WO2017061180A1 - 採光構造 - Google Patents

採光構造 Download PDF

Info

Publication number
WO2017061180A1
WO2017061180A1 PCT/JP2016/074535 JP2016074535W WO2017061180A1 WO 2017061180 A1 WO2017061180 A1 WO 2017061180A1 JP 2016074535 W JP2016074535 W JP 2016074535W WO 2017061180 A1 WO2017061180 A1 WO 2017061180A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting material
incident
curved surface
incident light
Prior art date
Application number
PCT/JP2016/074535
Other languages
English (en)
French (fr)
Inventor
新井 秀雄
明 野神
Original Assignee
株式会社マテリアルハウス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マテリアルハウス filed Critical 株式会社マテリアルハウス
Priority to EP16853335.4A priority Critical patent/EP3361145B1/en
Priority to US15/760,789 priority patent/US10203078B2/en
Publication of WO2017061180A1 publication Critical patent/WO2017061180A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • F21S11/007Non-electric lighting devices or systems using daylight characterised by the means for transmitting light into the interior of a building
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2417Light path control; means to control reflection

Definitions

  • the present invention relates to a daylighting structure made of a light transmitting material that is attached to a daylighting part such as a high window of a building and diffuses and propagates incident light from outside toward the ceiling surface inside the building.
  • the present invention relates to a daylighting structure using a light transmitting material comprising an indoor curved surface that refracts and emits in a diffusing manner.
  • the diffused outgoing light area toward the indoor ceiling surface can be appropriately shifted in the depth direction.
  • the present invention meets such a demand.
  • Patent Document 1 a daylighting structure in which the sunlight incident on the window portion is taken toward the indoor ceiling surface by the reflection action on the upper surface of the light shelf attached in a horizontal state outside the building window portion.
  • a plurality of prism face materials are juxtaposed in the vertical direction on the upper and inner sides of the building window, so that roughly the daylight in the summer is reflected to the outside, and the daylight in the spring, autumn and winter is on the ceiling. Refracted into the indoor upper space including
  • the above-mentioned conventional daylighting structure advances the solar incident light in the spring, autumn and winter to the indoor upper space by the light reflecting action and the light refracting action at the plane portions of the light shelf and the prism face material.
  • the refracted outgoing light traveling from the prism face material to the indoor upper space is a bundle of parallel lights, and it is said that an indoor person cannot expect a sense of diffusion toward the ceiling surface direction or the indoor back direction with respect to this refracted outgoing light. There was a problem.
  • incident light is refracted and incident in a converging manner from the outdoor area curved surface of the light transmissive material, and the internally reflected light on the lower reflection surface of the incident light is reflected from the indoor curved surface of the light transmissive material to the indoor ceiling surface or the indoor back surface.
  • An object is to diffuse the outgoing light indoors by refracting and emitting the light in a diffusing manner to the part.
  • the lower reflective surface is set to a mirror surface specification, so that refracted incident light on the curved surface of the outdoor area is prevented from escaping from the lower reflective surface to the lower side.
  • the purpose is to achieve efficient diffusion.
  • the light transmitting material is rotated and held around its longitudinal axis so that the diffused outgoing light area toward the ceiling surface side of the indoor space can be appropriately shifted in the depth direction,
  • the purpose is to promote selection and diversification.
  • the present invention solves the above problems as follows. (1) Attached to a daylighting part (for example, a lateral opening described later) of a building (for example, a later-described building 2) and propagates incident light from the outside toward a ceiling surface (for example, a ceiling surface 2b described later) inside the building.
  • a daylighting structure made of a light transmissive material (for example, a light transmissive material 1 described later)
  • the light transmitting material is An outdoor area curved surface (for example, an outdoor area curved surface 1b described later) in which the incident light is refracted and incident on the inside of the light transmitting material in a converging manner, and the internally reflected light of the refracted incident light is refracted in a diffusion manner toward the ceiling surface.
  • An upper entrance / exit curved surface for example, an inwardly curved surface extending in the longitudinal direction of the light transmissive material in a state of being convex upward from the end portion in the width direction of the light transmissive material to the center side, for example Upper incident / exit curved surface 1a) described later,
  • a lower reflective surface for example, a lower reflective surface 1d described later extending in the longitudinal direction of the light transmitting material, which changes to the internally reflected light that is reflected by the refracted incident light and proceeds to the indoor curved surface of the upper incident / exit curved surface.
  • the upper entrance / exit curved surface is: The longitudinal section in the light transmitting material width direction is arcuate, The thing of a structure aspect is used.
  • the lower reflective surface is Having a mirror surface portion for generating the internally reflected light, The thing of a structure aspect is used.
  • the light transmitting material is On the side surface in the longitudinal direction of the light transmissive material (for example, an orthogonal side surface 1e and a folded side surface 1e ′ described later), a mirror surface portion for generating the internally reflected light is provided.
  • the thing of a structure aspect is used.
  • the light transmitting material is Attached to the daylighting part so as to be rotatable about its longitudinal axis, The thing of a structure aspect is used.
  • the present invention is intended for a daylighting structure having the above configuration.
  • the present invention is based on the above problem solving means.
  • (11) In daylighting inside the building, for those who are indoors, aim to reduce the incident light in winter and the glare of the western sun with a small elevation angle.
  • (12) Diffusion and emission to the ceiling surface and the inner part of the indoor space regardless of the elevation angle of incident light
  • (13) Refractive incident light on the curved surface of the outdoor area is prevented from passing through the lower reflecting surface, so that the light emitted indoors can be diffused reliably and efficiently.
  • the diffused outgoing light area toward the ceiling surface side of the indoor space area can be appropriately shifted in the depth direction so as to select and diversify the usage mode as the lighting structure. And so on.
  • the components with reference numbers with alphabets in FIGS. 1 to 10 are in principle part of the components (for example, the light-transmitting material 1) with reference numerals. Yes.
  • 1 is a semi-cylindrical bowl-shaped light-transmitting material made of acrylic resin or glass
  • 1a is a curved surface convex upward
  • the longitudinal cross section in the light transmitting material width direction is semicircular
  • the upper input / output curved surface extending in the light transmitting material longitudinal direction 1b constitutes the outer half of the light transmission material width direction of the upper entrance / exit curved surface 1a
  • the longitudinal section has a quarter-circular outdoor area curved surface
  • 1c is an indoor area curved surface in which the upper incident / exit curved surface 1a constitutes the inner half of the light transmitting material width direction
  • the longitudinal section is a quarter circle.
  • 1d is a lower reflective surface having a specular surface extending in the longitudinal direction of the light transmissive material.
  • 1e is both end portions of the light transmitting material in the longitudinal direction, and is a single plane / mirror surface orthogonal side surface in the light transmitting material width direction orthogonal to the longitudinal direction,
