WO2017061116A1 - オキシ水酸化鉄ナノ分散液 - Google Patents

オキシ水酸化鉄ナノ分散液 Download PDF

Info

Publication number
WO2017061116A1
WO2017061116A1 PCT/JP2016/004496 JP2016004496W WO2017061116A1 WO 2017061116 A1 WO2017061116 A1 WO 2017061116A1 JP 2016004496 W JP2016004496 W JP 2016004496W WO 2017061116 A1 WO2017061116 A1 WO 2017061116A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
iron oxyhydroxide
dispersion
iron
nanodispersion
Prior art date
Application number
PCT/JP2016/004496
Other languages
English (en)
French (fr)
Inventor
木村 信夫
正登 天池
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to CN201680057137.8A priority Critical patent/CN108137345B/zh
Priority to JP2017544198A priority patent/JP6621834B2/ja
Priority to EP16853272.9A priority patent/EP3360850A4/en
Priority to KR1020187012154A priority patent/KR102047201B1/ko
Priority to CA3000938A priority patent/CA3000938A1/en
Priority to US15/764,054 priority patent/US10781109B2/en
Publication of WO2017061116A1 publication Critical patent/WO2017061116A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/30Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/445Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a compound, e.g. Fe3O4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a nano-dispersion containing iron oxyhydroxide as a main component.
  • Iron oxyhydroxide includes ⁇ -type, ⁇ -type, ⁇ -type, and amorphous type depending on the difference in crystal structure. Iron oxyhydroxide has a wide range of uses such as pigments, magnetic materials, catalysts, adsorbents, or raw materials thereof, and is also required to be a stable dispersion for the use of magnetic materials and catalysts. However, it is considered difficult to make iron oxyhydroxide a stable nano-dispersion.
  • Patent Document 1 describes an aqueous suspension containing “iron oxyhydroxide having a particle size of 500 nm or less”, which specifically includes ⁇ -oxyhydroxide having a width represented by the above particle size.
  • Patent Document 2 discloses that iron (II) ions are supported on a clay mineral, and iron oxyhydroxide is supported by hydrolysis and oxidation. It is described that it is used as a photocatalyst.
  • Patent Document 3 describes a process for producing a metal hydroxide sol produced in the presence of a compound having a buffering action. Specifically, ⁇ -containing an average particle diameter of about 8 nm and containing a small amount of an aluminum compound. An iron oxyhydroxide sol is described.
  • Patent Document 4 describes an iron oxyhydroxide sol stabilized with hydroxycarboxylic acid and having a median diameter of about 10 nm.
  • Patent Document 5 also describes an iron hydroxide sol produced in the presence of citric acid. The production of these sols requires auxiliary components other than iron oxyhydroxide and a solvent, the process is complicated, and metal hydroxides and carboxylic acids other than iron, which are components derived from the auxiliary components, remain. Is inevitable. These are stable in the vicinity of neutrality, but are not necessarily stable in acidity.
  • Patent Documents 6 and 7 describe that ⁇ -iron oxyhydroxide sols are used as raw materials for magnetic materials. These sols are commercially available products, and the sols described in Patent Documents 3 to 5 are used. It corresponds to.
  • Patent Documents 8, 9, and 10 describe a method for producing iron oxyhydroxide that can be used as an anion adsorbent, but it is not known to further convert these into nano-dispersions.
  • the obtained dispersion liquid usually contains components derived from auxiliary components, and those that do not contain these components as much as possible have been demanded.
  • the present inventor has found that a nano-dispersion can be easily produced from a specific iron oxyhydroxide without using auxiliary components.
  • the crystal structure and the like show different properties from the raw materials.
  • the present invention has been completed based on the above findings.
  • the present invention relates to the following inventions.
  • (2) The nanodispersion according to (1), wherein the average crystallite size of the particles is 5 nm or less.
  • FIG. 4 is a diagram showing a TEM image of iron oxyhydroxide crystals obtained in Reference Example 1.
  • FIG. 2 is a graph showing the particle size distribution of the nano-dispersed liquid obtained in Example 1.
  • FIG. 3 is a diagram showing the zeta potential of the nano-dispersed liquid obtained in Example 1.
  • 3 is a diagram showing a TEM image of nano-dispersed particles obtained in Example 1.
  • FIG. 4 is a diagram showing an FFT analysis result of nanodispersed particles obtained in Example 1.
  • the nano-dispersed liquid of the present invention is a nano-dispersed liquid in which particles having iron oxyhydroxide as a main component and having an average particle diameter d50 of 0.2 ⁇ m or less and d90 of 1 ⁇ m or less are dispersed in a solvent.
  • the nano-dispersion is a dispersion in which so-called nanoparticles having a particle size of 1 ⁇ m or less are dispersed in a liquid phase, and the particles do not settle by standing or normal centrifugation.
  • the nanoparticles contained in the nanodispersion of the present invention preferably have a particle size of 0.01 to 1 ⁇ m.
  • the average particle size is preferably 0.02 to 0.2 ⁇ m, more preferably 0.05 to 0.15 ⁇ m.
  • Iron oxyhydroxide includes ⁇ -type, ⁇ -type, ⁇ -type, amorphous type, and the like depending on the crystal structure.
  • ⁇ -iron oxyhydroxide is suitable as a raw material for the nanodispersion of the present invention because it easily forms a nanodispersion.
  • ⁇ -iron oxyhydroxide is suitable as an adsorbent, and particularly excellent as an anion adsorbent.
  • ⁇ -iron oxyhydroxide generally has a hydroxyl group partially substituted with chlorine ions. When in contact with water during manufacture or use, the chlorine ions are removed leaving small vacancies.
  • the iron oxyhydroxide in the nano-dispersion of the present invention is preferably ⁇ -iron oxyhydroxide.
  • the amount of chlorine ions contained in the ⁇ -iron oxyhydroxide crystal structure in the present invention is preferably 0.5 wt% or more.
  • the amount of chlorine ions contained in the ⁇ -iron oxyhydroxide crystal structure is more preferably 1.5 wt% or more, further preferably 2 wt% or more, and particularly preferably 3 wt% or more.
  • the upper limit of the amount of chlorine ions contained in the ⁇ -iron oxyhydroxide crystal structure is not particularly limited, but is usually 10 wt% or less.
  • the nano-dispersion of the present invention preferably contains no components other than substances derived from at least one of an iron compound and a base essential as a raw material, a pH adjuster, and a solvent.
