

Publication number
WO2017061511A1
WO2017061511A1 PCT/JP2016/079701 JP2016079701W WO2017061511A1 WO 2017061511 A1 WO2017061511 A1 WO 2017061511A1 JP 2016079701 W JP2016079701 W JP 2016079701W WO 2017061511 A1 WO2017061511 A1 WO 2017061511A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
construction
shape
detection unit
target
Prior art date
Application number
PCT/JP2016/079701
Other languages
English (en)
French (fr)
Inventor
博義 山口
大樹 菅原
駿 川本
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US15/756,673 priority Critical patent/US10508416B2/en
Priority to DE112016003502.0T priority patent/DE112016003502B4/de
Priority to AU2016336314A priority patent/AU2016336314A1/en
Publication of WO2017061511A1 publication Critical patent/WO2017061511A1/ja
Priority to AU2019210643A priority patent/AU2019210643A1/en
Priority to AU2021201894A priority patent/AU2021201894B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/282Image signal generators for generating image signals corresponding to three or more geometrical viewpoints, e.g. multi-view systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/105Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using multiple cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/107Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using stereoscopic cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/303Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using joined images, e.g. multiple camera images
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • G06T7/596Depth or shape recovery from multiple images from stereo images from three or more stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods

Definitions

  • the present invention relates to a shape measurement system and a shape measurement method.
  • construction plan image data is created based on construction plan data stored in the storage unit and position information of a stereo camera, and construction plan image data and present state image data captured by the stereo camera are superimposed.
  • construction plan image data and present state image data captured by the stereo camera are superimposed.
  • An object of this invention is to manage a construction condition using the detection result which the working machine which has a detection apparatus which detects the position of object obtained.
  • the present invention is attached to a work machine, detects an object, and outputs an object information by using an object detection unit that outputs the information of the object, using the information of the object detected by the object detection unit.
  • the shape measurement system includes: a shape detection unit that outputs shape information representing H; and an information addition unit that adds time information for specifying the shape information to the shape information.
  • the time information is information of at least one time existing from a time when the target is detected by the target detection unit to a time when an external device of the work machine acquires the output shape information. It is preferable to include.
  • the information adding unit further outputs information indicating a position of the target detection unit and information for identifying the target detection unit.
  • the front shape detection unit and the information giving unit be provided in the work machine.
  • the work machine has a posture detection unit that outputs the posture of the work machine, and the shape detection unit and the object detection unit are attached to the work machine and the object detection is detected by the posture detection unit. It is preferable to obtain the shape information using the posture of the work machine when the unit detects the object.
  • the work machine has a position detection unit that detects an orientation of the work machine, and the shape detection unit further detects the work when the shape detection unit detects the target, which is detected by the position detection device.
  • the shape information is determined using the orientation of the machine.
  • the present invention is attached to a work machine, detects an object, and outputs an object information by using an object detection unit that outputs the information of the object, and using the information of the object detected by the object detection unit, the three-dimensional shape of the object And a posture detection unit for outputting the posture of the work machine, wherein the shape detection unit detects the shape detection unit detected by the posture detection unit.
  • a shape measurement system for obtaining the shape information by using the posture of the work machine when detecting.
  • the work machine has a position detection unit that detects an orientation of the work machine, and the shape detection unit further detects the work when the shape detection unit detects the target, which is detected by the position detection device.
  • the shape information is determined using the orientation of the machine.
  • the shape detection unit is preferably provided in the work machine.
  • the present invention detects an object from a predetermined position of a work machine, and uses the detected information of the object and the posture of the work machine when the object is detected, to detect a three-dimensional shape of the object detected.
  • time information for specifying the shape information be added to the obtained shape information and output.
  • the present invention can manage a construction situation using a detection result obtained by a working machine having a detection device for detecting the position of an object.
  • FIG. 1 is a perspective view showing a hydraulic shovel 1 provided with a control system of an imaging device according to the embodiment.
  • FIG. 2 is a perspective view of the vicinity of the driver's seat of the hydraulic shovel according to the embodiment.
  • FIG. 3 is a diagram showing a control system and a construction management system of a working machine according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of the hardware configuration of various devices and a management device included in the hydraulic shovel.
  • FIG. 5 is a view showing an example of a construction site constructed by the hydraulic shovel according to the embodiment.
  • FIG. 6 is a diagram for describing shape information obtained by the control system of the working machine according to the embodiment.
  • FIG. 1 is a perspective view showing a hydraulic shovel 1 provided with a control system of an imaging device according to the embodiment.
  • FIG. 2 is a perspective view of the vicinity of the driver's seat of the hydraulic shovel according to the embodiment.
  • FIG. 3 is a diagram showing a control system and
  • FIG. 7 is a view showing a state in which the hydraulic shovel is inclined to the acting direction of gravity.
  • FIG. 8 is a view showing an example of an image captured in a state where the hydraulic shovel is inclined with respect to the acting direction of gravity.
  • FIG. 9 is a diagram for explaining a process example for the control system according to the embodiment to obtain shape information.
  • FIG. 10 is a view showing an example of a data file of shape information obtained by the control system according to the embodiment.
  • FIG. 11 is a diagram illustrating an example of information including a data file transmitted by the construction management device.
  • FIG. 12 is a diagram showing an example in which the data file is stored in the storage unit of the management apparatus.
  • FIG. 13 is a diagram showing the relationship between the construction targets of the entire construction site and the range corresponding to the data file EMD.
  • FIG. 14 is the figure which put in order the change of the construction object of the whole construction site in time series.
  • FIG. 15 is a diagram showing an example in which the amount of removed soil or the amount of embankment is determined from the difference in shape information obtained at different times.
  • FIG. 16 is a diagram showing an example in which the amount of removed soil or the amount of embankment is determined from the difference in shape information obtained at different times.
  • FIG. 17 is a diagram for describing the target construction information generated by the control system of the working machine according to the embodiment.
  • FIG. 18 is a diagram for describing the target construction information generated by the control system of the working machine according to the embodiment.
  • FIG. 19 is a diagram for describing target construction information generated by the control system of the working machine according to the embodiment.
  • FIG. 20 is a flowchart illustrating a process example of the shape measurement method, the shape measurement method, and
  • FIG. 1 is a perspective view showing a hydraulic shovel 1 provided with a control system of an imaging device according to the embodiment.
  • FIG. 2 is a perspective view near the driver's seat of the hydraulic shovel 1 according to the embodiment.
  • the hydraulic shovel 1, which is a working machine has a vehicle body 1B and a working machine 2.
  • the vehicle body 1 ⁇ / b> B has a revolving unit 3, a cab 4 and a traveling unit 5.
  • the swing body 3 is swingably attached to the traveling body 5 around a swing center axis Zr.
  • the revolving unit 3 accommodates devices such as a hydraulic pump and an engine.
  • the work implement 2 is attached and the revolving unit 3 is pivoted.
  • the handrail 9 is attached to the upper part of the revolving unit 3.
  • Antennas 21 and 22 are attached to the handrail 9.
  • the antennas 21 and 22 are antennas for RTK-GNSS (Real Time Kinematic-Global Navigation Satellite Systems, GNSS means Global Navigation Satellite System).
  • the antennas 21 and 22 are spaced apart by a constant distance along the direction of the Ym axis of the vehicle body coordinate system (Xm, Ym, Zm).
  • the antennas 21 and 22 receive GNSS radio waves and output a signal corresponding to the received GNSS radio waves.
  • the antennas 21 and 22 may be antennas for GPS (Global Positioning System).
  • the operator's cab 4 is placed at the front of the revolving unit 3.
  • a communication antenna 25A is attached to the roof of the cab 4.
  • the traveling body 5 has crawler belts 5a and 5b.
  • the hydraulic shovel 1 travels as the crawler belts 5a and 5b rotate.
  • the work implement 2 is attached to the front of the vehicle body 1B, and includes a boom 6, an arm 7, a bucket 8 as a work implement, a boom cylinder 10, an arm cylinder 11, and a bucket cylinder 12.
  • the front of the vehicle body 1B is the direction side from the backrest 4SS of the driver's seat 4S shown in FIG. 2 toward the operating device 35.
  • the rear of the vehicle body 1B is the direction side from the operating device 35 toward the backrest 4SS of the driver's seat 4S.
  • the front portion of the vehicle body 1B is a portion on the front side of the vehicle body 1B, and is a portion on the opposite side to the counterweight WT of the vehicle body 1B.
  • the operating device 35 is a device for operating the work machine 2 and the swing body 3 and has a right lever 35R and a left lever 35L.
  • the base end of the boom 6 is rotatably attached to the front of the vehicle body 1 B via the boom pin 13. That is, the boom pin 13 corresponds to the rotation center of the boom 6 with respect to the swing body 3.
  • the proximal end of the arm 7 is rotatably attached to the distal end of the boom 6 via an arm pin 14. That is, the arm pin 14 corresponds to the rotation center of the arm 7 with respect to the boom 6.
  • the bucket 8 is rotatably attached to the tip of the arm 7 via a bucket pin 15. That is, the bucket pin 15 corresponds to the rotation center of the bucket 8 with respect to the arm 7.
  • the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 shown in FIG. 1 are hydraulic cylinders driven by hydraulic pressure.
  • the base end of the boom cylinder 10 is rotatably attached to the revolving unit 3 via a boom cylinder foot pin 10a.
  • the tip of the boom cylinder 10 is rotatably attached to the boom 6 via a boom cylinder top pin 10b.
  • the boom cylinder 10 drives the boom 6 by expanding and contracting hydraulically.
  • the base end of the arm cylinder 11 is rotatably attached to the boom 6 via an arm cylinder foot pin 11a.
  • the tip of the arm cylinder 11 is rotatably attached to the arm 7 via an arm cylinder top pin 11b.
  • the arm cylinder 11 drives the arm 7 by expanding and contracting hydraulically.
  • the base end of the bucket cylinder 12 is rotatably attached to the arm 7 via a bucket cylinder foot pin 12a.
  • the tip of the bucket cylinder 12 is rotatably attached to one end of the first link member 47 and one end of the second link member 48 via the bucket cylinder top pin 12 b.
  • the other end of the first link member 47 is rotatably attached to the tip of the arm 7 via a first link pin 47a.
  • the other end of the second link member 48 is rotatably attached to the bucket 8 via a second link pin 48a.
  • the bucket cylinder 12 drives the bucket 8 by expanding and contracting hydraulically.
  • the bucket 8 has a plurality of blades 8B.
  • the plurality of blades 8B are arranged in a line along the width direction of the bucket 8.
  • the tip of the blade 8B is a cutting edge 8BT.
  • the bucket 8 is an example of a work implement.
  • the work tool is not limited to the bucket 8.
  • the work tool may be, for example, a tilt bucket having a single blade, a slope bucket or a rock drilling attachment with a rock drilling tip, or any of these. Good.
  • the swing body 3 has a position detection device 23 and an IMU (Inertial Measurement Unit: inertial measurement device) 24 which is an example of a posture detection device.
  • the position detection device 23 receives signals from the antennas 21 and 22.
  • the position detection device 23 detects and outputs the current position of the antennas 21 and 22 and the orientation of the rotating body 3 in the global coordinate system (Xg, Yg, Zg) using the signals acquired from the antennas 21 and 22.
  • the orientation of the revolving unit 3 represents the orientation of the revolving unit 3 in the global coordinate system.
  • the orientation of the swing body 3 can be represented, for example, by the longitudinal direction of the swing body 3 around the Zg axis of the global coordinate system.
  • the azimuth is a rotation angle of the reference axis in the front-rear direction of the rotating body 3 around the Zg axis of the global coordinate system.
  • the azimuth of the rotating body 3 is expressed by the azimuth angle.
  • the position detection device 23 calculates the azimuth from the relative position of the two antennas 21 and 22.
  • the hydraulic shovel 1 has a plurality of imaging devices 30 a, 30 b, 30 c, and 30 d in the cab 4.
  • the plurality of imaging devices 30a, 30b, 30c, and 30d are an example of a detection device that detects the shape of an object.
  • the imaging devices 30a, 30b, 30c, and 30d are appropriately referred to as an imaging device 30 when not distinguished from one another.
  • the imaging device 30a and the imaging device 30c are disposed on the work machine 2 side.
  • the type of the imaging device 30 is not limited, in the embodiment, for example, an imaging device provided with a CCD (Couple Charged Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
  • CCD Couple Charged Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the imaging device 30 a and the imaging device 30 b are disposed in the driver's cab 4 facing the same direction or different directions at predetermined intervals.
  • the imaging device 30 c and the imaging device 30 d are disposed in the driver's cab 4 with a predetermined interval and facing the same direction or different directions.
  • the plurality of imaging devices 30a, 30b, 30c, and 30d are combined to form a stereo camera.
  • a stereo camera of a combination of imaging devices 30a and 30b and a stereo camera of a combination of imaging devices 30c and 30d are configured.
  • the imaging device 30a and the imaging device 30b face upward, and the imaging device 30c and the imaging device 30d face downward.
  • At least the imaging device 30 a and the imaging device 30 c face the hydraulic shovel 1, in the embodiment, the front of the revolving structure 3.
  • the imaging device 30b and the imaging device 30d may be disposed to be slightly directed toward the work machine 2, that is, directed toward the imaging device 30a and the imaging device 30c.
  • the hydraulic shovel 1 has four imaging devices 30 in the embodiment, the number of the imaging devices 30 included in the hydraulic shovel 1 may be at least two, and is not limited to four. It is because the hydraulic shovel 1 comprises a stereo camera by at least one pair of imaging devices 30, and carries out stereo imaging
  • the plurality of imaging devices 30 a, 30 b, 30 c, and 30 d are disposed in the front of and above the cab 4.
  • the upper side is a direction orthogonal to the ground contact surface of the crawler belts 5a and 5b of the hydraulic shovel 1 and in the direction away from the ground contact surface.
  • the ground contact surfaces of the crawler belts 5a and 5b are planes defined by at least three points which do not exist on the same straight line, in a portion where at least one of the crawler belts 5a and 5b is grounded.
  • the lower side is the side opposite to the upper side, that is, the side orthogonal to the ground contact surface of the crawler belts 5a and 5b and directed to the ground contact surface.
  • the plurality of imaging devices 30a, 30b, 30c, and 30d perform stereo imaging of an object present in front of the vehicle body 1B of the hydraulic shovel 1.
  • the target is, for example, the hydraulic shovel 1, the work machine of the hydraulic shovel 1, and at least one construction target of a worker who works at a construction site.
  • the plurality of imaging devices 30a, 30b, 30c, and 30d detect an object from a predetermined position of the hydraulic shovel 1, in the embodiment, from the front and above in the cab 4. In the embodiment, the object is three-dimensionally measured using the result of stereo imaging by at least one pair of imaging devices 30.
  • the places where the plurality of imaging devices 30 a, 30 b, 30 c, and 30 d are disposed are not limited to the front and upper side in the cab 4.
  • the imaging device 30c is used as a reference of these.
  • Each of the four imaging devices 30a, 30b, 30c, and 30d has a coordinate system. These coordinate systems are appropriately referred to as imaging device coordinate systems. In FIG. 2, only the coordinate system (xs, ys, zs) of the imaging device 30c as a reference is shown. The origin of the imaging device coordinate system is the center of each of the imaging devices 30a, 30b, 30c, and 30d.
  • the imaging range of each of the imaging devices 30a, 30b, 30c, and 30d is larger than the range in which the work machine 2 of the hydraulic shovel 1 can be constructed.
  • each of the imaging devices 30a, 30b, 30c, and 30d can reliably perform stereo imaging of an object in a range in which the work machine 2 can excavate.
  • the vehicle body coordinate system (Xm, Ym, Zm) described above is a coordinate system based on the origin fixed to the vehicle body 1 B, and in the embodiment, the revolving unit 3 in the embodiment.
  • the origin of the vehicle body coordinate system (Xm, Ym, Zm) is, for example, the center of the swing circle of the revolving unit 3.
  • the center of the swing circle is on the swing center axis Zr of the swing body 3.
  • the Zm axis of the vehicle body coordinate system (Xm, Ym, Zm) is an axis serving as the turning center axis Zr of the turning body 3, and the Xm axis is an axis extending in the front-rear direction of the turning body 3 and orthogonal to the Zm axis.
  • the Xm axis is a reference axis in the front-rear direction of the swing body 3.
  • the Ym axis is an axis extending in the width direction of the swing body 3 which is orthogonal to the Zm axis and the Xm axis.
  • the above-mentioned global coordinate system (Xg, Yg, Zg) is a coordinate system measured by GNSS, and is a coordinate system based on the origin fixed to the earth.
  • the vehicle body coordinate system is not limited to the example of the embodiment.
  • the center of the boom pin 13 may be set as the origin of the vehicle body coordinate system.
  • the center of the boom pin 13 is the center of the section when the boom pin 13 is cut in a plane orthogonal to the direction in which the boom pin 13 extends, and the center in the direction in which the boom pin 13 extends.
  • FIG. 3 is a diagram showing the control system 50 and the construction management system 100 of the working machine according to the embodiment.
  • the device configuration of the control system 50 and the management system 100 illustrated in FIG. 3 is an example, and is not limited to the device configuration example of the embodiment.
  • the various devices included in the control system 50 may not be independent. That is, the functions of a plurality of devices may be realized by one device.
  • a control system 50 (hereinafter, appropriately referred to as a control system 50) of the work machine includes a plurality of imaging devices 30a, 30b, 30c, and 30d, and various control devices for controlling the hydraulic shovel 1. These are provided in the vehicle body 1B of the hydraulic shovel 1 shown in FIG. In the embodiment, the control system 50 corresponds to a shape measurement system.
  • control devices included in the control system 50 include a detection processing device 51, a construction information generation device 52, a sensor control device 53, an engine control device 54, a pump control device 55, and a work machine control device 56 shown in FIG.
  • the control system 50 includes a construction management device 57 that manages the state of the hydraulic shovel 1 and the state of construction by the hydraulic shovel 1. Further, the control system 50 displays the information of the hydraulic shovel 1 and displays a guidance image of the construction on the screen 58D, the management device 61 of the management facility 60 existing outside the hydraulic shovel 1, and the like.
  • the communication device 25 communicates with at least one of the devices other than the work machine 70, the portable terminal 64 and the management device 61 of the management facility 60.
  • the control system 50 further includes a position detection device 23 for acquiring information necessary for control of the hydraulic shovel 1 and an IMU 24 which is an example of a posture detection device.
  • the control system 50 may have at least the detection processing device 51 and the construction information generation device 52.
  • the communication device 25 is connected to the signal line 59 to communicate with each other.
  • the standard of communication using the signal line 59 is CAN (Controller Area Network), but is not limited thereto.
  • the term "hydraulic shovel 1" may refer to various electronic devices such as the detection processing device 51 and the construction information generating device 52 which the hydraulic shovel 1 has.
  • FIG. 4 is a diagram showing an example of the hardware configuration of various devices included in the hydraulic shovel 1 and the management device 61.
  • the position detection device 23, the communication device 25, and the management device 61 have a processing unit PR, a storage unit MR, and an input / output unit IO, as shown in FIG.
  • the processing unit PR is realized by, for example, a processor such as a CPU (Central Processing Unit) and a memory.
  • the storage unit MR is a nonvolatile or volatile semiconductor memory such as a random access memory (RAM), a random access memory (ROM), a flash memory, an erasable programmable random access memory (EPROM), and an electrically erasable programmable random access memory (EEPROM).
  • RAM random access memory
  • ROM random access memory
  • EPROM erasable programmable random access memory
  • EEPROM electrically erasable programmable random access memory
  • At least one of a magnetic disk, a flexible disk, and a magneto-optical disk is used.
  • the input / output unit IO is an interface circuit for the hydraulic excavator 1 or the management device 61 to transmit / receive data, signals, etc. to / from other devices and internal devices.
  • the internal device also includes a signal line 59 in the hydraulic shovel 1.
  • the hydraulic shovel 1 and the management device 61 store in the storage unit MR a computer program for causing the processing unit PR to realize the respective functions.
  • the processing unit PR of the hydraulic shovel 1 and the processing unit PR of the management device 61 realize the functions of the respective devices by reading out and executing the computer program described above from the storage unit MR.
  • the various electronic devices, devices, and management device 61 included in the hydraulic shovel 1 may be realized by dedicated hardware, or a plurality of processing circuits may cooperate to realize the respective functions. Next, various electronic devices and devices included in the hydraulic shovel 1 will be described.
  • the detection processing device 51 performs image processing in a stereo system on a pair of images of an object captured by at least a pair of imaging devices 30, to thereby detect the position of the object, specifically, the coordinates of the object in a three-dimensional coordinate system. Ask.
  • the detection processing device 51 can three-dimensionally measure the object using a pair of images obtained by imaging the same object by at least the pair of imaging devices 30. That is, at least a pair of imaging devices 30 and detection processing device 51 three-dimensionally measure an object by a stereo method.
  • Image processing in the stereo method is a method of obtaining the distance to an object from two images obtained by observing the same object from two different imaging devices 30. The distance to the object is expressed, for example, as a distance image obtained by visualizing the distance information to the object by shading.
  • the detection processing device 51 acquires the information of the object detected by at least the pair of imaging devices 30, and obtains shape information indicating the three-dimensional shape of the object from the acquired information of the object.
  • at least one pair of imaging devices 30 generates and outputs information of an object by imaging the object.
  • the target information is an image of the construction target captured by at least a pair of imaging devices 30.
  • the detection processing device 51 obtains and outputs shape information by performing image processing according to a stereo method on an image of a target.
  • the construction target of the hydraulic shovel 1 having at least a pair of imaging devices 30 is imaged by at least a pair of imaging devices 30, but the construction target of another working machine is imaged by at least a pair of imaging devices 30 It is also good.
  • a target detected by the imaging device 30 is a target of construction (hereinafter, appropriately referred to as a target of construction) and a target after construction.
  • the construction target and the target after construction are the hydraulic shovel 1 having the imaging device 30, another hydraulic shovel 1ot, at least one construction target of the working machine other than the hydraulic shovel and a worker, and a target after construction I hope there is.
  • the detection processing device 51 includes an arithmetic unit 51A and an information adding unit 51B.
  • the arithmetic unit 51A performs image processing in a stereo system on a pair of images captured by at least a pair of imaging devices 30, and obtains shape information.
  • the information adding unit 51B adds various types of information to the shape information and outputs the information.
  • Various types of information attached to the shape information include time information.
  • the time information includes information of at least one time existing between the time when the object is detected by the computing unit 51A and the at least one pair of imaging devices 30 and the time when the shape information is output.
  • the time information is acquired from, for example, a timer in the detection processing device 51.
  • the various information includes at least one of information indicating the position at which the at least one pair of imaging devices 30 has imaged the object and information for identifying the hydraulic shovel 1 having the imaging device 30 having imaged the object. It may further include.
  • the functions of the calculation unit 51A and the information addition unit 51B are realized by the processing unit PR shown in FIG.
  • At least a pair of imaging devices 30 corresponds to a target detection unit that is attached to the hydraulic shovel 1 and detects a target and outputs target information.
  • the detection processing device 51 corresponds to a shape detection unit that outputs shape information representing a three-dimensional shape of a target using information on the target detected by at least a pair of imaging devices 30.
  • a 3D scanner such as a laser scanner may be used. The 3D scanner detects the object and outputs shape information indicating the three-dimensional shape of the object, and thus has the functions of the object detection unit and the shape detection unit described above.
  • the hub 31 and the imaging switch 32 are connected to the detection processing device 51.
  • the hub 31 is connected with a plurality of imaging devices 30a, 30b, 30c, and 30d.
  • the imaging devices 30 a, 30 b, 30 c, and 30 d may be connected to the detection processing device 51 without using the hub 31.
  • the imaging results of the imaging devices 30 a, 30 b, 30 c, and 30 d are input to the detection processing device 51 via the hub 31.
  • the detection processing device 51 acquires an image of a target in the embodiment as a result of imaging by the imaging devices 30 a, 30 b, 30 c, and 30 d via the hub 31.
  • at least one pair of imaging devices 30 images an object.
  • the imaging switch 32 is installed in the driver's cab 4 shown in FIG. For example, although the imaging switch 32 is installed near the operation device 35, the installation location of the imaging switch 32 is not limited to this.
  • the control system 50 When the control system 50 acquires an image of an object by at least a pair of imaging devices 30, the control system 50 starts imaging at the same time as the turning start of the swing body 3 and ends the imaging by turning stop.
  • the shape information may be obtained by performing image processing in a stereo system.
  • the control system 50 detects, for example, a signal indicating a change in pilot pressure or an electrical signal, which is output along with the operation of the operating device for rotating the swingable body 3 among the operating devices 35. It receives and judges the timing of the turning start and the turning stop of the turning body 3 and picks up an image.
  • the construction information generation device 52 obtains and outputs target construction information which is information on a shape to be targeted when the hydraulic shovel 1 constructs a construction target.
  • the construction information generation device 52 obtains target construction information using the shape information of the construction target obtained by the detection processing device 51.
  • the target construction information is position information representing, in three-dimensional coordinates in a global coordinate system, a shape to be targeted when a construction target is constructed.
  • the target construction information may be information of three-dimensional coordinates in a coordinate system other than the global coordinate system.
  • the construction information generation device 52 corresponds to a construction information generation unit.
  • the information of the construction object acquired by at least a pair of imaging devices 30 may be transmitted to the outside of the hydraulic shovel 1 via the communication device 25.
  • the management device 61 may obtain the coordinates of the object in the three-dimensional coordinate system. In this case, the management device 61 realizes the function of the detection processing device 51. Further, the management device 61 may realize the function of the construction information generation device 52.
  • the shape information of the construction target obtained by the detection processing device 51 mounted on the hydraulic shovel 1 may be transmitted to the outside of the hydraulic shovel 1 via the communication device 25, and the management device 61 may calculate the target construction information, for example. In this case, the management device 61 realizes the function of the construction information generation device 52.
  • the sensor control device 53 is connected with sensors for detecting information on the state of the hydraulic shovel 1 and information on the state around the hydraulic shovel 1.
  • the sensor control device 53 converts the information acquired from the sensors into a format that can be handled by other electronic devices and devices, and outputs the converted information.