  • Reference numeral 1e ′ denotes both end portions of the light transmitting material in the longitudinal direction, and the plan view thereof is a two-plane / mirror surface specification with a convex shape that protrudes outward in a “backward-shaped” shape protruding in the center in the width direction.
  • 1f is formed in the longitudinal direction of the light transmitting material at the top of the upper entrance / exit curved surface 1a, and has a lateral groove-like portion that exhibits a positioning action with respect to the substrate in a state where it is incorporated in a laterally elongated hole 2f of a rectangular substrate 2e described later ( See Fig. 6), Respectively.
  • L is the length of the light transmitting material 1 in the longitudinal direction (axial direction)
  • W is the width of the lower reflective surface 1d (the length in the direction perpendicular to the longitudinal direction of the light transmitting material)
  • S and T are rotation directions when the light-transmitting material 1 in a horizontal state is disposed by being rotated ⁇ 10 ° about its longitudinal axis (see FIG. 5)
  • D is a distance between adjacent ones in the vertical direction when the light-transmitting materials 1 are juxtaposed (see FIG. 7), Respectively.
  • 2 is a building where the light-transmitting material 1 is installed
  • 2a is a wall on which the light transmitting material 1 is installed
  • 2b is a ceiling surface which is a diffusion emission target area of the light transmitting material 1
  • 2c is formed in a horizontal manner on the wall 2a, and a lateral opening as a daylighting portion to which the light transmitting material 1 is attached
  • 2d is a high window formed on the wall 2a (see FIG. 6)
  • 2e is a vertical wooden rectangular substrate which is set inside the high window 2d and holds a plurality of light transmission materials 1 individually
  • 2f is the number of “4-3-4-3-4-3-4-3” sequentially from the upper end side of the rectangular substrate 2e to 8 rows, “4” rows and “3” rows.
  • a horizontally long hole for attaching a light transmitting material formed in a mode shifted in the lateral direction by 1/2 of the light transmitting material length L (see FIG. 6), Respectively.
  • E is the incident light on the outdoor curved surface 1b of the upper incident / exit curved surface 1a
  • R is diffused outgoing light from the indoor curved surface 1c with respect to the incident light E
  • E ′ is a refracted incident light in a converging manner in which the incident light E is refracted by the outdoor area curved surface 1b and then enters the orthogonal side surface 1e of the specular surface specification.
  • R ′ is a diffused outgoing light that is refracted incident light E ′ reflected from the orthogonal side surface 1e and the lower reflective surface 1d and emitted from the indoor curved surface 1c in a refraction state; Respectively.
  • E20 is incident light having an elevation angle of 20 ° to the outdoor curved surface 1b
  • E20 (1) is the upper end incident light beam that constitutes the upper end side of the incident light E20
  • E20 (2) is a boundary incident light beam that reaches the indoor side end when the incident light E20 goes straight to the lower reflecting surface 1d without being refracted.
  • E20 (3) is the lower end incident light beam that constitutes the lower end side of the incident light E20
  • R20 is the diffused outgoing light area from the indoor curved surface 1c for the incident light E20
  • R20 (1) to R20 (3) are outgoing rays from the indoor curved surface 1c for the incident rays E20 (1) to E20 (3), respectively.
  • R20 ' is a reflected light area for the incident light E20 when only the lower reflective surface 1d is used instead of the light transmitting material
  • ⁇ 20 is the diffusion angle of the diffuse output light area R20, Respectively.
  • N1 is a narrow crossing range of refracted incident light “with upper incident / exit curved surface 1a”
  • N2 is a wide crossing range of the straight incident light “without the upper incident / exit curved surface 1a”
  • N3 is an outer crossing range that occupies the indoor side outside of the lower reflecting surface 1d in the wide crossing range N2, Respectively.
  • E45 is incident light having an elevation angle of 45 ° to the outdoor curved surface 1b.
  • E45 (1) is the upper-end incident ray of incident light E45
  • E45 (2) is an intermediate incident light beam in the vertical direction of the incident light E45
  • E45 (3) is the lower end incident ray of the incident light E45
  • R45 is a diffused outgoing light area from the indoor curved surface 1c for the incident light E45
  • R45 (1) to R45 (3) are outgoing rays from the indoor curved surface 1c for the incident rays E45 (1) to E45 (3), respectively.
  • R45 ′ is a reflected light area for the incident light E45 when only the lower reflecting surface 1d is used instead of the light transmitting material 1
  • R45a is a light transmission material 1 set horizontally, and is rotated from the indoor curved surface 1c with respect to the incident light E45 when the light transmission material 1 is rotated about 10 ° in the indoor S direction (clockwise in the figure) around the longitudinal axis.
  • Diffused light area, R45b is a view from the indoor curved surface 1c with respect to the incident light E45 when the horizontally set light transmitting material 1 is rotated about 10 ° in the T direction (counterclockwise direction in the drawing) on the outdoor side around the longitudinal axis.
  • Diffuse outgoing light area, ⁇ 45 is the diffusion angle of the diffuse output light areas R45, R45a, R45b, Respectively.
  • E70 is incident light having an elevation angle of 70 ° to the outdoor curved surface 1b.
  • E70 (1) is the top incident light ray of the incident light E70
  • E70 (2) is an intermediate incident light beam in the vertical direction of the incident light E70
  • E70 (3) is the lower incident light ray of the incident light E70
  • R70 is a diffused outgoing light area R70 (1) to R70 (3) from the indoor curved surface 1c with respect to the incident light E70
  • R70 (1) to R70 (3) are outgoing light from the indoor curved surface 1c with respect to each incident light of E70 (1) to E70 (3)
  • R70 ' is a reflected light area for incident light E70 when only the lower reflective surface 1d is used instead of the light transmitting material
  • ⁇ 70 is the diffusion angle of the diffuse output light area R70, Respectively.
  • L 300mm W: 34mm H: 17mm D: 17mm It is.
  • the basic feature of the illustrated lighting structure is that the light transmitting material 1 is set on the wall 2a of the building 2 so that the bottom surface of the semi-cylindrical body is substantially horizontal, (31) Solar direct light (incident light E20, E45, E70, etc.) as parallel incident light enters the outdoor area curved surface 1b of the upper incident / exit curved surface 1a and is refracted in the direction of traveling to the lower reflective surface 1d; (32) This refracted incident light is reflected by the lower reflecting surface 1d, (33) This reflected light is refracted by the indoor area curved surface 1c of the upper entrance / exit curved surface 1a and diffused and emitted toward the ceiling surface 2b of the building 2 and the inner space area. That is.
  • the direct sunlight (incident light E20, E45, E70, etc.) does not travel straight to the lower reflecting surface 1d, but is first refracted by the upper incident / exit curved surface 1a and the refracted incident light. Is advanced to the lower reflecting surface 1d.
  • incident light that passes through the outside of the lower reflecting surface 1d from the outside of the lower reflecting surface 1d to the indoor lower area in a straight traveling environment without refraction is obtained by refracting the direct sunlight as parallel light on the curved surface 1b in the outdoor area.
  • the portion (see the outer crossing range N3 in FIG. 2) is made as small as possible.
  • the effect of preventing the incident light on the outdoor area curved surface 1b of the light transmitting material 1 from escaping from the lower reflecting surface 1d to the indoor lower area by incident light refraction at the outdoor area curved surface 1b is incident with a small elevation angle. It is effective against light.
  • the crossing range in the width direction of the light transmitting material on the horizontal plane composed of the lower reflective surface 1d and its virtual extension surface is narrow when “the upper input / output curved surface 1a is present”.
  • the wide intersection range N2 is set.
  • the crossing range in the light transmissive material width direction on the horizontal plane including the lower reflective surface 1d is the refractive action of the upper incident / exit curved surface 1a. Therefore, it is accommodated in the lower reflective surface 1d and does not protrude from the outer area.
