WO2017061195A1 - 発光ダイオード表示装置 - Google Patents

発光ダイオード表示装置 Download PDF

Info

Publication number
WO2017061195A1
WO2017061195A1 PCT/JP2016/075685 JP2016075685W WO2017061195A1 WO 2017061195 A1 WO2017061195 A1 WO 2017061195A1 JP 2016075685 W JP2016075685 W JP 2016075685W WO 2017061195 A1 WO2017061195 A1 WO 2017061195A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
light emitting
emitting diode
temperature
unit
Prior art date
Application number
PCT/JP2016/075685
Other languages
English (en)
French (fr)
Inventor
直之 町田
重教 渋江
浅村 吉範
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680054690.6A priority Critical patent/CN108140348A/zh
Priority to JP2017544415A priority patent/JPWO2017061195A1/ja
Priority to EP16853349.5A priority patent/EP3361471A1/en
Priority to RU2018115322A priority patent/RU2018115322A/ru
Priority to US15/751,284 priority patent/US20180240398A1/en
Publication of WO2017061195A1 publication Critical patent/WO2017061195A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/06Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions using controlled light sources
    • G09G3/12Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions using controlled light sources using electroluminescent elements
    • G09G3/14Semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing

Definitions

  • the present invention relates to a light emitting diode display device in which a plurality of light emitting diodes are arranged in a matrix and image information is displayed by blinking control for each light emitting diode.
  • a light emitting diode display device constituted by using a light emitting diode is widely used for outdoor and indoor advertising display due to the technical development and cost reduction of the light emitting diode.
  • a light emitting diode may be abbreviated as LED (Light Emitting Diode).
  • These light emitting diode display devices have so far mainly displayed moving images of natural images and animations.
  • the viewing distance becomes shorter as the pixel pitch becomes narrower, so that image display in a conference room is possible.
  • it is used also for the image display of the personal computer for the purpose of monitoring.
  • personal computer images that are close to still images are often displayed.
  • the luminance of the light emitting diodes decreases as the lighting time increases, the luminance reduction rate of each light emitting diode differs depending on the content of the image, resulting in luminance variations and color variations for each pixel.
  • the luminance data is corrected by detecting the luminance of the display portion of the light emitting diode, or the display time of the light emitting diode is integrated and the luminance is corrected according to the integration time.
  • a method has been proposed (see, for example, Patent Documents 1 and 2).
  • the accuracy of brightness correction can be improved by detecting the actual brightness of the LED display, but it is necessary to display an image for brightness measurement, and the operation is stopped in a system that operates for 24 hours. There was a problem that it was necessary to make it happen. As a result, there is a problem that luminance correction or color variation remains without improving the correction accuracy, and the image quality of the LED display section is deteriorated, and that a new LED module needs to be replaced to solve this.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a light emitting diode display device having a luminance control function that compensates for luminance variations caused by changes in luminance characteristics of individual light emitting diode elements over time. To do.
  • the present invention provides a display unit having a plurality of light emitting diodes, a first driving unit that drives the light emitting diodes based on a video signal, and a cumulative number of light emitting diodes.
  • Lighting time storage means for storing the cumulative lighting time that is the lighting time, a first temperature detection unit that detects the first temperature that is the temperature of the light emitting diode, a first temperature storage unit that stores the first temperature, and for measurement
  • An aging display unit having a light-emitting diode, a second drive unit that drives the measurement light-emitting diode based on drive data, a drive data generation unit that generates drive data, and a second temperature that detects the temperature of the measurement light-emitting diode
  • a second temperature storage unit that stores a second temperature that is a value based on the temperature detected by the second temperature detection unit.
  • the present invention includes a luminance measurement unit that measures the luminance of the measurement light emitting diode, a luminance reduction rate storage unit that stores the luminance measured by the luminance measurement unit as a luminance reduction rate in association with the lighting time of the measurement light emitting diode, Correction coefficient calculation means for obtaining a correction coefficient for the light emitting diode based on the cumulative lighting time and the luminance reduction rate, and correcting the correction coefficient based on the difference between the first temperature and the second temperature; and in the video signal based on the correction coefficient And a luminance correction circuit for correcting the luminance of the light emitting diode.
  • a light emitting diode display device having a luminance control function that compensates for luminance variations caused by changes in luminance characteristics of individual light emitting diode elements over time.
  • FIG. 1 is an overall system diagram of a light-emitting diode display device according to a first embodiment of the present invention;
  • the figure which showed the relationship between the lighting time of the green light emitting diode of LED with which the LED display part concerning Embodiment 1 is equipped, and LED with which an LED aging display part is equipped, and a luminance fall rate The figure which showed the relationship between the lighting time obtained based on the brightness
  • FIG. 1 is a flowchart showing a luminance correction method for a light-emitting diode display device according to a first embodiment
  • FIG. 5 shows an example of PWM driving of a light-emitting diode in Embodiment 1
  • FIG. 6 shows a luminance correction method for the light-emitting diode display device according to Embodiment 1; The figure which shows the method of the brightness
  • FIG. 10 is a flowchart showing a luminance correction method for a light emitting diode display device according to a second embodiment; The figure explaining the relationship between the lighting time and the brightness
  • FIG. 1 is an overall system diagram of a light-emitting diode display device 100 according to a first embodiment of the present invention.
  • FIG. 2 is an internal block diagram of the LED display unit 13 included in the light emitting diode display device 100 according to the first embodiment.
  • FIG. 3 is an internal block diagram of the LED aging unit 20 included in the light emitting diode display device 100 according to the first embodiment.
  • the light emitting diode display device 100 includes a plurality of LED display units 13 constituting a large screen, a video signal input terminal 2, a control unit 8 for controlling the LED display unit 13, and a light emitting diode. And an LED aging unit 20 for obtaining information on luminance degradation.
  • FIG. 1 shows an example of a total of eight LED display units 13, which are display units constituting a large screen, arranged two vertically and four horizontally.
  • the control unit 8 includes a video signal processing circuit 3 that performs video signal processing on the video signal input from the input terminal 2, a luminance correction circuit 4 that corrects the luminance of the video signal that is an output signal of the video signal processing circuit 3, A lighting time storage means 6 for storing a cumulative lighting time which is a cumulative lighting time of each of the light emitting diodes for each color of red (R), green (G) and blue (B) provided in the LED display unit 13; A first temperature storage unit 14 that stores the temperature of the light emitting diode of the LED display unit 10 in the LED display unit 13 and a correction coefficient calculation unit 12 that calculates a correction coefficient are provided.
  • a video signal processing circuit 3 that performs video signal processing on the video signal input from the input terminal 2
  • a luminance correction circuit 4 that corrects the luminance of the video signal that is an output signal of the video signal processing circuit 3
  • a lighting time storage means 6 for storing a cumulative lighting time which is a cumulative lighting time of each of the light emitting diodes for each color of
  • the video signal processing circuit 3 performs video signal processing such as enlargement / reduction processing and gamma correction for displaying on the LED display unit 10 of the LED display unit 13 with respect to the video signal input from the input terminal 2 to obtain a luminance. Output to the correction circuit 4.
  • the color development characteristics vary depending on the display device.
  • a numerical value representing this characteristic is a gamma value
  • the gamma correction is a correction for correcting an image in advance using the gamma value so that the brightness of the original image does not change.
  • the luminance correction circuit 4 measures the luminance value of the video signal input through the video signal processing circuit 3, calculates the cumulative lighting time for each LED display unit 10 for each color, and stores it in the lighting time storage unit 6.
  • the video signal output from the luminance correction circuit 4 is input to the LED display unit 13 and the LED aging unit 20.
  • the LED display unit 13 is based on an LED display unit 10 that is a display unit composed of a plurality of LEDs 1 and a video signal output from the luminance correction circuit 4 of the light emitting diodes of the LED display unit 10.
  • the 1st drive part 5 to drive and the 1st temperature detection part 16 which detects the 1st temperature which is the temperature of the light emitting diode with which LED1 of the LED display part 10 is provided are provided. Therefore, specifically, the output of the luminance correction circuit 4 is input to the first drive unit 5 of the first LED display unit 13 and at the same time, a plurality of LED displays connected to the subsequent stage via the signal line 130.
  • the first temperature detection unit 16 Since the first temperature detection unit 16 detects the temperature of each light emitting diode of the LED 1 by electrical means, the first temperature detection unit 16 may be provided so that the temperature of each light emitting diode of each LED 1 can be detected. The temperature of the light emitting diode of LED 1 detected by the first temperature detection unit 16 is stored in the first temperature storage unit 14.
  • the first drive unit 5 of the LED display unit 13 selects an area necessary for display based on the video signal input from the luminance correction circuit 4 and drives the LED display unit 10 including a plurality of LEDs 1.
  • Each LED 1 is a set of light emitting diodes each including three light emitting diodes of red (R), green (G), and blue (B).
  • the LED aging unit 20 includes an LED aging display unit 21 that is an aging display unit including an LED 1 ′ having a measurement light emitting diode having the same characteristics as the LED 1 included in the LED display unit 10, and an LED aging display unit.
  • the second driving unit 50 for driving the 21 measurement light emitting diodes based on the driving data, the driving data generating unit 7 for generating the driving data for realizing the display pattern of the LED aging display unit 21, and the LED aging display unit 21.
  • a luminance measurement unit 9 for measuring the luminance of the measurement light emitting diode, a luminance reduction rate storage unit 11 for storing the luminance measured by the luminance measurement unit 9 as a luminance reduction rate in association with the lighting time of the measurement light emitting diode, and an LED A second for detecting the temperature of the light-emitting diode for measurement of each color included in the LED 1 ′ of the aging display unit 21 Includes a degree detecting unit 22, a second temperature storing section 15 by the second temperature detection unit 22 stores the second temperature is a value based on the temperature of the measuring light-emitting diode is detected, the. Specifically, the second temperature stored in the second temperature storage unit 15 is the temperature of the measurement light emitting diode detected by the second temperature detection unit 22 or the average value for each color.