  • the information on the state of the hydraulic shovel 1 is, for example, information on the attitude of the hydraulic shovel 1 and information on the attitude of the working machine 2 or the like.
  • the IMU 24, the first angle detection unit 18 A, the second angle detection unit 18 B, and the third angle detection unit 18 C are connected to the sensor control device 53 as sensors for detecting information of the state of the hydraulic shovel 1
  • the sensors are not limited to these.
  • the IMU 24 detects and outputs an acceleration and an angular velocity acting on itself, that is, an acceleration and an angular velocity acting on the hydraulic shovel 1.
  • the posture of the hydraulic shovel 1 can be known from the acceleration and the angular velocity acting on the hydraulic shovel 1. As long as the posture of the hydraulic shovel 1 can be detected, a device other than the IMU 24 may be used.
  • the first angle detection unit 18A, the second angle detection unit 18B, and the third angle detection unit 18C are, for example, stroke sensors.
  • Each of these detects the stroke length of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12, whereby the rotation angle of the boom 6 with respect to the vehicle body 1B, the rotation angle of the arm 7 with respect to the boom 6, and the arm
  • the rotation angle of the bucket 8 relative to 7 is detected indirectly.
  • the rotation angle of the boom 6 with respect to the vehicle body 1B detected by the first angle detection unit 18A, the second angle detection unit 18B and the third angle detection unit 18C, the rotation angle of the arm 7 with respect to the boom 6, and the bucket 8 with respect to the arm 7 From the rotation angle and the dimensions of the work implement 2, the position of the portion of the work implement 2 in the vehicle body coordinate system can be known.
  • the position of the portion of the work machine 2 is, for example, the position of the cutting edge 8 BT of the bucket 8.
  • the first angle detection unit 18A, the second angle detection unit 18B, and the third angle detection unit 18C may be a potentiometer or an inclinometer instead of the stroke sensor.
  • the engine control device 54 controls an internal combustion engine 27 which is a power generation device of the hydraulic shovel 1.
  • the internal combustion engine 27 is, for example, a diesel engine, but is not limited thereto.
  • the power generation device of the hydraulic shovel 1 may be a hybrid device in which an internal combustion engine 27 and a generator motor are combined.
  • the internal combustion engine 27 drives a hydraulic pump 28.
  • the pump control device 55 controls the flow rate of the hydraulic fluid discharged from the hydraulic pump 28.
  • the pump control device 55 generates a control command signal for adjusting the flow rate of the hydraulic fluid discharged from the hydraulic pump 28.
  • the pump control device 55 changes the flow rate of the hydraulic fluid discharged from the hydraulic pump 28 by changing the swash plate angle of the hydraulic pump 28 using the generated control signal.
  • the hydraulic fluid discharged from the hydraulic pump 28 is supplied to the control valve 29.
  • the control valve 29 supplies hydraulic oil supplied from the hydraulic pump 28 to hydraulic devices such as the boom cylinder 10, the arm cylinder 11, the bucket cylinder 12 and the hydraulic motor 5M to drive them.
  • the work implement control device 56 executes, for example, control to move the cutting edge 8BT of the bucket 8 along a target construction surface.
  • the work implement control device 56 corresponds to a work implement control unit.
  • this control is appropriately referred to as work implement control.
  • the work machine control device 56 acquires, for example, the target construction information generated by the construction information generation device 52 so that the cutting edge 8BT of the bucket 8 follows the target construction surface included in the target construction information.
  • the control valve 29 is controlled to control the working machine 2.
  • the hydraulic shovel 1 displays the positional relationship between the target construction information obtained by the method to be described later and its own work machine 2 as a guidance image of the construction on the screen 58D of the display device 58 without including the work machine control device 56 It may be possible.
  • the construction management device 57 includes, for example, shape information obtained by the detection processing device 51, target construction information generated by the construction information generation device 52, shape information of a construction result of the construction of the construction object by the hydraulic shovel 1, and the hydraulic shovel 1 Collect at least one of the shape information indicating the current topography of the construction object to be constructed from now on, and store it in the storage unit 57M.
  • the construction management device 57 transmits the construction result stored in the storage unit 57M to the management device 61 or the portable terminal device 64 via the communication device 25.
  • the construction management device 57 transmits the construction result stored in the storage unit 57M to the management device 61 or the portable terminal device 64 via the communication device 25.
  • the construction management device 57 may collect at least one of the shape information and the target construction information obtained by the detection processing device 51, and transmit the collected information to the management device 61 or the portable terminal device 64 without storing it in the storage unit 57M.
  • the storage unit 57M corresponds to the storage unit MR shown in FIG.
  • the construction management device 57 may be provided, for example, in the management device 61 provided outside the hydraulic shovel 1. In this case, the construction management device 57 acquires the shape information or the construction result from the hydraulic shovel 1 via the communication device 25.
  • the construction result is, for example, shape information obtained by at least a pair of imaging devices 30 imaging a construction target after construction and the detection processing device 51 performing image processing according to a stereo method on the imaging result.
  • the shape information indicating the current topography of the construction target to be constructed is referred to as current topography information as appropriate.
  • the shape information may be the shape information indicating the construction result or the shape information indicating the present topography.
  • the present topography information is, for example, shape information obtained by the detection processing device 51 by imaging at least a pair of imaging devices 30 with which the construction object that the hydraulic shovel 1, another work machine 70 or a worker is going to construct is to be constructed. is there.
  • the construction management device 57 collects, for example, the construction results after the work of the day is finished and transmits the construction results to at least one of the management device 61 and the portable terminal 64 or collects the construction results several times during the work of the day. Then, it transmits to at least one of the management device 61 and the portable terminal device 64.
  • the construction management device 57 may transmit, for example, shape information before construction to the management device 61 or the portable terminal device 64 before work in the morning.
  • the construction management device 57 collects, for example, two construction results of noon and the end time of the work out of the work of one day, and transmits it to the management device 61 or the portable terminal device 64.
  • the construction result may be a construction result obtained by imaging the range in which the construction was performed among the entire construction site, or a construction result obtained by imaging the entire construction site May be
  • the display device 58 displays information of the hydraulic shovel 1 on the screen 58D of a display such as a liquid crystal display panel or displays a guidance image of construction on the screen 58D, and in the embodiment, the work machine control described above
  • the position of the work implement 2 is determined when is performed.
  • the position of the cutting edge 8 BT determined by the display device 58 is, in the embodiment, the position of the cutting edge 8 BT of the bucket 8.
  • the display device 58 includes the current positions of the antennas 21 and 22 detected by the position detection device 23, the rotation angles detected by the first angle detection unit 18A, the second angle detection unit 18B, and the third angle detection unit 18C.
  • the dimensions of the work machine 2 stored in the storage unit MR and the output data of the IMU 24 are acquired, and the position of the cutting edge 8BT of the bucket 8 is determined using these.
  • the display device 58 obtains the position of the blade tip 8BT of the bucket 8, but the position of the blade tip 8BT of the bucket 8 may be obtained by a device other than the display device 58.
  • the communication device 25 is a communication unit in the embodiment.
  • the communication device 25 communicates with at least one of the management device 61 of the management facility 60, another work machine 70 and the portable terminal device 64 via the communication line NTW to exchange information with each other.
  • the information transmitted from the control system 50 to at least one of the management device 61, the other work machine 70, and the portable terminal device 64 among the information exchanged by the communication device 25 includes information regarding construction.
  • the information regarding construction includes at least one of the above-described shape information and information obtained from the shape information.
  • the information obtained from the shape information includes, for example, the target construction information described above and information obtained by processing the shape information, but is not limited thereto.
  • the information on the construction may be stored in the storage unit of the detection processing unit 51, the storage unit of the construction information generation unit 52, and the storage unit 57M of the construction management unit 57 and then transmitted by the communication unit 25 or not stored. It may be sent.
  • the communication device 25 communicates by wireless communication. Therefore, the communication device 25 has an antenna 25A for wireless communication.
  • the portable terminal device 64 is, for example, possessed by a manager who manages the work of the hydraulic shovel 1, but is not limited thereto.
  • the other work machine 70 has a function of communicating with at least one of the hydraulic shovel 1 having the control system 50 and the management device 61.
  • the other working machine 70 may be the hydraulic shovel 1 having the control system 50, may be a hydraulic shovel not having the control system 50, or may be a working machine other than the hydraulic shovel.
  • the communication device 25 may communicate with at least one of the management device 61 of the management facility 60, another work machine 70, and the portable terminal device 64 via wired communication to exchange information with each other.
  • the construction management system 100 includes the management device 61 of the management facility 60, the control system 50, and the hydraulic shovel 1 having the control system 50.
  • the construction management system 100 may further include a portable terminal device 64.
  • the hydraulic shovel 1 having the control system 50 included in the construction management system 100 may be singular or plural.
  • the management facility 60 includes a management device 61 and a communication device 62.
  • the management device 61 communicates with at least the hydraulic shovel 1 via the communication device 62 and the communication line NTW.
  • the management device 61 may communicate with the mobile terminal device 64 or may communicate with another work machine 70.
  • the hydraulic shovel 1 and at least one of the other hydraulic shovels 1ot and the working machine may be equipped with a wireless communication device so as to allow direct wireless communication between vehicles.
  • at least one of the hydraulic shovel 1, the other hydraulic shovel 1ot, and the work machine may be equipped with an apparatus or an electronic device that can execute the process executed by the management device 61 or the like of the management facility 60.
  • the management device 61 receives at least one of the construction result and the current topography information from the hydraulic shovel 1 and manages the progress of the construction.
  • the management device 61 may receive the shape information from the hydraulic shovel 1, generate the target construction information using this, and transmit the target construction information to the hydraulic shovel 1.
  • the management device 61 may generate target construction information from the design information of the construction target, and transmit the target construction information to the hydraulic shovel 1.
  • the management device 61 processes the construction result received from the hydraulic shovel 1 and displays the construction progress information as a moving image and displays it on the display device 67 or transmits the moving image information to the hydraulic shovel 1 or the portable terminal device 64 It may be displayed on the display device 58 of the hydraulic shovel 1 or displayed on the screen of the mobile terminal device 64.
  • the generation of the target construction information performed by the management device 61 may be performed by at least one of the hydraulic shovel 1 and the other work machine 70.
  • the control system 50 obtains shape information which is information indicating the shape of the construction target by imaging the construction target by at least two of the plurality of imaging devices 30 illustrated in FIG. 2. Then, the control system 50 obtains target construction information using the obtained shape information. When the hydraulic shovel 1 constructs a construction target, the control system 50 controls the work machine 2 so as to conform to the obtained target construction information.
  • FIG. 5 is a figure which shows an example of the construction site which the hydraulic shovel 1 which concerns on embodiment constructs.
  • the construction target OBP of the hydraulic shovel 1 is the ground.
  • the construction object OBP is at least a partial area of the construction site.
  • the construction which the hydraulic shovel 1 applies to the construction object OBP in the embodiment is an operation of scraping the topsoil by a predetermined depth ⁇ DP from the surface OBS of the construction object OBP as shown in FIG.
  • the portion where construction is performed is the construction execution portion OBF.
  • the construction execution part OBF may indicate a part where the construction is not necessary depending on the construction plan.
  • the construction execution part OBF is at least a part of the construction object OBP.
  • FIG. 6 is a diagram for describing shape information obtained by the control system of the working machine according to the embodiment.
  • the construction object OBP which is a portion that the hydraulic shovel 1 is about to construct, is in front of the hydraulic shovel 1.
  • Shape information is obtained from the construction object OBP.
  • the control system 50 causes at least a pair of imaging devices 30 to image the construction object OBP when generating shape information from the construction object OBP.
  • the detection processing device 51 causes the at least one pair of imaging devices 30 to execute the construction object OBP. Take an image.
  • the detection processing device 51 of the control system 50 performs image processing by the stereo method on the image of the construction object OBP captured by at least a pair of imaging devices 30, and obtains position information of the construction object OBP, in the embodiment, three-dimensional position information . Since the position information of the construction object OBP obtained by the detection processing device 51 is information in the coordinate system of the imaging device 30, it is converted into position information in the global coordinate system. Position information of the construction target in the global coordinate system is shape information. In the embodiment, the shape information is information including at least one position Pr (Xg, Yg, Zg) of the surface OBS of the construction object OBP in the global coordinate system. The position Pr (Xg, Yg, Zg) is a coordinate in the global coordinate system, and is three-dimensional position information.
  • FIG. 7 is a view showing a state in which the hydraulic shovel 1 is inclined with respect to the acting direction G of gravity.
  • FIG. 8 is a view showing an example of an image in which the object Oj is imaged by at least a pair of imaging devices 30 in a state where the hydraulic shovel 1 is inclined to the acting direction G of gravity.
  • the imaging device coordinate system tilts with respect to the acting direction G of gravity. In the image obtained in this state, the object Oj is inclined as shown in FIG. 8.
  • the control system 50 detects the posture of the hydraulic shovel 1 by the IMU 24 and obtains shape information using information on the detected posture of the hydraulic shovel 1.
  • FIG. 9 is a diagram for explaining a process example for the control system 50 according to the embodiment to obtain shape information.
  • FIG. 10 is a diagram showing an example of a data file of shape information obtained by the control system 50 according to the embodiment.
  • the position Ps (xs, ys, zs) of the construction object OBP obtained from the images captured by at least a pair of imaging devices 30 is the coordinates of the imaging device coordinate system (xs, ys, zs).
  • the detection processing device 51 determines the position Ps (xs, ys, zs) as the position Pg (xs, xs, ys) in the global coordinate system (Xg, Yg, Zg). Convert to ys, zs).
  • Position Pg (xs, ys, zs) is position Pr (Xg, Yg, Zg) of surface OBS of construction object OBP, ie, shape information.
  • the position Ps (xs, ys, zs) is converted from the imaging device coordinate system (xs, ys, zs) to the position Pm (xm, ym, zm) of the vehicle body coordinate system (Xm, Ym, Zm) according to equation (1) Be done.
  • the position Pm (xm, ym, zm) of the vehicle body coordinate system (Xm, Ym, Zm) is converted to the position Pg (xs, ys, zs) of the global coordinate system (Xg, Yg, Zg) by equation (2).
  • Ru. Pm R ⁇ Ps + T (1)
  • Pg Rimu. (Pm + Toff) + Tg (2)
  • R is a rotation matrix represented by equation (3)
  • T is a translation vector represented by the matrix of equation (4)
  • Rimu in equation (2) is a rotation matrix represented by equation (5)
  • Toff is a translation vector represented by the matrix in equation (6).
  • Toff represents the offset value of the distance from the origin of the vehicle body coordinate system to any one of the antennas 21 and 22.
  • Tg is a translation vector of either one of the antennas 21 and 22 represented by the matrix of equation (7).
  • the angle ⁇ , the angle ⁇ and the angle ⁇ in the rotation matrix R represent the inclination of the imaging device coordinate system with respect to the vehicle body coordinate system.
  • the angle ⁇ , the angle ⁇ , and the angle ⁇ are obtained in advance, for example, after the plurality of imaging devices 30 are attached to the hydraulic shovel 1, and stored in the storage unit of the detection processing device 51.
  • X 0 , y 0 , z 0 of the matrix T represent the distance between the origin of the imaging device coordinate system and the origin of the vehicle coordinate system.
  • x 0 , y 0 , z 0 are measured after the plurality of imaging devices 30 are attached to the hydraulic shovel 1, or are obtained in advance from design information of the hydraulic shovel 1, and the storage of the detection processing device 51 It is stored in the department.
  • the angle ⁇ r, the angle ⁇ p and the angle ⁇ d in the rotation matrix Rimu are a roll angle, a pitch angle and an azimuth angle of the hydraulic shovel 1.
  • the roll angle ⁇ r, the pitch angle ⁇ p, and the azimuth angle ⁇ d represent the attitude of the hydraulic shovel 1.
  • the roll angle ⁇ r and the pitch angle ⁇ p are obtained by the IMU 24 shown in FIG. 3 or from the detection value of the IMU 24 by the detection processing device 51.
  • the azimuth angle ⁇ d is determined by the GPS compass configured by the antennas 21 and 22 and the position detection device 23 shown in FIG. More specifically, the azimuth angle ⁇ d is determined by the position detection device 23 based on the relative positions of the two antennas 21 and 22.
  • the roll angle ⁇ r, the pitch angle ⁇ p, and the azimuth angle ⁇ d change as the posture of the hydraulic shovel 1 changes.
  • the yaw angle ⁇ y determined by the IMU 24 may be used instead of the azimuth (azimuth data) obtained by the GPS compass.
  • the roll angle ⁇ r, the pitch angle ⁇ p, and the azimuth angle ⁇ d are targets of at least a pair of imaging devices 30, for example, when the construction target of a construction site and a construction site after construction are detected. This is a value detected by.
  • the roll angle ⁇ r, the pitch angle ⁇ p and the yaw angle ⁇ y or the azimuth angle ⁇ d may be obtained by a device other than the IMU 24 or the position detection device 23, for example, a gyro or the like.
  • the matrix Toff x 1 , y 1 , z 1 represents the distance from the origin of the vehicle body coordinate system to the installation position of the antennas 21 and 22 shown in FIGS. 1 and 3.
  • x 1 , y 1 and z 1 are measured after the antennas 21 and 22 are attached to the hydraulic shovel 1 or are obtained in advance from design information of the hydraulic shovel 1 Is stored in
  • the matrix Tg x 2 , y 2 , z 2 represents the positions of the antennas 21 and 22 in the global coordinate system detected by the antennas 21 and 22 and the position detection device 23 shown in FIGS. 1 and 3.
  • the x 1 , y 1 and z 1 are changed as the position of the hydraulic shovel 1, more specifically, the positions of the antennas 21 and 22 change.
  • the detection processing device 51 performs global coordinates of the position Ps (xs, ys, zs) of the construction object OBP obtained from the images captured by at least a pair of imaging devices 30 using Equations (1) to (7). Convert to position Pg (xg, yg, zg) in the system. At this time, the detection processing device 51 acquires the roll angle ⁇ r and the pitch angle ⁇ p from the IMU 24, acquires the position and azimuth angle ⁇ d of the antennas 21 and 22 in the global coordinate system from the position detection device 23, and converts them into the aforementioned conversion. Use. As described above, the detection processing device 51 may use the yaw angle ⁇ y detected by the IMU 24 instead of the azimuth angle ⁇ d.
  • the detection processing device 51 sets the converted position Pg (xg, yg, zg) as the position Pr (Xg, Yg, Zg) of the surface OBS of the construction object OBP, that is, shape information.
  • position Pr of surface OBS of construction object OBP is shown as an example of shape information
  • shape information is not limited to this.
  • the shape information may be the position of the surface of the construction object OBP after construction and the position of the surface of the construction object OBP during construction.
  • the detection processing device 51 obtains the position Pr (Xg, Yg, Zg) of the surface OBS of the construction object OBP over the entire area of the construction object OBP captured by at least a pair of imaging devices 30, and outputs it.
  • the detection processing device 51 generates the data file EMD of the determined position Pr (Xg, Yg, Zg) as shown in FIG. 10 for each predetermined unit.
  • the data file EMD shown in FIG. 10 is a set of n (n is an integer of 1 or more) positions Pr (Xg, Yg, Zg).
  • the data file EMD also corresponds to the shape information in the embodiment.
  • the predetermined unit includes, for example, a range of a construction object OBP obtained by one imaging and a range of a predetermined construction object OBP.
  • the predetermined range of the installation target OBP may be a part of the range obtained by one imaging, or may be a range exceeding the range obtained by one imaging. In the latter case, the range obtained by multiple imaging is targeted.
  • the detection processing device 51 when the detection processing device 51 generates the data file EMD, the detection processing device 51 stores the data file in its own storage unit. Then, the detection processing device 51 generates target construction information using the position Pr of the data file EMD. In addition to this, the construction management device 57 also transmits the data file EMD generated by the detection processing device 51 to at least one of the management device 61, the portable terminal device 64 and the other work machine 70 shown in FIG. It may be sent to
  • FIG. 11 is a diagram showing an example of information transmitted by the construction management device 57 and including the data file EMD.
  • the information adding unit 51B of the detection processing device 51 shown in FIG. 3 adds time information TM for specifying shape information to the shape information, and outputs it.
  • the time information TM is information for specifying shape information based on the time.
  • the information adding unit 51B generates and outputs the work information LG including the time information TM and the data file EMD which is shape information.
  • the time information TM may be, for example, a time at which at least a pair of imaging devices 30 have imaged the construction object OBP, or may be a time at which the calculation unit 51A generates shape information, or the information adding unit 51B It may be the time when the work information LG is output, or it may be the time when a device outside the hydraulic shovel 1 such as the management device 61 and the portable terminal device 64 acquires the shape information. That is, in the time information TM, the external device of the hydraulic shovel 1 obtains the shape information from the time when the construction object OBP before construction, during construction or after construction is detected by at least a pair of imaging device 30 and detection processing device 51 It is information on at least one time that exists up to the current time.
  • the information adding unit 51B is provided in the device outside the hydraulic shovel 1, and the information adding unit 51B is an external device
  • the time information TM indicating the time of acquiring the shape information is added to the shape information.
  • the work information LG includes, in addition to the time information TM and the data file EMD, the target construction information TI, the imaging position PL, and the posture information SI of the hydraulic shovel 1.
  • the target construction information TI is generated from shape information included in the work information LG, that is, information of the data file EMD.
  • the imaging position PL is information indicating a place where at least a pair of imaging devices 30 images a construction object OBP before, during, or after construction.
  • the imaging position PL is obtained based on the position in the global coordinates of the antennas 21 and 22 detected by the position detection device 23 shown in FIG.
  • the posture information SI is information indicating the posture of the hydraulic shovel 1, and in the embodiment, is a roll angle ⁇ r, a pitch angle ⁇ p, and a yaw angle ⁇ y.
  • the roll angle ⁇ r, the yaw angle ⁇ y, and the yaw angle ⁇ y are detection values of the IMU 24, an azimuth angle ⁇ d detected by the position detection device 23 may be used instead of the yaw angle ⁇ y.
  • the work information LG may include an identification number.
  • the identification number is information indicating the position of at least a pair of imaging devices 30, and information for identifying the hydraulic excavator 1 having the imaging device 30 that has captured an object.
  • the identification number may be, for example, the IP address of the communication device 25. Further, as the identification numbers, at least the serial numbers of the pair of imaging devices and the vehicle number of the hydraulic shovel 1 are used, but the present invention is not limited thereto.
  • the information included in the work information LG is not limited to the information described above.
  • the work information LG may include an operator ID for identifying the operator of the hydraulic shovel 1.
  • the work information LG may not be generated by the information adding unit 51B of the detection processing device 51.
  • the information adding unit 51B may generate and output the work information LG including at least the time information TM and the data file EMD.
  • Information other than the time information TM and the data file EMD is given by, for example, the construction management device 57.
  • the construction management device 57 acquires the target construction information TI generated by the construction information generation device 52, and adds the target construction information TI to the operation information LG acquired from the information provision unit 51B.
  • the construction management device 57 acquires the identification number and the imaging position PL via the signal line 59, and adds the identification number and the imaging position PL to the operation information LG.
  • the construction management device 57 transmits the work information LG to at least one of the management device 61 and the portable terminal device 64 at predetermined timing, twice a day in the embodiment.
  • the detection processing device 51 when at least a pair of imaging devices 30 picks up an object, the detection processing device 51 generates and outputs work information LG including at least time information TM and data file EMD, and the hydraulic shovel via the communication device 25 Send to the outside of 1.
  • the work information LG transmitted to the outside of the hydraulic shovel 1 is acquired by the management device 61 or acquired by the mobile terminal device 64.
  • the imaging switch 32 shown in FIG. 3 when the imaging switch 32 shown in FIG. 3 is operated, at least one pair of imaging devices 30 images an object.
  • the arithmetic unit 51A of the detection processing device 51 performs image processing in a stereo system on the image captured by the imaging device 30, and generates shape information.
  • the information adding unit 51B of the detection processing device 51 outputs work information LG in which time information is added to the shape information.
  • the work information LG is transmitted to at least one of the management device 61 and the portable terminal device 64 via the construction management device 57 and the communication device 25 or via the communication device 25.
  • the detection processing device 51 causes at least a pair of imaging devices 30 to image an object at predetermined time intervals, for example, every 10 minutes.
  • the two-dimensional image captured by at least a pair of imaging devices 30 is stored in the storage unit of the detection processing device 51, and transmitted to the management device 61 via the communication device 25 when a certain amount of information is accumulated.
  • the two-dimensional image described above may be transmitted at the timing when the work information LG is transmitted to the management device 61, or may be transmitted to the management device 61 immediately after being imaged.
  • the detection processing device 51 recognizes that the plurality of imaging devices 30 are activated, that the signal line 59 is not broken, that the output of the IMU 24 is stable, and The detection processing device 51 permits three-dimensional measurement using the imaging device 30 on the condition that the positioning by GNSS is FIX (normal) (permission condition). If at least one permission condition is not satisfied, the detection processing device 51 does not permit three-dimensional measurement using the imaging device 30 even if the imaging switch 32 is operated.
  • the stable output of the IMU 24 means that the hydraulic shovel 1 is in a stationary state. By providing the above-described condition in the three-dimensional measurement by the imaging device 30, the decrease in the measurement accuracy of the object is suppressed.
  • the permission condition is an example for the control system 50 to permit three-dimensional measurement.
  • the control system 50 may use any one of the permission conditions or may not use the permission conditions.
  • FIG. 12 is a diagram showing an example in which the data file EMD is stored in the storage unit of the management device 61.
  • the work information LG transmitted from the hydraulic shovel 1 is stored in the storage unit of the management device 61.
  • the task information LG may be stored in the storage unit of the portable terminal device 64.
  • the time information TM and the data file EMD are stored in association with each other.