  • the pH adjuster in the present invention means a strong acid or a strong base having no buffering action.
  • examples of the acid include hydrochloric acid, sulfuric acid and nitric acid
  • examples of the base include sodium hydroxide and potassium hydroxide. Is done.
  • As a pH adjuster it is preferable not to contain components other than hydrochloric acid.
  • an organic acid and its salt an inorganic weak acid and its salt, a metal oxide and a metal hydroxide (except iron oxide, iron hydroxide, and iron oxyhydroxide), and a dispersing agent.
  • iron oxyhydroxide dispersions usually contain these components as auxiliary components for stabilizing the dispersion, but the present invention requires the use of these auxiliary components in the production process. Absent.
  • the solid content in the nano-dispersion of the present invention (which refers to a dispersoid and a solute that is solid at room temperature) has a content of 99% by mass of an iron compound containing the main component ⁇ -iron oxyhydroxide.
  • the content rate of substances other than an iron compound is 1 mass% or less.
  • the iron oxyhydroxide content is more preferably 99% by mass, and most preferably substantially 100% by mass.
  • the solid content concentration in the nano-dispersion is preferably 5% by mass or more.
  • the iron oxyhydroxide used in the present invention preferably has a BET specific surface area of 200 m 2 / g or more, and the pore volume area distribution (dV / dR) calculated by the BJH method is 100 to 300 mm 3 / g / g. It is preferable that it is nm.
  • the liquid phase other than the nanoparticles in the nanodispersion liquid of the present invention can be used without any problem as long as it is a uniform liquid phase.
  • water, an organic solvent, a mixture of water or an organic solvent, or these are mainly used.
  • a solution as a component can be used, but water or an aqueous solution is preferably used.
  • the solution preferably contains no organic acid and salt thereof, weak inorganic acid and salt thereof, and a dispersant.
  • the nano-dispersion of the present invention can be easily produced as an aqueous dispersion, but it can also be made into a dispersion in another solvent such as an organic solvent by solvent replacement.
  • a dispersion with the solvent can be obtained.
  • the dispersion liquid with this solvent can be obtained by mixing a solvent with a boiling point higher than water with an aqueous dispersion liquid, and removing water with a rotary evaporator.
  • the nano-dispersed liquid of the present invention preferably has a granular crystal shape.
  • granular means that it is not needle-shaped or plate-shaped, and more specifically, the ratio of the major axis / minor axis of the crystal is 3 or less.
  • the nanodispersion liquid of the present invention preferably has an average crystallite size of 5 nm or less, more preferably 3 nm or less, and most preferably 1 to 2 nm.
  • the nano-dispersion of the present invention is characterized in that the primary particles are composed of a large number of crystallites. Specifically, the ratio of the average particle diameter to the average crystallite diameter is preferably 5 or more, and more preferably 10 to 100.
  • the nano-dispersion of the present invention can be obtained by wet-grinding solid ⁇ -iron oxyhydroxide as described later.
  • the average crystallite size of the obtained nanoparticles is about 1 to 2 nm.
  • the minimum particle size of the nanoparticles is about 10 nm, which is larger than the original average crystallite size, the crystallite size is not simply destroyed as the particle size decreases, but as a physical effect of the grinding process. It is considered that the decrease is occurring.
  • the nanodispersion of the present invention is highly stable on the acidic side from the isoelectric point.
  • This isoelectric point is preferably from pH 5.5 to 8.0, more preferably from pH 6.0 to 8.0, and even more preferably from pH 6.0 to 7.5.
  • the nano-dispersion is highly stable at pH 1.5 to 4.0, particularly pH 2.0 to 3.5.
  • the nano dispersion liquid of the present invention is stable when the solid content concentration in the dispersion liquid is 5% by mass or more.
  • the solid content concentration is particularly preferably 5 to 10% by mass.
  • the nano-dispersion of the present invention preferably has a pH of 2.0 to 5.5, more preferably a pH of 2.5 to 5.5, and even more preferably a pH of 3.0 to 4.5.
  • the nano dispersion liquid of the present invention has a relatively low viscosity under the above conditions. Specifically, the viscosity is 5 to 20 mPa ⁇ s, more preferably 10 to 15 mPa ⁇ s. The viscosity can be measured with a B-type viscometer.
  • the above-described stability factors exhibited by the nanodispersion of the present invention are not necessarily clear, but it is presumed that the above-mentioned average crystallite diameter or the following structural factors are related.
  • the nanodispersion of the present invention is characterized in that the pH increases remarkably when anions are adsorbed in an aqueous solution.
  • a 150 mL aqueous solution of potassium dihydrogen phosphate having a phosphorus conversion concentration of 400 mg / L adjusted to a constant pH with hydrochloric acid is prepared.
  • the nano-dispersed liquid of the present invention containing 1 g of nanoparticles is put into this and stirred at room temperature.
  • the aqueous phase is sampled after a certain time and the pH is measured.
  • the liquid phase may be collected by ultrafiltration, or the nanodispersion of the present invention will naturally aggregate or precipitate when adsorbing anions. It may be recovered.
  • the nanodispersion of the present invention is an aqueous solution after 1 hour with respect to the higher value of 3.5 or the pH of the charged nanodispersion.
  • the pH of the solution rises by 0.5 or more.
  • ⁇ -iron oxyhydroxide that can be used as the material of the nanodispersion of the present invention is almost in an aqueous solution even when anions are adsorbed by the same method in a state where it is not pulverized. Does not cause a change in pH.
  • the adsorbed anion is exchanged with a hydroxyl group, and the anion is directly bonded to the adsorbent, and at the same time, the hydroxyl group is converted into a hydroxide ion in water.
  • the pH of the aqueous solution increases.
  • substitution does not occur in ⁇ -iron oxyhydroxide that has not been subjected to a treatment such as pulverization, and therefore no increase in pH occurs.
  • the nano-dispersed adsorbent not only simply adsorbs anions, but then the anions bind to the adsorbent and do not dissociate easily, so the adsorption rate and final adsorption amount are extremely high. It is thought that it exhibits a good adsorption effect.