  • the correction coefficient calculation means 12 included in the control unit 8 is based on the luminance reduction rate stored in the luminance reduction rate storage unit 11 and the lighting time of each LED 1 stored in the lighting time storage means 6. Is calculated.
  • the correction coefficient calculation means 12 includes the temperature of the light emitting diode of the LED display unit 10 stored in the first temperature storage unit 14 and the temperature of the measurement light emitting diode of the LED aging display unit 21 stored in the second temperature storage unit 15. The correction coefficient is further corrected based on the change in the luminance reduction rate depending on the difference.
  • the brightness correction circuit 4 corrects the output of the video signal processing circuit 3 by video signal processing using the correction coefficient calculated by the correction coefficient calculation means 12 and sends it to the LED display unit 13.
  • the lighting time data stored in the lighting time storage means 6 is an accumulated value of each time when the red (R), green (G) and blue (B) light emitting diodes of the individual LEDs 1 are turned on.
  • the value is accumulated every fixed unit time. Specifically, if a light emitting diode of a certain color is lit with a unit time of 1 hour and a luminance of 10%, a cumulative lighting time in which 0.1 hour is accumulated in the lighting time every hour is the lighting time. It is stored in the storage means 6.
  • the cumulative lighting time is a value normalized by the duty ratio. The operation of the current control method based on the duty ratio will be described later.
  • FIG. 4 is a diagram showing a relationship between the lighting time of the green light emitting diodes of the LED 1 included in the LED display unit 10 according to the first embodiment and the LED 1 ′ included in the LED aging display unit 21 and the luminance reduction rate. That is, FIG. 4 shows the relationship between the lighting time of the green (G) light-emitting diodes of LED1 and LED1 'and the luminance. As shown in FIG. 4, the luminance of the light emitting diode decreases with the lighting time. However, as shown in FIG. 4, there is a variation in the change in luminance with time, and an average exists between the upper limit of variation and the lower limit of variation.
  • the luminance reduction rate has been obtained by prior measurement.
  • the light emitting diode display device 100 according to the first embodiment is configured to measure the luminance reduction rate in real time by the LED aging unit 20.
  • a method for measuring the luminance reduction rate will be described.
  • the drive data generation unit 7 generates drive data for displaying the display pattern on the LED aging display unit 21 based on the video signal output from the luminance correction circuit 4, and the second drive unit 50 is based on the drive data.
  • the LED aging display unit 21 is driven.
  • the maximum duty ratio among the duty ratios by which the first drive unit 5 drives the light emitting diodes of the LED display unit 10 is used as the duty ratio for driving the measurement light emitting diodes.
  • the duty ratio is a ratio of a period during which the light emitting diode is lit in one frame period.
  • the light-emitting diodes for each color of the LED aging display unit 21 are driven with the maximum duty ratio obtained for each color. If the maximum duty ratio of a certain color light emitting diode of the LED display unit 10 is 100%, the display pattern of the light emitting diode of the color of the LED aging display unit 21 may be set to 100%. Thereby, in the LED aging display part 21, it becomes possible to ensure the same lighting time for each color as the light emitting diode of the LED 1 having the longest lighting time among the plurality of LEDs 1 used in the LED display part 10.
  • the LED aging display unit 21 includes a plurality of LEDs 1 ′ having the same light emitting diodes as the LEDs 1.
  • Each LED 1 ' is a set of light emitting diodes each including three light emitting diodes of red (R), green (G), and blue (B) as in the case of LED 1.
  • the LED aging display unit 21 may include a single LED 1 '.
  • the red (R), green (G), and blue (B) light emitting diodes may not be provided.
  • the luminance measuring unit 9 is arranged so as to face the LED aging display unit 21 and measures the luminance of each color LED of each LED 1 ′ of the LED aging display unit 21.
  • a photodiode or the like that can be measured at a wavelength in the visible range can be used.
  • FIG. 5 is a diagram illustrating a relationship between the lighting time t and the luminance reduction rate obtained based on the luminance measurement of the light emitting diodes of the respective colors of the LEDs 1 ′ included in the LED aging display unit 21 according to the first embodiment.
  • the luminance reduction rates of the red (R), green (G), and blue (B) light emitting diodes of the LED 1 ′ are kr (t), kg (t), It is indicated by kb (t).
  • the lighting time t is a value normalized by the duty ratio
  • the luminance reduction rate is the ratio of the current luminance reduction to the initial luminance.
  • the brightness of each color is an average value of the brightness of each color when there are a plurality of LEDs 1 '.
  • the luminance measurement result of the LED aging display unit 21 by the luminance measurement unit 9 and the lighting time of each color light emitting diode included in the LED aging display unit 21 obtained from the drive data generation unit 7 are stored in the luminance reduction rate storage unit 11. By doing so, it is possible to measure the luminance reduction rate of each color light emitting diode with respect to the lighting time in real time.
  • the LED 1 constituting the LED display unit 10 and the LED 1 ′ constituting the LED aging display unit 21 By performing the correction based on the temperature difference, a more accurate luminance correction can be realized.
  • the LED aging display unit 21 has the temperatures of the red (R), green (G), and blue (B) light emitting diodes of the LEDs 1 constituting the LED display unit 10 as the first temperatures tr, tg, and tb. Assuming that the temperatures of the red (R), green (G), and blue (B) light emitting diodes of the LED 1 ′ constituting the second temperature tre, tge, and tbe are red (R), green ( The temperature differences Tr, Tg, and Tb of the G) and blue (B) light emitting diodes are expressed by the following equations.
  • tr, tg, and tb are the temperature values of the light-emitting diodes for each LED 1 detected by the first temperature detector 16.
  • tre, tge, and tbe are the temperature values of the light-emitting diodes for each color of the LED 1 ′ detected by the second temperature detection unit 22.
  • the values are averaged for each color.
  • the thresholds for the temperature differences Tr, Tg, and Tb of red (R), green (G), and blue (B) are set to r ⁇ , g ⁇ , and b ⁇ .
  • FIG. 6 is a diagram showing a change in the luminance reduction rate difference due to the difference in temperature of the light emitting diode during driving in the first embodiment, depending on the lighting time.
  • the difference in the luminance reduction rate with respect to the temperature difference between each LED 1 constituting the LED display unit 10 and the LED 1 ′ constituting the LED aging display unit 21 is red (R) color, green (G) color, blue ( B)
  • temperature correction coefficients r ⁇ (t), g ⁇ (t), and b ⁇ (t) which are functions of the lighting time t, are indicated.
  • Information on the temperature correction coefficients r ⁇ (t), g ⁇ (t), and b ⁇ (t) is held in advance in the correction coefficient calculation unit 12 as a unique table.
  • Tr, Tg, and Tb are Tr ⁇ r ⁇ , Tg ⁇ g ⁇ , and Tb ⁇ b ⁇
  • Tr ⁇ r ⁇ , Tg ⁇ g ⁇ , and Tb ⁇ b ⁇ there is an effect on the luminance decrease rate due to the temperature difference.
  • Tr ⁇ r ⁇ , Tg ⁇ g ⁇ , and Tb ⁇ b ⁇ It is assumed that the influence on the luminance reduction rate due to the temperature difference is negligible.
  • the luminance deterioration correction can be performed with higher accuracy by using the temperature correction coefficients r ⁇ (t), g ⁇ (t), and b ⁇ (t) shown in FIG. Can be performed.
  • FIG. 7 is a flowchart illustrating a luminance correction method of the light emitting diode display device 100 according to the first embodiment.
  • the control unit 8 determines whether or not the unit time for luminance correction has elapsed based on a timing unit (not shown) (step S1).
  • a specific example of the unit time for luminance correction is a time such as 100 hours. If the unit time for luminance correction has not elapsed (step S1: No), the process returns to step S1 again to make a determination. If the unit time for luminance correction has elapsed (step S1: Yes), the process proceeds to step S2.
  • the correction coefficient calculation means 12 refers to the lighting time storage means 6 and searches for the maximum cumulative lighting time for each light emitting diode of each LED 1 (step S2). Among the cumulative lighting times of the light emitting diodes of all the LEDs 1, the maximum cumulative lighting times for the red (R), green (G) and blue (B) light emitting diodes are trmax, tgmax and tbmax, respectively. Then, in step S2, these three values are obtained.
  • the correction coefficient calculation unit 12 refers to the luminance decrease rate storage unit 11 included in the LED aging unit 20, and each of the red (R) color, green (G) color, and blue (B) color obtained in step S2.
  • the maximum luminance reduction rate krgb (tmax) is obtained by selecting the largest luminance reduction rate from the three luminance reduction rates corresponding to the maximum cumulative lighting times trmax, tgmax, and tbmax (step S3).
  • tmax (trmax, tgmax, tbmax), and the maximum luminance reduction rate using the function kr (t), kg (t), kb (t) of the luminance reduction rate shown in FIG. krgb (tmax) is expressed by the following mathematical formula (1).
  • the correction coefficient calculation unit 12 refers to the lighting time storage unit 6 and the luminance decrease rate storage unit 11, and the cumulative lighting time and the lighting time t with respect to the light emitting diodes of all the LEDs 1 of the LED display unit 10. From the luminance reduction rate and the maximum luminance reduction rate krgb (tmax) obtained in step S3, a correction coefficient for each light emitting diode of each LED 1 is obtained (step S4). A specific example of the correction coefficient will be described in detail later.
  • the correction coefficient calculation unit 12 stores the first temperature storage unit 14 that stores the temperatures tr, tg, and tb of the light emitting diodes included in the LED display unit 10 and the temperatures tre, tge, and tbe of the LED aging display unit 21.
  • the temperature differences Tr, Tg, and Tb are obtained by referring to the second temperature storage unit 15.
  • the correction coefficient for the light emitting diode of each color of each LED 1 included in the LED display unit 10 is obtained. Correction is made (step S5). A specific example of correcting the correction coefficient will be described in detail later.
  • the luminance correction circuit 4 corrects the luminance of the light emitting diode in the video signal supplied from the video signal processing circuit 3 by using the correction coefficient for the light emitting diode obtained through the above steps S4 and S5 ( Step S6). After step S6, the process returns to step S1.
  • the current luminance of the red (R), green (G), and blue (B) light emitting diodes of LED 1 is Rp, Gp, and Bp, respectively.
  • the luminance decrease rate of each color is kr (t), kg, respectively.
  • T the luminance reduction rate krgb (tmax) obtained in step S3
  • the red (R), green (G), and blue (B) light emitting diodes of LED1 Each corrected luminance Rcomp, Gcomp, and Bcomp is expressed by the following formula (2).
  • the correction coefficient obtained in step S4 is a coefficient multiplied by the current luminance Rp, Gp, Bp on the right side of each equation (2).
  • the current luminances Rp, Gp, and Bp of the red (R), green (G), and blue (B) light emitting diodes of LED 1 in Equation (2) are the red (R) color and green of LED 1.
  • Equation (3) the corrected luminances Rcomp, Gcomp, and Bcomp of the red (R), green (G), and blue (B) light emitting diodes of LED 1 are as follows: (4).
  • the corrected luminance is relative to the initial values R0, G0, and B0 of the red (R), green (G), and blue (B) light emitting diodes of LED1.
  • the maximum luminance reduction rate krgb (tmax) is uniformly corrected.
  • the initial luminance values R0, G0, and B0 are corrected so as to decrease with the same maximum luminance decrease rate krgb (tmax)
  • variations in luminance can be reduced and luminance uniformity can be maintained. It becomes possible.