  • each of the incident lights E45 and E70 having an elevation angle of 45 ° and an elevation angle of 70 °, as is apparent from FIGS. 3 and 4, each of them is refracted by the outdoor area curved surface 1b and then proceeds to the lower reflection surface 1d. The reflected light is diffused and emitted from the indoor curved surface 1c toward the ceiling surface 2b.
  • the diffused outgoing light area R20 with respect to the incident light E20 in FIG. 2 is sequentially directed toward the ceiling surface portion closer to the wall 2a than the reflected light area R20 'when only the lower reflective surface 1d is used instead of the light transmitting material 1. It is set in a spreading manner.
  • the diffused outgoing light area R45 for the incident light E45 in FIG. 3 is from the ceiling surface portion and the wall 2a closer to the wall 2a than the reflected light area R45 ′ when only the lower reflective surface 1d is used instead of the light transmitting material 1. It is set in such a manner that it spreads sequentially on both of the far ceiling surface portions.
  • the diffused outgoing light area R70 with respect to the incident light E70 in FIG. 4 is sequentially directed toward the ceiling surface portion farther from the wall 2a than the reflected light area R70 'when only the lower reflective surface 1d is used instead of the light transmitting material 1. It is set in a spreading manner.
  • the lower reflection surface 1d shown in the figure has a specular specification
  • the specular specification need not be set.
  • incident light E20 (elevation angle 20 °) that has been refracted by the outdoor curved surface 1b and travels to the lower reflecting surface 1d is totally reflected by this lower reflecting surface. That is, in the incident light E20, there is no incident light ray that is refracted by the lower reflecting surface 1d and travels downward.
  • the entire incident / refracted light beam between the incident light beams of total reflection for example, the upper incident light beam E20 (1) and the boundary incident light beam E20 (2) is also totally reflected on the lower reflective surface 1d. reflect.
  • the incident light totally reflected by the lower reflecting surface 1d is indicated by “circular”, and the incident light not totally reflected is indicated by “X”.
  • Whether or not the incident light on the lower reflective surface 1d is totally reflected depends on the magnitude relationship between the incident angle and the critical angle of the light transmitting material 1 (lower reflective surface). Total reflection occurs in incident light with an incident angle exceeding the critical angle.
  • the critical angle itself is an angle based on the refractive indices of both media at the boundary where light is refracted.
  • the critical angle of incident light on the “lower reflective surface 1d ⁇ air layer” is approximately “42.14 °”.
  • the critical angle of incident light on the “lower reflective surface 1d ⁇ air layer” when the light transmitting material 1 made of glass is approximately “41.14 °”.
  • FIG. 5 shows the diffusion with respect to the incident light E45 when the so-called horizontal light-transmitting material 1 in FIG. 3 is rotated about ⁇ 10 ° about the longitudinal axis passing through the intermediate portion in the width direction of the lower reflecting surface. The shift state of the outgoing light area is shown.
  • the diffused outgoing light area for the incident light E45 is shifted from R45 to R45a on the back side when the light transmitting material 1 in FIG. 3 is rotated by 10 ° in the S direction (clockwise in the figure), and in the T direction (reverse to the illustration in the figure). When it is turned 10 ° clockwise, it shifts from R45 to R45b on the wall side.
  • the depth range of the diffused emission light area from the indoor curved surface 1c can be selected.
  • the diffusion angle in a state where the horizontally arranged light transmitting material 1 was rotated ⁇ 10 ° about the longitudinal axis was approximately “28 °”.
  • a convex portion or a concave portion continuing from the intermediate portion in the width direction of the bottom surface of the lower reflecting surface 1d in the direction of the length L is formed, and the lateral opening 2c is formed.
  • a concave portion or a convex portion that receives the longitudinal axis in a rotatable manner is formed on the bottom portion of the plate.
  • an element for holding the light transmitting material 1 in its rotating position is set on the ceiling surface portion of the lateral opening 2c.
  • a friction acting portion with the upper incident / exit curved surface 1a of the light transmitting material 1 For example, a friction acting portion with the upper incident / exit curved surface 1a of the light transmitting material 1, a holding portion such as an arbitrary locked portion formed on the upper incident / exit curved surface 1a, and the like.
  • FIG. 6 shows a multi-lighting structure in which the light-transmitting material 1 is incorporated in each of the 28 horizontally long holes 2f of the rectangular substrate 2e.
  • each light transmitting material 1 is positioned by engaging with the upper edge portion of the laterally long hole portion 2f in the rectangular substrate 2e.
  • FIG. 7 shows a state in which the light transmissive materials 1 are positively spaced apart from each other when the light transmissive materials 1 are juxtaposed vertically.
  • the light emitted from the indoor curved surface 1c of the lower light transmissive material collides with the lower reflective surface 1d of the upper light transmissive material and the ceiling surface 2b. The situation where it cannot progress toward is avoided.
  • FIG. 8 shows that after the refraction incident light E ′ as a part of the refraction light on the outdoor area curved surface 1b of the incident light E is reflected by the orthogonal side surface 1e and the lower reflection surface 1d of the specular surface, A state is shown in which the diffused outgoing light R ′ proceeds toward the ceiling surface 2b.
  • FIG. 9 shows a daylighting structure in which a plurality of light-transmitting materials 1 are connected in the longitudinal direction.
  • each of the light transmissive materials 1 substantially the same refractive incident light E ′ as in FIG. 8 and the diffused outgoing light R ′ corresponding to the reflective action of the orthogonal side surface 1 e are generated.
  • FIG. 10 shows a light transmissive material 1 in which a bent side surface 1e ′ having an outward convex shape is formed in a two-plane / mirror surface specification, instead of the orthogonal side surface 1e in a single-plane / mirror surface specification.
  • the present invention is not limited to the above embodiments, for example, (61)
  • As the upper entrance / exit curved surface 1a an arbitrary curved surface having an upward convex shape is used instead of a semicircular surface as shown in the cross section in the width direction.
  • (62) Use the lower reflective surface 1d, the orthogonal side surface 1e, and the bent side surface that are not specular.
  • (63) Artificial light is also subject to lighting, You may do it.
  • L Length in the longitudinal direction (axial direction) of the light transmitting material 1
  • W Width of the lower reflective surface 1d (length in a direction orthogonal to the longitudinal direction of the light transmitting material)
  • H Height S of the light transmissive material 1
  • T Direction of rotation of the light transmissive material 1 (see FIG. 5)
  • D Light transmission material interval between adjacent vertical directions (see FIG. 7)
  • E Incident light on the outdoor area curved surface 1b
  • E ' Diffused outgoing light from the indoor area curved surface 1c
  • E ' Refraction incident light focused on the orthogonal side surface 1e (see FIGS. 8 and 9)
  • R ′ Diffuse outgoing light for E ′
  • E20 Incident light E20 (1) with an elevation angle of 20 °: Top incident light
  • E45 Incident light at an elevation angle of 45 °
  • R45a Diffused emission light area of E45 when the light transmitting material 1 of FIG. 3 is rotated 10 degrees in the S direction
  • R45b E45 when the light transmitting material 1 of FIG. 3 is rotated 10 degrees in the T direction
  • E70 Incident light E70 (1) with an elevation angle of 70 °: Top incident light beam E70 (2): Intermediate incident light beam E70 (3): Bottom incident light beam R70: Diffuse emission light areas R70 (1) to R70 (3) of E70: E70 (1) to E70 (3) outgoing rays R70 ': Reflected light area on the lower reflective surface 1d of E70 (no upper entrance / exit curved surface 1a) ⁇ 70: R70 diffusion angle