  • the production method of the adsorbent particles of the present invention is not necessarily limited, but a production method including a step of wet-grinding a solid mainly composed of ⁇ -iron oxyhydroxide is particularly preferable.
  • the solid containing ⁇ -iron oxyhydroxide as a main component is preferably a dry gel obtained by a method including a step of reacting an iron compound-containing solution with a base to form a precipitate at pH 9 or lower.
  • the iron compound is preferably an iron salt, particularly a trivalent iron salt. Specific examples include ferric chloride, ferric sulfate, and ferric nitrate. Among these, ferric chloride is particularly preferable.
  • the base is used to neutralize the acidic iron compound aqueous solution and generate a precipitate containing iron oxyhydroxide.
  • the pH during the formation of the precipitate is adjusted to the range of pH 3.3-6. If necessary to adjust this pH, a pH adjusting agent may be used. As the pH adjuster, substances having a buffering action are excluded because they are difficult to remove, and specific examples include bases as described above and inorganic strong acids such as hydrochloric acid, sulfuric acid, and nitric acid.
  • the precipitate containing iron oxyhydroxide as a main component obtained by the above method can be collected by filtration and dried to form a dry gel.
  • the two drying steps are preferably performed at 140 ° C. or less, and more preferably at 100 to 140 ° C.
  • the drying temperature requires a long time at a low temperature and is not suitable for efficient production. Moreover, since it changes to iron oxide at high temperature, it is not preferable. Drying can be done in air, vacuum, or in an inert gas.
  • impurities such as sodium chloride are eluted and the pores are left behind to increase the specific surface area.
  • the water is removed and dried again. This drying step is also preferably performed under the same conditions as described above.
  • the dry gel obtained by the above method contains ⁇ -iron oxyhydroxide as a main component.
  • the nano dispersion liquid of the present invention can be used as a pigment, a magnetic material, a catalyst, an adsorbent, or a raw material for producing them. Moreover, if it dries, it can shape
  • the X-ray diffraction (XRD) pattern was measured using an X-ray diffractometer Ultima IV (manufactured by Rigaku Corporation). A CuK ⁇ tube was used for the measurement. The average crystallite size was calculated from XRD according to Scherrer's formula.
  • the specific surface area was measured by a gas adsorption method using a specific surface area measuring device MacsorbHM 1210 (manufactured by Mountec).
  • TEM observation and FFT analysis The TEM (transmission electron microscope) observation of the sample was performed using a transmission electron microscope JEM 2010F (manufactured by JEOL, acceleration voltage 200 kV).
  • the laser diffraction / scattering type particle size distribution measuring device LA-920 (manufactured by Horiba Ltd.) is used, the volume-based cumulative 50% particle size (D50), and the volume-based cumulative.
  • the 90% particle size (D90) was measured.
  • the particle size, particle size distribution, cumulative 50% particle size (D50), and cumulative 90% particle size (D90) of the nano-dispersion liquid are measured using a dynamic light scattering particle size distribution analyzer Zeta Sizer Nano S (Spectres). Measured.
  • Zeta potential of dispersed particles The zeta potential was measured using a nanotrack (Nanotrac Wave UZ152, manufactured by Nikkiso Co., Ltd.).
  • NaOH ferric chloride
  • FeCl 3 ferric chloride
  • the particle diameter of the iron oxyhydroxide powder (powder A) obtained as described above was 0.25 mm to 5 mm. It was confirmed by X-ray diffraction that the crystal structure was ⁇ -iron oxyhydroxide and the average crystallite size was 5 nm.
  • FIG. 1 shows a state observed with a transmission electron microscope (TEM). The crystal shape was granular. The crystallite diameter by TEM observation was 5 to 10 nm, and each crystal was granular, and these were condensed to form particles. The specific surface area was 280 m 2 / g, and the chloride ion content was 5.8 wt%.
  • the above-mentioned iron oxyhydroxide powder was dry-pulverized with a pin mill until the particle diameter was about 300 ⁇ m or less to obtain a powder, which was used below.
  • Example 1 (Production of iron oxyhydroxide nanodispersion)
  • the iron oxyhydroxide pulverized product was mixed with ion-exchanged water so as to have a solid content concentration of 10% by mass, and then coarsely pulverized with a bead mill (zirconia beads, bead diameter: 1 mm) for 30 minutes (dispersion B). This was further pulverized for 60 minutes by a bead mill (zirconia beads, bead diameter 0.1 mm). By this pulverization, the liquid suspended in brown (dispersion B) was changed to a black and almost transparent nanodispersion (nanodispersion C).
  • nanodispersion C When nanodispersion C was spread thinly and dried, a film was obtained, and when thickened and dried, solid particles similar to powder A were obtained. Moreover, it also has a binder function that adheres firmly when dried on a support, and can be molded into various shapes despite being an inorganic substance. Furthermore, the nano-dispersion C was stable even if it passed for one year at room temperature, but it did not gel but was stable, and when dispersed, the dispersion state was easily recovered.
  • the pH of the obtained nanodispersion C was 3.1.
  • the viscosity (20 ° C.) was 10.9 mPa ⁇ s.
  • the specific surface area of the nano-dispersed particles was 285 m 2 / g.
  • the particle size distribution is shown in FIG.
  • the average particle diameter d50 was 0.05 ⁇ m, and d90 was 0.19 ⁇ m.
  • the measurement result of the zeta potential is shown in FIG.
  • the isoelectric point was pH 7.1, and at pH 3.1, the particles were positively charged.
  • Nano dispersion C was dried at 50 ° C. This dried product was subjected to X-ray diffraction, TEM observation, and fast Fourier transform (FFT) analysis of the TEM image.
  • the TEM image is shown in FIG. 4, and the FFT analysis result is shown in FIG.
  • the average particle diameter was about 3 nm, the crystal shape by TEM observation was granular, and most of the particles were crystal particles in which crystal fringes were observed. These were identified as ⁇ -iron oxyhydroxide crystals from the lattice spacing determined by FFT analysis.
  • the obtained nano-dispersed liquid has high stability, and the nano-dispersed particles contained therein are formed by the aggregation of highly crystalline ⁇ -iron oxyhydroxide microcrystals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