  • the data table TB is updated each time the management device 61 acquires new time information TM and data file EMD.
  • the information with the same number attached to the data file EMD indicates the shape information of the same place of the work site.
  • the management device 61 can generate information indicating the current status of the construction site (hereinafter referred to as current status information as appropriate) using the data file EMD included in the data table TB. In this case, if the numbers given to the data files EMD are the same, the current status information is generated using the latest data file EMD.
  • Whether or not it is the latest data file EMD is determined by the time information TM associated with the data file EMD. For example, when two data files EMD1 exist, the management device 61 compares time information TM corresponding to each data file EMD1, and generates status information using the newer data file EMD1. By doing this, the management device 61 can generate the latest status information.
  • the management device 61 outputs information on the current topography of the entire construction site of the hydraulic shovel 1, that is, current information, using the shape information to which the time information TM is added, that is, the data file EMD. For example, the management device 61 generates and outputs the current status information of the entire construction site of the hydraulic shovel 1 by collecting and combining the data files EMD to which the latest time information TM is attached over the entire construction site.
  • the current condition information of the entire construction site is displayed on the display device 67 of the management facility 60 or displayed on the mobile terminal device 64, for example.
  • the current condition information of the entire construction site may be generated using the construction result of the hydraulic shovel 1 or may be generated using the construction result of another working machine 70. Moreover, the present condition information of the whole construction site may be generated using a result of construction not using the hydraulic shovel 1 and the other working machine 70, for example, a result of construction by a worker using a scoop or the like.
  • the current status information of the entire construction site includes at least one of a result of construction by the hydraulic shovel 1, a result of construction by another working machine 70, and a construction result not by the hydraulic shovel 1 and the other working machine 70. It may be generated using The present condition information of the entire construction site may be generated and output by at least one of the construction management device 57 of the hydraulic shovel and the portable terminal device 64.
  • FIG. 13 is a diagram showing the relationship between the construction object OBPt of the entire construction site and the range corresponding to the data file EMD.
  • FIG. 13 shows an example where the range corresponding to the latest data files EMD1, EMD2,..., EMDm is displayed in the construction object OBPt of the entire construction site.
  • the ranges corresponding to the data files EMD1, EMD2, and EMDm are ranges specified by three-dimensional position information included in the data files EMD1, EMD2,..., EMDm.
  • the management device 61 For example, the management device 61 generates information in which ranges corresponding to the data files EMD1, EMD2, and EMDm are superimposed on the construction target OBPt of the entire construction site. Then, the management device 61 causes the display device 67 in the management facility 60 to display the generated information, for example. In this way, since the latest data files EMD1, EMD2,..., EMDm are displayed in the construction object OBPt, the current state of the construction site is indicated. The management device 61 can obtain the current status of the construction site by combining the data files EMD that can be regarded as the same or the same time information TM.
  • time information TM can be regarded as identical means that the data file EMD corresponding to the time information TM within a predetermined time range is treated as one obtained at the same time. For example, in the case where the time range from 9:00 am to 17:00 in the evening is a predetermined time range, data files EMD having time information TM within the range of this time on a certain day are obtained at the same time It is treated as if it was obtained at a different time if the day of the week changes
  • FIG. 14 shows changes in the construction object OBPt of the entire construction site in time series.
  • the region OBP f1 is applied to the construction object OBPt.
  • the shape information corresponding to the area OBPf1, ie, the data file EMD corresponding to the area OBPf1 is obtained
  • the area OBPf1 based on the latest data file EMD is together with the area OBPf2 and the area OBPf3 before the construction It is superimposed on construction object OBPt in.
  • the management device 61 can display the current status information by frame advance. By doing this, the manager can easily understand the progress of the daily construction.
  • the portable terminal device 64 may access the management device 61 via the communication line NTW to acquire current status information, and may display the current status information on the screen. In this way, even a worker at a construction site not located at the management facility 60 can easily understand the progress of the daily construction.
  • FIG.15 and FIG.16 is a figure which shows the example which calculates
  • the amount of soil or the amount of embankment removed of the construction object OBP (in the embodiment, the amount of soil is the volume) can get.
  • the hydraulic shovel 1 not only the hydraulic shovel 1 but also the amount of soil removed by the other work machine 70 or the amount of embankment may be determined based on the shape information obtained at different times.
  • the processing of generating the current status information using the data file EMD and the time information TM, and calculating the amount of embankment or removed soil is performed by the management device 61, the portable terminal device 64, and the construction management device 57 of the hydraulic shovel 1. Any of these may be performed. Further, any of the management device 61, the portable terminal device 64, and the construction management device 57 of the hydraulic shovel 1 may execute the processing described above and transmit the result to another device via the communication line NTW. The results of the above-described processing may be stored not only in communication but also in the storage device and delivered to another device. Next, target construction information will be described.
  • FIG.17, FIG.18 and FIG.19 is a figure for demonstrating the target construction information which the control system 50 of the working machine which concerns on embodiment produces
  • the construction information generation device 52 shown in FIG. 3 uses the shape information generated by the detection processing device 51 to target construction information, that is, position information of a shape that becomes a target when the construction object OBP is constructed.
  • the construction information generation device 52 changes the position of the surface OBS by processing the information indicating the position of the surface OBS of the construction target OBP included in the shape information, as shown in FIGS. 11 and 12. To obtain target construction information.
  • the example shown in FIG. 17 shows a construction example in which the range of the distance ⁇ DPt is removed from the surface OBS of the construction object OBP.
  • the construction information generation device 52 obtains a position Pta (Xta, Yta, Zta) in which the position Pra (Xga, Yga, Zga) of the surface OBS of the construction object OBP is reduced by the distance ⁇ DPt.
  • the construction information generation device 52 moves the position Pra (Xga, Yga, Zga) to a position lower by a distance ⁇ DPt by subtracting Zga of the position Pra (Xga, Yga, Zga) by ⁇ DPt.
  • the position Pta (Xta, Yta, Zta) is the position Pta (Xga, Yga, Zga- ⁇ DPt).
  • the position Pta (Xta, Yta, Zta) obtained in this manner is the target construction information.
  • the construction information generation device 52 acquires shape information, in the embodiment, the data file EMD from the detection processing device 51 shown in FIG. 3, for all the positions Pr (Xg, Yg, Zg) included in the data file EMD. By subtracting ⁇ DPt from the value of Zg, target construction information is generated.
  • the example shown in FIG. 18 shows a construction example in which an object such as soil, sand or rock is placed in the range of the distance ⁇ ADt from the surface OBS of the construction object OBP.
  • the construction information generation device 52 obtains a position Ptb (Xtb, Ytb, Ztb) in which the position Prb (Xgb, Ygb, Zgb) of the surface OBS of the construction object OBP is increased by the distance ⁇ ADt.
  • the construction information generation device 52 moves the position Prb (Xgb, Ygb, Zgb) to a position higher by a distance ⁇ ADt by adding ⁇ ADt to Zg of the position Prb (Xgb, Ygb, Zgb).
  • the position Ptb (Xtb, Ytb, Ztb) becomes the position Ptb (Xgb, Ygb, Zgb + ⁇ ADt).
  • the position Ptb (Xtb, Ytb, Ztb) obtained in this manner is the target construction information.
  • the construction information generation device 52 acquires shape information, in the embodiment, the data file EMD from the detection processing device 51 shown in FIG. 3, for all the positions Pr (Xg, Yg, Zg) included in the data file EMD.
  • the target construction information is generated by adding ⁇ ADt to the value of Zg.
  • the construction shown in FIGS. 17 and 18 is a construction in which the surface OBS of the construction object OBP is changed (offset) to a certain depth ( ⁇ Dpt) or a certain height ( ⁇ ADt).
  • the control system 50 may be applied to a construction in which the surface OBS of the construction object OBP is provided with a slope having a predetermined slope. Such construction is performed, for example, when construction is carried out so that the topography after construction becomes a well drained topography.
  • the construction information generating device 52 subtracts a predetermined distance on the Zg coordinate of the position of the surface OBS indicated by the shape information In addition, target construction information in which a predetermined gradient is provided to the surface OBS is generated. Also in this case, the construction information generation device 52 changes the position of the surface OBS by processing the information indicating the position of the surface OBS of the construction object OBP included in the shape information, and obtains the target construction information. .
  • the construction targets OBPa and OBPb captured by at least a pair of imaging devices 30 may be part of the construction target OBPt of the entire construction site.
  • Ranges OBPta and OBPtb, in which positions Pta and Ptb obtained from the positions Pra and Prb on the surface of the construction object OBPa and OBPb, are used as target construction information, are also partial information of the entire construction site.
  • the construction management device 57 can obtain the amount of soil to be removed from the construction object OBP or the amount of soil to be accumulated in the construction object OBP using the difference between the shape information and the target construction information obtained from the shape information .
  • the construction management device 57 acquires shape information from the hydraulic shovel 1 via the communication device 25.
  • the construction management device 57 obtains the amount of soil to be removed from the construction object OBP or the amount of soil to be accumulated in the construction object OBP, using the difference between the acquired shape information and the target construction information obtained from this shape information.
  • the construction management device 57 acquires shape information from the hydraulic shovel 1 and generates target construction information.
  • the construction management device 57 may obtain the amount of soil to be removed from the construction object OBP or the amount of soil to be accumulated in the construction object OBP by acquiring the shape information and the target construction information from the hydraulic shovel 1.
  • the construction information generation device 52 After generating the target construction information, the construction information generation device 52 stores the target construction information in its own storage unit.
  • the target construction information stored in the storage unit of the construction information generation device 52 is used as a target value when the work implement control device 56 executes work implement control.
  • the work implement control device 56 controls the work implement 2 of the hydraulic shovel 1 such that the work implement 2, more specifically, the cutting edge 8 BT of the bucket 8, conforms to the target construction information. That is, the work implement control device 56 moves the blade tip 8BT of the bucket 8 along the target shape represented by the target construction information when the construction target is constructed.
  • the construction management device 57 transmits the target construction information generated by the construction information generation device 52 from the communication device 25 to at least one of the management device 61, the portable terminal device 64 and the other work machine 70 shown in FIG. It is also good. Next, processing examples of the shape measurement method and the construction management method according to the embodiment will be described.
  • FIG. 20 is a flowchart illustrating an example of processing of the shape measurement method and the construction management method according to the embodiment.
  • the hydraulic shovel 1 having the control system 50 executes the shape measurement method according to the embodiment. More specifically, the control system 50 obtains shape information of the construction object OBP, and generates target construction information from the obtained shape information. Then, the control system 50 controls the work machine 2 in accordance with the obtained target construction information.
  • the construction management system 100 in the embodiment, the management device 61 executes the construction management method according to the embodiment.
  • the imaging switch 32 shown in FIG. 3 When the imaging switch 32 shown in FIG. 3 is operated by the operator, the imaging switch 32 causes the control system 50 to input an imaging command for causing the imaging device 30 to image the construction object OBP to the detection processing device 51.
  • the detection processing device 51 causes at least a pair of imaging devices 30 to image the construction target OBP in step S101.
  • the detection processing device 51 performs stereo image processing on the images captured by at least a pair of imaging devices 30 to obtain the position (three-dimensional position) of the construction target OBP, and the position of the construction target OBP obtained
  • the shape information of the construction object OBP is generated using.
  • the detection processing device 51 stores the generated target construction information in at least one of its own storage unit and the storage unit 57M of the construction management device 57.
  • the method of generating the shape information is as described above.
  • step S103 the construction information generation device 52 acquires shape information from the detection processing device 51, and generates target construction information.
  • the construction information generation device 52 stores the generated target construction information in at least one of its own storage unit and the storage unit 57M of the construction management device 57.
  • the method of generating the target construction information is as described above.
  • the construction management device 57 shown in FIG. 3 performs at least the management information 61 of the work information LG including the shape information obtained in step S102 and the target construction information obtained in step S102. It may be sent to one side.
  • step S104 the hydraulic shovel 1 constructs a construction target OBP.
  • the work implement control device 56 executes work implement control. That is, work implement control device 56 moves blade tip 8BT of bucket 8 along the target shape at the time of construction of construction object OBP represented by the target construction information.
  • the hydraulic shovel 1 executes work machine control based on the target construction information and performs construction.
  • a worker sometimes digs by hand using a tool such as a scoop.
  • the worker may check the target construction information transmitted from the hydraulic shovel 1 and acquired by the portable terminal device 64 to perform construction such as excavation.
  • step S105 the detection processing device 51 causes at least the pair of imaging devices 30 to image the construction object OBP after construction, and generates shape information using the obtained image.
  • step S106 the construction management device 57 transmits the post-construction shape information generated by the detection processing device 51 to the management device 61 via the communication device 25 shown in FIG.
  • the construction management device 57 may transmit the shape information after construction to the portable terminal device 64 shown in FIG. 3 via the communication device 25.
  • the management device 61 that has acquired the post-construction shape information may transmit the post-construction shape information to the portable terminal device 64 shown in FIG. 3 via the communication device 62.
  • steps S106 and S107 may not be performed.
  • At least one of the management device 61 and the portable terminal device 64 transmits the shape information before and after the construction for the predetermined enforcement site transmitted from the control system 50. By displaying on at least one screen of the display device 67 and the display device of the mobile terminal device 64, the progress of the construction can be displayed. Further, at least one of the management device 61 and the portable terminal device 64 arranges the shape information of the construction site in time series and displays it on at least one screen of the display device 67 and the display device of the portable terminal device 64 By displaying or displaying the numerical value of the coordinates of the position Pr, the progress of the daily construction can be displayed in an easy-to-understand manner.
  • the construction management device 57 of the hydraulic shovel 1 can also display the shape information of the construction site on the screen 58D of the display device 58 in time series if the shape information of the construction site of time series is obtained from the management device 61 it can. That is, at least one of the management device 61, the portable terminal device 64, the construction management device, and the construction management device 57 uses a plurality of the shape information to which time information is attached, and information on the topography of the entire construction site of the working machine Are displayed in time series.
  • the construction management device 57 may transmit target construction information to at least one of the management device 61 and the portable terminal device 64 via the communication device 25 in addition to the shape information after construction.
  • the management device 61 uses the communication device 62 to transmit the shape information and the target construction information after construction. It may be sent to 64.
  • at least one of the management device 61 and the portable terminal device 64 can display the shape information after construction and the target construction information side by side on the screen of the display device 67 or display them in an overlapping manner. As it is possible, the administrator etc. can confirm the progress of construction quickly and easily.
  • ⁇ Modification of method of detecting object> A modification of a method in which at least a pair of imaging devices 30 included in the hydraulic shovel 1 detect an object will be described. At least a pair of imaging devices 30 are attached to the swing body 3 of the hydraulic shovel 1.
  • the detection processing device 51 can obtain the shape information of the entire periphery of the hydraulic shovel 1 by the at least one pair of imaging devices 30 imaging an object while rotating the revolving structure 3.
  • the detection processing device 51 may stop turning of the turning body 3 at the timing of imaging. In this case, the swing body 3 swings intermittently. In the case where at least a pair of imaging devices 30 pick up an object while continuously turning the revolving unit 3 as follows.
  • the detection processing device 51 may obtain shape information by performing image processing in a stereo system based on the image acquired during the turning of the swing body 3.
  • the detection processing device 51 receives a signal indicating a change in pilot pressure or an electrical signal output along with the operation of the operating device for rotating the rotating body 3 in the operating device 35, and the rotating body The timing of the turning start of 3 and the timing of the turning stop are determined, and at least a pair of imaging devices 30 perform imaging.
  • the detection processing device 51 When three-dimensional measurement is performed by the imaging device 30 imaging an object while the revolving unit 3 is pivoting, the detection processing device 51 generates time information TM each time the shutter of the imaging device 30 is released, Correspond with the captured image. Further, the detection processing device 51 may set the time when the turning of the swing body 3 is started or the time when the turning is stopped as the time information TM.
  • the control system 50 associates the shape information of the object imaged by at least a pair of imaging devices 30 with the time information at which the shape information was obtained, so combining the shape information on the basis of the time information You can get the situation.
  • a work machine such as the hydraulic shovel 1 is often constructed on a complicated terrain, and in many cases, it is largely inclined with respect to an object to be imaged by the imaging device 30.
  • the imaging device 30 When an object is imaged at the same place at different timings, it is also assumed that the slope of the ground has changed due to construction or the like at that place.
  • the pair of imaging devices 30 are securely attached to the hydraulic shovel 1 so that the relative positional relationship does not shift while the hydraulic shovel 1 is in operation. It is difficult to change the attitude of the imaging device 30.
  • the control system 50 obtains shape information using the posture of the hydraulic shovel.
  • the control system 50 uses the detection value of the IMU 24 and the orientation of the hydraulic shovel obtained from the position of the hydraulic shovel 1 detected by the position detection device 23 to obtain a three-dimensional position obtained by the imaging device 30. Transform the information into three dimensional position information in the global coordinate system.
  • the three-dimensional position information after conversion is shape information.
  • the control system 50 can obtain shape information of the work site, that is, three-dimensional position information of the work site, by imaging the work site by the imaging device 30. Since the control system 50 is provided in the hydraulic shovel 1, it can be moved to various places on the work site to obtain shape information. By combining a plurality of pieces of shape information obtained in this manner based on time information, it becomes possible to grasp changes in the work site situation and the work site situation. As a result, the management device 61 manages the construction situation using the detection result obtained by the hydraulic shovel 1 which is a working machine having at least a pair of imaging devices 30 and detection processing devices 51 which are detection devices for detecting the position of an object. can do.
  • the management apparatus 61 can obtain the construction state of the construction site within the range that can be regarded as the same time by extracting and combining a plurality of different shape information obtained within the range that can be regarded as the same time. For example, the progress of the construction can be grasped by obtaining a plurality of construction states of the construction site within a range that can be regarded as the same time. As described above, the management device 61 can manage the construction situation of the construction site where the working machine having the imaging device 30 and the detection processing device 51 and the working machine having no imaging device 30 and the detection processing device 51 coexist.
  • the hydraulic shovel 1 can generate shape information not only for its own construction target but also for construction targets of other working machines. It will be possible to manage the progress of construction and the management of sales volume at the whole site.
  • the control system 50 detects a construction target using at least a pair of imaging devices 30 provided in the hydraulic shovel 1, obtains shape information of the construction target from at least a pair of images as detection results, and acquires shape information obtained When constructing a target, shape information which is information of a target shape is obtained. Therefore, the control system 50 eliminates the need for the operator to survey the construction object using a survey instrument or the like at the construction site and obtain the shape of the object, and also makes the target based on the acquired construction object It is not necessary to generate the desired shape, that is, to design the information on the desired shape. As a result, the control system 50 can reduce the time and effort required to survey the current topography of the construction target and the time and effort required to obtain the target shape during construction of the construction target.
  • the control system 50 can generate target construction information as long as it is a place where the imaging apparatus 30 can pick up an area where it is difficult for a surveyor to use a surveying instrument etc. Construction such as excavation by the hand of the operator can be realized. Moreover, since the survey of the construction target can be performed by the control system 50, the burden on the worker who surveys at the construction site is reduced.
  • a place indicated by the target construction information that is, It may be necessary to move the work machine to the place where
  • the hydraulic shovel 1 having the control system 50 has at least a pair of imaging devices 30, images a construction target to be constructed by this at least a pair of imaging devices 30, and generates target construction information based on the imaging result.
  • the hydraulic shovel 1 functions as a surveying instrument and also functions as a design tool. That is, since the target construction information of the construction target can be generated at the construction site, it is not necessary to move to the construction site. As a result, the movement time and the design period can be shortened, thereby improving the work efficiency.
  • the control system of the hydraulic shovel 1 generates the shape information, but the shape information may be generated by the management device 61.
  • the information indicating the posture of the hydraulic shovel 1 and the position and other shape information in the global coordinate system of the hydraulic shovel 1 are obtained
  • the information necessary for the communication is transmitted to the management device 61 via the communication device 25.
  • the control system 50 Since the working machine such as the hydraulic shovel 1 moves at the construction site, the inclination of the site imaged by at least a pair of imaging devices 30 varies, and the inclination of the imaging site may change with the passage of time due to construction . Even in such a construction site, the control system 50 generates shape information using information representing the attitude of the hydraulic shovel 1, in the embodiment, the roll angle ⁇ r, the pitch angle ⁇ p, and the azimuth angle ⁇ d, so appropriate construction management Can be realized.
  • the control system 50 generates shape information using the roll angle ⁇ r, the pitch angle ⁇ p, and the azimuth angle ⁇ d representing the attitude of the hydraulic shovel 1.
  • the pair of imaging devices 30 may be supported by a mechanism in which the postures of the both are constant while maintaining the relative positional relationship of 30. In this case, for example, the pair of imaging devices 30 is supported by a mechanism that keeps the baseline of the pair of imaging devices 30 always horizontal.
  • the control system 50 generates shape information for the range to be constructed by the hydraulic shovel 1 having the control system 50 and the working machine without the control system 50 and the range after the construction.
  • the target for which 50 generates shape information is not limited to these.
  • the control system 50 can also generate shape information of a range constructed by a worker who performs work such as excavation by a scoop or the like at a construction site, or a range to be constructed from this.
  • the construction management system 100 having the control system 50 and the control system 50 can manage the construction status of the entire construction site.
  • the control system 50 can also obtain the amount of soil at which the operator has excavated or embanked with a scoop or the like from the difference in shape information before and after construction.
  • the control system 50 is provided in the hydraulic shovel 1 which is a working machine, but a system for generating shape information and generating target construction information may be provided in a survey vehicle.
  • a system for generating shape information and generating target construction information may be provided in a survey vehicle.
  • at least a pair of imaging devices 30 and a detection processing device 51 are provided in a surveying vehicle.
  • target construction information is also generated in addition to the shape information
  • a construction information generating device 52 is provided in a surveying vehicle.
  • the surveying vehicle has the communication device 25 capable of communicating with at least one of the work machine working on the construction site, the management device 61, and the portable terminal device 64.
  • the image processing in the stereo system may be performed outside the hydraulic shovel 1, for example, at least one of the management device 61 of the management facility 60 and the portable terminal device 64.
  • a pair of images of an object captured by at least one pair of imaging devices 30 is transmitted to at least one of the management device 61 and the portable terminal device 64 via the communication device 25.
  • At least one of the devices 64 performs stereo image processing on the image of interest.
  • the outside of the hydraulic shovel 1 for example, at least one of the management device 61 of the management facility 60 and the portable terminal device 64 may generate the shape information.
  • the conversion using the roll angle ⁇ r, the pitch angle ⁇ p, and the azimuth angle ⁇ d representing the posture of the hydraulic shovel 1 is performed outside the hydraulic shovel 1, for example, at least one of the management device 61 of the management facility 60 and the portable terminal device 64.
  • information obtained by performing stereo image processing on a pair of images of an object captured by at least a pair of imaging devices 30 is transmitted via the communication device 25 together with the roll angle ⁇ r, the pitch angle ⁇ p, and the azimuth angle ⁇ d. It is transmitted to the outside of the hydraulic shovel 1, for example, at least one of the management device 61 of the management facility 60 and the portable terminal device 64.
  • the position Ps of the construction object OBP obtained from the images captured by at least a pair of imaging devices 30 is determined, and then converted to the position Pg of the global coordinate system, and the inclination by the posture of the hydraulic shovel May be corrected.
  • the control system 50 prohibits imaging by the imaging device 30 or the detection processing device 51 has a shape Control may be performed to prevent the generation of information.
  • the hydraulic shovel 1 may transmit the shape information to the other work machine 70, and the other work machine 70 may generate the target construction information.
  • the work machine is not limited to a hydraulic shovel as long as the construction object can be constructed, for example, excavated and transported, and may be, for example, a work machine such as a wheel loader and a bulldozer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Coins (AREA)
  • Forging (AREA)