  • the correction coefficient calculation unit 12 refers to the first temperature storage unit 14 and the second temperature storage unit 15, and displays LED aging display units for the temperatures tr, tg, and tb of the light emitting diodes of all the LEDs 1 of the LED display unit 10.
  • the temperature differences Tr, Tg, Tb from the temperatures tre, tge, tbe obtained from the light emitting diodes of the respective LEDs 1 ′ of 21 are calculated.
  • Tr ⁇ r ⁇ , Tg ⁇ g ⁇ , and Tb ⁇ b ⁇ there is an influence on the luminance reduction rate due to the temperature difference.
  • Tr ⁇ r ⁇ , Tg ⁇ g ⁇ , and Tb ⁇ b ⁇ the temperature If the influence on the luminance reduction rate due to the difference can be ignored, the luminance in the case of Tr ⁇ r ⁇ , Tg ⁇ g ⁇ , Tb ⁇ b ⁇ is affected by the temperature difference on the luminance reduction rate Tr ⁇ r ⁇ , Tg ⁇ It is necessary to match the luminance when g ⁇ and Tb ⁇ b ⁇ .
  • the temperature differences Tr, Tg, and Tb are greater than or equal to the threshold values r ⁇ , g ⁇ , and b ⁇ and the LED 1 has a large luminance reduction rate.
  • the temperature differences Tr, Tg, and Tb are less than the threshold values r ⁇ , g ⁇ , and b ⁇ .
  • the correction coefficient obtained in step S4 is corrected so that the luminance reduction rate of the light-emitting diode of LED 1 whose brightness reduction rate is not affected by the temperature difference is matched.
  • step S5 when Tr ⁇ r ⁇ , Tg ⁇ g ⁇ , and Tb ⁇ b ⁇ , correction is performed using Equation (5) using temperature correction coefficients r ⁇ (t), g ⁇ (t), and b ⁇ (t).
  • the correction coefficient is corrected in step S5 depending on whether or not the coefficients (1-r ⁇ (t)), (1-g ⁇ (t)), and (1-b ⁇ (t)) are multiplied.
  • FIG. 8 is a diagram illustrating an example of PWM driving of the light emitting diode in the first embodiment.
  • FIG. 8A shows the basic period of PWM, and the basic period of PWM is equal to or shorter than one frame period of the video signal.
  • FIG. 8B shows a case where the duty ratio of the pulse width is 85%, and the light emitting diode emits light during the period PW1.
  • FIG. 8C shows a case where the duty ratio of the pulse width is 80%, and the light emitting diode emits light during the period PW2.
  • luminance of the light emitting diode of LED1 can be adjusted by changing the duty ratio of pulse width.
  • FIG. 9 is a diagram illustrating a luminance correction method of the light-emitting diode display device 100 according to the first embodiment.
  • FIG. 9 shows an example of luminance correction of a green light emitting diode provided in the LED display unit 10.
  • the light emitting diodes of the respective colors of the LEDs 1 of the LED display unit 10 provided in each LED display unit 13, that is, all the light emitting diodes provided in the light emitting diode display device 100 The luminance is corrected so that the luminance reduction rate of the light emitting diode having the largest luminance reduction rate after correction is obtained from the luminance reduction rate before correction. That is, the luminance reduction rate is unified so that the luminances of all the light-emitting diodes after correction become the maximum luminance reduction rate krgb (tmax).
  • luminance uniformity and white balance can be maintained as a whole display, and luminance variation can be improved. That is, it is possible to compensate for luminance variations caused by changes in luminance characteristics of individual light emitting diode elements with high accuracy. This eliminates the difficulty in viewing the display screen. Further, according to the luminance correction method by the light emitting diode display device 100 according to the first embodiment, there is an advantage that the initial luminance of each light emitting diode can be made high.
  • the display of the LED display unit 13 is blocked by the luminance sensor.
  • the display of the LED display unit 13 is performed by the luminance sensor. It is possible to always detect a change in luminance of the light emitting diode of the LED display unit 13 over time without blocking the light. As a result, the measurement of the luminance reduction rate and the luminance correction can be realized with high accuracy.
  • the luminance correction circuit 4 measures the luminance value of the input video signal, that is, the lighting time normalized by the duty ratio, and cumulatively lights the light emitting diodes of all the LED display units 10 provided in each LED display unit 13. While calculating time, the brightness
  • the correction coefficient and the cumulative lighting time for the light emitting diode of each LED display unit 10 can be stored outside the LED display unit 13. Specifically, the correction coefficient is held in the correction coefficient calculation means 12, and the cumulative lighting time is held in the lighting time storage means 6. As a result, even if some of the LED display units 13 need to be replaced due to a failure, the LED display units 13 that have been replaced need only be newly calculated for the cumulative lighting time. The entire 13 brightness adjustments can be made.
  • the video signal processing circuit 3, the correction coefficient calculation unit 12, the luminance correction circuit 4, the lighting time storage unit 6, and the LED aging unit 20 are included in the LED display unit 13.
  • the control unit 8 may be provided inside the LED display unit 13.
  • the luminance measurement unit 9 measures the luminance of the LED aging display unit 21 arranged at a different location from the LED display unit 10, and therefore the LED display unit 10 can be obtained without obstructing the video displayed on the screen.
  • Embodiment 2 the luminance correction is performed so that all the light-emitting diodes of the LEDs 1 of each LED display unit 10 are unified with the luminance reduction rate of the light-emitting diode with the greatest luminance reduction, that is, the maximum luminance reduction rate krgb (tmax). went.
  • the second embodiment another correction method is used.
  • the configuration of the entire system of the light emitting diode display device 100 according to the second embodiment is shown in FIG. 1 as in the first embodiment.
  • FIG. 10 is a diagram showing a luminance correction method of the light emitting diode display device 100 according to the second embodiment of the present invention.
  • the initial value of the luminance is smaller than the maximum luminance, specifically about 50% of the maximum luminance
  • the information held in the lighting time storage means 6 and the luminance reduction rate storage unit 11 Based on the above, it is possible to keep the luminance constant by calculating the luminance reduction rate of all the light emitting diodes included in each LED 1 and correcting the luminance so that the luminance becomes the initial value.
  • FIG. 11 is a flowchart showing a luminance correction method of the light emitting diode display device 100 according to the second embodiment.
  • the flowchart shown in FIG. 11 is obtained by removing steps S2 and S3 from the flowchart shown in FIG. 7, but the contents of steps S4 and S5 are different from those in FIG.
  • steps S4 and S5 are different from those in FIG.
  • FIG. 11 mainly different points will be described.
  • the current luminances of the red (R), green (G), and blue (B) light emitting diodes of LED 1 are Rp, Gp, and Bp.
  • the luminance reduction rates kr (t), kg (t), and kb (t) of the respective light emitting diodes in the accumulated lighting time t shown in FIG. 5 are used, the red (R) color of the LED 1 after correction is used.
  • the luminances Rcomp, Gcomp, and Bcomp of the green (G) and blue (B) light emitting diodes are expressed by the following formula (6).
  • the correction coefficient obtained in step S4 in FIG. 11 is a coefficient multiplied by the current luminance Rp, Gp, Bp on the right side of each equation (6).
  • the formula (3) is substituted into the formula (6), the respective luminances Rcomp, Gcomp, and R (R), green (G), and blue (B) of the light-emitting diodes of the LED 1 after correction are calculated.
  • Bcomp is expressed by the following equation (7).
  • the luminances Rcomp, Gcomp, and Bcomp are corrected to the initial luminance values of the red (R), green (G), and blue (B) light emitting diodes of the LED 1, respectively.
  • the correction coefficient calculation means 12 obtains a correction coefficient so that the luminance is maintained constant while maintaining the initial luminance value, and the luminance correction circuit 4 corrects the luminance.
  • Tr ⁇ r ⁇ , Tg ⁇ g ⁇ , Tb ⁇ b ⁇ there is an influence on the luminance reduction rate due to the temperature difference
  • Tr ⁇ r ⁇ , Tg ⁇ g ⁇ , Tb ⁇ b ⁇ the luminance reduction due to the temperature difference. Assume that the impact on the rate is negligible.
  • the correction coefficient correction in step S5 in FIG. 11 is performed by changing the coefficients of 1 / (1-r ⁇ (t)), 1 / (1-g ⁇ (t)), 1 / (1-b ⁇ (t)). It is implemented depending on whether to ride.
  • Step S6 in FIG. 11 thereafter is the same as step S6 in FIG. 7, and the luminance correction of the light emitting diode of LED1 is performed by changing the duty ratio of the pulse width as in the first embodiment, thereby correcting the luminance by correction. Is possible.
  • the luminance measurement unit 9 does not disturb the image displayed on the LED display unit 10, and the luminance variation caused by the change with time of the luminance characteristics of the individual light emitting diode elements is observed.
  • the luminance correction method shown in FIG. 10 can maintain the luminance constant and maintain the luminance uniformity by reducing the initial value of the luminance. There is an advantage.
  • FIG. 12 is a diagram illustrating the relationship between the lighting time and the luminance decrease rate at a plurality of duty ratios in the LED aging display unit 21 according to the third embodiment of the present invention.
  • FIG. 12 shows an example of a green light-emitting diode, where a solid line indicates the relationship between the lighting time and the luminance reduction rate at each duty ratio, and a dotted line sandwiching each indicates the individual variation of the light-emitting diodes.
  • the light emitting diodes constituting the LED 1 have different actual luminance reduction rates depending on the duty ratio that determines the luminance in use, even if the normalized lighting time t is taken on the horizontal axis.
  • the light emitting diodes of each color of the LED aging display unit 21 are driven at the same duty ratio as the maximum duty ratio of the light emitting diodes of each color included in the LED display unit 10.
  • the driving data for driving the light emitting diodes for the respective colors of the plurality of LEDs 1 ′ of the LED aging display unit 21 with the duty ratios having a plurality of different values including the maximum duty ratio. Is generated by the drive data generation unit 7.
  • the LED aging unit 20 has a plurality of different duty ratios as shown in the solid line in FIG. The relationship between the lighting time t and the luminance reduction rate can be obtained.
  • the luminance correction of the light emitting diode included in the LED display unit 10 is described as being performed on the video signal that is output from the video signal processing circuit 3 by the luminance correction circuit 4.
  • the adjustment target for correcting the luminance is the video signal output by the video signal processing circuit 3. It is not limited to.
  • the LED 1 ′ used in the LED aging display unit 21 is described as having the same light emitting diode as the LED 1 of the LED display unit 10. Variation varies.
  • the light emitting diodes are classified using a classification code such as a BIN code depending on performance characteristics such as luminance and wavelength.
  • a classification code such as a BIN code depending on performance characteristics such as luminance and wavelength.
  • the luminance reduction measured by matching the production lot and the BIN code between the LED 1 used in the LED display unit 10 and the LED 1 ′ used in the LED aging display unit 21 The accuracy of rate and brightness correction is improved.
  • the temperatures tr, tg, tb of the light emitting diodes of the respective colors of the LED display unit 10 and the temperatures tre, tge, tbe of the light emitting diodes of the respective colors of the LED aging display unit 21 are described.
  • one threshold value r ⁇ , g ⁇ , and b ⁇ is used for each color to determine whether there is an influence on the luminance reduction rate.
  • the threshold values r ⁇ 1, g ⁇ 1, b ⁇ 1, and the threshold value r ⁇ 2 (> r ⁇ 1) corresponding to the temperature differences Tr, Tg, Tb of the red (R), green (G), and blue (B) colors.
  • G ⁇ 2 (> g ⁇ 1) and b ⁇ 2 (> b ⁇ 1) are set, whereby the temperature correction area for each color can be subdivided into the following three.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