安定で、補助成分に由来する成分を含有しないオキシ水酸化鉄のナノ分散液を提供することを目的とする。 本発明のオキシ水酸化鉄のナノ分散液は、オキシ水酸化鉄を主成分とした、平均粒径d50が0.2μm以下で、d90が1μm以下である粒子が溶媒に分散してなるナノ分散液である。オキシ水酸化鉄は、β-オキシ水酸化鉄であるのが好ましい。また、鉄化合物及び塩基の少なくともいずれかに由来する物質、pH調整剤、及び溶媒以外の成分を含有しないものが好ましい。

Description

オキシ水酸化鉄ナノ分散液
 本発明は、オキシ水酸化鉄を主成分とするナノ分散液に関する。
 本願は、2015年10月9日に出願された日本国特許出願第2015-200775号に対し優先権を主張し、その内容をここに援用する。
 オキシ水酸化鉄には、結晶構造の相違によって、α型、β型、γ型、または非晶質型等がある。オキシ水酸化鉄は、顔料、磁性材料、触媒、吸着材、あるいはそれらの原料等の幅広い用途を有し、磁性材料や触媒の用途には安定な分散体であることも必要とされている。
 しかしオキシ水酸化鉄を安定したナノ分散液とすることは困難とされている。例えば特許文献1には、「粒度500nm以下のオキシ水酸化鉄」を含む水性懸濁液についての記載があるが、これは具体的には、上記粒度で示される幅を有するα-オキシ水酸化鉄の針状一次粒子が複数凝集した粒子からなるものであり、ナノ分散液にはできない。このような凝集を防ぐための製造方法も検討されており、例えば特許文献2には、粘土鉱物上に鉄(II)イオンを担持し、加水分解及び酸化によって担持されたオキシ水酸化鉄とし、光触媒として利用することが記載されている。
 一方特許文献3には、緩衝作用を有する化合物の存在下で製造される金属水酸化物ゾルの製法が記載されており、具体的には平均粒子径8nm程度で少量のアルミニウム化合物を含むβ-オキシ水酸化鉄ゾルが記載されている。また特許文献4には、ヒドロキシカルボン酸で安定化された、メジアン径10nm前後のオキシ水酸化鉄ゾルが記載されている。特許文献5にも、クエン酸存在下で製造された水酸化鉄ゾルが記載されている。これらのゾルの製造にはオキシ水酸化鉄と溶媒以外の補助成分を要し、工程も複雑であり、補助成分に由来する成分である鉄以外の金属水酸化物やカルボン酸等が残存することが避けられない。またこれらは中性付近で安定であるが酸性では必ずしも安定ではない。
 特許文献6および7には、β-オキシ水酸化鉄ゾルを磁性材料の原料として用いることが記載されているが、これらのゾルは市販製品であり、特許文献3~5に記載されているゾルに該当する。
 特許文献8、9、10には、陰イオン吸着材として利用できるオキシ水酸化鉄の製造方法が記載されているが、これらをさらにナノ分散液にすることは知られていない。
特表2004-509753号公報(WO2002/026633号パンフレット) 特開2013-226548号公報 特開平9-77503号公報 特開2011-51836号公報 特開2006-182604号公報 特開2014-224027号公報 WO2016/047559号パンフレット 特開2006-124239号公報 WO2006/088083号パンフレット 特開2011-235222号公報
 オキシ水酸化鉄を安定なナノ分散液とするためには、従来、原料である鉄化合物溶液に補助成分を用いて行う特殊な製法が必要とされていた。また得られた分散液も補助成分に由来する成分を含有するものが普通であり、これらの成分を可及的に含有しないものが求められていた。
 本発明者は、特定のオキシ水酸化鉄からは補助成分を用いずに容易にナノ分散液を製造できることを見出した。またこれについては、結晶構造等について原料と異なる性質を示すことが明らかにされた。本発明は以上の知見を基に完成されたものである。
 すなわち、本発明は以下の発明に関する。
(1)オキシ水酸化鉄を主成分とする、平均粒径d50が0.2μm以下で、d90が1μm以下である粒子が、溶媒に分散してなるナノ分散液であって、鉄化合物及び塩基の少なくともいずれかに由来する物質、及びpH調整剤以外の成分を含有しないナノ分散液。
(2)粒子の平均結晶子径が5nm以下である、(1)に記載のナノ分散液。
(3)前記オキシ水酸化鉄がβ-オキシ水酸化鉄である、(1)又は(2)に記載のナノ分散液。
(4)β-オキシ水酸化鉄の結晶の形状が粒状である、(3)に記載のナノ分散液。
(5)β-オキシ水酸化鉄の水酸基の一部が塩素イオンで置換され、該塩素の含有量が0.5質量%以上である、(3)又は(4)に記載のナノ分散液。
(6)pHが2.0~5.5である(1)~(5)のいずれかに記載のナノ分散液。
(7)前記溶媒が水である、(1)~(6)のいずれかに記載のナノ分散液。
(8)等電点がpH6.0~8.0である、(1)~(7)のいずれかに記載のナノ分散液。
(9)分散液中の固形分濃度が5質量%以上である、(1)~(8)のいずれかに記載のナノ分散液。
(10)粘度が20mPa・s以下である、(1)~(9)のいずれかに記載のナノ分散液。
(11)オキシ水酸化鉄を主成分とする固体を湿式粉砕する工程を含む、(1)~(10)のいずれかに記載のナノ分散液の製造方法。
 本発明のオキシ水酸化鉄ナノ分散液を使用することにより、補助成分を用いずに容易にナノ分散液を製造することができる。
参考例1で得られたオキシ水酸化鉄結晶のTEM像を示す図である。 実施例1で得られたナノ分散液の粒度分布を示す図である。 実施例1で得られたナノ分散液のゼータ電位を示す図である。 実施例1で得られたナノ分散粒子のTEM像を示す図である。 実施例1で得られたナノ分散粒子のFFT解析結果を示す図である。
(ナノ分散液)
 本発明のナノ分散液は、オキシ水酸化鉄を主成分とする、平均粒径d50が0.2μm以下で、d90が1μm以下である粒子が、溶媒に分散してなるナノ分散液である。
 ナノ分散液とは、粒径1μm以下のいわゆるナノ粒子が液相中に分散してなる分散液で、静置や通常の遠心操作によって粒子が沈降しないものをいう。
 本発明のナノ分散液に含まれるナノ粒子は、その粒径が0.01~1μmであることが好ましい。またその平均粒径は0.02~0.2μmであることが好ましく、0.05~0.15μmであることがより好ましい。
 オキシ水酸化鉄には、結晶構造の相違によって、α型、β型、γ型、非晶質型等がある。これらのうち、β-オキシ水酸化鉄が、ナノ分散体を形成しやすい点で本発明のナノ分散液の原料として適している。また、β-オキシ水酸化鉄は吸着材に適しており、特に陰イオン吸着材として優れている。
 β-オキシ水酸化鉄は、一般に、水酸基の一部が塩素イオンにより置換されている。製造または使用の過程で水と接触すると、この塩素イオンが除去されて小型の空孔が残る。この空孔はフッ素等の陰イオンの吸着に関与すると考えられており、また安定なナノ分散液を形成しやすい性質もこれに関係している可能性がある。
 本発明のナノ分散液におけるオキシ水酸化鉄は、β-オキシ水酸化鉄であることが好ましい。
 さらに、本発明におけるβ-オキシ水酸化鉄結晶構造中に含まれる塩素イオンの量は、0.5wt%以上であることが好ましい。β-オキシ水酸化鉄結晶構造中に含まれる塩素イオンの量は、1.5wt%以上であることがより好ましく、2wt%以上であることがさらに好ましく、3wt%以上であることが特に好ましい。またβ-オキシ水酸化鉄結晶構造中に含まれる塩素イオンの量の上限は特に限定されないが、通常は10wt%以下である。