Abstract

形状計測システムは、作業機械に取り付けられ、対象を検出して、前記対象の情報を出力する対象検出部と、前記対象検出部によって検出された前記対象の情報を用いて、前記対象の三次元形状を表す形状情報を出力する形状検出部と、前記形状情報に、前記形状情報を特定するための時刻情報を付けて出力する情報付与部と、を含む。

Description

形状計測システム及び形状計測方法
 本発明は、形状計測システム及び形状計測方法に関する。
 撮像装置を有する作業機械がある。特許文献1には、記憶部に記憶された施工計画データと、ステレオカメラの位置情報に基づき施工計画画像データを作成し、施工計画画像データとステレオカメラで撮像された現況画像データとを重合わせ、重合わせた合成画像を三次元表示装置に三次元表示させる技術が記載されている。
特開2013-036243号公報
 対象の位置を検出する検出装置を作業機械に搭載して施工現場を計測し、計測結果を施工状況の管理等に用いる場合、異なるタイミングで得られた計測結果を用いたり、作業機械の姿勢が大きく変化した状態で得られた計測結果を用いたりすることがある。また、施工現場は、施工にともなう地形の変化等が生じ、検出装置で検出する場合、仮に同じ場所であっても、計測するタイミングが異なれば、地面の傾斜が異なる場合もある。このように、検出装置を有する作業機械が様々な状況で得た計測結果を用いて施工状況を管理することは、特許文献1には記載も示唆もなく、改善の余地がある。
 本発明は、対象の位置を検出する検出装置を有する作業機械が得た検出結果を用いて施工状況を管理することを目的とする。
 本発明は、作業機械に取り付けられ、対象を検出して、前記対象の情報を出力する対象検出部と、前記対象検出部によって検出された前記対象の情報を用いて、前記対象の三次元形状を表す形状情報を出力する形状検出部と、前記形状情報に、前記形状情報を特定するための時刻情報を付与する情報付与部と、を含む、形状計測システムである。
 前記時刻情報は、前記対象が前記対象検出部によって検出された時刻から、出力された前記形状情報を前記作業機械の外部の装置が取得した時刻までの間に存在する少なくとも1つの時刻の情報を含むことが好ましい。
 前記情報付与部は、前記対象検出部の位置を示す情報及び前記対象検出部を識別するための情報をさらに出力することが好ましい。
 前形状検出部及び前記情報付与部は、前記作業機械に設けられることが好ましい。
 前記作業機械は、前記作業機械の姿勢を出力する姿勢検出部を有し、前記形状検出部及び前記対象検出部は前記作業機械に取り付けられて、前記姿勢検出部によって検出された、前記対象検出部が前記対象を検出したときの前記作業機械の姿勢を用いて前記形状情報を求めることが好ましい。
 前記作業機械は、前記作業機械の方位を検出する位置検出部を有し、前記形状検出部は、さらに前記位置検出装置によって検出された、前記形状検出部が前記対象を検出したときの前記作業機械の方位を用いて前記形状情報を求めることが好ましい。
 前記時刻情報が付された前記形状情報を用いて、前記作業機械の施工現場全体の現状の地形の情報を出力することが好ましい。
 前記時刻情報が付された前記形状情報を複数用いて、前記作業機械の施工現場全体の地形の情報を時系列に表示する表示装置を有することが好ましい。
 本発明は、作業機械に取り付けられ、対象を検出して、前記対象の情報を出力する対象検出部と、前記対象検出部によって検出された前記対象の情報を用いて、前記対象の三次元形状を表す形状情報を出力する形状検出部と、前記作業機械の姿勢を出力する姿勢検出部と、を含み、前記形状検出部は、前記姿勢検出部によって検出された、前記形状検出部が前記対象を検出したときの前記作業機械の姿勢を用いて前記形状情報を求める、形状計測システムである。
 前記作業機械は、前記作業機械の方位を検出する位置検出部を有し、前記形状検出部は、さらに前記位置検出装置によって検出された、前記形状検出部が前記対象を検出したときの前記作業機械の方位を用いて前記形状情報を求めることが好ましい。
 前記形状検出部は、前記作業機械に設けられることが好ましい。
 本発明は、作業機械の所定の位置から対象を検出し、検出された前記対象の情報及び前記対象が検出されたときの前記作業機械の姿勢を用いて、検出された前記対象の三次元形状を表す形状情報を得る、形状計測方法である。
 得られた前記形状情報に、前記形状情報を特定するための時刻情報を付けて出力することが好ましい。
 本発明は、対象の位置を検出する検出装置を有する作業機械が得た検出結果を用いて施工状況を管理することができる。
図1は、実施形態に係る撮像装置の制御システムを備えた油圧ショベル1を示す斜視図である。 図2は、実施形態に係る油圧ショベルの運転席付近を斜視図である。 図3は、実施形態に係る作業機械の制御システム及び施工管理システムを示す図である。 図4は、油圧ショベルが有する各種の機器類及び管理装置のハードウェア構成例を示す図である。 図5は、実施形態に係る油圧ショベルが施工する施工現場の一例を示す図である。 図6は、実施形態に係る作業機械の制御システムが求める形状情報について説明するための図である。 図7は、油圧ショベルが重力の作用方向に対して傾斜している状態を示す図である。 図8は、油圧ショベルが重力の作用方向に対して傾斜している状態で撮像された画像の例を示す図である。 図9は、実施形態に係る制御システムが形状情報を求めるための処理例を説明するための図である。 図10は、実施形態に係る制御システムが求めた形状情報のデータファイルの一例を示す図である。 図11は、施工管理装置によって送信される、データファイルを含む情報の一例を示す図である。 図12は、データファイルが管理装置の記憶部に記憶される一例を示す図である。 図13は、施工現場全体の施工対象とデータファイルEMDに対応した範囲との関係を示す図である。 図14は、施工現場全体の施工対象の変化を時系列に並べた図である。 図15は、異なる時刻に得られた形状情報の差分から、除去された土の量又は盛土の量を求める例を示す図である。 図16は、異なる時刻に得られた形状情報の差分から、除去された土の量又は盛土の量を求める例を示す図である。 図17は、実施形態に係る作業機械の制御システムが生成する目標施工情報を説明するための図である。 図18は、実施形態に係る作業機械の制御システムが生成する目標施工情報を説明するための図である。 図19は、実施形態に係る作業機械の制御システムが生成する目標施工情報を説明するための図である。 図20は、実施形態に係る形状計測方法及び形状計測方法及び施工管理方法の処理例を示すフローチャートである。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。
<油圧ショベルの全体構成>
 図1は、実施形態に係る撮像装置の制御システムを備えた油圧ショベル1を示す斜視図である。図2は、実施形態に係る油圧ショベル1の運転席付近を斜視図である。作業機械である油圧ショベル1は、車体1B及び作業機2を有する。車体1Bは、旋回体3、運転室4及び走行体5を有する。旋回体3は、旋回中心軸Zrを中心として走行体5に旋回可能に取り付けられている。旋回体3は、油圧ポンプ及びエンジン等の装置を収容している。
 旋回体3は、作業機2が取り付けられて旋回する。旋回体3の上部には手すり9が取り付けられている。手すり9には、アンテナ21,22が取り付けられる。アンテナ21,22は、RTK-GNSS(Real Time Kinematic - Global Navigation Satellite Systems、GNSSは全地球航法衛星システムをいう)用のアンテナである。アンテナ21,22は、車体座標系(Xm,Ym,Zm)のYm軸の方向に沿って、一定距離だけ離れて配置されている。アンテナ21,22は、GNSS電波を受信し、受信したGNSS電波に応じた信号を出力する。アンテナ21,22は、GPS(Global Positioning System)用のアンテナであってもよい。
 運転室4は旋回体3の前部に載置されている。運転室4の屋根には、通信用のアンテナ25Aが取り付けられている。走行体5は、履帯5a,5bを有している。履帯5a,5bが回転することにより油圧ショベル1が走行する。
 作業機2は、車体1Bの前部に取り付けられており、ブーム6、アーム7、作業具としてのバケット8、ブームシリンダ10、アームシリンダ11及びバケットシリンダ12を有する。実施形態において、車体1Bの前方は、図2に示される運転席4Sの背もたれ4SSから操作装置35に向かう方向側である。車体1Bの後方は、操作装置35から運転席4Sの背もたれ4SSに向かう方向側である。車体1Bの前部は、車体1Bの前方側の部分であり、車体1BのカウンタウエイトWTとは反対側の部分である。操作装置35は、作業機2及び旋回体3を操作するための装置であり、右側レバー35R及び左側レバー35Lを有する。
 ブーム6の基端部は、ブームピン13を介して車体1Bの前部に回動可能に取り付けられている。すなわち、ブームピン13は、ブーム6の旋回体3に対する回動中心に相当する。アーム7の基端部は、アームピン14を介してブーム6の先端部に回動可能に取り付けられている。すなわち、アームピン14は、アーム7のブーム6に対する回動中心に相当する。アーム7の先端部には、バケットピン15を介してバケット8が回動可能に取り付けられている。すなわち、バケットピン15は、バケット8のアーム7に対する回動中心に相当する。
 図1に示されるブームシリンダ10、アームシリンダ11及びバケットシリンダ12は、それぞれ油圧によって駆動される油圧シリンダである。ブームシリンダ10の基端部は、ブームシリンダフートピン10aを介して旋回体3に回動可能に取り付けられている。ブームシリンダ10の先端部は、ブームシリンダトップピン10bを介してブーム6に回動可能に取り付けられている。ブームシリンダ10は、油圧によって伸縮することによって、ブーム6を駆動する。
 アームシリンダ11の基端部は、アームシリンダフートピン11aを介してブーム6に回動可能に取り付けられている。アームシリンダ11の先端部は、アームシリンダトップピン11bを介してアーム7に回動可能に取り付けられている。アームシリンダ11は、油圧によって伸縮することによって、アーム7を駆動する。
 バケットシリンダ12の基端部は、バケットシリンダフートピン12aを介してアーム7に回動可能に取り付けられている。バケットシリンダ12の先端部は、バケットシリンダトップピン12bを介して第1リンク部材47の一端及び第2リンク部材48の一端に回動可能に取り付けられている。第1リンク部材47の他端は、第1リンクピン47aを介してアーム7の先端部に回動可能に取り付けられている。第2リンク部材48の他端は、第2リンクピン48aを介してバケット8に回動可能に取り付けられている。バケットシリンダ12は、油圧によって伸縮することによって、バケット8を駆動する。
 バケット8は、複数の刃8Bを有する。複数の刃8Bは、バケット8の幅方向に沿って一列に並んでいる。刃8Bの先端は、刃先8BTである。バケット8は、作業具の一例である。作業具は、バケット8に限定されない。作業具は、例えば、単数の刃を有するチルトバケットであってもよいし、法面バケット又は削岩用のチップを備えた削岩用のアタッチメントであってもよいし、これら以外であってもよい。
 旋回体3は、位置検出装置23と、姿勢検出装置の一例であるIMU(Inertial Measurement Unit:慣性計測装置)24とを有する。位置検出装置23は、アンテナ21,22からの信号が入力される。位置検出装置23は、アンテナ21,22から取得した信号を用いて、グローバル座標系(Xg,Yg,Zg)におけるアンテナ21,22の現在位置及び旋回体3の方位を検出して、出力する。旋回体3の方位は、グローバル座標系における旋回体3の向きを表す。旋回体3の向きは、例えば、グローバル座標系のZg軸周りにおける旋回体3の前後方向の向きで表すことができる。方位角は、旋回体3の前後方向における基準軸の、グローバル座標系のZg軸周りにおける回転角である。方位角によって旋回体3の方位が表される。実施形態において、位置検出装置23は、2個のアンテナ21,22の相対位置から方位角を算出する。
<撮像装置>
 図2に示されるように、油圧ショベル1は、運転室4内に複数の撮像装置30a,30b,30c,30dを有する。複数の撮像装置30a,30b,30c,30dは、対象の形状を検出する検出装置の一例である。以下において、複数の撮像装置30a,30b,30c,30dを区別しない場合は適宜、撮像装置30と称する。複数の撮像装置30のうち撮像装置30a及び撮像装置30cは、作業機2側に配置される。撮像装置30の種類は限定されないが、実施形態では、例えば、CCD(Couple Charged Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを備えた撮像装置が用いられる。
 図2に示されるように、撮像装置30aと撮像装置30bとは所定の間隔をおいて同じ方向又は異なる方向を向いて運転室4内に配置される。撮像装置30cと撮像装置30dとは所定の間隔をおいて同じ方向又は異なる方向を向いて運転室4内に配置される。複数の撮像装置30a,30b,30c,30dは、2個が組み合わされてステレオカメラを構成する。実施形態では、撮像装置30a,30bの組合せのステレオカメラ、及び撮像装置30c,30dの組合せのステレオカメラが構成される。実施形態において、撮像装置30a及び撮像装置30bは上方を向いており、撮像装置30c及び撮像装置30dは下方を向いている。少なくとも撮像装置30a及び撮像装置30cは、油圧ショベル1、実施形態では旋回体3の正面を向いている。撮像装置30b及び撮像装置30dは、作業機2の方に若干向けられて、すなわち、撮像装置30a及び撮像装置30c側の方に若干向けられて配置されることもある。
 実施形態において、油圧ショベル1は、4個の撮像装置30を有するが、油圧ショベル1が有する撮像装置30の数は少なくとも2個であればよく、4個に限定されない。油圧ショベル1は、少なくとも一対の撮像装置30でステレオカメラを構成して、対象をステレオ撮影するからである。
 複数の撮像装置30a,30b,30c,30dは、運転室4内の前方かつ上方に配置される。上方とは、油圧ショベル1が有する履帯5a,5bの接地面と直交し、かつ接地面から離れる方向側である。履帯5a,5bの接地面は、履帯5a,5bのうち少なくとも一方が接地する部分の、同一直線上には存在しない少なくとも3点で規定される平面である。下方は、上方とは反対方向側、すなわち履帯5a,5bの接地面と直交し、かつ接地面に向かう方向側である。
 複数の撮像装置30a,30b,30c,30dは、油圧ショベル1の車体1Bの前方に存在する対象をステレオ撮影する。対象は、例えば、油圧ショベル1、油圧ショベル1の作業機械及び施工現場で作業する作業者の少なくとも1つの施工対象である。複数の撮像装置30a,30b,30c,30dは、油圧ショベル1の所定の位置、実施形態では運転室4内の前方かつ上方から対象を検出する。実施形態においては、少なくとも一対の撮像装置30によるステレオ撮影の結果を用いて、対象が三次元計測される。複数の撮像装置30a,30b,30c,30dが配置される場所は、運転室4内の前方かつ上方に限定されるものではない。
 複数の撮像装置30a,30b,30c,30dのうち、例えば、撮像装置30cをこれらの基準とする。4個の複数の撮像装置30a,30b,30c,30dは、それぞれ座標系を有する。これらの座標系を適宜、撮像装置座標系と称する。図2では、基準となる撮像装置30cの座標系(xs,ys,zs)のみを示している。撮像装置座標系の原点は、各撮像装置30a,30b,30c,30dの中心である。
 実施形態において、各撮像装置30a,30b,30c,30dの撮像範囲は、油圧ショベル1の作業機2が施工できる範囲よりも大きい。このようにすることで、各撮像装置30a,30b,30c,30dは、作業機2が掘削できる範囲の対象を確実にステレオ撮影することができる。
 前述した車体座標系(Xm,Ym,Zm)は、車体1B、実施形態では旋回体3に固定された原点を基準とする座標系である。実施形態において、車体座標系(Xm,Ym,Zm)の原点は、例えば、旋回体3のスイングサークルの中心である。スイングサークルの中心は、旋回体3の旋回中心軸Zr上に存在する。車体座標系(Xm,Ym,Zm)のZm軸は旋回体3の旋回中心軸Zrとなる軸であり、Xm軸は旋回体3の前後方向に延び、かつZm軸と直交する軸である。Xm軸は、旋回体3の前後方向における基準軸である。Ym軸は、Zm軸及びXm軸と直交する、旋回体3の幅方向に延びる軸である。前述したグローバル座標系(Xg,Yg,Zg)は、GNSSによって計測される座標系であり、地球に固定された原点を基準とした座標系である。
 車体座標系は、実施形態の例には限定されない。車体座標系は、例えば、ブームピン13の中心を車体座標系の原点としてもよい。ブームピン13の中心とは、ブームピン13が延びる方向と直交する平面でブームピン13を切った時の断面の中心、かつブームピン13が延びる方向における中心である。
<作業機械の制御システム及び施工管理システム>
 図3は、実施形態に係る作業機械の制御システム50及び施工管理システム100を示す図である。図3に示される制御システム50及び管理システム100の装置構成は一例であり、実施形態の装置構成例には限定されない。例えば、制御システム50に含まれる各種の装置はそれぞれ独立していなくてもよい。すなわち、複数の装置の機能が1つの装置によって実現されてもよい。
 作業機械の制御システム50(以下、適宜、制御システム50と称する)は、複数の撮像装置30a,30b,30c,30dと、油圧ショベル1を制御するための各種の制御装置とを含む。これらは、図1に示される油圧ショベル1の車体1B、実施形態では旋回体3に備えられている。実施形態において、制御システム50は、形状計測システムに相当する。
 制御システム50が有する各種の制御装置は、図3に示される検出処理装置51、施工情報生成装置52、センサ制御装置53、機関制御装置54、ポンプ制御装置55及び作業機制御装置56を含む。この他に、制御システム50は、油圧ショベル1の状態及び油圧ショベル1による施工の状況を管理する施工管理装置57を有する。また、制御システム50は、油圧ショベル1の情報を表示したり施工のガイダンス画像を画面58Dに表示したりする表示装置58と、油圧ショベル1の外部に存在する管理施設60の管理装置61、他の作業機械70、携帯端末装置64及び管理施設60の管理装置61以外の装置のうち少なくとも1つと通信する通信装置25を有する。さらに、制御システム50は、油圧ショベル1の制御に必要な情報を取得するための位置検出装置23及び姿勢検出装置の一例であるIMU24を有する。実施形態において、制御システム50は、少なくとも検出処理装置51及び施工情報生成装置52を有していればよい。
 実施形態において、検出処理装置51、施工情報生成装置52、センサ制御装置53、機関制御装置54、ポンプ制御装置55、作業機制御装置56、施工管理装置57、表示装置58、位置検出装置23及び通信装置25は、信号線59に接続されて、相互に通信する。実施形態において、信号線59を用いた通信の規格はCAN(Controller Area Network)であるが、これに限定されない。以下において、油圧ショベル1というときには、油圧ショベル1が有する検出処理装置51及び施工情報生成装置52等の各種の電子装置を指すこともある。
 図4は、油圧ショベル1が有する各種の機器類及び管理装置61のハードウェア構成例を示す図である。実施形態において、油圧ショベル1が有する検出処理装置51、施工情報生成装置52、センサ制御装置53、機関制御装置54、ポンプ制御装置55、作業機制御装置56、施工管理装置57、表示装置58、位置検出装置23及び通信装置25、並びに管理装置61は、図4に示されるように、処理部PR、記憶部MR及び入出力部IOを有する。処理部PRは、例えば、CPU(Central Processing Unit)のようなプロセッサ及びメモリによって実現される。
 記憶部MRは、RAM(Random Access Memory)、ROM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable Random Access Memory)、EEPROM(Electrically Erasable Programmable Random Access Memory)等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク及び光磁気ディスクのうち少なくとも1つが用いられる。
 入出力部IOは、油圧ショベル1又は管理装置61が、他の機器及び内部の装置とデータ及び信号等を送受信するためのインターフェース回路である。内部の装置には、油圧ショベル1内の信号線59も含まれる。
 油圧ショベル1と管理装置61とは、それぞれの機能を処理部PRに実現させるためのコンピュータプログラムを記憶部MRに記憶している。油圧ショベル1の処理部PRと管理装置61の処理部PRとは、記憶部MRから前述したコンピュータプログラムを読み出して実行することにより、それぞれの装置の機能を実現する。油圧ショベル1が有する各種の電子装置、機器及び管理装置61は、専用のハードウェアで実現されてもよいし、複数の処理回路が連携してそれぞれの機能を実現するものであってもよい。次に、油圧ショベル1が有する各種の電子装置及び機器について説明する。