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Civil Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

建物屋内への採光に際して、仰角が小さい冬季入射光や西日の眩しさを緩和し、また、入射光を、その仰角にかかわらず天井面や屋内空間域の奥部分へ拡散出射させる。仰角20°の入射光(E20)を、壁(2a)の横方向開口部(4c)に取り付けた光透過材(1)での屈折,反射作用により建物内部上側の天井面の方に拡散出射させる。光透過材(1)は、入射光(E20)が光透過材内部に集束態様の形で屈折入射する屋外域曲面(1b)と、この屈折入射光を内部反射する下側反射面(1d)と、この内部反射光が天井面の方に拡散態様の形で屈折出射する屋内域曲面(1c)と、を備えている。光透過材(1)を図示の水平状態から傾けて設置することや、光透過材(1)を上下方向および左右方向のそれぞれに複数設置することも開示する。

Description

採光構造
 本発明は、建物の高窓などの採光部分へ取り付けられて屋外からの入射光を建物内部の天井面の方に拡散伝播させる光透過材からなる採光構造に関する。
 特に、光伝播用の光透過材として、入射光を集束態様で屈折入射する屋外域曲面と、この屈折入射光を内部反射する下側反射面と、この内部反射光を屋内天井面の方に拡散態様で屈折出射する屋内域曲面と、からなる光透過材を用いた採光構造に関する。
 さらには下側反射面などを鏡面仕様とすることにより、屋外域曲面での屈折入射光がこの下側反射面でも屈折して光透過材の下方域に進むといった状態が生じるのを、確実に阻止している。
 また、光透過材をその長手方向軸を中心に回動してその位置に保持することにより、屋内天井面側への拡散出射光エリアが奥行方向に適宜シフトしえるようにしている。
 建物屋内への採光に際しては、屋内の者に対し、仰角が小さい冬季入射光や西日の眩しさを緩和し、また、入射光を、その仰角にかかわらず天井面や屋内空間域の奥部分へ拡散出射させることが望ましいともいえ、本発明はこのような要請に応えるものである。
 従来、建物窓部の外側に水平状態で取り付けたライトシェルフの上面での反射作用により、窓部への太陽入射光を屋内天井面の方に取り込む形の採光構造が提案されている(例えば下記特許文献1)。
 また、この採光構造では建物窓部の上内側に複数のプリズム面材を上下方向に並置し、これにより概略、夏季の昼光は屋外へ反射させ、春季,秋季および冬季それぞれ昼光は天井面を含む屋内上方空間域へと屈折させている。
特開2001-60407号公報
 従来の上記採光構造は、あくまでライトシェルフおよびプリズム面材それぞれの平面部分での光反射作用や光屈折作用により、春季,秋季および冬季の太陽入射光を屋内上方空間域へ進行させている。
 そのため、プリズム面材から屋内上方空間域へと進む屈折出射光はいわば平行光の束であり、屋内の者が、この屈折出射光に対する天井面方向や屋内奥方向への拡散感を期待できないという問題点があった。
 そこで、本発明では、入射光が光透過材の屋外域曲面から集束態様で屈折入射し、これの下側反射面での内部反射光が光透過材の屋内域曲面から屋内天井面や屋内奥部分へ拡散態様で屈折出射する形にして、屋内への出射光の拡散化を図ることを目的とする。
 また、下側反射面などを鏡面仕様に設定して、屋外域曲面での屈折入射光がこの下側反射面からその下方にいわば抜けてしまうのを阻止し、屋内への出射光の確実・効率的な拡散化を図ることを目的とする。
 また、光透過材をその長手方向軸を中心に回動保持して、屋内空間域の天井面側への拡散出射光エリアが奥行方向に適宜シフトしえるようにし、採光構造としての使用態様の選択化・多様化を図ることを目的とする。
 本発明は、以上の課題を次のようにして解決する。
(1)建物(例えば後述の建物2)の採光部分(例えば後述の横方向開口部)へ取り付けられて外部からの入射光を建物内部の天井面(例えば後述の天井面2b)の方に伝播させる光透過材(例えば後述の光透過材1)からなる採光構造において、
前記光透過材は、
前記入射光が光透過材内部に集束態様で屈折入射する屋外域曲面(例えば後述の屋外域曲面1b)、およびこの屈折入射光の内部反射光が前記天井面の方に拡散態様の形で屈折出射する屋内域曲面(例えば後述の屋内域曲面1c)からなり、光透過材幅方向の端部分から中央側に向かって上に凸の状態で光透過材長手方向に延びる上側入出射曲面(例えば後述の上側入出射曲面1a)と、
前記屈折入射光が反射して前記上側入出射曲面の前記屋内域曲面に進む前記内部反射光へと変化する、前記光透過材長手方向に延びる下側反射面(例えば後述の下側反射面1d)と、を備えた、
構成態様のものを用いる。
(2)上記(1)において、
前記上側入出射曲面は、
前記光透過材幅方向における縦断面が円弧状である、
構成態様のものを用いる。
(3)上記(1),(2)において、
前記下側反射面は、
前記内部反射光を発生させるための鏡面部分を有した、
構成態様のものを用いる。
(4)上記(1)~(3)において、
前記光透過材は、
前記光透過材長手方向の側面(例えば後述の直交側面1e,折れ側面1e′)に、前記内部反射光を発生させるための鏡面部分を有した、
構成態様のものを用いる。
(5)上記(1)~(4)において、
前記光透過材は、
その長手方向軸を中心に回動可能な形で前記採光部分へ取り付けられた、
構成態様のものを用いる。
(6)上記(1)~(5)において、
前記採光部分に、
複数の前記光透過材が、それぞれ上下方向における隣同士の前記上側入出射曲面とその上の前記下側反射面との間隔が所定値以上の横向き態様で、配設された、
構成態様のものを用いる。
 本発明は、以上の構成からなる採光構造を対象としている。
 本発明は以上の課題解決手段により、
(11)建物屋内への採光に際して、屋内の者に対し、仰角が小さい冬季入射光や西日の眩しさの緩和化を図る、
(12)入射光の仰角にかかわらず天井面や屋内空間域の奥部分への拡散出射化を図る、
(13)屋外域曲面での屈折入射光がこの下側反射面からその下方にいわば抜けてしまうのを阻止して、屋内への出射光の確実・効率的な拡散化を図る、
(14)屋内空間域の天井面側への拡散出射光エリアが奥行方向に適宜シフトしえるようにして、採光構造としての使用態様の選択化・多様化を図る、
などのことができる。