 本発明のナノ分散液は、原料として必須である鉄化合物及び塩基の少なくともいずれかに由来する物質、pH調整剤、及び溶媒以外の成分を含有しないことが好ましい。本発明におけるpH調整剤とは、緩衝作用を有しない強酸または強塩基を意味し、具体的には、酸としては塩酸、硫酸、硝酸等、塩基としては水酸化ナトリウム、水酸化カリウム等が例示される。pH調整剤としては特に塩酸以外の成分を含有しないことが好ましい。
 また、有機酸及びその塩、無機弱酸及びその塩、金属酸化物及び金属水酸化物(酸化鉄、水酸化鉄及びオキシ水酸化鉄を除く。)、ならびに分散剤を含有しないことが好ましい。
 従来、オキシ水酸化鉄の分散液には、これらの成分を分散安定化のための補助成分として含有するのが普通であったが、本発明は製造過程でこれらの補助成分を使用する必要がない。
 また、本発明のナノ分散液における固形分(分散質、及び溶質のうち常温において固体である成分を指す。)は、主成分β-オキシ水酸化鉄を含む鉄化合物の含有率が99質量%以上であり、鉄化合物以外の物質の含有率は1質量%以下であることが好ましい。オキシ水酸化鉄の含有率は99質量%であることがより好ましく、実質的に100質量%であることが最も好ましい。
 ナノ分散液中における固形分濃度は、5質量%以上であることが好ましい。
 本発明に用いるオキシ水酸化鉄は、BET比表面積が200m2/g以上であることが好ましく、またBJH法により算出した細孔容量の面積分布(dV/dR)が100~300mm3/g/nmであることが好ましい。
 本発明のナノ分散液におけるナノ粒子以外の液相としては、均一な液相であれば問題なく使用可能であり、例えば水、有機溶媒、複数の水または有機溶媒からなる混合物、あるいはこれらを主成分とする溶液を用いることができるが、水または水溶液を用いることが好ましい。溶液としては、有機酸及びその塩、無機弱酸及びその塩、ならびに分散剤を含有しない方が好ましい。
 本発明のナノ分散液は、水性分散液として製造することが容易であるが、これから溶媒置換により有機溶媒等の他の溶媒中における分散液とすることもできる。例えば、限外濾過膜中で水性分散液に溶媒を混合しながら溶媒交換を行うことにより、該溶媒での分散液を得ることができる。また、水性分散液に水よりも沸点の高い溶媒を混合しロータリーエバポレーター等で水を除去することにより、該溶媒での分散液を得ることができる。
 本発明のナノ分散液は、その結晶の形状が粒状であることが好ましい。ここで粒状とは、針状あるいは板状ではないということを意味し、より具体的には、結晶の長径/短径の比が3以下である。
 本発明のナノ分散液は、平均結晶子径が5nm以下であることが好ましく、3nm以下であることがより好ましく、1~2nmであることが最も好ましい。
 また、本発明のナノ分散液は、一次粒子が多数の結晶子からなることを特徴とする。具体的には、平均結晶子径に対する平均粒子径の比は、5以上であることが好ましく、10~100であることがより好ましい。
 平均結晶子径Dは、X線回折でβ-オキシ水酸化鉄に特徴的な2θ=35°付近の回折線から、下記のシェラーの式を用いて計算される。
D=Kλ/βcosθ
 ただし、βは装置に起因する機械幅を補正した真の回折ピークの半値幅、Kはシェラー定数、λはX線の波長である。
 本発明のナノ分散液は、後述のように、固体状のβ-オキシ水酸化鉄を湿式粉砕することにより得ることができる。ここで原料である固体状β-オキシ水酸化鉄として、平均結晶子径が5~6nm程度のものを用いた場合、得られるナノ粒子の平均結晶子径は1~2nm程度となる。このナノ粒子の最少粒径は元の平均結晶子径より大きい10nm程度であるから、単に粒径の減少に伴って結晶子が破壊されるのではなく、粉砕工程の物理的効果として結晶子径の減少が起こっているものと考えられる。
 本発明のナノ分散液は、等電点より酸性側で安定性が高い。この等電点はpH5.5~8.0であることが好ましく、pH6.0~8.0であることがより好ましく、pH6.0~7.5であることがさらに好ましい。またナノ分散液はpH1.5~4.0、特にpH2.0~3.5で安定性が高い。
 本発明のナノ分散液は、分散液中の固形分濃度が5質量%以上で安定である。固形分濃度は特に5~10質量%であることが好ましい。
 本発明のナノ分散液は、pH2.0~5.5であることが好ましく、pH2.5~5.5であることがより好ましく、pH3.0~4.5であることがさらに好ましい。
 本発明のナノ分散液は、以上の条件において粘度が比較的低い。具体的には、粘度は5~20mPa・sであり、より好ましくは10~15mPa・sである。該粘度は、B型粘度計で測定することができる。
 本発明のナノ分散液が示す以上のような安定性の要因は、必ずしも明確ではないが、上述の平均結晶子径、あるいは以下に述べる構造的要因が関係していると推測される。
 また本発明のナノ分散液は、水溶液中で陰イオンを吸着するとpHが顕著に上昇することを特徴とする。これは、具体的には次の方法で示される。
 塩酸でpHを一定に調整したリン換算濃度400mg/Lのリン酸二水素カリウム水溶液150mLを準備する。この中にナノ粒子1gを含有する本発明のナノ分散液を投入し、室温で撹拌する。一定時間後に水相をサンプリングしてpHを測定する。このサンプリング方法としては、限外濾過により液相を回収してもよいし、本発明のナノ分散液は陰イオンを吸着すると自然に凝集または沈殿するから、必要であれば遠心し、上清を回収してもよい。
 本発明のナノ分散液は、この方法において、水溶液のpHを3.5に調整した場合、3.5または投入したナノ分散液のpHのうち高い方の値に対して、1時間後の水溶液のpHが0.5以上上昇する。
 これに対し、本発明のナノ分散液の材料として用いることのできるβ-オキシ水酸化鉄は、粉砕等の処理をしていない状態では、同様の方法で陰イオンを吸着させてもほとんど水溶液のpHの変化をもたらさない。
 これらの原因は、次のように推察される。粉砕等の処理をしていないβ-オキシ水酸化鉄では、水酸基がリン酸イオンのような大きな陰イオンの容易に到達し得ない細孔中にある。このような細孔は、特に塩素イオンが離脱することにより形成されるものである。一方、本発明のナノ分散液では、このような細孔構造が破壊されているため、陰イオンが容易に該水酸基の近傍に到達する。
 粉砕等の処理をしていないβ-オキシ水酸化鉄でも、大型の空孔があるため、吸着速度は遅いもののリン酸イオンの吸着は可能である。
 本発明のナノ分散液においては、これに続き、吸着された陰イオンが水酸基と交換され、吸着材に該陰イオンが直接結合した形に変化し、それとともに、水酸基は水酸イオンとして水中に放出されるため、水溶液のpHは上昇する。しかし粉砕等の処理をしていないβ-オキシ水酸化鉄では、このような置換は起こらず、従ってpHの上昇も起こらないものと推察される。
 以上により、ナノ分散吸着材は、陰イオンを単に吸着するのみでなく、その後陰イオンは吸着材に結合して容易に解離しない状態となるため、吸着速度、最終的吸着量とも非常に高い顕著な吸着効果を発揮するものと考えられる。
 本発明の吸着材粒子の製造方法としては、必ずしも限定されるものではないが、β-オキシ水酸化鉄を主成分とする固体を湿式粉砕する工程を含む製造方法が特に好ましい。
 前記のβ-オキシ水酸化鉄を主成分とする固体としては、鉄化合物含有溶液を塩基と反応させpH9以下で沈殿物を生成させる工程を含む方法により得られる乾燥ゲルが好ましい。この製造方法は、例えば特許文献8、9、10に記載されている。
 前記の鉄化合物としては、鉄塩、特に3価の鉄塩が好ましい。具体的には、塩化第二鉄、硫酸第二鉄、硝酸第二鉄等を挙げることができ、この中で特に塩化第二鉄が好ましい。
 前記の塩基は、酸性の鉄化合物水溶液を中和しオキシ水酸化鉄を含む沈殿を生成させるために使用する。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム等の無機塩基を挙げることができ、この中で特に水酸化ナトリウムが好ましい。
 沈殿物の生成の際のpHは、pH3.3~6の範囲に調整することがより好ましい。このpHを調整するために必要であれば、pH調整剤を使用してよい。pH調整剤としては、緩衝作用を有する物質は除去が困難であることから除外され、具体的には、上記のような塩基、及び、塩酸、硫酸、硝酸等の無機強酸が挙げられる。
 以上の方法で得られたオキシ水酸化鉄を主成分とする沈殿物は、濾別して回収することができ、これを乾燥すれば乾燥ゲルとなる。
 さらに以上の工程の後に、沈殿物を乾燥させる工程、及び該乾燥物を水と接触させた後、乾燥させる工程を実施することが好ましい。
 上記2回の乾燥させる工程は、140℃以下で行うことが好ましく、100~140℃で行うことがより好ましい。乾燥温度は、低温では時間を要し効率的な製造に適しない。また高温では酸化鉄に変化するので好ましくない。乾燥は、空気中、真空中、または不活性ガス中で行うことができる。
 乾燥物を水と接触させる工程では、塩化ナトリウム等の不純物が溶出して後に細孔を残し比表面積が増大すると考えられる。
 乾燥物を水と接触させた後には、水を除去して、再度乾燥させる。この乾燥工程も上記と同様の条件で行うことが好ましい。
 以上の方法により得られる乾燥ゲルは、β-オキシ水酸化鉄を主成分として含む。
 本発明のナノ分散液は、顔料、磁性材料、触媒、吸着材、あるいはそれらを製造するための原料として用いることができる。また乾燥すれば種々の形状に成形することができ、無機系材料を強固に接着することもできるので、バインダー用途に適している。
 次に、本発明の実施例によってさらに詳細に説明するが、本発明はこれにより限定されるものではない。
測定方法
(粉末X線回折)
 X線回折(XRD)パターンは、X線回折装置Ultima IV(リガク社製)を用いて測定した。測定にはCuKα管球を使用した。平均結晶子径はXRDよりシェラーの式に従って算出した。
(比表面積)
 比表面積測定装置MacsorbHM 1210(マウンテック社製)を使用して、ガス吸着法により比表面積を測定した。
(TEM観察及びFFT解析)
 試料のTEM(透過電子顕微鏡)観察は、透過型電子顕微鏡JEM 2010F(JEOL社製、加速電圧200kV)を用いて行った。またこれによるFFT(高速フーリエ変換)解析は、Gatan社製Digital Micrographを用いて行なった。
(オキシ水酸化鉄中の塩素イオンの含有量)
 オキシ水酸化鉄試料を3M硫酸に溶解した後、アルカリ溶液で希釈して鉄分を沈殿させ、フィルターでろ過してろ液を回収し、イオンクロマトグラフ法(日本ダイオネクス社製DX-500型)により定量した。
(分散液の粘度)
 20℃で、音叉型振動式粘度計SV-10(エー・アンド・デイ社製)により測定した。
(分散液の粒度分布)
 ミクロン単位の分散液の粒子径に関しては、レーザ回折/散乱式粒度分布測定装置LA-920(堀場製作所製)を使用して、体積基準の累積50%粒子径(D50)、及び体積基準の累積90%粒子径(D90)を測定した。
 ナノ分散液の粒子径、粒度分布、累積50%粒子径(D50)、及び累積90%粒子径(D90)は、動的光散乱粒度分布測定装置ゼータサイザーナノS(スペクトリス社製)を使用して測定した。
(分散粒子のゼータ電位)
 ゼータ電位は、ナノトラック(Nanotrac Wave UZ152、日機装社製)を用いて測定した。
参考例1(オキシ水酸化鉄の製造)
 塩化第二鉄(FeCl)水溶液に、室温でpH6以下に調整しながら水酸化ナトリウム(NaOH)水溶液を滴下し、NaOHの最終添加量をNaOH/FeCl(モル比)=2.75として反応させ、オキシ水酸化鉄の粒子懸濁液を得た。得られた懸濁液中の粒子の平均粒子径d50は17μmであった。
 懸濁液を濾別後、空気中120℃で乾燥し、イオン交換水で洗浄し、さらに空気中120℃で乾燥し、オキシ水酸化鉄の粉末(粉末A)を得た。
 以上により得られたオキシ水酸化鉄粉末(粉末A)の粒子径は0.25mm~5mmであった。X線回折により、結晶構造はβ-オキシ水酸化鉄であり、平均結晶子径は5nmであることを確認した。
 透過電子顕微鏡(TEM)観察での様子を図1に示す。結晶形状は粒状であった。TEM観察による結晶子径は5~10nm、個々の結晶は粒状であり、これらが凝結して粒子を形成していた。
 また比表面積は280m/g、塩素イオン含有量は、5.8wt%であった。
 上記のオキシ水酸化鉄粉末をピンミルで、粒子径約300μm以下になるまで乾式粉砕して粉末を得、以下に用いた。
実施例1(オキシ水酸化鉄ナノ分散液の製造)
 前記のオキシ水酸化鉄粉砕物を、イオン交換水に固形分濃度10質量%となるように混合した後、ビーズミル(ジルコニアビーズ、ビーズ径1mm)で30分間粗粉砕した(分散液B)。これをさらに、ビーズミル(ジルコニアビーズ、ビーズ径0.1mm)で60分間粉砕した。この粉砕により、茶色に懸濁していた液(分散液B)が、黒色でほぼ透明なナノ分散液(ナノ分散液C)へ変化した。
 ナノ分散液Cは、薄く広げて乾燥させると膜が得られ、厚くして乾燥すると粉末Aに類似の固い粒子が得られた。また、支持体の上で乾燥すると強固に接着するバインダー機能も有しており、無機物でありながら種々の形状に成形できた。
 さらに、ナノ分散液Cは室温で1年経過しても、わずかには沈降するもののゲル化することはなく安定であり、撹拌すれば分散状態を容易に回復するものであった。
 得られたナノ分散液CのpHは3.1であった。粘度(20℃)は10.9mPa・sであった。
 またナノ分散粒子の比表面積は285m/gであった。
 粒度分布を図2に示した。平均粒子径d50は0.05μm、d90は0.19μmであった。
 ゼータ電位の測定結果を図3に示した。等電点はpH7.1であり、pH3.1においては粒子はプラスに帯電していた。
 ナノ分散液Cを50℃で乾燥した。この乾燥物を、X線回折、TEM観察、及びTEM像の高速フーリエ変換(FFT)解析を行った。TEM像を図4に、FFT解析結果を図5に示す。平均粒子径は約3nmで、TEM観察による結晶の形状は粒状であり、ほとんどの粒子で結晶縞が観察される結晶粒子であった。これらは、FFT解析により求めた格子面間隔から、β-オキシ水酸化鉄結晶と同定された。
 以上から、得られたナノ分散液は安定性が高いこと、またこれに含まれるナノ分散粒子は結晶性の高いβ-オキシ水酸化鉄の微結晶が凝結してなることがわかった。

Claims (11)

  1. オキシ水酸化鉄を主成分とする、平均粒径d50が0.2μm以下で、d90が1μm以下である粒子が、溶媒に分散してなるナノ分散液であって、鉄化合物及び塩基の少なくともいずれかに由来する物質、及びpH調整剤以外の成分を含有しないナノ分散液。
  2. 粒子の平均結晶子径が5nm以下である、請求項1に記載のナノ分散液。
  3. 前記オキシ水酸化鉄がβ-オキシ水酸化鉄である、請求項1又は2に記載のナノ分散液。
  4. β-オキシ水酸化鉄の結晶の形状が粒状である、請求項3に記載のナノ分散液。
  5. β-オキシ水酸化鉄の水酸基の一部が塩素イオンで置換され、該塩素の含有量が0.5質量%以上である、請求項3又は4に記載のナノ分散液。
  6. pHが2.0~5.5である請求項1~5のいずれかに記載のナノ分散液。
  7. 前記溶媒が水である、請求項1~6のいずれかに記載のナノ分散液。
  8. 等電点がpH6.0~8.0である、請求項1~7のいずれかに記載のナノ分散液。
  9. 分散液中の固形分濃度が5質量%以上である、請求項1~8のいずれかに記載のナノ分散液。
  10. 粘度が20mPa・s以下である、請求項1~9のいずれかに記載のナノ分散液。
  11. オキシ水酸化鉄を主成分とする固体を湿式粉砕する工程を含む、請求項1~10のいずれかに記載のナノ分散液の製造方法。
PCT/JP2016/004496 2015-10-09 2016-10-06 オキシ水酸化鉄ナノ分散液 WO2017061116A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680057137.8A CN108137345B (zh) 2015-10-09 2016-10-06 羟基氧化铁纳米分散液
JP2017544198A JP6621834B2 (ja) 2015-10-09 2016-10-06 オキシ水酸化鉄ナノ分散液
EP16853272.9A EP3360850A4 (en) 2015-10-09 2016-10-06 Iron oxyhydroxide-NANO DISPERSION LIQUID
KR1020187012154A KR102047201B1 (ko) 2015-10-09 2016-10-06 옥시수산화철 나노 분산액
CA3000938A CA3000938A1 (en) 2015-10-09 2016-10-06 Iron oxyhydroxide nanodispersion liquid
US15/764,054 US10781109B2 (en) 2015-10-09 2016-10-06 Iron oxyhydroxide nanodispersion liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-200775 2015-10-09
JP2015200775 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017061116A1 true WO2017061116A1 (ja) 2017-04-13

Family

ID=58487405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004496 WO2017061116A1 (ja) 2015-10-09 2016-10-06 オキシ水酸化鉄ナノ分散液

Country Status (8)