 検出処理装置51は、少なくとも一対の撮像装置30によって撮像された対象の一対の画像に、ステレオ方式における画像処理を施すことにより、対象の位置、具体的には三次元座標系における対象の座標を求める。このように、検出処理装置51は、同一の対象を少なくとも一対の撮像装置30で撮像することによって得られた一対の画像を用いて、対象を三次元計測することができる。すなわち、少なくとも一対の撮像装置30及び検出処理装置51は、ステレオ方式により対象を三次元計測するものである。ステレオ方式における画像処理とは、同一の対象を2つの異なる撮像装置30から観測して得られる2つの画像から、その対象までの距離を得る手法である。対象までの距離は、例えば、対象までの距離情報を濃淡により可視化した距離画像として表現される。
 検出処理装置51は、少なくとも一対の撮像装置30によって検出された対象の情報を取得し、取得した対象の情報から対象の三次元形状を示す形状情報を求める。実施形態では、少なくとも一対の撮像装置30が対象を撮像することにより対象の情報を生成して出力する。対象の情報は、少なくとも一対の撮像装置30によって撮像された施工対象の画像である。検出処理装置51は、対象の画像にステレオ方式による画像処理を施すことにより、形状情報を求め、出力する。実施形態において、少なくとも一対の撮像装置30を有する油圧ショベル1の施工対象が少なくとも一対の撮像装置30によって撮像されるが、他の作業機械の施工対象が、少なくとも一対の撮像装置30によって撮像されてもよい。
 実施形態において、撮像装置30が検出する対象は、施工の対象(以下、適宜、施工対象と称する)及び施工後の対象である。実施形態において、施工対象及び施工後の対象は、撮像装置30を有する油圧ショベル1、他の油圧ショベル1ot、油圧ショベル以外の作業機械及び作業者のうち少なくとも1つの施工対象及び施工後の対象であればよい。
 検出処理装置51は、演算部51A及び情報付与部51Bを有する。演算部51Aは、少なくとも一対の撮像装置30によって撮像された一対の画像に、ステレオ方式における画像処理を施して形状情報を求める。情報付与部51Bは、形状情報に各種の情報を付けて出力する。形状情報に付される各種の情報は、時刻情報がある。時刻情報は、対象が演算部51A及び少なくとも一対の撮像装置30によって検出された時刻から、形状情報が出力される時刻までの間に存在する少なくとも1つの時刻の情報を含む。時刻情報は、例えば、検出処理装置51内のタイマから取得される。各種の情報は、時刻情報の他に、少なくとも一対の撮像装置30が対象を撮像した位置を示す情報及び対象を撮像した撮像装置30を有する油圧ショベル1を識別するための情報のうち少なくとも一方をさらに含んでもよい。演算部51A及び情報付与部51Bの機能は、図4に示される処理部PRが実現する。
 実施形態において、少なくとも一対の撮像装置30は、油圧ショベル1に取り付けられて、対象を検出して対象の情報を出力する対象検出部に相当する。検出処理装置51は、少なくとも一対の撮像装置30によって検出された対象の情報を用いて、対象の三次元形状を表す形状情報を出力する形状検出部に相当する。少なくとも一対の撮像装置30の代わりにレーザスキャナのような3Dスキャナが用いられてもよい。3Dスキャナは、対象を検出して対象の三次元形状を示す形状情報を出力するので、前述した対象検出部及び形状検出部の機能を有している。
 検出処理装置51には、ハブ31及び撮像スイッチ32が接続される。ハブ31は、複数の撮像装置30a,30b,30c,30dが接続されている。ハブ31を用いずに、撮像装置30a,30b,30c,30dと検出処理装置51とが接続されてもよい。撮像装置30a,30b,30c,30dの撮像した結果は、ハブ31を介して検出処理装置51に入力される。検出処理装置51は、ハブ31を介して、撮像装置30a,30b,30c,30dが撮像した結果、実施形態では対象の画像を取得する。実施形態において、撮像スイッチ32が操作されると、少なくとも一対の撮像装置30は対象を撮像する。撮像スイッチ32は、図2に示される運転室4内に設置される。例えば、撮像スイッチ32は、操作装置35の近傍に設置されるが、撮像スイッチ32の設置場所はこれに限定されない。
 制御システム50は、少なくとも一対の撮像装置30によって対象の画像を取得する場合、旋回体3を旋回開始と同時に撮像を開始し旋回停止によって撮像を終了し、その旋回中に取得した画像をもとにステレオ方式における画像処理を施して形状情報を求めるようにしてもよい。この場合、制御システム50は、例えば、操作装置35のうち旋回体3を旋回させるための操作装置の操作にともなって出力される、パイロット圧の変化を示す信号又は電気信号を検出処理装置51が受信し、旋回体3の旋回開始と旋回停止のタイミングとを判断し撮像する。
 施工情報生成装置52は、油圧ショベル1が施工対象を施工するときに目標とする形状の情報である目標施工情報を求めて、出力する。実施形態において、施工情報生成装置52は、検出処理装置51が求めた施工対象の形状情報を用いて目標施工情報を求める。実施形態において、目標施工情報は、施工対象が施工されるときに目標とされる形状を、グローバル座標系における三次元座標で表した位置情報である。目標施工情報は、グローバル座標系以外の座標系における三次元座標の情報であってもよい。実施形態において、施工情報生成装置52は、施工情報生成部に相当する。
 少なくとも一対の撮像装置30が取得した施工対象の情報が通信装置25を介して油圧ショベル1の外部に送信され、例えば、管理装置61が三次元座標系における対象の座標を求めてもよい。この場合、管理装置61は、検出処理装置51の機能を実現する。また、管理装置61は、施工情報生成装置52の機能を実現してもよい。通信装置25を介して、油圧ショベル1に搭載された検出処理装置51が求めた施工対象の形状情報が油圧ショベル1の外部に送信され、例えば管理装置61が目標施工情報を求めてもよい。この場合、管理装置61は、施工情報生成装置52の機能を実現する。
 センサ制御装置53は、油圧ショベル1の状態の情報及び油圧ショベル1の周囲の状態の情報を検出するためのセンサ類が接続される。センサ制御装置53は、センサ類から取得した情報を、他の電子装置及び機器が取り扱うことのできるフォーマットに変換して出力する。油圧ショベル1の状態の情報は、例えば、油圧ショベル1の姿勢の情報及び作業機2の姿勢の情報等である。図3に示される例では、油圧ショベル1の状態の情報を検出するセンサとして、IMU24、第1角度検出部18A、第2角度検出部18B及び第3角度検出部18Cがセンサ制御装置53に接続されているが、センサ類はこれらに限定されない。
 IMU24は、自身に作用する加速度及び角速度、すなわち油圧ショベル1に作用する加速度及び角速度を検出して出力する。油圧ショベル1に作用する加速度及び角速度から、油圧ショベル1の姿勢が分かる。油圧ショベル1の姿勢を検出できれば、IMU24以外の装置であってもよい。実施形態において、第1角度検出部18A、第2角度検出部18B及び第3角度検出部18Cは、例えばストロークセンサである。これらは、それぞれが、ブームシリンダ10、アームシリンダ11及びバケットシリンダ12のストローク長さを検出することにより、車体1Bに対するブーム6の回動角と、ブーム6に対するアーム7の回動角と、アーム7に対するバケット8の回動角とを間接的に検出する。第1角度検出部18A、第2角度検出部18B及び第3角度検出部18Cによって検出された車体1Bに対するブーム6の回動角、ブーム6に対するアーム7の回動角及びアーム7に対するバケット8の回動角と、作業機2の寸法とから、車体座標系における作業機2の部分の位置が分かる。例えば、作業機2の部分の位置としては、例えば、バケット8の刃先8BTの位置である。第1角度検出部18A、第2角度検出部18B及び第3角度検出部18Cは、ストロークセンサに代えてポテンショメータ又は傾斜計であってもよい。
 機関制御装置54は、油圧ショベル1の動力発生装置である内燃機関27を制御する。内燃機関27は、例えばディーゼルエンジンであるが、これに限定されない。また、油圧ショベル1の動力発生装置は、内燃機関27と発電電動機とを組み合わせたハイブリッド方式の装置であってもよい。内燃機関27は、油圧ポンプ28を駆動する。
 ポンプ制御装置55は、油圧ポンプ28から吐出される作動油の流量を制御する。実施形態において、ポンプ制御装置55は、油圧ポンプ28から吐出される作動油の流量を調整するための制御指令の信号を生成する。ポンプ制御装置55は、生成した制御信号を用いて油圧ポンプ28の斜板角を変更することにより、油圧ポンプ28から吐出される作動油の流量を変更する。油圧ポンプ28から吐出された作動油は、コントロールバルブ29に供給される。コントロールバルブ29は、油圧ポンプ28から供給された作動油を、ブームシリンダ10、アームシリンダ11、バケットシリンダ12及び油圧モータ5M等の油圧機器に供給して、これらを駆動する。
 作業機制御装置56は、例えば、バケット8の刃先8BTを目標とする施工面に沿って移動させる制御を実行する。作業機制御装置56は、作業機制御部に相当する。この制御を、以下においては適宜、作業機制御と称する。作業機制御装置56は、作業機制御を実行するにあたって、例えば、施工情報生成装置52が生成した目標施工情報を取得し、目標施工情報に含まれる目標施工面にバケット8の刃先8BTが沿うようにコントロールバルブ29を制御して作業機2を制御する。油圧ショベル1は、作業機制御装置56を備えずに、後述する方法で得られた目標施工情報と自身の作業機2との位置関係を、表示装置58の画面58Dに施工のガイダンス画像として表示可能であってもよい。
 施工管理装置57は、例えば、検出処理装置51が求めた形状情報、施工情報生成装置52によって生成された目標施工情報、油圧ショベル1が施工対象を施工した施工結果の形状情報、及び油圧ショベル1がこれから施工しようとする施工対象の現況地形を示す形状情報の少なくとも1つを収集し、記憶部57Mに記憶させる。施工管理装置57は、記憶部57Mに記憶させた施工結果を、通信装置25を介して管理装置61又は携帯端末装置64に送信する。施工管理装置57は、記憶部57Mに記憶させた施工結果を、通信装置25を介して管理装置61又は携帯端末装置64に送信する。施工管理装置57は、検出処理装置51が求めた形状情報及び目標施工情報の少なくとも一方を収集し、記憶部57Mに記憶せずに管理装置61又は携帯端末装置64に送信してもよい。記憶部57Mは、図4に示される記憶部MRに相当する。
 施工管理装置57は、油圧ショベル1の外部に設けられた、例えば管理装置61に設けられてもよい。この場合、施工管理装置57は、油圧ショベル1から通信装置25を介して形状情報又は施工結果を取得する。
 施工結果は、例えば、少なくとも一対の撮像装置30が施工後の施工対象を撮像し、検出処理装置51が撮像結果にステレオ方式による画像処理を施すことによって求められた形状情報である。以下、施工しようとする施工対象の現況地形を示す形状情報を、適宜、現況地形情報と称する。また、形状情報は、施工結果を示す形状情報である場合と、現況地形を示す形状情報である場合とがある。現況地形情報とは、例えば、油圧ショベル1、他の作業機械70又は作業者等が施工しようとする施工対象が少なくとも一対の撮像装置30によって撮像され、検出処理装置51によって求められた形状情報である。
 施工管理装置57は、例えば、一日の作業が終了した後に施工結果を収集して管理装置61及び携帯端末装置64の少なくとも一方に送信したり、一日の作業のうち複数回施工結果を収集して管理装置61及び携帯端末装置64の少なくとも一方に送信したりする。施工管理装置57は、例えば朝の作業前に、施工前の形状情報を管理装置61又は携帯端末装置64に送信してもよい。
 実施形態では、施工管理装置57は、例えば一日の作業のうち、正午と作業終了時との2回の施工結果を収集し、管理装置61又は携帯端末装置64に送信する。施工結果は、施工現場全体のうち、施工が行われた範囲が撮像されることによって得られた施工結果であってもよいし、施工現場全体が撮像されることによって得られた施工結果であってもよい。管理装置61又は携帯端末装置64に送信される施工結果を施工が行われた範囲のものとすることにより、撮像時間、画像処理時間及び施工結果の送信時間の増加を抑制できるので好ましい。
 表示装置58は、液晶表示パネルのようなディスプレイの画面58Dに、油圧ショベル1の情報を表示したり施工のガイダンス画像を画面58Dに表示したりする他、実施形態においては、前述した作業機制御が実行される場合に作業機2の位置を求める。表示装置58が求める刃先8BTの位置は、実施形態はバケット8の刃先8BTの位置である。表示装置58は、位置検出装置23が検出したアンテナ21,22の現在位置と、第1角度検出部18A、第2角度検出部18B及び第3角度検出部18Cによって検出された回動角と、記憶部MRに記憶された作業機2の寸法と、IMU24の出力データとを取得し、これらを用いてバケット8の刃先8BTの位置を求める。実施形態では、表示装置58がバケット8の刃先8BTの位置を求めているが、バケット8の刃先8BTの位置は表示装置58以外の装置が求めてもよい。
 通信装置25は、実施形態における通信部である。通信装置25は、管理施設60の管理装置61、他の作業機械70及び携帯端末装置64の少なくとも1つと通信回線NTWを介して通信して、互いに情報をやり取りする。通信装置25がやり取りする情報のうち、制御システム50から管理装置61、他の作業機械70及び携帯端末装置64の少なくとも1つに送信する情報は、施工に関する情報がある。施工に関する情報は、前述した形状情報及び形状情報から得られた情報の少なくとも一方を含む。形状情報から得られた情報は、例えば、前述した目標施工情報及び形状情報を加工して得られた情報を含むが、これらに限定されるものではない。施工に関する情報は、検出処理装置51の記憶部、施工情報生成装置52の記憶部及び施工管理装置57の記憶部57Mに記憶されてから通信装置25によって送信されてもよいし、記憶されずに送信されてもよい。
 実施形態において、通信装置25は無線通信によって通信する。このため、通信装置25は、無線通信用のアンテナ25Aを有する。携帯端末装置64は、例えば、油圧ショベル1の作業を管理する管理者が所持しているものであるが、これに限定されない。他の作業機械70は、制御システム50を有する油圧ショベル1及び管理装置61の少なくとも一方と通信する機能を有している。他の作業機械70は、制御システム50を有する油圧ショベル1であってもよいし、制御システム50を有さない油圧ショベルであってもよいし、油圧ショベル以外の作業機械であってもよい。通信装置25は、管理施設60の管理装置61、他の作業機械70及び携帯端末装置64の少なくとも1つと有線通信を介して通信して、互いに情報をやり取りするようにしてもよい。
 施工管理システム100は、管理施設60の管理装置61と、制御システム50と、制御システム50を有する油圧ショベル1とを含む。施工管理システム100は、さらに携帯端末装置64を含んでいてもよい。施工管理システム100に含まれる、制御システム50を有する油圧ショベル1は単数でもよいし、複数でもよい。管理施設60は、管理装置61と、通信装置62とを有する。管理装置61は、通信装置62及び通信回線NTWを介して、少なくとも油圧ショベル1と通信する。管理装置61は、携帯端末装置64と通信したり、他の作業機械70と通信したりしてもよい。油圧ショベル1と、他の油圧ショベル1ot及び作業機械の少なくとも一方とは、直接、車車間で無線通信できるように無線通信機器を搭載してもよい。そして、油圧ショベル1、他の油圧ショベル1ot及び作業機械の少なくとも1つは、管理施設60の管理装置61等で実行される処理を実行できるような機器又は電子装置を搭載してもよい。
 管理装置61は、油圧ショベル1から施工結果及び現況地形情報の少なくとも一方を受け取り、施工の進捗状況を管理する。管理装置61は、油圧ショベル1から形状情報を受け取り、これを用いて目標施工情報を生成して油圧ショベル1に送信してもよい。管理装置61は、施工対象の設計情報から目標施工情報を生成し、油圧ショベル1に送信してもよい。管理装置61は、油圧ショベル1から受け取った施工結果を加工して、施工の進捗情報を動画にして表示装置67に表示したり、動画の情報を油圧ショベル1又は携帯端末装置64に送信して油圧ショベル1の表示装置58に表示させたり携帯端末装置64の画面に表示させたりしてもよい。前述したように、管理装置61で実行される目標施工情報の生成は、油圧ショベル1及び他の作業機械70の少なくとも1つで実行してもよい。
<施工対象の施工>
 実施形態において、制御システム50は、図2に示される複数の撮像装置30のうち少なくとも2つによって施工対象を撮像することによって、施工対象の形状を示す情報である形状情報を得る。そして、制御システム50は、得られた形状情報を用いて目標施工情報を求める。油圧ショベル1が施工対象を施工する場合、制御システム50は、求めた目標施工情報に沿うように、作業機2を制御する。
 図5は、実施形態に係る油圧ショベル1が施工する施工現場の一例を示す図である。実施形態において、油圧ショベル1の施工対象OBPは、地面である。実施形態において、施工対象OBPは、施工現場の少なくとも一部の領域である。実施形態において油圧ショベル1が施工対象OBPに施す施工は、図5に示されるように、施工対象OBPの表面OBSから予め定められた深さΔDPだけ、表土を削り取る作業である。施工対象OBPのうち、施工が実行された部分は、施工実行部分OBFとなる。施工実行部分OBFは、施工計画によっては、施工が必要でない部分を示す場合もある。施工実行部分OBFは、施工対象OBPの少なくとも一部である。次に、制御システム50が求める形状情報を説明する。
<対象の撮像及び形状情報の生成>
 図6は、実施形態に係る作業機械の制御システムが求める形状情報について説明するための図である。この場合、形状情報は、油圧ショベル1がこれから施工しようとする部分である施工対象OBPは油圧ショベル1の前方にある。形状情報は、施工対象OBPから求められる。制御システム50は、施工対象OBPから形状情報を生成する場合、少なくとも一対の撮像装置30に施工対象OBPを撮像させる。実施形態では、油圧ショベル1のオペレータが、図3に示される撮像スイッチ32を操作して撮像指令を検出処理装置51に入力すると、検出処理装置51は少なくとも一対の撮像装置30に施工対象OBPを撮像させる。
 制御システム50の検出処理装置51は、少なくとも一対の撮像装置30が撮像した施工対象OBPの画像にステレオ方式による画像処理を施して、施工対象OBPの位置情報、実施形態では三次元位置情報を求める。検出処理装置51が求めた施工対象OBPの位置情報は、撮像装置30の座標系における情報なので、グローバル座標系における位置情報に変換される。グローバル座標系における施工対象の位置情報が形状情報である。実施形態において、形状情報は、グローバル座標系における施工対象OBPの表面OBSの位置Pr(Xg,Yg,Zg)を少なくとも1つ含む情報である。位置Pr(Xg,Yg,Zg)は、グローバル座標系における座標であり、三次元位置情報である。
 図7は、油圧ショベル1が重力の作用方向Gに対して傾斜している状態を示す図である。図8は、油圧ショベル1が重力の作用方向Gに対して傾斜している状態で、少なくとも一対の撮像装置30で対象Ojが撮像された画像の例を示す図である。傾斜面GDに油圧ショベル1が設置された状態で少なくとも一対の撮像装置30が対象Ojを撮像すると、撮像装置座標系(xs,ys,zs)は、重力の作用方向Gに対して傾く。この状態で得られた画像は、図8に示されるように対象Ojが傾斜するので、この画像にステレオ方式による画像処理が施されて形状情報が求められると、形状情報は傾きの影響を受ける可能性がある。制御システム50は、油圧ショベル1の姿勢をIMU24によって検出し、検出した油圧ショベル1の姿勢に関する情報を用いて形状情報を求める。
 図9は、実施形態に係る制御システム50が形状情報を求めるための処理例を説明するための図である。図10は、実施形態に係る制御システム50が求めた形状情報のデータファイルの一例を示す図である。少なくとも一対の撮像装置30によって撮像された画像から得られた施工対象OBPの位置Ps(xs,ys,zs)は、撮像装置座標系(xs,ys,zs)の座標である。形状情報は、グローバル座標系(Xg,Yg,Zg)における座標なので、検出処理装置51は、位置Ps(xs,ys,zs)をグローバル座標系(Xg,Yg,Zg)の位置Pg(xs,ys,zs)に変換する。位置Pg(xs,ys,zs)が、施工対象OBPの表面OBSの位置Pr(Xg,Yg,Zg)、すなわち形状情報である。
 位置Ps(xs,ys,zs)は、式(1)によって撮像装置座標系(xs,ys,zs)から車体座標系(Xm,Ym,Zm)の位置Pm(xm、ym、zm)に変換される。車体座標系(Xm,Ym,Zm)の位置Pm(xm、ym、zm)は、式(2)によってグローバル座標系(Xg,Yg,Zg)の位置Pg(xs,ys,zs)に変換される。
 Pm=R・Ps+T・・・(1)
 Pg=Rimu・(Pm+Toff)+Tg・・・(2)