建物の高窓近くの壁に取り付けた光透過材への太陽入射光、およびその屋内での拡散出射光エリアなどの概要を示す説明図である。 仰角20°の太陽入射光と、その屋内での拡散出射光エリアとを示す説明図である。 仰角45°の太陽入射光と、その屋内での拡散出射光エリアとを示す説明図である。 仰角70°の太陽入射光と、その屋内での拡散出射光エリアとを示す説明図である。 図3の光透過材を、その下側反射面幅方向の中間部分を通る長手方向軸を中心に±10°回動させた状態で配設したときの、仰角45°の太陽入射光に対する拡散出射光エリアのシフト状態を示す説明図である。 長方形基板の計28個の横長孔部それぞれに光透過材を組み込んだ形のマルチ採光構造を示す説明図である。 光透過材を上下に並置するさいに、双方の光透過材同士を間隔Dだけ離した状態を示す説明図である。 屈折入射光E′が、鏡面仕様の、直交側面および下側反射面で反射した後、屋内域曲面から拡散出射光R′として天井面の方に進む様子を示す説明図であり、(a)は斜視状態,(b)は平面状態を示している。 複数の光透過材を長手方向に連結した形の採光構造を示す説明図であり、(a)は斜視状態,(b)は平面状態を示している。 光透過材長手方向との直交側面に代えて外方に凸の折れ側面で形成した光透過材を示す説明図であり、(a)は斜視状態,(b)は平面状態を示している。
 図1~図10を用いて本発明にかかる採光装置の実施形態を説明する。
 図1~図10のアルファベット付き参照番号の構成要素(例えば上側入出射曲面1a)は原則として当該参照番号の数字部分の構成要素(例えば光透過材1)の一部である、ことを示している。
 図1~図10において、
1は半円柱の蒲鉾形状で,アクリル樹脂製やガラス製などの光透過材,
1aは上に凸の曲面からなり、光透過材幅方向における縦断面が半円状で、光透過材長手方向に延びる上側入出射曲面,
1bは上側入出射曲面1aの光透過材幅方向の外半分を構成して、上記縦断面が1/4円状の屋外域曲面,
1cは上側入出射曲面1aを光透過材幅方向の内半分を構成して、上記縦断面が1/4円状の屋内域曲面,
1dは平面からなり、光透過材長手方向に延びる鏡面仕様の下側反射面,
1eは光透過材長手方向の両端部分であって、この長手方向に直交する光透過材幅方向の単一平面・鏡面仕様の直交側面,
1e′は光透過材長手方向の両端部分であって、その平面視が、幅方向中央部突出の「逆〔く〕の字状」となる二平面・鏡面仕様で外方に凸の折れ側面(図10参照),
1fは上側入出射曲面1aの頂部の光透過材長手方向に形成されて、後述の長方形基板2eの横長孔部2fに組み込まれた状態でこの基板との間の位置決め作用を呈する横溝状部(図6参照),
をそれぞれ示している。
 この下側反射面1d,直交側面1eおよび折れ側面1e′の鏡面仕様は、例えば、
(21)銀またはアルミニウムを蒸着する、
(22)鏡面材を貼る、
(23)鏡面の上などに置く、
ことによって形成する。
 また、
Lは光透過材1の長手方向(軸方向)の長さ,
Wは下側反射面1dの幅(光透過材長手方向と直交する方向の長さ),
Hは下側反射面1dから上側入出射曲面1aの頂部までの高さ(=W/2),
S,Tは水平状態の光透過材1を、その長手方向軸を中心に±10°回動して配設するときの回動方向(図5参照),
Dは光透過材1を多段並置するときの上下方向隣同士の間隔(図7参照),
をそれぞれ示している。
 また、
2は光透過材1の設置対象である建物,
2aは光透過材1が設置される壁,
2bは光透過材1の拡散出射対象域である天井面,
2cは壁2aに水平態様で形成され、光透過材1が取り付けられる採光部分としての横方向開口部,
2dは壁2aに形成された高窓(図6参照),
2eは高窓2dの内側に設定されて、複数の光透過材1を個々に保持する縦型木製の長方形基板,
2fは長方形基板2eの上端側から下方へ8行にわたり、順次「4-3-4-3-4-3-4-3」の個数で、「4」個の行と「3個」の行とでは、光透過材長さLの1/2だけ横方向にずれる態様で形成された光透過材取付け用の横長孔部(図6参照),
をそれぞれ示している。
 また、
Eは上側入出射曲面1aの屋外域曲面1bへの入射光,
Rは入射光Eに対する屋内域曲面1cからの拡散出射光,
E′は入射光Eが屋外域曲面1bで屈折してから鏡面仕様の直交側面1eへ入射する集束態様の屈折入射光,
R′は屈折入射光E′が直交側面1eおよび下側反射面1dで反射して屋内域曲面1cから屈折状態で出射する拡散出射光,
をそれぞれ示している。
 図2において、
E20は屋外域曲面1bへの仰角20°の入射光,
E20(1)は入射光E20のいわば上端側を構成する上端入射光線,
E20(2)は入射光E20が仮に屈折せずに下側反射面1dへと直進する場合にその屋内側端部へいたる境界入射光線,
E20(3)は入射光E20のいわば下端側を構成する下端入射光線,
R20は入射光E20に対する屋内域曲面1cからの拡散出射光エリア,
R20(1)~R20(3)はそれぞれE20(1)~E20(3)の各入射光線に対する屋内域曲面1cからの出射光線,
R20′は入射光E20に対する、光透過材1に代えて下側反射面1dのみとした場合の反射光エリア,
α20は拡散出射光エリアR20の拡散角度,
をそれぞれ示している。
 また、この入射光E20の、下側反射面1dおよびその仮想延長面からなる水平面との光透過材幅方向のいわば交差範囲に関し、
N1は「上側入出射曲面1aあり」の屈折入射光の狭交差範囲,
N2は「上側入出射曲面1aなし」の直進入射光の広交差範囲,
N3は広交差範囲N2の中、下側反射面1dよりも屋内側外方を占める外方交差範囲,
をそれぞれ示している。
 図3および図5において、
E45は屋外域曲面1bへの仰角45°の入射光,
E45(1)は入射光E45の上端入射光線,
E45(2)は入射光E45の上下方向における中間入射光線,
E45(3)は入射光E45の下端入射光線,
R45は入射光E45に対する屋内域曲面1cからの拡散出射光エリア,
R45(1)~R45(3)はそれぞれE45(1)~E45(3)の各入射光線に対する屋内域曲面1cからの出射光線,
R45′は入射光E45に対する、光透過材1に代えて下側反射面1dのみとした場合の反射光エリア,
R45aは水平設定の光透過材1を、その長手方向軸を中心にして屋内側のS方向(図示時計方向)へ略10°回動させたときの、入射光E45に対する屋内域曲面1cからの拡散出射光エリア,