発光ダイオード表示装置は、発光ダイオードを有する表示部と、発光ダイオードを駆動する駆動部と、発光ダイオードの累積点灯時間を記憶する点灯時間記憶手段と、発光ダイオードの第一温度を検出する第一温度検出部と、第一温度を記憶する第一温度記憶部と、測定用発光ダイオードを有するエージング表示部と、測定用発光ダイオードを駆動する駆動部と、駆動データを生成する駆動データ生成部と、測定用発光ダイオードの温度を検出する第二温度検出部と、第二温度を記憶する第二温度記憶部と、測定用発光ダイオードの輝度を測定する輝度測定部と、輝度低下率を記憶する輝度低下率記憶部と、累積点灯時間および輝度低下率から補正係数を求め第一温度と第二温度の差異に基づいて修正する補正係数演算手段と、補正係数に基づいて発光ダイオードの輝度を補正する輝度補正回路を備える。

Description

発光ダイオード表示装置
 本発明は、複数の発光ダイオードをマトリクス状に配置し、個々の発光ダイオードに対する点滅制御により映像情報を表示する発光ダイオード表示装置に関する。
 発光ダイオードを用いて構成される発光ダイオード表示装置は、発光ダイオードの技術発展と低コスト化により屋外および屋内の広告表示といった用途に広く使用されている。以下では、発光ダイオードをLED(Light Emitting Diode)と略称することがある。
 これらの発光ダイオード表示装置は、これまで自然画およびアニメーションの動画像表示が主であったが、屋内用途においては画素ピッチの狭ピッチ化に伴い視認距離が短くなることで、会議室における画像表示または監視用途を目的とするパーソナルコンピュータの画像表示にも使用されている。特に、監視用途においては静止画に近いパーソナルコンピュータの画像を表示することが多くなっている。しかし、発光ダイオードは、点灯時間が長くなるにしたがって輝度が低下するため、画像の内容により各発光ダイオードの輝度低下率が異なり結果的に画素毎に輝度ばらつきおよび色ばらつきが発生する。
 これらの輝度ばらつき或いは色ばらつきを低減するために、発光ダイオードの表示部の輝度を検出して輝度データを補正する方法、あるいは発光ダイオードの表示時間を積算して積算時間に応じて輝度を補正する方法が提案されている(例えば、特許文献1、2参照)。
特開平11-15437号公報 特開2006-330158号公報
 しかしながら、発光ダイオードの点灯時間の違いによって生じる輝度および色のばらつきについては、寿命試験などにより発光ダイオードの輝度低下率をある程度予測することは可能であるが、発光ダイオードの製造ロットの違いによる特性の違いを予測することは困難であった。
 また、LEDディスプレイの実際の輝度を検出することにより、輝度の補正の精度を向上させることができるが、輝度測定のための画像を表示させる必要があり、24時間稼働するシステムにおいては運用を停止させる必要が生じてしまうという問題があった。その結果、補正の精度が向上しないで輝度ばらつきまたは色ばらつきが残存し、LED表示部の画質が低下するとともに、これを解決するために新しいLEDモジュールに交換する必要が生じるという問題があった。
 本発明は、上記に鑑みてなされたものであって、個々の発光ダイオード素子の輝度特性の経時変化に起因する輝度ばらつきを補償する輝度制御機能を備えた発光ダイオード表示装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、複数個の発光ダイオードを有する表示部と、発光ダイオードを映像信号に基づいて駆動する第一駆動部と、発光ダイオードの累積した点灯時間である累積点灯時間を記憶する点灯時間記憶手段と、発光ダイオードの温度である第一温度を検出する第一温度検出部と、第一温度を記憶する第一温度記憶部と、測定用発光ダイオードを有するエージング表示部と、測定用発光ダイオードを駆動データに基づいて駆動する第二駆動部と、駆動データを生成する駆動データ生成部と、測定用発光ダイオードの温度を検出する第二温度検出部と、第二温度検出部が検出した温度に基づいた値である第二温度を記憶する第二温度記憶部と、を備えることを特徴とする。本発明は、測定用発光ダイオードの輝度を測定する輝度測定部と、輝度測定部が測定した輝度を測定用発光ダイオードの点灯時間と対応させて輝度低下率として記憶する輝度低下率記憶部と、累積点灯時間および輝度低下率に基づいて発光ダイオードに対する補正係数を求め、第一温度と第二温度との差異に基づいて補正係数を修正する補正係数演算手段と、補正係数に基づいて映像信号における発光ダイオードの輝度を補正する輝度補正回路と、をさらに備えることを特徴とする。
 本発明によれば、個々の発光ダイオード素子の輝度特性の経時変化に起因する輝度ばらつきを補償する輝度制御機能を備えた発光ダイオード表示装置を得るという効果を奏する。
本発明の実施の形態1にかかる発光ダイオード表示装置の全体システム図 実施の形態1にかかる発光ダイオード表示装置が備えるLED表示ユニットの内部ブロック図 実施の形態1にかかる発光ダイオード表示装置が備えるLEDエージング部の内部ブロック図 実施の形態1にかかるLED表示部が備えるLEDおよびLEDエージング表示部が備えるLEDの緑色の発光ダイオードの点灯時間と輝度低下率との関係を示した図 実施の形態1にかかるLEDエージング表示部が備えるLEDの各色の発光ダイオードの輝度測定に基づいて得られた点灯時間と輝度低下率との関係を示した図 実施の形態1における駆動時の発光ダイオードの温度の差異に起因する輝度低下率差異の点灯時間による変化を示す図 実施の形態1にかかる発光ダイオード表示装置の輝度補正方法を示すフローチャート 実施の形態1における発光ダイオードのPWM駆動の一例を示す図 実施の形態1における発光ダイオード表示装置の輝度補正の方法を示す図 本発明の実施の形態2における発光ダイオード表示装置の輝度補正の方法を示す図 実施の形態2にかかる発光ダイオード表示装置の輝度補正方法を示すフローチャート 本発明の実施の形態3にかかるLEDエージング表示部における複数のデューティ比における点灯時間と輝度低下率の関係を説明する図
 以下に、本発明の実施の形態にかかる発光ダイオード表示装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる発光ダイオード表示装置100の全体システム図である。図2は、実施の形態1にかかる発光ダイオード表示装置100が備えるLED表示ユニット13の内部ブロック図である。図3は、実施の形態1にかかる発光ダイオード表示装置100が備えるLEDエージング部20の内部ブロック図である。
 実施の形態1にかかる発光ダイオード表示装置100は、大画面を構成する複数台のLED表示ユニット13と、映像信号の入力端子2と、LED表示ユニット13を制御する制御部8と、発光ダイオードの輝度劣化の情報を求めるためのLEDエージング部20と、を備える。図1では、大画面を構成する表示ユニットであるLED表示ユニット13が縦に2台、横に4台並んだ計8台の例が示してある。
 制御部8は、入力端子2から入力される映像信号に映像信号処理を行う映像信号処理回路3と、映像信号処理回路3の出力信号である映像信号の輝度を補正する輝度補正回路4と、LED表示ユニット13が備える赤(R)色、緑(G)色および青(B)色の各色別の発光ダイオードそれぞれの累積した点灯時間である累積点灯時間を記憶する点灯時間記憶手段6と、LED表示ユニット13内のLED表示部10の発光ダイオードの温度を記憶する第一温度記憶部14と、補正係数を演算する補正係数演算手段12と、を備える。
 映像信号処理回路3は、入力端子2から入力される映像信号に対して、LED表示ユニット13のLED表示部10上に表示するための拡大縮小処理及びガンマ補正などの映像信号処理を行って輝度補正回路4に出力する。映像を表示する場合、表示装置によって発色特性にばらつきが生じる。この特性を数値で表わしたものがガンマ値であり、ガンマ補正とは、元画像の明るさが変わらないようにガンマ値を用いてあらかじめ映像を補正する補正である。輝度補正回路4は、映像信号処理回路3を介して入力される映像信号の輝度値を計測し各LED表示部10の色別の累積点灯時間を算出し、点灯時間記憶手段6に記憶させる。
 輝度補正回路4が出力する映像信号は、LED表示ユニット13及びLEDエージング部20に入力される。
 図2に示すように、LED表示ユニット13は、複数のLED1で構成された表示部であるLED表示部10と、LED表示部10の発光ダイオードを輝度補正回路4が出力する映像信号に基づいて駆動する第一駆動部5と、LED表示部10のLED1が備える発光ダイオードの温度である第一温度を検出する第一温度検出部16と、を備える。従って、具体的には、輝度補正回路4の出力は、最初のLED表示ユニット13の第一駆動部5に入力されると同時に、信号線130を介してその後段に接続された複数のLED表示ユニット13及びLEDエージング20にデイジーアウトされる。第一温度検出部16は、電気的な手段によりLED1の各発光ダイオードの温度を検出するので、全てのLED1の色別の発光ダイオードそれぞれの温度が検出可能となるように設けてもよい。第一温度検出部16が検出したLED1の発光ダイオードの温度は、第一温度記憶部14に記憶される。
 LED表示ユニット13の第一駆動部5は、輝度補正回路4から入力される映像信号に基づいて表示に必要な領域を選択し、複数のLED1で構成されたLED表示部10を駆動する。各LED1は、それぞれが赤(R)色、緑(G)色および青(B)色の3個の発光ダイオードを含んだ発光ダイオードの組である。図2のLED表示部10には、4×4=16組のLED1が例示されている。
 図3に示すように、LEDエージング部20は、LED表示部10が備えるLED1と同じ特性の測定用発光ダイオードを有するLED1’を備えるエージング表示部であるLEDエージング表示部21と、LEDエージング表示部21の測定用発光ダイオードを駆動データに基づいて駆動する第二駆動部50と、LEDエージング表示部21の表示パターンを実現する駆動データを生成する駆動データ生成部7と、LEDエージング表示部21の測定用発光ダイオードの輝度を測定する輝度測定部9と、輝度測定部9が測定した輝度を測定用発光ダイオードの点灯時間と対応させて輝度低下率として記憶する輝度低下率記憶部11と、LEDエージング表示部21のLED1’が備える各色の測定用発光ダイオードの温度を検出する第二温度検出部22と、第二温度検出部22が検出した測定用発光ダイオードの温度に基づいた値である第二温度を記憶する第二温度記憶部15と、を備える。第二温度記憶部15が記憶する第二温度は、具体的には、第二温度検出部22が検出した測定用発光ダイオードの温度またはその色別の平均値である。