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 式(1)中のRは式(3)で表される回転行列、Tは式(4)の行列で表される並進ベクトルである。式(2)のRimuは式(5)で表される回転行列、Toffは式(6)の行列で表される並進ベクトルである。Toffは、車体座標系の原点からアンテナ21,22のいずれか一方までの距離のオフセット値を表す。Tgは式(7)の行列で表される、アンテナ21,22のいずれか一方の並進ベクトルである。回転行列R中の角度α、角度β及び角度γは、車体座標系に対する撮像装置座標系の傾きを表す。角度α、角度β及び角度γは、例えば、複数の撮像装置30が油圧ショベル1に取り付けられた後に予め求められて、検出処理装置51の記憶部に記憶される。行列Tのx,y,zは撮像装置座標系の原点と車体座標系の原点との距離を表す。x,y,zは、例えば、複数の撮像装置30が油圧ショベル1に取り付けられた後に計測されたり、油圧ショベル1の設計情報から予め求められたりして、検出処理装置51の記憶部に記憶される。
 回転行列Rimu中の角度θr、角度θp及び角度θdは、油圧ショベル1のロール角、ピッチ角及び方位角である。ロール角θr、ピッチ角θp及び方位角θdは、油圧ショベル1の姿勢を表す。ロール角θr及びピッチ角θpは、図3に示されるIMU24が求めるか、IMU24の検出値から検出処理装置51が求めるものである。方位角θdは、図3に示されるアンテナ21,22及び位置検出装置23によって構成されたGPSコンパスによって求められる。より詳細には、方位角θdは、位置検出装置23によって2個のアンテナ21,22相対位置に基づいて求められる。ロール角θr、ピッチ角θp及び方位角θdは、油圧ショベル1の姿勢が変化することによって変化する。実施形態においては、IMU24によって求められたヨー角θyが、GPSコンパスによって得られた方位角(方位データ)に代えて用いられてもよい。実施形態において、ロール角θr、ピッチ角θp及び方位角θdは、少なくとも一対の撮像装置30が対象、例えば施工現場の施工対象及び施工後の施工現場等を検出したときにおいて、IMU24及び位置検出装置23によって検出された値である。ロール角θr、ピッチ角θp及びヨー角θy又は方位角θdは、IMU24以外又は位置検出装置23以外の装置、例えばジャイロ等によって求められてもよい。
 行列Toffのx,y,zは、車体座標系の原点と、図1及び図3に示されるアンテナ21,22の設置位置までの距離を表す。x,y,zは、例えば、アンテナ21,22が油圧ショベル1に取り付けられた後に計測されたり、油圧ショベル1の設計情報から予め求められたりして、検出処理装置51の記憶部に記憶される。
 行列Tgのx,y,zは、図1及び図3に示されるアンテナ21,22及び位置検出装置23が検出したグローバル座標系におけるアンテナ21,22の位置を表す。x,y,zは、油圧ショベル1の位置、より具体的にはアンテナ21,22の位置が変化することによって変化する。
 検出処理装置51は、少なくとも一対の撮像装置30によって撮像された画像から得られた施工対象OBPの位置Ps(xs,ys,zs)を、式(1)から式(7)を用いてグローバル座標系における位置Pg(xg,yg,zg)に変換する。このとき、検出処理装置51は、IMU24からロール角θr及びピッチ角θpを取得し、位置検出装置23からアンテナ21,22のグローバル座標系における位置及び方位角θdを取得して、前述した変換に用いる。前述したように、検出処理装置51は、方位角θdの代わりに、IMU24が検出したヨー角θyを用いてもよい。検出処理装置51は、変換後の位置Pg(xg,yg,zg)を、施工対象OBPの表面OBSの位置Pr(Xg,Yg,Zg)、すなわち形状情報とする。実施形態においては、形状情報の一例として施工対象OBPの表面OBSの位置Prを示しているが、形状情報はこれに限定されない。例えば、形状情報は、施工後における施工対象OBPの表面の位置及び施工途中における施工対象OBPの表面の位置であってもよい。
 検出処理装置51は、少なくとも一対の撮像装置30によって撮像された施工対象OBPの領域全体にわたって、施工対象OBPの表面OBSの位置Pr(Xg,Yg,Zg)を求め、出力する。実施形態において、検出処理装置51は、所定の単位毎に、図10に示されるように、求めた位置Pr(Xg,Yg,Zg)のデータファイルEMDを生成する。図10に示されるデータファイルEMDは、n個(nは1以上の整数)の位置Pr(Xg,Yg,Zg)の集合である。データファイルEMDも、実施形態における形状情報に該当する。
 所定の単位は、例えば、一回の撮像によって得られた施工対象OBPの範囲、及び予め定めた施工対象OBPの範囲が挙げられる。予め定めた施工対象OBPの範囲は、一回の撮像によって得られた範囲の一部であってもよいし、一回の撮像によって得られた範囲を超える範囲であってもよい。後者の場合には複数回の撮像によって得られた範囲が対象となる。
 実施形態において、検出処理装置51はデータファイルEMDを生成したら、自身の記憶部に記憶させる。そして、検出処理装置51は、データファイルEMDの位置Prを用いて、目標施工情報を生成する。この他にも、施工管理装置57は、検出処理装置51が生成したデータファイルEMDを、通信装置25から図3に示される管理装置61、携帯端末装置64及び他の作業機械70の少なくとも一つに送信してもよい。
 図11は、施工管理装置57によって送信される、データファイルEMDを含む情報の一例を示す図である。本実施形態において、図3に示される検出処理装置51の情報付与部51Bは、形状情報に、形状情報を特定するための時刻情報TMを付けて出力する。時刻情報TMは、時刻に基づいて、形状情報を特定する情報である。本実施形態では、情報付与部51Bは、図11に示されるように、時刻情報TM及び形状情報であるデータファイルEMDを含む作業情報LGを生成して、出力する。時刻情報TMは、例えば、少なくとも一対の撮像装置30が施工対象OBPを撮像した時刻であってもよいし、演算部51Aが形状情報を生成した時刻であってもよいし、情報付与部51Bが作業情報LGを出力する時刻であってもよいし、管理装置61及び携帯端末装置64のような油圧ショベル1の外部の装置が形状情報を取得した時刻であってもよい。すなわち、時刻情報TMは、施工前、施工途中又は施工後における施工対象OBPが、少なくとも一対の撮像装置30及び検出処理装置51によって検出された時刻から油圧ショベル1の外部の装置が形状情報を取得した時刻までの間に存在する少なくとも1つの時刻の情報である。時刻情報TMが、油圧ショベル1の外部の装置が形状情報を取得した時刻の情報である場合、情報付与部51Bが油圧ショベル1の外部の装置に設けられ、情報付与部51Bは、外部の装置が形状情報を取得した時刻を示す時刻情報TMを形状情報に付与する。
 実施形態において、作業情報LGは、時刻情報TM及びデータファイルEMDに加えて、目標施工情報TI、撮像位置PL及び油圧ショベル1の姿勢情報SIを含む。目標施工情報TIは、作業情報LGに含まれる形状情報、すなわちデータファイルEMDの情報から生成されたものである。撮像位置PLは、少なくとも一対の撮像装置30が、施工前、施工途中又は施工後における施工対象OBPを撮像した場所を示す情報である。撮像位置PLは、図3に示される位置検出装置23が検出したアンテナ21,22のグローバル座標における位置に基づいて求められる。姿勢情報SIは、油圧ショベル1の姿勢を示す情報であり、実施形態ではロール角θr、ピッチ角θp及びヨー角θyである。ロール角θr、ヨー角θy及びヨー角θyは、IMU24の検出値であるが、ヨー角θyの代わりに位置検出装置23が検出した方位角θdが用いられてもよい。これらの他にも、作業情報LGは識別番号を含んでいてもよい。識別番号は、少なくとも一対の撮像装置30の位置を示す情報及び対象を撮像した撮像装置30を有する油圧ショベル1を識別するための情報である。識別番号としては、例えば、通信装置25のIPアドレスであってもよい。また、識別番号としては、少なくとも一対の撮像装置の製造番号及び油圧ショベル1の車体番号が用いられるが、これらに限定されない。
 作業情報LGに含まれる情報は、前述した情報に限定されない。例えば、作業情報LGは、油圧ショベル1のオペレータを識別するためのオペレータIDを含んでいてもよい。作業情報LGは、検出処理装置51の情報付与部51Bがすべての情報を生成しなくてもよい。実施形態では、情報付与部51Bは、少なくとも時刻情報TM及びデータファイルEMDを含む作業情報LGを生成して出力すればよい。時刻情報TM及びデータファイルEMD以外の情報は、例えば、施工管理装置57によって付与される。この場合、施工管理装置57は、施工情報生成装置52によって生成された目標施工情報TIを取得し、情報付与部51Bから取得した作業情報LGに追加する。また、施工管理装置57は、信号線59を介して識別番号及び撮像位置PLを取得して、作業情報LGに追加する。施工管理装置57は、作業情報LGを所定のタイミング、実施形態では1日に2回、管理装置61及び携帯端末装置64の少なくとも一方に送信する。
 実施形態において、すくなくとも一対の撮像装置30が対象を撮像したら、検出処理装置51は、少なくとも時刻情報TM及びデータファイルEMDを含む作業情報LGを生成して出力し、通信装置25を介して油圧ショベル1の外部に送信する。油圧ショベル1の外部に送信された作業情報LGは、管理装置61が取得したり、携帯端末装置64が取得したりする。
 実施形態において、図3に示される撮像スイッチ32が操作されると、少なくとも一対の撮像装置30が対象を撮像する。検出処理装置51の演算部51Aは撮像装置30によって撮像された画像にステレオ方式による画像処理を施して形状情報を生成する。検出処理装置51の情報付与部51Bは、形状情報に時刻情報を付けた作業情報LGを出力する。作業情報LGは、施工管理装置57及び通信装置25を介して、又は通信装置25を介して管理装置61及び携帯端末装置64の少なくとも一方に送信する。
 検出処理装置51は、油圧ショベル1の周辺を監視するため、所定の時間毎、例えば10分毎に少なくとも一対の撮像装置30に対象を撮像させる。少なくとも一対の撮像装置30によって撮像された二次元画像は、検出処理装置51の記憶部に記憶されて、ある程度の情報が蓄積されたら通信装置25を介して管理装置61に送信される。前述した二次元画像は、作業情報LGが管理装置61に送信されるタイミングで送信されてもよいし、撮像されたら速やかに管理装置61へ送信されてもよい。
 実施形態において、検出処理装置51が、例えば複数の撮像装置30が起動していることを認識していること、信号線59が断線していないこと、IMU24の出力が安定していること、及びGNSSによる測位がFIX(正常)であることを条件(許可条件)に、検出処理装置51は、撮像装置30を用いた三次元計測を許可する。許可条件が1つでも成立していない場合、撮像スイッチ32が操作されても、検出処理装置51は撮像装置30を用いた三次元計測を許可しない。IMU24の出力が安定しているとは、油圧ショベル1が静止している状態であることを意味する。撮像装置30による三次元計測に、前述した条件を設けることで、対象の計測精度の低下が抑制される。許可条件は、制御システム50が三次元計測を許可するための例示である。制御システム50は、許可条件のいずれか一つを用いてもよいし、許可条件を用いなくてもよい。
 図12は、データファイルEMDが管理装置61の記憶部に記憶される一例を示す図である。油圧ショベル1から送信された作業情報LGは、管理装置61の記憶部に記憶される。作業情報LGが携帯端末装置64に送信される場合、作業情報LGは携帯端末装置64の記憶部に記憶されてもよい。
 管理装置61の記憶部内には、例えば、図12のデータテーブルTBに示されるように、時刻情報TMとデータファイルEMDとが対応付けられて記憶される。データテーブルTBは、管理装置61が新しい時刻情報TM及びデータファイルEMDを取得する毎に更新される。データファイルEMDに付される番号が同一の情報は、作業現場の同じ場所の形状情報を示す。管理装置61は、データテーブルTBに含まれるデータファイルEMDを用いて、施工現場の現状を示す情報(以下、適宜、現況情報と称する)を生成できる。この場合、データファイルEMDに付される番号が同一である場合、最新のデータファイルEMDを用いて現況情報が生成される。最新のデータファイルEMDであるか否かは、データファイルEMDに対応付けられた時刻情報TMによって判定される。例えば、2つのデータファイルEMD1が存在した場合、管理装置61は、それぞれのデータファイルEMD1に対応した時刻情報TMを比較し、新しい方のデータファイルEMD1を用いて現況情報を生成する。このようにすることで、管理装置61は、最新の現況情報を生成できる。
 管理装置61は、時刻情報TMが付された形状情報、すなわちデータファイルEMDを用いて、油圧ショベル1の施工現場全体の現状の地形の情報、すなわち現況情報を出力する。例えば、管理装置61は、最新の時刻情報TMが付された各データファイルEMDを施工現場全体にわたって収集して結合することにより、油圧ショベル1の施工現場全体の現況情報を生成して出力する。施工現場全体の現況情報は、例えば、管理施設60の表示装置67に表示されたり、携帯端末装置64に表示されたりする。
 施工現場全体の現況情報は、油圧ショベル1による施工結果を用いて生成されてもよいし、他の作業機械70による施工結果を用いて生成されてもよい。また、施工現場全体の現況情報は、油圧ショベル1及び他の作業機械70によらない施工結果、例えば、作業者がスコップ等によって施工した結果を用いて生成されてもよい。本実施形態において、施工現場全体の現況情報は、油圧ショベル1による施工結果と、他の作業機械70による施工結果と、油圧ショベル1及び他の作業機械70によらない施工結果との少なくとも一つを用いて生成されればよい。施工現場全体の現況情報は、油圧ショベルの施工管理装置57及び携帯端末装置64の少なくとも一方が生成して出力してもよい。
 図13は、施工現場全体の施工対象OBPtとデータファイルEMDに対応した範囲との関係を示す図である。図13は、最新のデータファイルEMD1,EMD2,・・・EMDmに対応した範囲が施工現場全体の施工対象OBPt内に表示された例を示している。データファイルEMD1,EMD2,EMDmに対応した範囲は、データファイルEMD1,EMD2,・・・EMDmに含まれる三次元位置情報で特定される範囲である。
 管理装置61は、例えば、施工現場全体の施工対象OBPtに、データファイルEMD1,EMD2,EMDmに対応した範囲を重ねた情報を生成する。そして、管理装置61は、例えば、管理施設60内の表示装置67に、生成した情報を表示させる。このようにすると、最新のデータファイルEMD1,EMD2,・・・EMDmが施工対象OBPt内に表示されるので、施工現場の現状が示される。管理装置61は、時刻情報TMが同一又は同一とみなせるデータファイルEMD同士を組み合わせることで、施工現場の現状の状況を得ることができる。時刻情報TMが同一とみなせるとは、予め定められた時間の範囲内の時刻情報TMに対応するデータファイルEMDは、同一の時刻に得られたものとして取り扱されることをいう。例えば、朝9時から夕方17:00までを予め定められた時間の範囲とした場合、ある曜日におけるこの時間の範囲内の時刻情報TMを持つデータファイルEMDは、同一の時刻に得られたものとして取り扱われ、曜日が変われば異なる時刻に得られたものとして取り扱われる
 図14は、施工現場全体の施工対象OBPtの変化を時系列に並べたものである。時刻t=tsは、施工現場の施工が開始される前の状態を示している。時刻t=t1において、施工対象OBPtは領域OBPf1が施工されている。領域OBPf1は、時刻t=t1における形状情報、すなわちデータファイルEMDに含まれる三次元情報によって特定されるので、施工前における施工対象OBPtに領域OBPf1を重ねることで、時刻t=t1における施工現場全体の状態が分かる。
 時刻t=t2において、施工対象OBPtは領域OBPf1に加え、領域OBPf2及び領域OBPf3がさらに施工されている。領域OBPf2及び領域OBPf3は、時刻t=t2における形状情報、すなわちデータファイルEMDに含まれる三次元情報によって特定されるので、施工前における施工対象OBPに領域OBPf2及び領域OBPf3を重ねることで、時刻t=t2における施工現場全体の状態が分かる。時刻t=t2において、領域OBPf1はすでに施工されているので、時刻t=t2においては領域OBPf1に対応する形状情報、すなわち領域OBPf1に対応するデータファイルEMDが得られていなくてもよい。領域OBPf1に対応するデータファイルEMDが得られていない場合、領域OBPf1については時刻t=t1における情報が最新となる。
 時刻t=t2においては、領域OBPf2及び領域OBPf3とともに、時刻t=t1における領域OBPf1が施工前における施工対象OBPtに重ねられる。時刻t=t2において、領域OBPf1に対応する形状情報、すなわち領域OBPf1に対応するデータファイルEMDが得られている場合、最新のデータファイルEMDに基づく領域OBPf1が、領域OBPf2及び領域OBPf3とともに、施工前における施工対象OBPtに重ねられる。
 管理装置61は、時刻t=ts,t1,t2の順に、施工対象OBPt全体の現況情報を生成して、例えば管理施設60内の表示装置67に、生成した現況情報を三次元画像で表示させる。この場合、管理装置61は、現況情報を時刻毎にコマ送りで表示させることができる。このようにすることで、管理者は、日々の施工の進捗状況を容易に理解できる。携帯端末装置64は、通信回線NTWを介して管理装置61にアクセスして現況情報を取得し、現況情報を画面に表示してもよい。このようにすれば、管理施設60にいない施工現場の作業者も、日々の施工の進捗状況を容易に理解できる。
 図15及び図16は、異なる時刻に得られた形状情報の差分から、除去された土の量又は盛土の量を求める例を示す図である。実施形態においては、異なる時刻に得られた形状情報に基づいて、除去された土の量又は盛土の量が求められる。施工前における時刻t=tsの施工対象OBPが施工されて、施工後の対象OBPfになったとする。グローバル座標系(Xg,Yg,Zg)において、施工後における時刻t=tfで得られた形状情報のZg座標と、施工前における時刻t=tsで得られた形状情報のZg座標との差分はΔDである。差分ΔDが負の場合は土を除去した場合であり、差分ΔDが正の場合は盛土の場合である。差分ΔDに、施工された範囲のXg方向における寸法及びYg軸方向における寸法を乗ずることにより、施工対象OBPの除去された土の量又は盛土の量(実施形態において、土の量は体積)が得られる。本実施形態においては、異なる時刻に得られた形状情報に基づいて、油圧ショベル1のみならず、他の作業機械70によって除去された土の量又は盛土の量が求められてもよい。
 このように、形状情報であるデータファイルEMDと時刻情報TMとを対応付けることにより、施工現場の施工に関する様々な情報が得られる。データファイルEMD及び時刻情報TMを用いて現況情報を生成したり、盛土量又は除去された土の量を求めたりする処理は、管理装置61、携帯端末装置64及び油圧ショベル1の施工管理装置57のいずれが実行してもよい。また、管理装置61、携帯端末装置64又は油圧ショベル1の施工管理装置57のいずれかが前述した処理を実行し、通信回線NTWを介して他の機器に結果を送信してもよい。前述した処理の結果は、通信だけでなく、ストレージデバイスに記憶されて、他の機器に受け渡されてもよい。次に、目標施工情報について説明する。
<目標施工情報>
 図17、図18及び図19は、実施形態に係る作業機械の制御システム50が生成する目標施工情報を説明するための図である。実施形態において、図3に示される施工情報生成装置52は、検出処理装置51によって生成された形状情報を用いて、目標施工情報、すなわち施工対象OBPが施工させる際に目標となる形状の位置情報を求める。実施形態において、施工情報生成装置52は、図11及び図12に示されるように、形状情報に含まれる施工対象OBPの表面OBSの位置を示す情報を加工することによって、表面OBSの位置を変更して、目標施工情報を得る。
 図17に示される例は、施工対象OBPの表面OBSから距離ΔDPtの範囲を除去する施工例を示している。この場合、施工情報生成装置52は、施工対象OBPの表面OBSの位置Pra(Xga,Yga,Zga)を、距離ΔDPtだけ低くした位置Pta(Xta,Yta,Zta)を求める。実施形態において、施工情報生成装置52は、位置Pra(Xga,Yga,Zga)のZgaをΔDPtだけ減じることにより、位置Pra(Xga,Yga,Zga)を、距離ΔDPtだけ低い位置に移動させる。したがって、位置Pta(Xta,Yta,Zta)は、位置Pta(Xga,Yga,Zga-ΔDPt)となる。このようにして得られた位置Pta(Xta,Yta,Zta)が、目標施工情報となる。施工情報生成装置52は、図3に示される検出処理装置51から形状情報、実施形態ではデータファイルEMDを取得し、データファイルEMDに含まれるすべての位置Pr(Xg,Yg,Zg)に対してZgの値からΔDPtだけ減算することにより、目標施工情報を生成する。
 図18に示される例は、施工対象OBPの表面OBSから距離ΔADtの範囲に、例えば土、砂又は岩石のような物体を盛る施工例を示している。この場合、施工情報生成装置52は、施工対象OBPの表面OBSの位置Prb(Xgb,Ygb,Zgb)を、距離ΔADtだけ高くした位置Ptb(Xtb,Ytb,Ztb)を求める。実施形態において、施工情報生成装置52は、位置Prb(Xgb,Ygb,Zgb)のZgにΔADtを加算することにより、位置Prb(Xgb,Ygb,Zgb)を、距離ΔADtだけ高い位置に移動させる。したがって、位置Ptb(Xtb,Ytb,Ztb)は、位置Ptb(Xgb,Ygb,Zgb+ΔADt)となる。このようにして得られた位置Ptb(Xtb,Ytb,Ztb)が、目標施工情報となる。施工情報生成装置52は、図3に示される検出処理装置51から形状情報、実施形態ではデータファイルEMDを取得し、データファイルEMDに含まれるすべての位置Pr(Xg,Yg,Zg)に対してZgの値にΔADtを加算することにより、目標施工情報を生成する。
 このように、図17及び図18に示される施工は、施工対象OBPの表面OBSを一定の深さ(ΔDpt)又は一定の高さ(ΔADt)に変更(オフセット)する施工である。この他にも、例えば、施工対象OBPの表面OBSに所定の傾斜を有する勾配を設けるような施工に、制御システム50が適用されてもよい。このような施工は、例えば、施工後の地形が、水はけがよい地形になるように施工する場合に行われる。少なくとも一対の撮像装置30によって撮像された画像に基づき検出処理装置51が形状情報を生成した後、施工情報生成装置52は、形状情報が示す表面OBSの位置のZg座標について所定の距離を減算又は加算して、表面OBSに対し所定の勾配が設けられた目標施工情報を生成する。この場合も、施工情報生成装置52は、形状情報に含まれる施工対象OBPの表面OBSの位置を示す情報を加工することによって、表面OBSの位置を変更して、目標施工情報を得ることになる。
 施工現場は広い場合、図19に示されるように、少なくとも一対の撮像装置30が撮像する施工対象OBPa,OBPbは、施工現場全体の施工対象OBPtの一部となることがある。施工対象OBPa,OBPbの表面にある位置Pra,Prbから得られた位置Pta,Ptbを目標施工情報とする範囲OBPta,OBPtbも、施工現場全体の一部の情報となる。施工管理装置57は、形状情報と、この形状情報から得られた目標施工情報との差分を用いて、施工対象OBPから除去する土の量又は施工対象OBPに盛る土の量を求めることができる。
 施工管理装置57が、油圧ショベル1の外部に設けられた、例えば管理装置61に設けられている場合、施工管理装置57は、油圧ショベル1から通信装置25を介して形状情報を取得する。施工管理装置57は、取得した形状情報と、この形状情報から得られた目標施工情報との差分を用いて、施工対象OBPから除去する土の量又は施工対象OBPに盛る土の量を求める。この場合、施工管理装置57は、油圧ショベル1から形状情報を取得して目標施工情報を生成する。施工管理装置57は、形状情報及び目標施工情報を油圧ショベル1から取得して、施工対象OBPから除去する土の量又は施工対象OBPに盛る土の量を求めてもよい。
 施工情報生成装置52は、目標施工情報を生成したら、自身の記憶部に記憶させる。施工情報生成装置52の記憶部に記憶された目標施工情報は、作業機制御装置56が作業機制御を実行する際の目標値として使用される。実施形態において、作業機制御装置56は、作業機2、より具体的にはバケット8の刃先8BTが、目標施工情報に沿うように、油圧ショベル1の作業機2を制御する。すなわち、作業機制御装置56は、バケット8の刃先8BTを、目標施工情報によって表された、施工対象が施工されるときに目標とされる形状に沿って移動させる。施工管理装置57は、施工情報生成装置52が生成した目標施工情報を、通信装置25から図3に示される管理装置61、携帯端末装置64及び他の作業機械70の少なくとも一つに送信してもよい。次に、実施形態に係る形状計測方法及び施工管理方法の処理例を説明する。
<実施形態に係る形状計測方法及び施工管理方法の処理例>
 図20は、実施形態に係る形状計測方法及び施工管理方法の処理例を示すフローチャートである。制御システム50を有する油圧ショベル1は、実施形態に係る形状計測方法を実行する。より詳細には、制御システム50は、施工対象OBPの形状情報を求め、得られた形状情報から目標施工情報を生成する。そして、制御システム50は、得られた目標施工情報に沿うように作業機2を制御する。施工管理システム100、実施形態では管理装置61が、実施形態に係る施工管理方法を実行する。
 図3に示される撮像スイッチ32がオペレータによって操作されると、撮像スイッチ32から制御システム50に、施工対象OBPを撮像装置30に撮像させるための撮像指令が検出処理装置51に入力される。検出処理装置51は、撮像指令が入力されると、ステップS101において、少なくとも一対の撮像装置30に施工対象OBPを撮像させる。ステップS102において、検出処理装置51は、少なくとも一対の撮像装置30が撮像した画像にステレオ方式による画像処理を施して施工対象OBPの位置(三次元位置)を求め、得られた施工対象OBPの位置を用いて施工対象OBPの形状情報を生成する。検出処理装置51は、生成した目標施工情報を自身の記憶部及び施工管理装置57の記憶部57Mの少なくとも一方に記憶させる。形状情報を生成する手法は、前述した通りである。
 ステップS103において、施工情報生成装置52は、検出処理装置51から形状情報を取得し、目標施工情報を生成する。施工情報生成装置52は、生成した目標施工情報を自身の記憶部及び施工管理装置57の記憶部57Mの少なくとも一方に記憶させる。目標施工情報を生成する手法は、前述した通りである。実施形態において、図3に示される施工管理装置57は、ステップS102で得られた形状情報及びステップS102で得られた目標施工情報を含む作業情報LGを、管理装置61及び携帯端末装置64の少なくとも一方に送信してもよい。
 ステップS104において、油圧ショベル1は、施工対象OBPを施工する。このとき、作業機制御装置56は、作業機制御を実行する。すなわち、作業機制御装置56は、目標施工情報によって表された、施工対象OBPの施工時において目標とされる形状に沿って、バケット8の刃先8BTを移動させる。
 実施形態では、油圧ショベル1が目標施工情報に基づき作業機制御を実行して施工する。施工現場では、作業者がスコップ等の作業具を使って手作業で掘削等をすることもある。このような場合、作業者は、油圧ショベル1から送信され、携帯端末装置64に取得された目標施工情報を確認して掘削等の施工を行ってもよい。
 施工が終了したら、ステップS105において、検出処理装置51は施工後の施工対象OBPを少なくとも一対の撮像装置30に撮像させ、得られた画像を用いて形状情報を生成する。次に、ステップS106において、施工管理装置57は、検出処理装置51が生成した施工後の形状情報を、図3に示される通信装置25を介して管理装置61に送信する。施工管理装置57は、施工後の形状情報を、通信装置25を介して図3に示される携帯端末装置64に送信してもよい。施工後の形状情報を取得した管理装置61は、図3に示される携帯端末装置64に、通信装置62を介して施工後の形状情報を送信してもよい。図20に示される施工方法の処理例を示すフローチャートにおいて、ステップS106及びステップS107は実行されなくてもよい。
 実施形態においては、時刻情報TMが形状情報に付されているので、管理装置61及び携帯端末装置64の少なくとも一方は、制御システム50から送信された、所定の施行現場について施工前後の形状情報を表示装置67及び携帯端末装置64が有する表示装置の少なくとも一方の画面に表示させることにより、施工の進捗状況を表示させることができる。また、管理装置61及び携帯端末装置64の少なくとも一方は、施工現場の形状情報を時系列に並べて表示装置67及び携帯端末装置64が有する表示装置の少なくとも一方の画面に表示させたり、コマ送りで表示させたり、位置Prの座標の数値を表示させたりすることにより、日々の施工の進捗状況が分かりやすく表示される。油圧ショベル1の施工管理装置57も、時系列の施工現場の形状情報が管理装置61から得られていれば、表示装置58の画面58Dに施工現場の形状情報を時系列に並べて表示させることができる。すなわち、管理装置61、携帯端末装置64、施工管理装置及び施工管理装置57の少なくとも1つは、時刻情報が付された前記形状情報を複数用いて、前記作業機械の施工現場全体の地形の情報を時系列に表示する表示装置を有する。
 実施形態において、施工管理装置57は、施工後の形状情報に加え、目標施工情報を、通信装置25を介して管理装置61及び携帯端末装置64の少なくとも一方に送信してもよい。施工後の形状情報及び目標施工情報が、油圧ショベル1から管理装置61のみに送信される場合、管理装置61は、施工後の形状情報及び目標施工情報を、通信装置62を介して携帯端末装置64に送信してもよい。このようにすることで、管理装置61及び携帯端末装置64の少なくとも一方は、施工後の形状情報と目標施工情報とを表示装置67の画面に並べて表示したり、重ねて表示したりすることができるので、管理者等は、施工の進捗状況を迅速かつ容易に確認できる。
<対象を検出する方法の変形例>
 油圧ショベル1が有する少なくとも一対の撮像装置30が対象を検出する方法の変形例を説明する。少なくとも一対の撮像装置30は、油圧ショベル1の旋回体3に取り付けられる。旋回体3を旋回させながら少なくとも一対の撮像装置30が対象を撮像することにより、検出処理装置51は、油圧ショベル1の周囲全体の形状情報を得ることができる。
 旋回体3を旋回させながら少なくとも一対の撮像装置30が対象を撮像する場合、検出処理装置51は、撮像のタイミングで旋回体3の旋回を停止させてもよい。この場合、旋回体3は断続的に旋回する。旋回体3を連続して旋回させながら少なくとも一対の撮像装置30が対象を撮像する場合、次のようにする。
 旋回体3を連続して旋回させながら少なくとも一対の撮像装置30が対象を撮像する場合、少なくとも一対の撮像装置30は、旋回体3が旋回を開始すると同時に撮像を開始し、旋回を停止することによって撮像を終了する。そして、検出処理装置51は、旋回体3の旋回中に取得した画像をもとにステレオ方式における画像処理を施して形状情報を求めてもよい。この場合、例えば、操作装置35のうち旋回体3を旋回させるための操作装置の操作にともなって出力される、パイロット圧の変化を示す信号又は電気信号を検出処理装置51が受信し、旋回体3の旋回開始のタイミング及び旋回停止のタイミングを判断し、少なくとも一対の撮像装置30に撮像を行わせる。
 旋回体3の旋回中に撮像装置30が対象を撮像することによる三次元計測が実行される場合、検出処理装置51は、撮像装置30のシャッターが切られる毎に時刻情報TMを生成して、撮像された画像と対応付ける。また、検出処理装置51は、旋回体3の旋回が開始された時刻又は旋回が停止した時刻を時刻情報TMとしてもよい。
 制御システム50は、少なくとも一対の撮像装置30によって撮像された対象の形状情報と、形状情報が得られた時刻情報とを対応付けるので、時刻情報に基づいて形状情報を組み合わせることで、作業現場の現状の状況を得ることができる。
 油圧ショベル1のような作業機械は、複雑な地形の上で施工することも多く、撮像装置30が撮像する対象に対して大きく傾いている場合も多い。異なるタイミングで同じ場所で対象が撮像される場合、その場所は施工等が行われて地面の傾斜が変化してしまっていることも想定される。一対の撮像装置30は、油圧ショベル1が稼働している間に互いの相対的な位置関係がずれないように、油圧ショベル1に確実に取り付けられるので、油圧ショベル1の姿勢に応じて一対の撮像装置30の姿勢を変化させることは難しい。
 実施形態において、制御システム50は、油圧ショベルの姿勢を用いて形状情報を求める。このとき、制御システム50は、IMU24の検出値と、位置検出装置23によって検出された油圧ショベル1の位置から得られた油圧ショベルの方位とを用いて、撮像装置30によって得られた三次元位置情報を、グローバル座標系における三次元位置情報に変換する。変換後の三次元位置情報が形状情報となる。このような処理により、制御システム50が求めた形状情報は、油圧ショベル1の傾斜の影響を抑制して、施工前後の地形の比較等を適切に行うことができる。
 制御システム50は、作業現場を撮像装置30によって撮像することで、作業現場の形状情報、すなわち作業現場の三次元位置情報を得ることができる。制御システム50は油圧ショベル1に設けられているので、作業現場の様々な場所に移動して形状情報を求めることができる。このようにして求めた複数の形状情報を、時刻情報に基づいて結合させることで、作業現場の状況及び作業現場の状況の変化を把握できるようになる。その結果、管理装置61は、対象の位置を検出する検出装置である少なくとも一対の撮像装置30及び検出処理装置51を有する作業機械である油圧ショベル1が得た検出結果を用いて施工状況を管理することができる。
 例えば、管理装置61は、同時刻とみなせる範囲内で得られた複数の異なる形状情報を抽出して結合させることにより、同時刻とみなせる範囲内における施工現場の施工状態を得ることができる。例えば、同時刻とみなせる範囲内における施工現場の施工状態を複数得ることにより、施工の進捗状況が把握される。このように、管理装置61は、撮像装置30及び検出処理装置51を有する作業機械と撮像装置30及び検出処理装置51を有さない作業機械とが混在する施工現場の施工状況を管理できる。このように、制御システム50を有する油圧ショベル1が作業現場に1台あれば、油圧ショベル1が自身の施工対象だけでなく、他の作業機械の施工対象についても形状情報を生成できるので、施工現場全体における施工の進捗管理及び出来高管理が可能になる。
 制御システム50は、油圧ショベル1に設けられた少なくとも一対の撮像装置30を用いて施工対象を検出し、検出結果である少なくとも一対の画像から施工対象の形状情報を求め、得られた形状情報から対象を施工するときに目標とする形状の情報である形状情報を求める。したがって、制御システム50は、作業者が施工現場において、測量器等を使用して施工対象を測量して対象の形状を求めていた作業を不要にさせ、また、求められた施工対象に基づく目標とする形状の生成作業、つまり目標とする形状の情報を設計する作業を不要にさせる。その結果、制御システム50は、施工対象の現況地形を測量する手間及び施工対象の施工時に目標となる形状を求める際の手間を低減することができる。制御システム50は、作業者による、測量器等を使用した測量が困難である場所も、撮像装置30が撮像できる場所であれば目標施工情報を生成できるので、より効率的に作業機械による施工及び作業者の手による掘削等の施工が実現できる。また、制御システム50によって施工対象の測量ができるため、施工現場で測量を行う作業者の負担が軽減される。
 例えば、CAD(Computer Aided Design)等の設計ツールで作成された、施工対象の目標施工情報が存在する場合、作業機械によって施工を行うために、その目標施工情報が示す場所、すなわちこれから施工しようとする場所に作業機械を移動させることが必要になる場合がある。制御システム50を有する油圧ショベル1は、少なくとも一対の撮像装置30を有し、これから施工する施工対象を少なくとも一対の撮像装置30によって撮像し、撮像結果に基づいて目標施工情報を生成する。このように、油圧ショベル1は、測量器として機能するとともに設計ツールとして機能する。つまり、施工する場所で、施工対象の目標施工情報を生成できるので、これから施工しようとする場所に移動しなくてもよい。その結果、移動時間及び設計期間が短縮できるので、作業効率が向上する。
 実施形態では、油圧ショベル1が有する制御システムが形状情報を生成したが、形状情報は管理装置61が生成してもよい。この場合、一対の撮像装置30によって撮像された画像にステレオ方式による画像処理が施された結果、油圧ショベル1の姿勢を示す情報及び油圧ショベル1のグローバル座標系における位置その他の形状情報を求めるために必要な情報が、通信装置25を介して管理装置61に送信される。
 油圧ショベル1等の作業機械は施工現場で移動するため、少なくとも一対の撮像装置30が撮像する現場の傾斜は様々であるし、撮像する場所の傾斜も施工によって時間の経過とともに変化することがある。このような施工現場においても、制御システム50は、油圧ショベル1の姿勢を表す情報、実施形態ではロール角θr、ピッチ角θp及び方位角θdを用いて形状情報を生成するので、適切な施工管理を実現できる。
 実施形態において、制御システム50は、油圧ショベル1の姿勢を表すロール角θr、ピッチ角θp及び方位角θdを用いて形状情報を生成したが、油圧ショベル1の姿勢変化に対して一対の撮像装置30の相対的な位置関係を保持したまま、両者の姿勢が一定となる機構によって一対の撮像装置30が支持されるようにしてもよい。この場合、例えば、一対の撮像装置30の基線が常に水平を保つような機構で一対の撮像装置30が支持される。
 実施形態において、制御システム50は、制御システム50を有する油圧ショベル1及び制御システム50を有さない作業機械が施工する範囲及び施工された後の範囲を対象として形状情報を生成するが、制御システム50が形状情報を生成する対象はこれらに限定されない。例えば、制御システム50は、施工現場でスコップ等によって掘削等の作業する作業者が施工した範囲、又はこれから施工しようとする範囲の形状情報を生成することもできる。このようにすることで、制御システム50及び制御システム50を有する施工管理システム100は、施工現場全体の施工状況を管理することができる。前述のように、制御システム50は、施工前後の形状情報の差分から、作業者がスコップ等によって掘削や盛土を行った土量も求めることができる。
 実施形態においては、制御システム50が作業機械である油圧ショベル1に備えられているが、形状情報を生成したり目標施工情報を生成したりするシステムは測量用の車両に備えられていてもよい。例えば、形状情報を生成する場合は、少なくとも一対の撮像装置30及び検出処理装置51が測量用の車両に備えられる。形状情報に加え、目標施工情報も生成する場合は、少なくとも一対の撮像装置30及び検出処理装置51に加え、施工情報生成装置52が測量用の車両に備えられる。いずれの場合でも、測量用の車両は、施工現場で作業する作業機械、管理装置61及び携帯端末装置64の少なくとも一つと通信できる通信装置25を有することが好ましい。
 実施形態において、ステレオ方式における画像処理は、油圧ショベル1の外部、例えば管理施設60の管理装置61及び携帯端末装置64の少なくとも一つが行ってもよい。この場合、例えば、少なくとも一対の撮像装置30によって撮像された対象の一対の画像が、通信装置25を介して管理装置61及び携帯端末装置64の少なくとも一つに送信され、管理装置61及び携帯端末装置64の少なくとも一つは、対象の画像にステレオ方式による画像処理を施す。
 実施形態において、油圧ショベル1の外部、例えば管理施設60の管理装置61及び携帯端末装置64の少なくとも一つが、形状情報を生成してもよい。特に、油圧ショベル1の姿勢を表すロール角θr、ピッチ角θp及び方位角θdを用いた変換を、油圧ショベル1の外部、例えば管理施設60の管理装置61及び携帯端末装置64の少なくとも一つが行ってもよい。この場合、少なくとも一対の撮像装置30によって撮像された対象の一対の画像にステレオ方式による画像処理が施された情報が、ロール角θr、ピッチ角θp及び方位角θdとともに、通信装置25を介して油圧ショベル1の外部、例えば管理施設60の管理装置61及び携帯端末装置64の少なくとも一つに送信される。
 実施形態において、まず少なくとも一対の撮像装置30によって撮像された画像から得られた施工対象OBPの位置Psが求められ、その後、グローバル座標系の位置Pgに変換されるとともに、油圧ショベルの姿勢による傾きが補正されてもよい。実施形態において、制御システム50は、例えばIMU24が油圧ショベル1の旋回体3の旋回及び油圧ショベル1の移動の少なくとも一方を検出したら、撮像装置30による撮像を禁止したり、検出処理装置51が形状情報を生成しないようにしたりする制御を実行してもよい。実施形態において、油圧ショベル1が他の作業機械70に形状情報を送信し、他の作業機械70が目標施工情報を生成してもよい。
 以上、実施形態を説明したが、前述した内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。前述した構成要素は適宜組み合わせることが可能である。実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。作業機械は、施工対象を施工、例えば掘削及び運搬等を行うことができれば油圧ショベルに限定されず、例えば、ホイールローダー及びブルドーザーのような作業機械であってもよい。
1 油圧ショベル、2 作業機、3 旋回体、4 運転室、5 走行体、21,22 アンテナ、23 位置検出装置、25 通信装置、30,30a,30b,30c,30d 撮像装置、32 撮像スイッチ、50 作業機械の制御システム、51 検出処理装置、51A 演算部、51B 情報付与部、52 施工情報生成装置、53 センサ制御装置、54 機関制御装置、55 ポンプ制御装置、56 作業機制御装置、57 施工管理装置、57M 記憶部、58 表示装置、59 信号線、60 管理施設、61 管理装置、62 通信装置、64 携帯端末装置、67 表示装置、70 他の作業機械、100 施工管理システム、EMD データファイル、ID 姿勢情報、LG 作業情報、NTW 通信回線、OBP 施工対象、PR 処理部、MR 記憶部、IO 入出力部、TM 時刻情報。

Claims (13)

  1.  作業機械に取り付けられ、対象を検出して、前記対象の情報を出力する対象検出部と、
     前記対象検出部によって検出された前記対象の情報を用いて、前記対象の三次元形状を表す形状情報を出力する形状検出部と、
     前記形状情報に、前記形状情報を特定するための時刻情報を付与する情報付与部と、
     を含む、形状計測システム。
  2.  前記時刻情報は、前記対象が前記対象検出部によって検出された時刻から、出力された前記形状情報を前記作業機械の外部の装置が取得した時刻までの間に存在する少なくとも1つの時刻の情報を含む、請求項1に記載の形状計測システム。
  3.  前記情報付与部は、
     前記対象検出部の位置を示す情報及び前記対象検出部を識別するための情報をさらに出力する、請求項1に記載の形状計測システム。
  4.  前形状検出部及び前記情報付与部は、前記作業機械に設けられる、請求項1又は請求項2に記載の形状計測システム。
  5.  前記作業機械は、前記作業機械の姿勢を出力する姿勢検出部を有し、
     前記形状検出部及び前記対象検出部は前記作業機械に取り付けられて、前記姿勢検出部によって検出された、前記対象検出部が前記対象を検出したときの前記作業機械の姿勢を用いて前記形状情報を求める、請求項1から請求項4のいずれか1項に記載の形状計測システム。
  6.  前記作業機械は、前記作業機械の方位を検出する位置検出部を有し、
     前記形状検出部は、さらに前記位置検出装置によって検出された、前記形状検出部が前記対象を検出したときの前記作業機械の方位を用いて前記形状情報を求める、請求項3に記載の形状計測システム。
  7.  前記時刻情報が付された前記形状情報を用いて、前記作業機械の施工現場全体の現状の地形の情報を出力する、請求項1から請求項6のいずれか1項に記載の形状計測システム。
  8.  前記時刻情報が付された前記形状情報を複数用いて、前記作業機械の施工現場全体の地形の情報を時系列に表示する表示装置を有する、請求項1から請求項7のいずれか1項に記載の形状計測システム。
  9.  作業機械に取り付けられ、対象を検出して、前記対象の情報を出力する対象検出部と、
     前記対象検出部によって検出された前記対象の情報を用いて、前記対象の三次元形状を表す形状情報を出力する形状検出部と、
     前記作業機械の姿勢を出力する姿勢検出部と、を含み、
     前記形状検出部は、前記姿勢検出部によって検出された、前記形状検出部が前記対象を検出したときの前記作業機械の姿勢を用いて前記形状情報を求める、形状計測システム。
  10.  前記作業機械は、前記作業機械の方位を検出する位置検出部を有し、
     前記形状検出部は、さらに前記位置検出装置によって検出された、前記形状検出部が前記対象を検出したときの前記作業機械の方位を用いて前記形状情報を求める、請求項5に記載の形状計測システム。
  11.  前記形状検出部は、前記作業機械に設けられる、請求項9又は請求項10に記載の形状計測システム。
  12.  作業機械の所定の位置から対象を検出し、
     検出された前記対象の情報及び前記対象が検出されたときの前記作業機械の姿勢を用いて、検出された前記対象の三次元形状を表す形状情報を得る、
     形状計測方法。
  13.  得られた前記形状情報に、前記形状情報を特定するための時刻情報を付けて出力する、
     請求項12に記載の形状計測方法。
PCT/JP2016/079701 2015-10-05 2016-10-05 形状計測システム及び形状計測方法 WO2017061511A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/756,673 US10508416B2 (en) 2015-10-05 2016-10-05 Shape measuring system and shape measuring method
DE112016003502.0T DE112016003502B4 (de) 2015-10-05 2016-10-05 Bauverwaltungssystem und Formmessverfahren
AU2016336314A AU2016336314A1 (en) 2015-10-05 2016-10-05 Shape measuring system and shape measuring method
AU2019210643A AU2019210643A1 (en) 2015-10-05 2019-08-02 Shape measuring system and shape measuring method
AU2021201894A AU2021201894B2 (en) 2015-10-05 2021-03-26 Shape measuring system and shape measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-198078 2015-10-05
JP2015198078A JP6322612B2 (ja) 2015-10-05 2015-10-05 施工管理システム及び形状計測方法

Publications (1)

Publication Number Publication Date
WO2017061511A1 true WO2017061511A1 (ja) 2017-04-13

Family

ID=58487792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079701 WO2017061511A1 (ja) 2015-10-05 2016-10-05 形状計測システム及び形状計測方法

Country Status (5)

Country Link
US (1) US10508416B2 (ja)
JP (1) JP6322612B2 (ja)
AU (3) AU2016336314A1 (ja)
DE (1) DE112016003502B4 (ja)
WO (1) WO2017061511A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015040A (ja) * 2017-07-04 2019-01-31 株式会社福田組 掘削支援システム
JP6895350B2 (ja) * 2017-09-08 2021-06-30 株式会社小松製作所 作業機械の計測システム及び作業機械
US10962360B2 (en) 2018-06-11 2021-03-30 Deere & Company Smartphone calibration of a grade control system for a work machine
JP7080750B2 (ja) * 2018-06-29 2022-06-06 株式会社小松製作所 表示制御システム、遠隔操作システム、表示制御装置、および表示制御方法
JP6826233B2 (ja) * 2018-09-25 2021-02-03 日立建機株式会社 作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械
JP7159914B2 (ja) * 2019-02-28 2022-10-25 コベルコ建機株式会社 作業者検出装置、作業者検出方法、および、作業者検出プログラム
JP7229103B2 (ja) * 2019-06-06 2023-02-27 住友建機株式会社 ショベル
WO2021010489A1 (ja) * 2019-07-17 2021-01-21 住友建機株式会社 作業機械及び作業機械による作業を支援する支援装置
KR102125664B1 (ko) * 2020-01-13 2020-06-22 이상룡 굴삭 레벨 검측 장치
DE102020201394A1 (de) 2020-02-05 2021-08-05 Zf Friedrichshafen Ag Halbautomatische Steuerung eines Baggers
JP7390991B2 (ja) * 2020-07-31 2023-12-04 日立建機株式会社 作業機械および施工支援システム
JPWO2023132321A1 (ja) * 2022-01-06 2023-07-13

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328022A (ja) * 2001-05-02 2002-11-15 Komatsu Ltd 地形形状計測装置およびガイダンス装置
JP2003240525A (ja) * 2002-02-18 2003-08-27 Toshiba Corp モアレ装置、このモアレ装置を用いた異物検出装置、及び異物検出装置を用いた路面走行車両
JP2012117874A (ja) * 2010-11-30 2012-06-21 Topcon Corp 測量装置およびそれを含む測量装置通信システム
WO2013047697A1 (ja) * 2011-09-29 2013-04-04 三菱重工業株式会社 測定対象物測定装置及びその処理方法とプログラム
JP2014153351A (ja) * 2013-06-10 2014-08-25 Hanshin Expressway Engineering Co Ltd 道路測定方法
JP2015055606A (ja) * 2013-09-13 2015-03-23 株式会社オートネットワーク技術研究所 距離計測システム及び3次元画像生成システム
JP2015102466A (ja) * 2013-11-26 2015-06-04 セントラル硝子株式会社 湾曲板形状検査装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471391A (en) * 1993-12-08 1995-11-28 Caterpillar Inc. Method and apparatus for operating compacting machinery relative to a work site
AUPN385195A0 (en) * 1995-06-29 1995-07-20 Hall, David John A system for monitoring a movement of a vehicle tool
JP3525964B2 (ja) * 1995-07-05 2004-05-10 株式会社エフ・エフ・シー 物体の三次元形状計測方法
US5907111A (en) * 1997-04-08 1999-05-25 Lockheed Martin Idaho Technologies Company Remotely controlled sensor apparatus for use in dig-face characterization system
JPH10332825A (ja) 1997-05-30 1998-12-18 Penta Ocean Constr Co Ltd 海底地形測量方法及び装置
US6191732B1 (en) * 1999-05-25 2001-02-20 Carlson Software Real-time surveying/earth moving system
JP2001142926A (ja) * 1999-11-16 2001-05-25 Hitachi Ltd プラント建設におけるヤード計画支援システム
JP2002294762A (ja) 2001-03-28 2002-10-09 Kobelco Contstruction Machinery Ltd 建設機械の監視カメラ装置
SE526913C2 (sv) * 2003-01-02 2005-11-15 Arnex Navigation Systems Ab Förfarande i form av intelligenta funktioner för fordon och automatiska lastmaskiner gällande kartläggning av terräng och materialvolymer, hinderdetektering och styrning av fordon och arbetsredskap
JP2004222051A (ja) 2003-01-16 2004-08-05 Ntt Infranet Co Ltd 小型自動モーションコントロール撮影装置
US9002565B2 (en) * 2003-03-20 2015-04-07 Agjunction Llc GNSS and optical guidance and machine control
JP4017579B2 (ja) 2003-09-19 2007-12-05 株式会社ソニー・コンピュータエンタテインメント 撮影補助器、画像処理方法、画像処理装置、コンピュータプログラム、プログラムを格納した記録媒体
US8351684B2 (en) 2008-02-13 2013-01-08 Caterpillar Inc. Terrain map updating system
JP5759798B2 (ja) * 2011-06-08 2015-08-05 株式会社トプコン 建設機械制御システム
JP5802476B2 (ja) 2011-08-09 2015-10-28 株式会社トプコン 建設機械制御システム
JP5924961B2 (ja) * 2012-02-02 2016-05-25 住友建機株式会社 建設機械、建設機械管理システム、携帯通信端末、及び建設機械の作業状態を表示する方法
US20150094953A1 (en) * 2013-10-02 2015-04-02 Deere & Company System for locating and characterizing a topographic feature from a work vehicle
US20150199106A1 (en) 2014-01-14 2015-07-16 Caterpillar Inc. Augmented Reality Display System
JP2016065422A (ja) * 2014-09-26 2016-04-28 株式会社日立製作所 外界認識装置および外界認識装置を用いた掘削機械

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328022A (ja) * 2001-05-02 2002-11-15 Komatsu Ltd 地形形状計測装置およびガイダンス装置
JP2003240525A (ja) * 2002-02-18 2003-08-27 Toshiba Corp モアレ装置、このモアレ装置を用いた異物検出装置、及び異物検出装置を用いた路面走行車両
JP2012117874A (ja) * 2010-11-30 2012-06-21 Topcon Corp 測量装置およびそれを含む測量装置通信システム
WO2013047697A1 (ja) * 2011-09-29 2013-04-04 三菱重工業株式会社 測定対象物測定装置及びその処理方法とプログラム
JP2014153351A (ja) * 2013-06-10 2014-08-25 Hanshin Expressway Engineering Co Ltd 道路測定方法
JP2015055606A (ja) * 2013-09-13 2015-03-23 株式会社オートネットワーク技術研究所 距離計測システム及び3次元画像生成システム
JP2015102466A (ja) * 2013-11-26 2015-06-04 セントラル硝子株式会社 湾曲板形状検査装置

Also Published As

Publication number Publication date
AU2021201894B2 (en) 2023-01-12
AU2019210643A1 (en) 2019-08-22
AU2021201894A1 (en) 2021-04-22
JP2017072425A (ja) 2017-04-13
AU2016336314A1 (en) 2018-03-15
DE112016003502T5 (de) 2018-05-30
JP6322612B2 (ja) 2018-05-09
US10508416B2 (en) 2019-12-17
DE112016003502B4 (de) 2021-10-21
US20180245314A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6925775B2 (ja) 施工管理システム
WO2017061511A1 (ja) 形状計測システム及び形状計測方法
KR102013761B1 (ko) 작업 기계의 화상 표시 시스템, 작업 기계의 원격 조작 시스템 및 작업 기계
JP6585697B2 (ja) 施工管理システム
CN108885102B (zh) 形状测量系统、作业机械及形状测量方法
JP6606230B2 (ja) 形状計測システム
AU2021201940A1 (en) Construction method, work machine control system, and work machine
JP2024028438A (ja) 作業機械の画像表示システム及び作業機械の画像表示方法
JP6815462B2 (ja) 形状計測システム及び形状計測方法
JP2018178711A (ja) 施工現場の形状情報の生成方法及び作業機械の制御システム
JP7166326B2 (ja) 施工管理システム
JP7065002B2 (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016003502

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15756673

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016336314

Country of ref document: AU

Date of ref document: 20161005

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16853665

Country of ref document: EP

Kind code of ref document: A1