R45bは水平設定の光透過材1を、その長手方向軸を中心にして屋外側のT方向(図示反時計方向)へ略10°回動させたときの、入射光E45に対する屋内域曲面1cからの拡散出射光エリア,
α45は拡散出射光エリアR45,R45a,R45bの拡散角度,
をそれぞれ示している。
 図4において、
E70は屋外域曲面1bへの仰角70°の入射光,
E70(1)は入射光E70の上端入射光線,
E70(2)は入射光E70の上下方向における中間入射光線,
E70(3)は入射光E70の下端入射光線,
R70は入射光E70に対する屋内域曲面1cからの拡散出射光エリア
R70(1)~R70(3)はそれぞれE70(1)~E70(3)の各入射光線に対する屋内域曲面1cからの出射光線,
R70′は入射光E70に対する、光透過材1に代えて下側反射面1dのみとした場合の反射光エリア,
α70は拡散出射光エリアR70の拡散角度,
をそれぞれ示している。
 ここで、光透過材1の長さL,幅W,高さH(図1参照)および光透過材1の上下方向隣同士の間隔D(図7参照)の単なる一例をあげれば、
L:300mm
W:34mm
H:17mm
D:17mm
である。
 図示の採光構造の基本的特徴は、建物2の壁2aに光透過材1をその半円柱底面が略水平となるように設定した状態で、
(31)平行入射光としての太陽直射光(入射光E20,E45,E70など)が、上側入出射曲面1aの屋外域曲面1bに入射して、下側反射面1dに進む方向へ屈折し、
(32)この屈折入射光が、下側反射面1dで反射し、
(33)この反射光が、上側入出射曲面1aの屋内域曲面1cにて屈折し、建物2の天井面2bや屋内空間域の奥部分の方に拡散出射していく、
ことである。
 このように、図示の採光構造では、太陽直射光(入射光E20,E45,E70など)を下側反射面1dに直進させるのではなく、先ず上側入出射曲面1aで屈折させ、その屈折入射光が下側反射面1dへと進む形にしている。
 上記(31)の屈折作用により、この上側入出射曲面1aを設定しない場合、すなわち下側反射面1dのみを設ける場合に比べて、入射光Eの多く(略全体)が下側反射面1dにあたる方向へと進行する。
 すなわち、平行光としての太陽直射光を屋外域曲面1bで集束態様の形に屈折させることにより、この屈折なしの直進環境では下側反射面1dの外側から屋内下方域へと抜けてしまう入射光部分(図2の外方交差範囲N3参照)を、極力少なくしている。
 この光透過材1の屋外域曲面1bへの入射光が下側反射面1dから外れて屋内下方域へ抜けることを、屋外域曲面1bでの入射光屈折により防止する作用は、仰角が小さい入射光に対して効果的である。
 例えば、図2の入射光E20の場合、下側反射面1dおよびその仮想延長面からなる水平面での光透過材幅方向のいわば交差範囲は、「上側入出射曲面1aあり」のときが狭交差範囲N1で、「上側入出射曲面1aなし」のときが広交差範囲N2となっている。
 この「上側入出射曲面1aなし」の広交差範囲N2の図示右側部分で下側反射面1dの外方域となる外方交差範囲N3に入ってきた「E20(1)~E20(2)」の入射光部分は、下側反射面1dで反射されることなく下側反射面外方域を屋内下方空間域へと直進する。
 他方、光透過材1の設置下での図2の入射光E20の場合、その下側反射面1dを含む水平面での光透過材幅方向の交差範囲は、その上側入出射曲面1aの屈折作用により下側反射面1dの中に納まり、そこから外方域にはみ出すことがない。
 そのため、図2の「E20(1)~E20(3)」の屋外域曲面1bへの全入射光は、この下側反射面1dで反射して上側入出射曲面1aの屋内域曲面1cへと進み、そこでの再屈折により天井面2bの方に拡散出射する。
 仰角45°および仰角70°の各入射光E45,E70の場合も、図3および図4で明らかなように、それぞれの全体は、屋外域曲面1bで屈折してから下側反射面1dに進み、そこでの反射光が屋内域曲面1cから天井面2bの方に拡散出射する。
 ここで、図2~図4における各入射光E20,E45,E70の屋内域曲面1cからの拡散出射光エリアR20,R45,R70のいわば拡散角度α20,α45,α70は、例えば「α20=43°,α45=29°,α70=47°」となっている。
 図2の入射光E20に対する拡散出射光エリアR20は、光透過材1に代えて下側反射面1dのみとした場合の反射光エリアR20′よりも、壁2aに近い天井面部分の方に順次広がる態様で設定されている。
 図3の入射光E45に対する拡散出射光エリアR45は、光透過材1に代えて下側反射面1dのみとした場合の反射光エリアR45′よりも、壁2aに近い天井面部分および壁2aから遠い天井面部分の双方に順次広がる態様で設定されている。
 図4の入射光E70に対する拡散出射光エリアR70は、光透過材1に代えて下側反射面1dのみとした場合の反射光エリアR70′よりも、壁2aから遠い天井面部分の方に順次広がる態様で設定されている。
 なお、図示の下側反射面1dは鏡面仕様となっているが、主たる採光対象を例えば西日のように小仰角入射光とする場合には鏡面仕様に設定しなくてもよい。
 それは、屋外域曲面1bで屈折して下側反射面1dに進んだ例えば入射光E20(仰角20°)が、この下側反射面で全反射するからである。すなわち、入射光E20の中、下側反射面1dで屈折してその下方域へ進む入射光線が生じないためである。
 この下側反射面1dでの全反射状況を、図2,図3および図4の各入射光E20,E45およびE70についてみると、概略、
(41)仰角20°の図2の場合、上端入射光線E20(1),境界入射光線E20(2)および下端入射光線E20(3)のそれぞれが全反射し、
(42)仰角45°の図3の場合、上端入射光線E45(1)が全反射せず,中間入射光線E45(2)および下端入射光線E45(3)が全反射し、
(43)仰角70°の図4の場合、上端入射光線E70(1),中間入射光線E70(2)および下端入射光線E20(3)のそれぞれが全反射せず、
といった状況になっている。
 ここで、全反射の入射光線同士の間、例えば上端入射光線E20(1)と境界入射光線E20(2)との間の入射・屈折光線の全体も同じように下側反射面1dにて全反射する。
 図2~図4の屋外域曲面1bへの入射光のうち、下側反射面1dで全反射する入射光は「円形」で示し、全反射しない入射光は「X」で示している。