Country Link
US (1) US10781109B2 (ja)
EP (1) EP3360850A4 (ja)
JP (1) JP6621834B2 (ja)
KR (1) KR102047201B1 (ja)
CN (1) CN108137345B (ja)
CA (1) CA3000938A1 (ja)
TW (1) TWI609842B (ja)
WO (1) WO2017061116A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017061117A1 (ja) * 2015-10-09 2018-07-26 高橋金属株式会社 吸着材分散液及び吸着方法
WO2020166570A1 (ja) * 2019-02-14 2020-08-20 日本曹達株式会社 吸着材粒子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968045B2 (ja) * 2018-08-28 2021-11-17 富士フイルム株式会社 β−オキシ水酸化鉄系化合物の粉体、β−オキシ水酸化鉄系化合物ゾル、ε−酸化鉄系化合物の粉体の製造方法、及び磁気記録媒体の製造方法
US20220223860A1 (en) * 2019-08-13 2022-07-14 Lg Energy Solution, Ltd. Iron oxyhydroxynitrate having phosphoric acid anion-adsorbed surface, preparation method therefor, cathode comprising iron oxyhydroxynitrate having phosphoric acid anion-adsorbed surface for lithium secondary battery, and lithium secondary battery comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846607A (ja) * 1981-09-14 1983-03-18 Dainippon Ink & Chem Inc 磁性金属粉末の製造方法
JP2004509753A (ja) * 2000-09-26 2004-04-02 バイエル アクチェンゲゼルシャフト 吸着容器および酸化鉄吸着剤
JP2006124239A (ja) * 2004-10-29 2006-05-18 Japan Science & Technology Agency オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材
WO2006088083A1 (ja) * 2005-02-16 2006-08-24 Japan Science And Technology Agency オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材
JP2011235222A (ja) * 2010-05-08 2011-11-24 Takahashi Kinzoku Kk 次亜リン酸系イオン吸着材、次亜リン酸系イオン処理方法および次亜リン酸系イオン処理装置
JP2012212807A (ja) * 2011-03-31 2012-11-01 Dowa Electronics Materials Co Ltd 金属磁性粉末およびその製造方法
JP2015224166A (ja) * 2014-05-29 2015-12-14 国立研究開発法人産業技術総合研究所 板状ヘマタイト及び針状ゲーサイトの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168535A (ja) 1985-01-18 1986-07-30 Agency Of Ind Science & Technol 粒状オキシ水酸化鉄粒子の製法
JP3713077B2 (ja) 1995-09-16 2005-11-02 触媒化成工業株式会社 金属酸化物または水酸化物ゾルの製造方法
US6723456B2 (en) * 2000-12-25 2004-04-20 Toda Kogyo Corporation Hematite particles aggregates, non-magnetic undercoatt layer for magnetic recording medium using the same, and magnetic recording medium having the non-magnetic undercoat layer
US20050011409A1 (en) * 2001-12-25 2005-01-20 Yasuhide Isobe Inorganic oxide
JP5013671B2 (ja) 2004-12-28 2012-08-29 日揮触媒化成株式会社 金属酸化物ゾルの製造方法および金属酸化物ゾル
CN101423256A (zh) 2008-11-04 2009-05-06 扬州大学 一种β-FeOOH纳米颗粒悬浮液的制备方法
JP5674083B2 (ja) 2009-09-02 2015-02-25 多木化学株式会社 オキシ水酸化鉄ゾル及びその製造方法
US10192660B2 (en) * 2010-07-02 2019-01-29 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Process for preparation of nanoparticles from magnetite ore
DE102011112898A1 (de) 2011-09-08 2013-03-14 Charité - Universitätsmedizin Berlin Nanopartikuläres Phosphatadsorbens basierend auf Maghämit oder Maghämit/Magnetit, dessen Herstellung und Verwendungen
CN104066503A (zh) 2011-12-15 2014-09-24 通用电气公司 砷污染整治方法和用于此方法的包覆吸附剂的组合物
JP2013226548A (ja) 2012-03-30 2013-11-07 Aomori Prefectural Industrial Technology Research Center 光触媒担持体及びその製造方法
JP6133749B2 (ja) 2013-04-26 2017-05-24 国立大学法人 東京大学 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法
WO2016047559A1 (ja) 2014-09-24 2016-03-31 Dowaエレクトロニクス株式会社 鉄系酸化物磁性粒子粉および鉄系酸化物磁性粒子粉の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846607A (ja) * 1981-09-14 1983-03-18 Dainippon Ink & Chem Inc 磁性金属粉末の製造方法
JP2004509753A (ja) * 2000-09-26 2004-04-02 バイエル アクチェンゲゼルシャフト 吸着容器および酸化鉄吸着剤
JP2006124239A (ja) * 2004-10-29 2006-05-18 Japan Science & Technology Agency オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材
WO2006088083A1 (ja) * 2005-02-16 2006-08-24 Japan Science And Technology Agency オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材
JP2011235222A (ja) * 2010-05-08 2011-11-24 Takahashi Kinzoku Kk 次亜リン酸系イオン吸着材、次亜リン酸系イオン処理方法および次亜リン酸系イオン処理装置
JP2012212807A (ja) * 2011-03-31 2012-11-01 Dowa Electronics Materials Co Ltd 金属磁性粉末およびその製造方法
JP2015224166A (ja) * 2014-05-29 2015-12-14 国立研究開発法人産業技術総合研究所 板状ヘマタイト及び針状ゲーサイトの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3360850A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017061117A1 (ja) * 2015-10-09 2018-07-26 高橋金属株式会社 吸着材分散液及び吸着方法
WO2020166570A1 (ja) * 2019-02-14 2020-08-20 日本曹達株式会社 吸着材粒子
JPWO2020166570A1 (ja) * 2019-02-14 2021-10-28 日本曹達株式会社 吸着材粒子
JP7176014B2 (ja) 2019-02-14 2022-11-21 日本曹達株式会社 吸着材粒子

Also Published As

Publication number Publication date
JPWO2017061116A1 (ja) 2018-06-21
TWI609842B (zh) 2018-01-01
EP3360850A4 (en) 2019-05-15
US10781109B2 (en) 2020-09-22
CA3000938A1 (en) 2017-04-13
JP6621834B2 (ja) 2019-12-18
KR102047201B1 (ko) 2019-11-20
TW201716332A (zh) 2017-05-16
KR20180063203A (ko) 2018-06-11
US20180282177A1 (en) 2018-10-04
EP3360850A1 (en) 2018-08-15
CN108137345B (zh) 2021-03-30
CN108137345A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
JP6621834B2 (ja) オキシ水酸化鉄ナノ分散液
JP5175053B2 (ja) 高い熱安定性を有するナノ構造粒子
JP4478766B2 (ja) 球状シリカ多孔質粒子及びその製造方法
KR20200015640A (ko) 메조다공성 이산화티탄 나노입자 및 제조 방법
El Asri et al. A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock
JP6099040B2 (ja) 複合化層状複水酸化物
JP6731934B2 (ja) 吸着材分散液及び吸着方法
TWI615360B (zh) 吸附材料粒子及造粒吸附材料
TWI732454B (zh) 吸附材粒子及其製造方法
JP6673841B2 (ja) 吸着材
WO2010013428A1 (ja) ポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾルの製造方法および該製造方法により得られたポリ無機一塩基酸アルミニウム水和物および/または水性アルミナゾル
Kamiya et al. Dispersion control and microstructure design of nanoparticles by using microbial derived surfactant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544198

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15764054

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3000938

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187012154

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016853272

Country of ref document: EP