 ここで、制御部8が備える補正係数演算手段12は、輝度低下率記憶部11が記憶する輝度低下率と点灯時間記憶手段6が記憶する各LED1の点灯時間とに基づいて、輝度の補正係数を演算する。補正係数演算手段12は、第一温度記憶部14に記憶されたLED表示部10の発光ダイオードの温度と第二温度記憶部15に記憶されたLEDエージング表示部21の測定用発光ダイオードの温度との差異に依存した輝度低下率の変化に基づいて上記補正係数をさらに補正する。輝度補正回路4は、映像信号処理回路3の出力を、補正係数演算手段12が演算した補正係数を用いた映像信号処理にて補正してLED表示ユニット13に送る。
 点灯時間記憶手段6に格納される点灯時間のデータは、個々のLED1の赤(R)色、緑(G)色および青(B)色の発光ダイオードが点灯した時間それぞれの累積値であって、一定の単位時間ごとに値が累積される。具体的には、単位時間が1時間でデューティ比10%の輝度で、ある色の発光ダイオードが点灯すれば、1時間ごとに0.1時間が点灯時間に累積された累積点灯時間が点灯時間記憶手段6に格納されることになる。このように、累積点灯時間はデューティ比で正規化した値とする。デューティ比による電流制御方法の動作説明については後述する。
 図4は、実施の形態1にかかるLED表示部10が備えるLED1およびLEDエージング表示部21が備えるLED1’の緑色の発光ダイオードの点灯時間と輝度低下率との関係を示した図である。すなわち、図4には、LED1およびLED1’の緑(G)の発光ダイオードの点灯時間と輝度との関係が示されている。図4に示されるように、発光ダイオードの輝度は点灯時間とともに低下することになる。ただし、図4に示すように輝度低下率の時間変化にはばらつきが存在し、ばらつき上限とばらつき下限との間に平均が存在する。
 従来、輝度低下率は事前の測定によって求められていた。しかし、実施の形態1にかかる発光ダイオード表示装置100においては、LEDエージング部20により輝度低下率を実時間で計測するように構成されている。以下、輝度低下率の計測方法について説明する。
 駆動データ生成部7は、輝度補正回路4が出力する映像信号に基づいて、LEDエージング表示部21に表示パターンを表示させる駆動データを生成し、第二駆動部50は、この駆動データに基づいてLEDエージング表示部21を駆動する。駆動データ生成部7で生成される駆動データは、第一駆動部5がLED表示部10の発光ダイオードを駆動するデューティ比の中で最大のデューティ比を測定用発光ダイオードを駆動するデューティ比とする駆動データである。デューティ比は、1フレーム期間中で発光ダイオードが点灯している期間の割合である。各LED表示部10で表示される最大デューティ比は、色別に得られるので、色別に得られた最大デューティ比でLEDエージング表示部21の色別の発光ダイオードは駆動される。LED表示部10のある色の発光ダイオードの最大デューティ比が100%であればLEDエージング表示部21の当該色の発光ダイオードの表示パターンもデューティ比を100%に設定すればよい。これにより、LEDエージング表示部21においては、LED表示部10に使用される複数のLED1の中で点灯時間の最も長いLED1の発光ダイオードと同じ点灯時間を各色ごとに確保することが可能となる。
 LEDエージング表示部21は、LED1と同じ発光ダイオードを有するLED1’を複数備える。各LED1’は、LED1と同様にそれぞれが赤(R)色、緑(G)色および青(B)色の3個の発光ダイオードを含んだ発光ダイオードの組である。図3のLEDエージング表示部21には、2×2=4組のLED1’が例示されている。LEDエージング表示部21を複数のLED1’で構成することにより、輝度測定部9による輝度測定において、赤(R)色、緑(G)色および青(B)色の発光ダイオードそれぞれの輝度の平均をとることができる。これによりLED1’が1組のみの場合と比較して輝度のばらつきを抑えた輝度データの取得が可能になる。ただし、LEDエージング表示部21が備えるLED1’が1組であってもかまわない。また、必ずしも3色必要なければ、赤(R)色、緑(G)色および青(B)色の発光ダイオードが全て揃っていなくてもかまわない。
 輝度測定部9は、LEDエージング表示部21に対向した形で配置されLEDエージング表示部21のそれぞれのLED1’の各色の発光ダイオードの輝度を測定する。輝度測定部9が備える計測デバイスとしては、具体的には、可視域の波長で計測可能なフォトダイオードといったものを使用することができる。
 図5は、実施の形態1にかかるLEDエージング表示部21が備えるLED1’の各色の発光ダイオードの輝度測定に基づいて得られた点灯時間tと輝度低下率との関係を示した図である。図5において、LED1’の赤(R)色、緑(G)色、青(B)色の発光ダイオードの輝度低下率は、点灯時間tの関数としてそれぞれkr(t)、kg(t)、kb(t)で示される。上記したように、点灯時間tはデューティ比で正規化した値であり、輝度低下率は初期の輝度に対する現在の輝度の低下の割合である。各色の輝度は、LED1’が複数の場合は各色の輝度の平均値をとったものになる。
 輝度測定部9によるLEDエージング表示部21の輝度の測定結果と、駆動データ生成部7から得たLEDエージング表示部21が備える各色の発光ダイオードの点灯時間と、を輝度低下率記憶部11に記憶させることにより、点灯時間に対する各色の発光ダイオードの輝度低下率を実時間で計測することが可能となる。
 また、発光ダイオードの点灯時間に対する輝度低下率は、一般的には駆動時の温度も影響するため、LED表示部10を構成しているLED1とLEDエージング表示部21を構成しているLED1’との温度差異に基づいた補正をすることで、より精度の高い輝度補正を実現することができる。
 LED表示部10を構成している各LED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードの温度を第一温度tr、tg、tbとし、LEDエージング表示部21を構成しているLED1’の赤(R)色、緑(G)色、青(B)色の発光ダイオードの温度を第二温度tre、tge、tbeとすると、赤(R)色、緑(G)色、青(B)色の発光ダイオードそれぞれの温度差異Tr、Tg、Tbは以下の式で示される。
 Tr=tr-tre
 Tg=tg-tge
 Tb=tb-tbe
 ここで、tr、tg、tbは、第一温度検出部16が検出する各LED1の色別の発光ダイオードの温度の値である。tre、tge、tbeは、第二温度検出部22が検出するLED1’の色別の発光ダイオードの温度の値であって、LED1’が複数ある場合は、各色ごとに平均をとった値とする。そして、赤(R)色、緑(G)色、青(B)色それぞれの温度差異Tr、Tg、Tbに対する閾値をrβ、gβ、bβとする。
 ここで、図6は、実施の形態1における駆動時の発光ダイオードの温度の差異に起因する輝度低下率差異の点灯時間による変化を示す図である。LED表示部10を構成している各LED1とLEDエージング表示部21を構成しているLED1’との温度差異に対する輝度低下率の差異は、赤(R)色、緑(G)色、青(B)色それぞれに対して点灯時間tの関数である温度補正係数rα(t)、gα(t)、bα(t)で示される。温度補正係数rα(t)、gα(t)、bα(t)の情報は、固有のテーブルとして補正係数演算手段12に予め保持されている。
 温度差異Tr、Tg、Tbが、Tr≧rβ、Tg≧gβ、Tb≧bβの場合は、温度差異による輝度低下率への影響があり、Tr<rβ、Tg<gβ、Tb<bβの場合は、温度差異による輝度低下率への影響は無視できるとする。
 従って、温度差異による輝度低下率への影響がある場合は、図6に示した温度補正係数rα(t)、gα(t)、bα(t)を用いることで、より精度良く輝度劣化の補正を行うことが可能となる。
 具体的には、LED1の緑色の発光ダイオードとLEDエージング表示部21の緑色の発光ダイオードの温度差異TgがTg≧gβの状態で、LED1およびLED1’が共に駆動され続ける場合を考える。この場合、図6において点灯時間tが100K時間経過すると、LED1の緑色の発光ダイオードの輝度値は、LEDエージング表示部21が備える緑色の発光ダイオードから算出される輝度値よりもさらに15%低下していると判断する。一方、Tg<gβの場合は、LED1の緑色の発光ダイオードの輝度値は、LEDエージング表示部21が備える緑色の発光ダイオードから算出される輝度値と同じであると判断する。
 次に、実施の形態1における輝度補正方法について詳細に説明する。図7は、実施の形態1にかかる発光ダイオード表示装置100の輝度補正方法を示すフローチャートである。
 図7において、制御部8は、図示せぬ計時手段に基づいて、輝度補正の単位時間が経過したか否かを判定する(ステップS1)。輝度補正の単位時間の具体例は、100時間といった時間である。輝度補正の単位時間が経過していなければ(ステップS1:No)、再度ステップS1に戻って判定を行う。輝度補正の単位時間が経過していれば(ステップS1:Yes)、ステップS2に進む。
 ステップS2では、補正係数演算手段12は、点灯時間記憶手段6を参照して、各LED1の各色の発光ダイオードについてそれぞれ最大累積点灯時間を検索する(ステップS2)。全てのLED1の発光ダイオードの累積点灯時間の中で、赤(R)色、緑(G)色および青(B)色それぞれの発光ダイオードについての最大累積点灯時間をそれぞれ、trmax、tgmax、tbmaxとすると、ステップS2ではこの3つの値を求める。
 次に、補正係数演算手段12は、LEDエージング部20が備える輝度低下率記憶部11を参照し、ステップS2で求めた赤(R)色、緑(G)色および青(B)色それぞれの最大累積点灯時間trmax、tgmax、tbmaxに対応する3つの輝度低下率から、最も大きい輝度低下率を選択することにより、最大輝度低下率krgb(tmax)を求める(ステップS3)。ここで、tmax=(trmax,tgmax,tbmax)であり、先に、図5で示した輝度低下率の関数kr(t)、kg(t)、kb(t)を用いて、最大輝度低下率krgb(tmax)は下記の数式(1)で示される。
Figure JPOXMLDOC01-appb-M000001
 次に、補正係数演算手段12は、点灯時間記憶手段6および輝度低下率記憶部11を参照し、LED表示部10の全てのLED1の各色の発光ダイオードについて、累積点灯時間と、点灯時間tに対する輝度低下率と、ステップS3で求めた最大輝度低下率krgb(tmax)とから、各LED1の各色の発光ダイオードに対する補正係数を求める(ステップS4)。補正係数の具体例は後で詳述する。
 次に、補正係数演算手段12は、LED表示部10が備える発光ダイオードの温度tr、tg、tbを記憶する第一温度記憶部14とLEDエージング表示部21の温度tre、tge、tbeを記憶する第二温度記憶部15を参照し、温度差異Tr、Tg、Tbを求める。温度差異Tr、Tg、Tbによる輝度低下率への影響の有無に応じて、図6に示した温度補正係数を用いることで、LED表示部10が備える各LED1の各色の発光ダイオードに対する補正係数を修正する(ステップS5)。補正係数の修正の具体例は後で詳述する。
 最後に、輝度補正回路4は、上記ステップS4およびステップS5を経て求められた発光ダイオードに対する補正係数を用いて、映像信号処理回路3から供給された映像信号における当該発光ダイオードの輝度を補正する(ステップS6)。ステップS6の後はステップS1に戻る。
 次に、ステップS4で求める補正係数の具体例を説明する。
 LED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードの現在の輝度をそれぞれRp、Gp、Bpとする。LED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードそれぞれの現在までに累積された点灯時間をtとすると、各色の輝度低下率はそれぞれkr(t)、kg(t)、kb(t)となり、さらにステップS3で求めた最大輝度低下率krgb(tmax)を用いると、LED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードそれぞれの補正後の輝度Rcomp、Gcomp、Bcompは、以下の数式(2)で示される。
Figure JPOXMLDOC01-appb-M000002
 したがって、ステップS4で求める補正係数は、数式(2)のそれぞれの右辺において現在の輝度Rp、Gp、Bpに乗ぜられている係数である。ここで、数式(2)におけるLED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードの現在の輝度Rp、Gp、Bpは、LED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードの輝度の初期値をR0、G0、B0とすると、以下の数式(3)で示される。
Figure JPOXMLDOC01-appb-M000003
 数式(3)を数式(2)に代入すれば、LED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードそれぞれの補正後の輝度Rcomp、Gcomp、Bcompは、以下の数式(4)で示される。
Figure JPOXMLDOC01-appb-M000004
 数式(4)に示されるように、補正後の輝度は、LED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードの輝度の初期値R0、G0、B0に対し、最大輝度低下率krgb(tmax)で統一的に補正されたものとなる。すなわち、輝度の初期値R0、G0、B0が同じ最大輝度低下率krgb(tmax)で低下した輝度になるように補正されるので、輝度のばらつきを低減することができ輝度均一性を保つことが可能となる。
 さらに、ステップS5で実行される補正係数の修正の具体例を説明する。
 補正係数演算手段12は、第一温度記憶部14および第二温度記憶部15を参照し、LED表示部10のすべてのLED1の各色の発光ダイオードの温度tr、tg、tbについて、LEDエージング表示部21のLED1’の各色の発光ダイオードから得た温度tre、tge、tbeとの温度差異Tr、Tg、Tbを計算する。
 温度差異に起因する輝度低下率の誤差を温度補正係数rα(t)、gα(t)、bα(t)により修正すると、修正後の補正係数によるLED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードそれぞれの補正後の輝度Rcomp、Gcomp、Bcompは、以下の数式(5)で示される。
Figure JPOXMLDOC01-appb-M000005
 ここで、上述したようにTr≧rβ、Tg≧gβ、Tb≧bβの場合は、温度差異による輝度低下率への影響があり、Tr<rβ、Tg<gβ、Tb<bβの場合は、温度差異による輝度低下率への影響が無視できるとすると、Tr<rβ、Tg<gβ、Tb<bβの場合の輝度のそれぞれを、輝度低下率への温度差異による影響があるTr≧rβ、Tg≧gβ、Tb≧bβの場合の輝度に合せる必要がある。
 具体的には、温度差異Tr、Tg、Tbが閾値rβ、gβ、bβ以上であって輝度低下率の大きいLED1の発光ダイオードに、温度差異Tr、Tg、Tbが閾値rβ、gβ、bβ未満であって輝度低下率が温度差異の影響を受けてないLED1の発光ダイオードの輝度低下率を合わせるように、ステップS4で得た補正係数をステップS5において修正する。
 すなわち、ステップS5において、Tr<rβ、Tg<gβ、Tb<bβの場合は、温度補正係数rα(t)、gα(t)、bα(t)を用いて数式(5)となるように補正係数を修正し、Tr≧rβ、Tg≧gβ、Tb≧bβの場合は、数式(5)において、それぞれrα(t)=0、gα(t)=0、bα(t)=0とすることで、温度差異による輝度補正の修正を行わない。このようにステップS5における補正係数の修正は、(1-rα(t))、(1-gα(t))、(1-bα(t))の係数を乗ずるか否かにより実施される。なお、Tr≧rβ、Tg≧gβ、Tb≧bβとなるようなLED1の発光ダイオードが全く存在しない場合は、温度差異による輝度低下率への影響がないので、数式(5)のような補正係数の修正は実行しなくてもかまわない。
 LED1の発光ダイオードの輝度調整については、パルス幅変調方式が使用される。パルス幅変調を、以下では、PWM(Pulse Width Modulation)と称する。図8は、実施の形態1における発光ダイオードのPWM駆動の一例を示す図である。図8の(a)は、PWMの基本周期を示しており、PWMの基本周期は映像信号の1フレーム期間以下である。図8の(b)は、パルス幅のデューティ比が85%の場合を示しており、発光ダイオードはPW1の期間発光する。図8の(c)は、パルス幅のデューティ比が80%の場合を示しており、発光ダイオードはPW2の期間発光する。このようにパルス幅のデューティ比を変えることでLED1の発光ダイオードの輝度を調整することができる。
 従って、上述したステップS6における輝度の補正においても、補正係数を乗じた後の輝度となるように輝度補正回路4がパルス幅のデューティ比を変化させることで輝度の補正が可能である。図9は、実施の形態1における発光ダイオード表示装置100の輝度補正の方法を示す図である。図9は、LED表示部10が備える緑色の発光ダイオードの輝度補正の例を示している。
 以上説明したように、実施の形態1においては、図9に示す通り、各LED表示ユニット13が備えるLED表示部10のLED1の各色の発光ダイオード、即ち発光ダイオード表示装置100が備える全ての発光ダイオードは、補正前の輝度低下率から補正後は最も輝度低下率の大きい発光ダイオードの輝度低下率となるように輝度が補正される。すなわち、補正後の全ての発光ダイオードの輝度は、最大輝度低下率krgb(tmax)となるように輝度低下率が統一される。
 その結果、表示全体として輝度均一性およびホワイトバランスを保つことができ、輝度ばらつきの改善が可能となる。すなわち、個々の発光ダイオード素子の輝度特性の経時変化に起因する輝度ばらつきを高い精度で補償することが可能になる。これにより、表示画面の見にくさが解消される。また、実施の形態1にかかる発光ダイオード表示装置100による輝度補正の方式によれば、各発光ダイオードの初期の輝度を高く取れるという利点も得られる。
 また、輝度センサを用いて、LED表示ユニット13の輝度を常時計測しようとすると、当該輝度センサによりLED表示ユニット13の表示を遮るといった問題があった。しかし、実施の形態1にかかる発光ダイオード表示装置100によれば、LED表示ユニット13の外に配置するLEDエージング部20を使って輝度の変化を計測するため、輝度センサによりLED表示ユニット13の表示を遮ること無しに、LED表示ユニット13の発光ダイオードの輝度の経時変化を常時検出することができる。その結果、輝度低下率の測定および輝度補正を高い精度で実現可能となる。
 さらに、輝度補正回路4は、入力された映像信号の輝度値、すなわちデューティ比で正規化された点灯時間を計測して各LED表示ユニット13が備えるすべてのLED表示部10の発光ダイオードの累積点灯時間を算出すると共に、LEDエージング部20から得た輝度劣化情報に基づいてLED表示ユニット13が備えるすべての発光ダイオードの輝度を予め補正して映像信号を出力する。
 これにより、各LED表示部10の発光ダイオードに対する補正係数および累積点灯時間をLED表示ユニット13の外部に記憶することができる。具体的には、補正係数は補正係数演算手段12に、累積点灯時間は点灯時間記憶手段6に保持される。その結果、一部のLED表示ユニット13が故障といった原因により交換が必要になった場合でも、交換されたLED表示ユニット13については新たに累積点灯時間を計算すれば済むので、容易にLED表示ユニット13全体の輝度調整を行うことができる。
 このように、実施の形態1にかかる発光ダイオード表示装置100においては、映像信号処理回路3、補正係数演算手段12、輝度補正回路4、点灯時間記憶手段6およびLEDエージング部20をLED表示ユニット13の外に設けることで、既存の機種のLED表示ユニットに適用することが容易に可能になる利点がある。しかし、制御部8を、LED表示ユニット13の内部に設けてもかまわない。
 また、実施の形態1とは異なり、輝度測定部9をLED表示ユニット13に設けてLED表示部10の輝度低下率の測定を行うと、輝度測定部9によってLED表示部10に表示される映像を妨げることになる。しかし、実施の形態1にかかる発光ダイオード表示装置100によれば、輝度測定部9は、LED表示部10とは異なる場所に配置されるLEDエージング表示部21の輝度を測定するため、LED表示部10に表示される映像を妨げないで済むという効果が得られる。
実施の形態2.
 実施の形態1においては、各LED表示部10のLED1の全ての発光ダイオードを最も輝度低下の大きい発光ダイオードの輝度低下率、すなわち最大輝度低下率krgb(tmax)に統一するように輝度の補正を行った。しかし、実施の形態2においては、別の補正方法を用いる。実施の形態2にかかる発光ダイオード表示装置100の全体システムの構成は、実施の形態1と同様に図1で示される。
 図10は、本発明の実施の形態2における発光ダイオード表示装置100の輝度補正の方法を示す図である。図10に示すように、輝度の初期値を最大輝度より小さく、具体的には最大輝度の50%程度にしておけば、点灯時間記憶手段6および輝度低下率記憶部11に保持されている情報に基づいて、各LED1が備える全ての発光ダイオードの輝度低下率を求め、輝度が初期値になるように輝度の補正を行えば、輝度を一定に保つことが可能である。
 図11は、実施の形態2にかかる発光ダイオード表示装置100の輝度補正方法を示すフローチャートである。図11に示したフローチャートは、図7に示したフローチャートからステップS2およびS3を除いたものであるが、ステップS4およびS5の内容が図7とは異なる。以下、主に異なる点を説明する。
 LED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードそれぞれの現在の輝度をRp、Gp、Bpとする。図5に示した、累積された点灯時間tにおける各色の発光ダイオードそれぞれの輝度低下率kr(t)、kg(t)、kb(t)を用いると、補正後のLED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードそれぞれの輝度Rcomp、Gcomp、Bcompは、以下の数式(6)で示される。
Figure JPOXMLDOC01-appb-M000006
 図11のステップS4で求める補正係数は、数式(6)のそれぞれの右辺において現在の輝度Rp、Gp、Bpに乗ぜられている係数である。ここで、数式(3)を数式(6)に代入すれば、補正後のLED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードのそれぞれの輝度Rcomp、Gcomp、Bcompは、次の数式(7)で示される。
Figure JPOXMLDOC01-appb-M000007
 数式(7)に示されるように、輝度Rcomp、Gcomp、Bcompは、それぞれ、LED1の赤(R)色、緑(G)色、青(B)色の発光ダイオードの輝度の初期値に補正される。すなわち、図10に示したように輝度の初期値を維持して輝度が一定に保たれるように、補正係数演算手段12が補正係数を求めて、輝度補正回路4が輝度を補正する。
 なお、温度差異による輝度低下率への影響に基づいた上記補正係数の修正については、図6に示した温度補正係数rα(t)、gα(t)、bα(t)を用いることで、以下の数式(8)で示される。
Figure JPOXMLDOC01-appb-M000008
 ここで、Tr≧rβ、Tg≧gβ、Tb≧bβの場合は、温度差異による輝度低下率への影響があり、Tr<rβ、Tg<gβ、Tb<bβの場合は、温度差異による輝度低下率への影響が無視できるとする。
 従って、図11のステップS5においては、Tr≧rβ、Tg≧gβ、Tb≧bβの場合のみ温度補正係数rα(t)、gα(t)、bα(t)を適用して数式(8)の補正係数の修正を行い、Tr<rβ、Tg<gβ、Tb<bβの場合はそれぞれ、rα(t)=0、gα(t)=0、bα(t)=0とすることで、補正係数の温度差異による修正を行わない。このように図11のステップS5における補正係数の修正は、1/(1-rα(t))、1/(1-gα(t))、1/(1-bα(t))の係数を乗ずるか否かにより実施される。
 その後の図11のステップS6は図7のステップS6と同様であり、LED1の発光ダイオードの輝度の補正は、実施の形態1と同様にパルス幅のデューティ比を変化させることで、補正による輝度補正が可能である。
 実施の形態2にかかる発光ダイオード表示装置100においても、輝度測定部9がLED表示部10に表示される映像を妨げないで、個々の発光ダイオード素子の輝度特性の経時変化に起因する輝度ばらつきを補償することが可能になるという効果が得られる上、図10に示した輝度補正方式によれば、輝度の初期値を低くすることによって輝度を一定に保って輝度均一性を維持することができるという利点がある。
実施の形態3.
 図12は、本発明の実施の形態3にかかるLEDエージング表示部21における複数のデューティ比における点灯時間と輝度低下率の関係を説明する図である。図12は、緑色の発光ダイオードの例であり、実線はそれぞれのデューティ比における点灯時間と輝度低下率の関係を示し、それぞれを挟む点線は発光ダイオードの個体ばらつきを示す。
 図12に示すように、LED1を構成する発光ダイオードは、正規化した点灯時間tを横軸にとったとしても、使用時における輝度を決定するデューティ比によって実際の輝度低下率が異なる。
 実施の形態1および2においては、LED表示部10が備える各色の発光ダイオードの最大デューティ比と同じデューティ比でLEDエージング表示部21の各色の発光ダイオードを駆動した。しかし、実施の形態3においては、LEDエージング表示部21の複数のLED1’のそれぞれの色の発光ダイオードを最大デューティ比を含んだ複数の異なる値のデューティ比で測定用発光ダイオードを駆動する駆動データを駆動データ生成部7が生成する。これにより、LEDエージング表示部21が備える各色の測定用発光ダイオードにおいて、色毎に輝度の平均をとれば、図12の実線に示すようにLEDエージング部20において上記した複数の異なる値のデューティ比における点灯時間tと輝度低下率との関係を得ることができる。
 その結果、数式(2)および数式(6)における補正係数を求める場合に、LED表示部10における実際の駆動条件により近いデューティ比で得られた精度の高い輝度低下率のデータを用いることが可能となるため輝度補正の精度をさらに向上させることができる。
 また、上記実施の形態1から3の説明においては、LED表示部10が備える発光ダイオードの輝度補正を輝度補正回路4が映像信号処理回路3の出力である映像信号に対して行うとして説明した。しかし、最終的にLED表示部10が備える発光ダイオードに対する駆動信号のデューティ比または駆動電流を補正することができれば良いので、輝度を補正するための調整対象は映像信号処理回路3が出力する映像信号に限定されるものではない。
 また、上記説明においては、LEDエージング表示部21に使用されるLED1’は、LED表示部10のLED1と同じ発光ダイオードを有していると説明したが、発光ダイオードは製造ロットにより輝度および波長のばらつきが変化する。また、発光ダイオードは輝度、波長といった性能特性に依存してBINコードといった分類コードを用いて分類されている。輝度低下率の精度を向上させるために、LED表示部10に使用されるLED1とLEDエージング表示部21に使用されるLED1’とで、製造ロットおよびBINコードを一致させることで測定される輝度低下率および輝度補正の精度が向上する。
 また、実施の形態1および2の説明においては、LED表示部10の各色の発光ダイオードの温度tr、tg、tbとLEDエージング表示部21の各色の発光ダイオードの温度tre、tge、tbeとの温度差異Tr、Tg、Tbについて、色毎にそれぞれ1つの閾値rβ、gβ、bβを用いて、輝度低下率への影響の有無を判断した。しかし、温度差異Tr、Tg、Tbに対する閾値をそれぞれ複数設定して、それに対応して温度補正係数の関数を増やすことで、輝度低下率および輝度補正の更なる精度の向上が図れる。
 具体的には、赤(R)色、緑(G)色、青(B)色の各色の温度差異Tr、Tg、Tbに対応して、閾値rβ1、gβ1、bβ1および閾値rβ2(>rβ1)、gβ2(>gβ1)、bβ2(>bβ1)を設定し、これにより、各色の温度補正の領域を以下の3つに細分化することができる。
 (領域1)Tr<rβ1、Tg<gβ1、Tb<bβ1の場合
 (領域2)rβ1≦Tr<rβ2、gβ1≦Tg<gβ2、bβ1≦Tb<bβ2の場合
 (領域3)Tr≧rβ2、Tg≧gβ2、Tb≧bβ2の場合
 そして、赤(R)色、緑(G)色、青(B)色の各色に対応する温度補正係数として、rα1(t)、gα1(t)、bα1(t)およびrα2(t)、gα2(t)、bα2(t)を設定する。これにより、(領域1)においては、温度差異による輝度低下率への影響は無視できるとし、(領域2)および(領域3)においては、温度差異による輝度低下率への影響があるとする。そして、(領域2)では、温度補正係数rα1(t)、gα1(t)、bα1(t)を用いて数式(5)または数式(8)で行った補正係数の修正を行い、(領域3)では、温度補正係数rα2(t)、gα2(t)、bα2(t)を用いて数式(5)または数式(8)で行った補正係数の修正を行えばよい。
 また、上記説明においては、LED表示部10のすべてのLED1が備える発光ダイオードについての温度tr、tg、tbを測定して、tre、tge、tbeとの温度差異による輝度低下率の補正を修正するとした。しかし、LED表示部10を構成する各LED1の温度勾配によっては、複数のLED1を1つのブロックと見なし、温度差異に依存した輝度低下率の補正の修正方法を簡素化してもよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1’ LED、2 入力端子、3 映像信号処理回路、4 輝度補正回路、5 第一駆動部、6 点灯時間記憶手段、7 駆動データ生成部、8 制御部、9 輝度測定部、10 LED表示部、11 輝度低下率記憶部、12 補正係数演算手段、13 LED表示ユニット、14 第一温度記憶部、15 第二温度記憶部、16 第一温度検出部、20 LEDエージング部、21 LEDエージング表示部、22 第二温度検出部、50 第二駆動部、100 発光ダイオード表示装置、130 信号線。

Claims (5)

  1.  複数個の発光ダイオードを有する表示部と、
     前記発光ダイオードを映像信号に基づいて駆動する第一駆動部と、
     前記発光ダイオードの累積した点灯時間である累積点灯時間を記憶する点灯時間記憶手段と、
     前記発光ダイオードの温度である第一温度を検出する第一温度検出部と、
     前記第一温度を記憶する第一温度記憶部と、
     測定用発光ダイオードを有するエージング表示部と、
     前記測定用発光ダイオードを駆動データに基づいて駆動する第二駆動部と、
     前記駆動データを生成する駆動データ生成部と、
     前記測定用発光ダイオードの温度を検出する第二温度検出部と、
     前記第二温度検出部が検出した温度に基づいた値である第二温度を記憶する第二温度記憶部と、
     前記測定用発光ダイオードの輝度を測定する輝度測定部と、
     前記輝度測定部が測定した輝度を前記測定用発光ダイオードの点灯時間と対応させて輝度低下率として記憶する輝度低下率記憶部と、
     前記累積点灯時間および前記輝度低下率に基づいて前記発光ダイオードに対する補正係数を求め、前記第一温度と前記第二温度との差異に基づいて前記補正係数を修正する補正係数演算手段と、
     前記補正係数に基づいて前記映像信号における前記発光ダイオードの輝度を補正する輝度補正回路と、
     を備える
     ことを特徴とする発光ダイオード表示装置。
  2.  前記補正係数演算手段は、全ての前記発光ダイオードの輝度低下率が、前記累積点灯時間に対応する前記輝度低下率の中で最も大きい最大輝度低下率となるように前記補正係数を求める
     ことを特徴とする請求項1に記載の発光ダイオード表示装置。
  3.  前記補正係数演算手段は、全ての前記発光ダイオードが輝度の初期値を維持するように前記補正係数を求める
     ことを特徴とする請求項1に記載の発光ダイオード表示装置。
  4.  前記駆動データ生成部は、前記第一駆動部が前記発光ダイオードを駆動するデューティ比の中で最大のデューティ比を前記測定用発光ダイオードを駆動するデューティ比とする前記駆動データを生成する
     ことを特徴とする請求項1、2または3に記載の発光ダイオード表示装置。
  5.  前記駆動データ生成部は、複数の異なる値のデューティ比で駆動する前記駆動データを生成し、
     前記輝度低下率記憶部は、前記複数の異なる値のデューティ比における前記輝度低下率を記憶する
     ことを特徴とする請求項4に記載の発光ダイオード表示装置。
PCT/JP2016/075685 2015-10-05 2016-09-01 発光ダイオード表示装置 WO2017061195A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680054690.6A CN108140348A (zh) 2015-10-05 2016-09-01 发光二极管显示装置
JP2017544415A JPWO2017061195A1 (ja) 2015-10-05 2016-09-01 発光ダイオード表示装置
EP16853349.5A EP3361471A1 (en) 2015-10-05 2016-09-01 Light-emitting diode display device
RU2018115322A RU2018115322A (ru) 2015-10-05 2016-09-01 Светодиодное дисплейное устройство
US15/751,284 US20180240398A1 (en) 2015-10-05 2016-09-01 Light-emitting diode display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-197515 2015-10-05
JP2015197515 2015-10-05

Publications (1)

Publication Number Publication Date
WO2017061195A1 true WO2017061195A1 (ja) 2017-04-13

Family

ID=58487455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075685 WO2017061195A1 (ja) 2015-10-05 2016-09-01 発光ダイオード表示装置

Country Status (6)

Country Link
US (1) US20180240398A1 (ja)
EP (1) EP3361471A1 (ja)
JP (1) JPWO2017061195A1 (ja)
CN (1) CN108140348A (ja)
RU (1) RU2018115322A (ja)
WO (1) WO2017061195A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179196A1 (ja) * 2017-03-30 2018-10-04 三菱電機株式会社 Led表示装置およびその輝度補正方法
WO2019229971A1 (ja) * 2018-06-01 2019-12-05 三菱電機株式会社 表示装置
KR20200096844A (ko) * 2018-01-30 2020-08-13 에이엠에스 아게 광 감지 방법
WO2020245981A1 (ja) * 2019-06-06 2020-12-10 三菱電機株式会社 Led表示システムおよびled表示装置
JPWO2021044572A1 (ja) * 2019-09-05 2021-03-11
JP2021533418A (ja) * 2018-12-29 2021-12-02 云谷(固安)科技有限公司 ディスプレイパネルの輝度補正方法、及びディスプレイパネルの輝度補正装置
WO2022074784A1 (ja) * 2020-10-08 2022-04-14 三菱電機株式会社 Led表示システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035925A (ja) * 2017-08-22 2019-03-07 株式会社Joled 輝度制御装置、発光装置および輝度制御方法
KR102661705B1 (ko) * 2019-02-15 2024-05-02 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 구동 방법
CN110264944A (zh) * 2019-06-20 2019-09-20 深圳市艾希亿智能科技有限公司 油价显示系统及其亮度补偿方法
CN110910833B (zh) * 2019-12-27 2021-04-27 武汉天马微电子有限公司 一种显示面板、显示面板的亮度控制方法及电子设备
TWI738331B (zh) * 2020-05-11 2021-09-01 大陸商北京集創北方科技股份有限公司 Oled顯示器驅動電路及利用其之oled顯示器
CN113963671B (zh) * 2020-07-21 2023-04-07 Oppo广东移动通信有限公司 一种显示方法、终端及存储介质
CN112687222B (zh) * 2020-12-28 2021-12-17 北京大学 基于脉冲信号的显示方法、装置、电子设备及介质
CN114912204B (zh) * 2022-05-30 2023-07-11 中国第一汽车股份有限公司 车身外覆盖件胀形成型塌陷的模具型面补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202838A (ja) * 2001-10-31 2003-07-18 Matsushita Electric Ind Co Ltd 表示装置
JP2008065311A (ja) * 2006-07-14 2008-03-21 Barco Nv ディスプレイボードならびにその経年劣化判定および較正方法
JP2008122516A (ja) * 2006-11-09 2008-05-29 Matsushita Electric Ind Co Ltd 表示装置及び映像信号処理システム
JP2011209480A (ja) * 2010-03-30 2011-10-20 Sony Corp 信号処理装置、表示装置、電子機器、信号処理方法およびプログラム
JP2013250475A (ja) * 2012-06-01 2013-12-12 Sony Corp 表示制御装置、表示制御方法、プログラム、及び記録媒体
JP2014102484A (ja) * 2012-11-21 2014-06-05 Lighthouse Technologies Ltd Ledビデオスクリーンにおける自動色彩調節

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353731B2 (ja) * 1999-02-16 2002-12-03 日本電気株式会社 有機エレクトロルミネッセンス素子駆動装置
JP2004212116A (ja) * 2002-12-27 2004-07-29 Tohoku Pioneer Corp 輝度測定装置及び測定方法
JP2007240798A (ja) * 2006-03-08 2007-09-20 Sony Corp 自発光表示装置、階調値/劣化量変換テーブル更新装置、入力表示データ補正装置及びプログラム
JP2008292649A (ja) * 2007-05-23 2008-12-04 Hitachi Displays Ltd 画像表示装置
JP2009031711A (ja) * 2007-07-27 2009-02-12 Samsung Sdi Co Ltd 有機電界発光表示装置及びその駆動方法
JP2010139836A (ja) * 2008-12-12 2010-06-24 Sony Corp 画像表示装置及び画像表示装置の駆動方法
US9059337B1 (en) * 2013-12-24 2015-06-16 Christie Digital Systems Usa, Inc. Method, system and apparatus for dynamically monitoring and calibrating display tiles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202838A (ja) * 2001-10-31 2003-07-18 Matsushita Electric Ind Co Ltd 表示装置
JP2008065311A (ja) * 2006-07-14 2008-03-21 Barco Nv ディスプレイボードならびにその経年劣化判定および較正方法
JP2008122516A (ja) * 2006-11-09 2008-05-29 Matsushita Electric Ind Co Ltd 表示装置及び映像信号処理システム
JP2011209480A (ja) * 2010-03-30 2011-10-20 Sony Corp 信号処理装置、表示装置、電子機器、信号処理方法およびプログラム
JP2013250475A (ja) * 2012-06-01 2013-12-12 Sony Corp 表示制御装置、表示制御方法、プログラム、及び記録媒体
JP2014102484A (ja) * 2012-11-21 2014-06-05 Lighthouse Technologies Ltd Ledビデオスクリーンにおける自動色彩調節

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179196A1 (ja) * 2017-03-30 2018-10-04 三菱電機株式会社 Led表示装置およびその輝度補正方法
KR20200096844A (ko) * 2018-01-30 2020-08-13 에이엠에스 아게 광 감지 방법
KR102540861B1 (ko) 2018-01-30 2023-06-12 에이엠에스-오스람 아게 광 감지 방법
WO2019229971A1 (ja) * 2018-06-01 2019-12-05 三菱電機株式会社 表示装置
JPWO2019229971A1 (ja) * 2018-06-01 2020-12-10 三菱電機株式会社 表示装置
JP2021533418A (ja) * 2018-12-29 2021-12-02 云谷(固安)科技有限公司 ディスプレイパネルの輝度補正方法、及びディスプレイパネルの輝度補正装置
WO2020245981A1 (ja) * 2019-06-06 2020-12-10 三菱電機株式会社 Led表示システムおよびled表示装置
JPWO2021044572A1 (ja) * 2019-09-05 2021-03-11
WO2021044572A1 (ja) * 2019-09-05 2021-03-11 三菱電機株式会社 画像表示装置、表示制御装置及び画像処理装置、並びにプログラム及び記録媒体
JP7233551B2 (ja) 2019-09-05 2023-03-06 三菱電機株式会社 画像表示装置、表示制御装置及び画像処理装置、並びにプログラム及び記録媒体
WO2022074784A1 (ja) * 2020-10-08 2022-04-14 三菱電機株式会社 Led表示システム

Also Published As

Publication number Publication date
JPWO2017061195A1 (ja) 2018-01-11
RU2018115322A (ru) 2019-11-07
RU2018115322A3 (ja) 2019-11-07
US20180240398A1 (en) 2018-08-23
CN108140348A (zh) 2018-06-08
EP3361471A1 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
WO2017061195A1 (ja) 発光ダイオード表示装置
CN106169283B (zh) Led显示装置及影像显示装置
JP5908264B2 (ja) 映像表示装置および映像表示装置の色補正方法
JP5570791B2 (ja) 表示装置駆動方法
WO2010146885A1 (ja) 画像表示装置およびその制御方法
US9349328B2 (en) Backlight apparatus, method for controlling the same, and image display apparatus
RU2636803C1 (ru) Устройство на светодиодных элементах отображения
JP6818944B2 (ja) 表示装置
JP6703185B2 (ja) Led表示装置およびその輝度補正方法
WO2020008585A1 (ja) Led表示システム、led表示装置およびled表示制御装置
CN104978938A (zh) 图像显示装置及其控制方法
US20170011690A1 (en) Image display apparatus and control method thereof
JPWO2017033709A1 (ja) Led表示装置およびその輝度補正方法
US8850714B2 (en) Chromaticity correction device, chromaticity correction method, and display device
CN109147657A (zh) 应用于显示面板的光学补偿装置及其运作方法
JP6594086B2 (ja) Led表示装置
JP2010085807A (ja) 表示装置
JP6739151B2 (ja) Led表示装置
JP2007134194A (ja) 発光素子制御装置、発光素子バックライト装置、液晶表示装置、及びホワイトバランス制御方法
JP7131793B2 (ja) 表示装置
JP2015232689A (ja) 画像表示装置及びその制御方法
US20170289517A1 (en) Method and display system for adjusting output image of display
JP4887598B2 (ja) 表示装置及び表示方法
JP2009048131A (ja) 液晶表示装置
WO2021005672A1 (ja) Led表示装置及び輝度補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544415

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751284

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018115322

Country of ref document: RU