 下側反射面1dへの入射光が全反射するかどうかは、周知なように、その入射角と、光透過材1(下側反射面)の臨界角との大小関係によって決まる。臨界角を超える入射角の入射光では、全反射が起こる。
 臨界角自体は光が屈折する境界部分の両媒質の屈折率に基づく角度であり、図示のアクリル樹脂製の光透過材1(屈折率=1.49)および空気層(屈折率≒1.00)の場合、「下側反射面1d→空気層」の入射光の臨界角は略「42.14°」となる。
 また、ガラス製の光透過材1(屈折率=1.52)を用いたときの「下側反射面1d→空気層」の入射光の臨界角は略「41.14°」となる。
 図示の光透過材1を用いた採光構造によれば、屋内において、
(51)仰角が小さい冬季入射光や西日の眩しさを緩和し、
(52)入射仰角にかかわらず、天井面2bおよび屋内空間域の奥部分へ入射光を拡散伝播させる、
ことなどができる。
 図5は、図3のいわば水平配置の光透過材1を、その下側反射面幅方向の中間部分を通る長手方向軸を中心に±10°回動させたときの、入射光E45に対する拡散出射光エリアのシフト状態を示している。
 入射光E45に対する拡散出射光エリアは、図3の光透過材1をS方向(図示時計方向)に10°回動させるとR45から奥側のR45aへとシフトし、また、T方向(図示反時計方向)に10°回動させるとR45から壁側のR45bへとシフトする。
 このような光透過材1の回動配設により、屋内域曲面1cからの拡散出射光エリアの奥行範囲などを選択しえる。
 ここで、水平配置の光透過材1を、上記長手方向軸を中心に±10°回動させた状態での拡散角度は略「28°」であった。
 図面上は明示していないが、上記長手方向軸として、下側反射面1dの底面の幅方向中間部分から長さLの方向に続く凸状部または凹状部を形成し、横方向開口部2cの底面部分にはこの長手方向軸を回動可能な形で受ける凹状部または凸状部を形成している。
 また、横方向開口部2cの天井面部分には光透過材1をその回動位置に保持する要素が設定されている。
 例えば光透過材1の上側入出射曲面1aとの摩擦作用部や、この上側入出射曲面1aに形成した任意の被係止部などの保持部などである。
 図6は、長方形基板2eの計28個の横長孔部2fそれぞれに光透過材1を組み込んだ形のマルチ採光構造を示している。
 ここで、各光透過材1の横溝状部1fはそれぞれ長方形基板2eにおける横長孔部2fの上側縁部分と係合して位置決めされる。
 図7は、光透過材1を上下に並置するさいに、双方の光透過材同士を積極的に間隔Dだけ離した状態を示している。
 この光透過材1の上下並置の際に間隔Dを確保することにより、下側光透過材の屋内域曲面1cからの出射光が上側光透過材の下側反射面1dにぶつかって天井面2bの方に進行しえないといった状態を、回避している。
 図8は、入射光Eの屋外域曲面1bにおける屈折光の一部としての屈折入射光E′が、鏡面仕様の、直交側面1eおよび下側反射面1dで反射した後、屋内域曲面1cから拡散出射光R′として天井面2bの方に進む様子を示している。
 図9は、複数の光透過材1をその長手方向に連結した形の採光構造を示している。
光透過材1のそれぞれにおいて、直交側面1eの反射作用にともなう図8と略同一の屈折入射光E′およびそれに対応した拡散出射光R′などが生じる。
 図10は、単一平面・鏡面仕様の直交側面1eに代えて、二平面・鏡面仕様で外方に凸の折れ側面1e′を形成した光透過材1を示している。
 折れ側面1e′を形成した光透過材1の場合も、この折れ側面の反射作用にともなう図8と同様の屈折入射光およびそれに対応した拡散出射光が生じえる。
 本発明が以上の実施形態に限定されないことは勿論であり例えば、
(61)上側入出射曲面1aとして、その幅方向断面が図示のような半円周面ではなく、上に凸の任意の曲面形状のものを用いる。
(62)鏡面仕様でない下側反射面1dや直交側面1e,折れ側面を用いる、
(63)人工光についても採光対象とする、
ようにしてもよい。
1:光透過材
1a:上側入出射曲面(1b+1c)
1b:屋外域曲面
1c:屋内域曲面
1d:下側反射面
1e:直交側面
1e′:折れ側面(図10参照)
1f:横溝状部(図6参照)
L:光透過材1の長手方向(軸方向)の長さ
W:下側反射面1dの幅(光透過材長手方向と直交する方向の長さ)
H:光透過材1の高さ
S,T:光透過材1の配設回動方向(図5参照)
D:上下方向隣同士の光透過材間隔(図7参照)
2:建物
2a:壁
2b:天井面
2c:横方向開口部
2d:高窓(図6参照)
2e:長方形基板
2f:光透過材取付け用の横長孔部
E:屋外域曲面1bへの入射光
R:屋内域曲面1cからの拡散出射光
E′:直交側面1eへの集束態様の屈折入射光(図8,図9参照)
R′:E′に対する拡散出射光
図2において、
E20:仰角20°の入射光
E20(1):上端入射光線
E20(2):境界入射光線
E20(3):下端入射光線
R20:E20の拡散出射光エリア
R20(1)~R20(3):E20(1)~E20(3)の出射光線
R20′:E20の下側反射面1dでの反射光エリア(上側入出射曲面1aなし)
α20:R20の拡散角度
N1:「上側入出射曲面1aあり」の屈折入射光の下側反射面1dとの狭交差範囲
N2:「上側入出射曲面1aなし」の直進入射光の下側反射面側との広交差範囲
N3:N2の一部で下側反射面1dよりも屋内側外方の外方交差範囲
図3および図5において、
E45:仰角45°の入射光
E45(1):上端入射光線
E45(2):中間入射光線
E45(3):下端入射光線
R45:E45の拡散出射光エリア
R45(1)~R45(3):45(1)~E45(3)の出射光線
R45′:E45の下側反射面1dでの反射光エリア(上側入出射曲面1aなし)
R45a:図3の光透過材1をS方向へ10度回動させたときのE45の拡散出射光エリア
R45b:図3の光透過材1をT方向へ10度回動させたときのE45の拡散出射光エリア
α45:R45,R45a,R45bの拡散角度
図4において、
E70:仰角70°の入射光
E70(1):上端入射光線
E70(2):中間入射光線
E70(3):下端入射光線
R70:E70の拡散出射光エリア
R70(1)~R70(3):E70(1)~E70(3)の出射光線
R70′:E70の下側反射面1dでの反射光エリア(上側入出射曲面1aなし)
α70:R70の拡散角度

Claims (6)

  1.  建物の採光部分へ取り付けられて外部からの入射光を建物内部の天井面の方に伝播させる光透過材からなる採光構造において、
     前記光透過材は、
    前記入射光が光透過材内部に集束態様で屈折入射する屋外域曲面、およびこの屈折入射光の内部反射光が前記天井面の方に拡散態様の形で屈折出射する屋内域曲面からなり、光透過材幅方向の端部分から中央側に向かって上に凸の状態で光透過材長手方向に延びる上側入出射曲面と、
    前記屈折入射光が反射して前記上側入出射曲面の前記屋内域曲面に進む前記内部反射光へと変化する、前記光透過材長手方向に延びる下側反射面と、を備えた、
     ことを特徴とする採光構造。
  2.  前記上側入出射曲面は、
    前記光透過材幅方向における縦断面が円弧状である、
     ことを特徴とする請求項1記載の採光構造。
  3.  前記下側反射面は、
    前記内部反射光を発生させるための鏡面部分を有している、
     ことを特徴とする請求項1または2記載の採光構造。
  4.  前記光透過材は、
    前記光透過材長手方向の側面に、前記内部反射光を発生させるための鏡面部分を有している、
     ことを特徴とする請求項1乃至3のいずれかに記載の採光構造。
  5.  前記光透過材は、
    その長手方向軸を中心に回動可能な形で前記採光部分へ取り付けられている、
     ことを特徴とする請求項1乃至4のいずれかに記載の採光構造。
  6.  前記採光部分に、
    複数の前記光透過材が、それぞれ上下方向における隣同士の前記上側入出射曲面とその上の前記下側反射面との間隔が所定値以上の横向き態様で、配設されている、
     ことを特徴とする請求項1乃至5のいずれかに記載の採光構造。
PCT/JP2016/074535 2015-10-07 2016-08-23 採光構造 WO2017061180A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16853335.4A EP3361145B1 (en) 2015-10-07 2016-08-23 Daylighting structure
US15/760,789 US10203078B2 (en) 2015-10-07 2016-08-23 Daylighting structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015199331A JP6207030B2 (ja) 2015-10-07 2015-10-07 採光構造
JP2015-199331 2015-10-07

Publications (1)

Publication Number Publication Date
WO2017061180A1 true WO2017061180A1 (ja) 2017-04-13

Family

ID=58487426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074535 WO2017061180A1 (ja) 2015-10-07 2016-08-23 採光構造

Country Status (4)

Country Link
US (1) US10203078B2 (ja)
EP (1) EP3361145B1 (ja)
JP (1) JP6207030B2 (ja)
WO (1) WO2017061180A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188318A1 (ja) * 2016-04-27 2017-11-02 シャープ株式会社 採光装置および採光システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129792A (ja) * 1998-10-22 2000-05-09 Sekisui Chem Co Ltd 建 物
JP2004363042A (ja) * 2003-06-06 2004-12-24 Hokuto Seigyo Kk 太陽光採光装置及びスラットの角度調整部材
JP2009266794A (ja) * 2007-11-29 2009-11-12 Ishikawa Kogaku Zokei Kenkyusho:Kk 太陽光照明器
WO2014078812A1 (en) * 2012-11-16 2014-05-22 President And Fellows Of Harvard College Dynamic light control system and methods for producing the same
WO2015119071A1 (ja) * 2014-02-04 2015-08-13 シャープ株式会社 採光部材、採光装置、および採光部材の設置方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US631220A (en) * 1899-06-06 1899-08-15 Charles E Manning Illuminating window-glass.
EP0601202B1 (en) * 1992-06-17 2000-03-22 Figla Co., Ltd. Light transmittable members, and method of adjusting natural lighting quantity and natural lighting range by use of the light transmittable members
US5828494A (en) * 1994-05-18 1998-10-27 Stremple; Paul R. Glass panel unit for refracting and dispersing light
DE29601308U1 (de) * 1996-01-26 1996-04-11 Federmann, Helmut, Dr., 51427 Bergisch Gladbach Vorrichtung zum Versorgen eines Raumes mit blendfreiem, diffusem Sonnenlicht
JP2001060407A (ja) 1999-08-23 2001-03-06 Kajima Corp 昼光利用システム
JP5705660B2 (ja) * 2011-06-10 2015-04-22 東洋鋼鈑株式会社 採光装置
US9188296B2 (en) * 2011-12-21 2015-11-17 Koninklijke Philips N.V. Light redirection device
TWI500983B (zh) * 2013-11-29 2015-09-21 Benq Materials Corp 調光薄膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129792A (ja) * 1998-10-22 2000-05-09 Sekisui Chem Co Ltd 建 物
JP2004363042A (ja) * 2003-06-06 2004-12-24 Hokuto Seigyo Kk 太陽光採光装置及びスラットの角度調整部材
JP2009266794A (ja) * 2007-11-29 2009-11-12 Ishikawa Kogaku Zokei Kenkyusho:Kk 太陽光照明器
WO2014078812A1 (en) * 2012-11-16 2014-05-22 President And Fellows Of Harvard College Dynamic light control system and methods for producing the same
WO2015119071A1 (ja) * 2014-02-04 2015-08-13 シャープ株式会社 採光部材、採光装置、および採光部材の設置方法

Also Published As

Publication number Publication date
EP3361145A1 (en) 2018-08-15
EP3361145A4 (en) 2019-05-15
US20180259144A1 (en) 2018-09-13
JP6207030B2 (ja) 2017-10-04
EP3361145B1 (en) 2021-02-24
US10203078B2 (en) 2019-02-12
JP2017073272A (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
KR102536758B1 (ko) 인공 스카이라이트 및 방법
US10352534B2 (en) Lighting system
KR101052890B1 (ko) 확산 굴절과 확산 반사 기능을 겸비한 하이브리드 태양광 확산체가 구비되는 태양광 조명 장치
JP5394243B2 (ja) 発光ダイオード照明器具
JP5779096B2 (ja) 照明系、照明器具、コリメータ、及び表示装置
JP5616349B2 (ja) 照明器具のための光誘導要素
US10458624B2 (en) Optical system for collimation of light
JP3678744B2 (ja) 日光照明用の形作られたフィルム及びその使用方法
EP2918901B1 (en) Lighting system
RU2016148683A (ru) Хроматическое зеркало, хроматическая панель и их применение
JP2012507823A5 (ja)
US10551547B2 (en) Troffer luminaire
JPH09218374A (ja) まぶしさのない拡散太陽光を部屋に供給する装置
JP6207030B2 (ja) 採光構造
WO2022059371A1 (ja) 虹発生用プリズム
JP6125360B2 (ja) 太陽光照明装置
JP5253270B2 (ja) 採光システム
JP6184429B2 (ja) 光入射調整部材からなる太陽光入射構造
JP7344061B2 (ja) 太陽電池カバー
JP2013232330A (ja) 昼光照明装置
JP4305455B2 (ja) 導光装置
KR102303191B1 (ko) 반사형 프로젝터용 스크린
JP6519156B2 (ja) 採光システム
JP6665716B2 (ja) 集光装置及び照明装置
JP2023158835A (ja) 窓パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15760789

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE