WO2017060989A1 - 可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法 - Google Patents

可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法 Download PDF

Info

Publication number
WO2017060989A1
WO2017060989A1 PCT/JP2015/078506 JP2015078506W WO2017060989A1 WO 2017060989 A1 WO2017060989 A1 WO 2017060989A1 JP 2015078506 W JP2015078506 W JP 2015078506W WO 2017060989 A1 WO2017060989 A1 WO 2017060989A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
area
robot
control device
unit
Prior art date
Application number
PCT/JP2015/078506
Other languages
English (en)
French (fr)
Inventor
澤田 英樹
佐藤 敏之
小野山 達夫
良一 大庫
武玄 河津
Original Assignee
オークラ輸送機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オークラ輸送機株式会社 filed Critical オークラ輸送機株式会社
Priority to CN201580083560.0A priority Critical patent/CN108136602A/zh
Priority to PCT/JP2015/078506 priority patent/WO2017060989A1/ja
Priority to EP15905809.8A priority patent/EP3360655A4/en
Priority to US15/766,493 priority patent/US10836035B2/en
Priority to JP2017544116A priority patent/JP6522769B2/ja
Priority to AU2015411123A priority patent/AU2015411123B2/en
Priority to KR1020187011740A priority patent/KR102053557B1/ko
Publication of WO2017060989A1 publication Critical patent/WO2017060989A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/06Control stands, e.g. consoles, switchboards
    • B25J13/065Control stands, e.g. consoles, switchboards comprising joy-sticks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/06Control stands, e.g. consoles, switchboards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4061Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40202Human robot coexistence

Definitions

  • the present invention relates to an operation control device for a movable device, an operation control system, and an operation control method for the movable device.
  • the present invention relates to a motion control system including a motion control device and a motion control device, and a motion control method of a movable device that operates by controlling the drive device by the drive control device.
  • Patent Document 1 discloses a control device that operates a robot within an operation region set by an operator and cuts off power supply to the robot when the robot is out of the operation region. Is disclosed. According to this control device, since the robot operation is restricted so that the robot operates within the operation region set by the operator, the robot does not run away due to malfunction or the like. Work safely.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an operation control device, an operation control system, and a movable device for a movable device capable of improving work efficiency by the movable device while ensuring safety.
  • An object of the present invention is to provide a device operation control method.
  • the present invention is an operation control device for a movable device that operates by controlling the drive device by the drive control device.
  • the operation control device includes an enabling unit and an operation control unit.
  • the enabling unit validates at least one operation region from among a plurality of operation regions in which the movable device can operate.
  • the operation control unit restricts the operation of the movable device so that the movable device operates within the range of the activation region that is the operation region validated by the validation unit.
  • the motion control unit is within the range of one of the first motion region and the second motion region.
  • the power supply to the drive device is not interrupted, while if it is predicted that no movable device is included in any of the first operation region and the second operation region, the drive is performed. Shut off the power supply to the device.
  • the operation of the movable device is restricted so that the movable device operates in at least one of the plurality of operation regions. That is, since the movable device can operate not only in one operation region but also in a plurality of operation regions, the work can be efficiently performed by the movable device. Furthermore, even when a plurality of operation regions such as the first operation region and the second operation region are activated, it is predicted that the movable device is included in the range of one of the operation regions of the first operation region and the second operation region. If the power supply to the drive device is not cut off, the power to the drive device is predicted if it is predicted that the movable device is not included in the range of any of the first operation region and the second operation region. Supply is cut off. For this reason, the worker can proceed with work safely outside the range of the combined region of the first operation region and the second operation region. Thereby, the work efficiency by a movable apparatus can be improved, ensuring safety
  • the first operation area and the second operation area partially overlap each other.
  • an area where the first operation area and the second operation area overlap is also an activation area.
  • the first motion region is the validation region
  • the second motion region that overlaps the first motion region is not the validation region.
  • the operation control unit cuts off the power supply to the drive device when predicting that the movable device is out of the range of the activation region by proceeding with inertia when the power supply to the drive device is cut off.
  • the operation control device further includes an alarm area setting unit.
  • the alarm area setting unit sets a predetermined alarm area within the range of the activation area.
  • the operation control unit causes the drive control device to control the drive device by outputting a stop signal to the drive control device to stop the movable device.
  • the movable device when the movable device is out of the alarm range, the movable device is braked and stopped by the control of the drive device by the drive control device. For this reason, it can avoid beforehand that the electric power supply to a drive device is interrupted
  • the motion control device further includes an entry detection unit.
  • the approach detection unit is configured to detect an approach from the outside to the validation area.
  • the operation control unit cuts off the power supply to the drive device when the approach detection unit detects an approach from the outside to the validation area.
  • the movable device since the power supply to the drive device is interrupted when there is an entry from the outside to the validation area, for example, even when the operator enters the validation area, the movable device Therefore, it can be avoided that the worker is at risk.
  • the approach detection unit is provided at a boundary portion between the first motion region and the second motion region.
  • the approach detection unit does not detect entry from the outside if the first motion area and the second motion area are the validation areas.
  • the approach detection unit detects entry from one validation region to the other validation region, even though the first motion region and the second motion region are validation regions. Thus, there is no inconvenience that the power supply to the driving device is interrupted.
  • the motion control device includes a plurality of entry detection units associated with a plurality of motion regions. Further, the operation control device invalidates the detection of the entry from the outside to the validation area and the entry detection part that validates the entry detection from the outside to the validation area among the plurality of entry detection parts.
  • a detection validation setting unit for setting the entry detection unit is provided.
  • the operation control apparatus further includes a region validation setting unit that validates a plurality of operation regions associated with each of the plurality of switches.
  • each of the plurality of switches is associated with a plurality of activated areas. For this reason, the worker can activate a desired operation region and operate the movable device within the operation region simply by changing the switch to be operated according to the work content.
  • the motion control device further includes a prohibited area setting unit that sets a prohibited area where entry by the movable device is prohibited.
  • the operation control unit cuts off the power supply to the drive device when predicting that the movable device is within the range of the prohibited region by proceeding with inertia when the power supply to the drive device is cut off.
  • the motion control system includes a movable device, a drive control device, and any one of the motion control devices described above.
  • the present invention is an operation control method for a movable device that operates by controlling the drive device by the drive control device.
  • the operation control method includes an validation step and an operation control step.
  • the validation step validates at least one motion region from a plurality of motion regions in which the movable device can operate.
  • the operation control step limits the operation of the movable device so that the movable device operates within the range of the activation region that is the operation region validated by the validation step.
  • the operation control step is within the range of one of the first operation region and the second operation region when the first operation region and the second operation region included in the plurality of operation regions are enabled by the enabling step. If it is predicted that the movable device is included, the power supply to the drive device is not cut off, while it is predicted that the movable device is not included in any of the first operation region and the second operation region. Cutting off the power supply to the drive device.
  • the operation of the movable device is limited so that the movable device operates in at least one of the plurality of operation regions. That is, since the movable device can operate not only in one operation region but also in a plurality of operation regions, the work can be efficiently performed by the movable device. Furthermore, even when a plurality of operation regions such as the first operation region and the second operation region are activated, it is predicted that the movable device is included in the range of one of the operation regions of the first operation region and the second operation region. If the power supply to the drive device is not cut off, the power to the drive device is predicted if it is predicted that the movable device is not included in the range of any of the first operation region and the second operation region. Supply is cut off. For this reason, the worker can proceed with work safely outside the range of the combined region of the first operation region and the second operation region. Thereby, the work efficiency by a movable apparatus can be improved, ensuring safety
  • FIG. 6B is a diagram for explaining the operation region 1.
  • C is a diagram for explaining the operation region 2.
  • FIG. 6D is a diagram for explaining the operation area 3.
  • A) is a figure for demonstrating operation
  • B) is a figure for demonstrating operation
  • FIG. 1 is the figure which modeled the arm of the robot with the rectangle.
  • B is the figure which modeled the weight of the robot with the rectangle.
  • C is the figure which modeled the end effector of the robot with the rectangle.
  • A) is a figure which shows a mode that a robot performs loading operation within the range of the monitoring area
  • FIG. (B) is a figure which shows a mode that a robot performs a stacking
  • FIG. (C) is a figure which shows a mode that a robot performs a stacking
  • FIG. (A) is a figure which shows a mode that an operator approachs outside the range of the area
  • FIG. (B) is a figure which shows a mode that an operator approachs into the range of the area
  • FIG. It is a flowchart which shows an example of the operation control process which an operation control apparatus performs.
  • FIG. 1 is a diagram illustrating an example of a layout configuration in a factory where the robot 30 operates.
  • a conveyor area in the factory.
  • a conveyor 26 for carrying a load is installed in the conveyor area.
  • a first station and a second station are provided on both sides of the conveyor area.
  • the first station is provided with a first pallet on which the packages conveyed by the conveyor 26 are stacked by the robot 30.
  • the second station is provided with a second pallet on which the packages conveyed by the conveyor 26 are stacked by the robot 30.
  • Light curtains 21 to 25 are provided.
  • the light curtains 21 to 25 include a projector and a light receiver, and detect whether or not light emitted from the light projector toward the light receiver is blocked by an object such as an operator or a transported object.
  • the light curtains 21 to 25 can detect the entry of an object into or out of the predetermined area.
  • the light curtain 21 detects the entry of the worker to the first station from the outside.
  • the light curtain 23 detects the entry of the operator from the first station to the conveyor area.
  • the light curtains 21 to 25 correspond to an embodiment of the “entrance detection unit”.
  • a robot control panel 10 is installed near the first station.
  • a plurality of devices for controlling the robot 30 are incorporated in the robot control panel 10.
  • a start switch 12, loading start switches 13, 14, loading completion lamps 15, 16 and a setting personal computer 11 are connected to the robot control panel 10 by wiring (illustration of wiring is omitted). ).
  • the activation switch 12 is a switch that is operated when the operator activates the robot 30.
  • the loading start switches 13 and 14 are switches that are operated when the operator operates the robot 30 to load the cargo conveyed by the conveyor onto the pallet.
  • the loading completion lamps 15 and 16 are lamps that notify the worker that the loading operation by the robot 30 has been completed by lighting or blinking.
  • the start switch 12 and the loading start switches 13 and 14 correspond to an embodiment of “a plurality of switches”.
  • FIG. 2 is a diagram illustrating a mechanical configuration of the robot 30 as viewed from the top and side surfaces.
  • the machine configuration of the robot 30 illustrated in FIG. 2 is an example, and a robot having another machine configuration may be used.
  • the robot 30 includes a cylindrical installation table 40 fixed to the installation surface, a main body 35 provided on the upper surface of the installation table 40, a lower arm 33 connected to the main body 35, and a lower arm 33.
  • Support arm 41 connected to main body 35 together with arm 33, weight 34 connected to support arm 41, upper arm 32 connected to lower arm 33 and support arm 41, and link connected to upper arm 32 43, a tool 31 connected to the link 43, and an end effector 44 provided at the tip of the tool 31.
  • FIG. 2 the shape of the end effector 44 is shown in a simplified manner.
  • the main body 35 is connected to a shaft of a motor 71 (a motor shaft along the shaft 45), which will be described later, attached to the installation base 40.
  • the lower arm 33 is connected to a shaft of a motor 71 (motor shaft along the shaft 38) attached to the main body portion 35.
  • the upper arm 32 is connected to a shaft of a motor 71 (motor shaft along the shaft 37) attached to the support arm 41.
  • the tool 31 is connected to a shaft of a motor 71 (motor shaft along the shaft 42) attached to the link 43.
  • the illustration of each motor 71 is omitted.
  • the shaft 45 is referred to as an R-axis
  • the shaft 38 as an O-axis
  • the shaft 37 as a D-axis
  • the shaft 42 as a T-axis.
  • the lower arm 33 and the upper arm 32 are also simply referred to as arms.
  • the main body 35 rotates around the R axis by the rotation of the motor shaft. As the main body 35 rotates, the arm and end effector 44 move parallel to the installation surface.
  • the lower arm 33 rotates around the O axis by the rotation of the motor shaft.
  • the upper arm 32 rotates around the D axis by the rotation of the motor shaft.
  • the end effector 44 approaches or moves away from the R axis.
  • the distance between the R axis and the end effector 44 gradually increases, and when the lower arm 33 and the upper arm 32 approach perpendicular to the installation surface, the R axis and end. The distance from the effector 44 is gradually shortened.
  • the weight 34 reduces the load on the O-axis and D-axis.
  • the weight 34 is fixed to the support arm 41 with a bolt 39, but moves according to the rotation of the arm.
  • the tool 31 rotates around the T axis by the rotation of the motor shaft. As the tool 31 rotates about the T axis, the end effector 44 rotates in parallel to the installation surface.
  • the robot 30 can move the end effector 44 to a desired position and maintain it in a desired posture by moving the main body 35, the arm, and the tool 31. Then, the end effector 44 can grab the conveyed load and stack it on the pallet.
  • the robot 30 corresponds to an embodiment of a “movable device”.
  • FIG. 3 is a diagram illustrating the overall configuration of the operation control system 1.
  • Each axis (R axis, O axis, D axis, T axis) of the robot 30 is provided with a motor 71, an encoder 70, and a brake 72.
  • the motor 71 is, for example, a geared motor, and rotates each axis of the robot 30.
  • the encoder 70 detects the rotation direction and rotation angle of each axis of the robot 30.
  • the encoder 70 may be an absolute encoder that detects the rotation angle of each axis as an absolute value, or may be an incremental encoder that detects the rotation angle of each axis as a relative value with respect to a predetermined position.
  • the brake 72 is a non-excitation operation type electromagnetic brake, for example. While the brake 72 is not energized, each axis of the robot 30 is braked.
  • the robot control panel 10 includes an electromagnetic switch 62, a servo amplifier 61, a drive control device 50, and an operation control device 100.
  • the electromagnetic switch 62 When the electromagnetic switch 62 is switched between energized and de-energized, the path between the power supply 60 installed outside and the servo amplifier 61 is closed or opened. For example, while the electromagnetic switch 62 is energized, the path between the power source 60 and the servo amplifier 61 is closed, and the power from the power source 60 is supplied to the servo amplifier 61. On the other hand, when the electromagnetic switch 62 is not energized, the path between the power source 60 and the servo amplifier 61 is opened, and the power supply from the power source 60 to the servo amplifier 61 is cut off. The electromagnetic switch 62 is switched between energization and non-energization by an operation control device 100 described later.
  • Servo amplifier 61 drives motor 71 based on a command from drive control device 50 to rotate each axis.
  • the servo amplifier 61 operates using the electric power from the power source 60 supplied via the electromagnetic switch 62.
  • the electromagnetic switch 62 When the electromagnetic switch 62 is de-energized and the power supply from the power source 60 is cut off, the servo amplifier 61 cannot drive the motor 71.
  • the driving force and the braking force from each motor 71 are not applied to each axis of the robot 30. Therefore, each axis stops after operating by inertia in a so-called free-run state.
  • the servo amplifier 61 corresponds to an embodiment of a “drive device”.
  • the motor 71 may have the same function as that of the servo amplifier 61. In this case, the motor 71 corresponds to an embodiment of the “drive device”.
  • the drive control device 50 controls the servo amplifier 61 to drive the motor 71.
  • the drive control device 50 instructs the servo amplifier 61 on the rotational speed of the motor and the like based on the program input by the operator. In this way, the drive control device 50 can operate the robot 30 by controlling the servo amplifier 61 and driving the motor 71.
  • the drive control device 50 corresponds to an embodiment of a “drive control device”.
  • the system of the robot 30 is activated by the control of the drive control device 50 to be in a ready state.
  • the robot 30 starts loading the cargo conveyed by the conveyor 26 onto the first pallet of the first station. While the robot 30 is operating at the first station, the worker waits outside without entering the first station. When the loading on the first pallet is completed, the loading completion lamp 15 is turned on or blinks. Then, the worker enters the first station and carries the cargo loaded on the first pallet to the outside.
  • the robot 30 is operated by the motor control of the drive control device 50, but the control of the drive control device 50 may not guarantee the safety of the operation of the robot 30.
  • the robot 30 may deviate from the first station to the outside due to a malfunction of the drive control device 50 when the robot 30 is performing a stacking operation at the first station.
  • the robot 30 may cause a malfunction due to the control by the drive control device 50.
  • a control system such as a safety PLC (programmable logic controller) is introduced into the existing drive control device 50, the safety can be ensured more reliably.
  • the existing drive control device 50 is modified, it takes much time and cost.
  • the operation control device 100 is provided separately from the drive control device 50 in order to ensure safety.
  • the operation control device 100 is externally attached to the existing drive control device 50 by connection.
  • the motion control device 100 restricts the operation of the robot 30 so that the robot 30 operates within the range of the monitored operation region (also referred to as a monitoring region) among the regions (also referred to as operation regions) in which the robot 30 can operate. To do.
  • the operation area is validated by the operation of the start switch 12 or the loading start switches 13 and 14 by the operator, and is in a monitoring state. That is, the worker selects an operation region to be validated (monitored) based on his / her judgment.
  • the operation of the robot 30 is permitted by the operation control device 100 within the monitoring area, and the operation of the robot 30 is prohibited by the operation control device 100 outside the monitoring area. Thus, if the operation of the robot 30 is limited within the monitoring area by the operation control device 100, the worker can safely proceed with work outside the monitoring area.
  • the operation control device 100 corresponds to an embodiment of an “operation control device”.
  • the monitoring area corresponds to an embodiment of the “validation area”.
  • FIG. 4 is a diagram for explaining an example of setting of the operation area.
  • the operator can set the operation area of the robot 30 in advance using the personal computer 11 (see FIG. 3).
  • the worker can set one operation area or a plurality of operation areas.
  • the operation area is set in a direction parallel to the installation surface of the robot 30.
  • the motion region must be set including the R axis of the robot 30 and is set as a polygon having a maximum of 16 points.
  • the center of the R axis of the robot 30 is set to (0, 0) of the XY coordinates, and then each vertex represented by the XY coordinates is set.
  • the center of the R axis is set to (0, 0) of the XY coordinates, and P (0) is changed to (X0, Y0) of the XY coordinates.
  • 1) is in the XY coordinates (X1, Y1)
  • P (2) is in the XY coordinates (X2, Y2)
  • P (3) is in the XY coordinates (X3, Y3)
  • P (4) is set to (X4, Y4) of the XY coordinates.
  • the motion region may be set to include other axes in addition to the R axis of the robot 30, or may be set to include other axes without including the R axis.
  • the motion area is not limited to 16 points, and may be set with other numbers of vertices, or may be set with a circle or the like without being limited to a rectangle.
  • the operator can operate the robot 30 in an appropriate monitoring area according to the work content by controlling the movement control device 100 by arbitrarily setting the movement area.
  • the work efficiency is improved when the robot 30 is operated over a plurality of operation areas rather than being limited to one operation area.
  • the layout shown in FIG. 1 there are cases where it is necessary to load a package by the robot 30 at a plurality of stations such as the first station and the second station.
  • the worker can set the operation area including the first station and the operation area including the second station and can operate the robot over the plurality of operation areas, the worker can improve the work efficiency. Can do.
  • FIG. 5 is a diagram for explaining four operation regions, such as operation region 0 to operation region 3.
  • the operation area 0 is an area for monitoring the conveyor area.
  • the operation area 0 in the monitoring state is referred to as a monitoring area 0.
  • the operation area 1 is an area for monitoring the conveyor area and the area including the first station.
  • the operation area 1 in the monitoring state is referred to as a monitoring area 1.
  • the operation area 2 is an area for monitoring the conveyor area and the area including the second station.
  • the operation area 2 in the monitoring state is referred to as a monitoring area 2.
  • the operation area 3 is an area for monitoring an area including the conveyor area, the first station, and the second station.
  • the operation area 3 in the monitoring state is referred to as a monitoring area 3.
  • a plurality of operation areas overlap with each other in some areas.
  • the operation area 0 and the operation area 1 have overlapping conveyor areas.
  • the operation area 0 and the operation area 2 have overlapping conveyor areas.
  • the operation area 0 and the operation area 3 have overlapping conveyor areas.
  • the operation area 1 and the operation area 2 have overlapping conveyor areas.
  • the operation area 1 and the operation area 3 overlap the conveyor area and the area including the first station.
  • the operation area 2 and the operation area 3 overlap the conveyor area and the area including the second station.
  • the reason for including the conveyor area in any of the operation areas is that in the present embodiment, the robot 30 is installed in the conveyor area, and the operation area is always set to include the R axis of the robot 30. .
  • the robot 30 can be operated not only in one operation region but also in a plurality of operation regions, the operation can be efficiently advanced by the operation of the robot 30.
  • FIG. 6A is a diagram for explaining the operation of the robot in the monitoring area
  • FIG. 7 is a diagram in which each configuration of the robot is modeled by a rectangle.
  • the motion control apparatus 100 predicts the motion of each element by modeling each element of the robot 30 as a rectangle while the robot 30 is operating under the control of the drive control apparatus 50. For example, as shown in FIG. 7A, the motion control apparatus 100 models the arm of the robot 30 as a rectangle and predicts the motion of the arm that turns to the right. As shown in FIG. 7B, the motion control apparatus 100 models the weight 34 as a rectangle and predicts the motion of the weight 34 that moves as the arm turns to the right. As shown in FIG. 7C, the motion control apparatus 100 models the end effector 44 as a rectangle, and predicts the motion of the end effector 44 that moves as the arm turns to the right and expands and contracts. Note that the prediction of the operation of each element includes prediction of the movement range and passage route of each element.
  • the motion control device 100 is controlled by the drive control device 50, and while the robot 30 (more precisely, the arm 30, the weight 34, and the end effector 44 of the robot 30) is operating, at predetermined intervals (for example, every 10 msec). Using the detection value from the encoder 70, the rotation direction and the rotation angle of each axis of the robot 30 are calculated. Further, the operation control apparatus 100 assumes that the electromagnetic switch 62 is de-energized and the power supply to the servo amplifier 61 is interrupted at predetermined intervals.
  • the motion control apparatus 100 predicts a stop position of the robot 30 that can be advanced by rotating each axis of the robot 30 by inertia.
  • the predicted position where the robot 30 stops is obtained from the rotation angle, rotation direction, and rotation speed of each axis at the time when the power supply to the servo amplifier 61 is cut off.
  • the motion control device 100 calculates a line segment that connects each vertex of the modeled rectangle of the robot 30 at the current position and each modeled rectangle of the robot 30 at the predicted position.
  • the motion control apparatus 100 performs an intersection determination using a vector outer product calculation on each of the determined line segments and the boundary line of the monitoring area.
  • the predicted position of the robot 30 is a position in the monitoring area. judge.
  • the motion control apparatus 100 determines that any of the calculated line segments intersects the boundary line of the monitoring area in the intersection determination of the line segment, the predicted position of the robot 30 is a position outside the monitoring area. Judge that there is.
  • the intersection determination of a line segment is a well-known technique, detailed description is omitted.
  • the motion control device 100 determines the position at which the robot 30 arrives by a predetermined period interval by proceeding with inertia when the power supply to the servo amplifier 61 is cut off at the current position while the robot 30 is operating. And predicting whether or not the predicted position is outside the monitoring area. Then, when the motion control apparatus 100 predicts that the robot 30 is out of the monitoring region by proceeding with inertia, the power supply to the servo amplifier 61 is cut off.
  • the motion control device 100 determines that the position of the arm is the position B, and when the power supply to the servo amplifier 61 is cut off, the motion control apparatus 100 is about to go out of the monitoring area by proceeding with inertia. It is predicted that it will progress by inertia to position C. If the power supply to the servo amplifier 61 is interrupted after the arm position has passed the position B, the robot 30 is likely to be out of the monitoring region by proceeding with inertia. For this reason, the operation control apparatus 100 cuts off the power supply to the servo amplifier 61 when the arm reaches the position B. Thereby, even if the arm advances due to inertia, the arm stops at the position C which is just outside the monitoring area.
  • FIG. 6B is a diagram for explaining the operation of the robot 30 when it deviates from the alarm region.
  • the operator can use the personal computer 11 to preset an alarm area within the monitoring area.
  • the alarm area is set by the same method as the setting of the operation area described with reference to FIG.
  • the motion control device 100 cuts off the power supply to the servo amplifier 61 before the robot 30 is outside the monitoring area. However, once the power supply to the servo amplifier 61 is interrupted, it takes time for the restoration work, and the operator is troubled. Also, the automatic operation of the robot 30 by the drive control device 50 is interrupted, and the productivity is increased. It will go down. Therefore, when the robot 30 is out of the warning area, the motion control device 100 outputs a stop signal for causing the drive control device 50 to brake and stop the robot 30.
  • the operation control device 100 outputs a stop signal to the drive control device 50 when the arm reaches a position b which is just outside the alarm region.
  • the drive control device 50 can stop the braking of the robot 30 when a stop signal is input from the motion control device 100, and the position within the monitoring region without interrupting the power supply to the servo amplifier 61.
  • the robot 30 can be braked and stopped by c.
  • the operation control apparatus 100 can communicate with the personal computer 11 through the setting communication unit 101.
  • An operator can start a setting tool application on the personal computer 11 and perform various settings via the setting tool.
  • the setting communication unit 101 indicates the set operation area.
  • a signal is received from the personal computer 11.
  • the setting communication unit 101 outputs a signal received from the personal computer 11 to the operation area setting unit 116.
  • the operation region setting unit 116 sets the operation region detected based on the signal received from the setting communication unit 101 as the operation region to be monitored.
  • the operation area setting unit 116 outputs a signal indicating the operation area to be monitored to the validation unit 112.
  • the validation unit 112 detects the motion region to be monitored based on the signal received from the motion region setting unit 116.
  • the setting communication unit 101 receives a signal indicating the set alarm area from the personal computer 11.
  • the setting communication unit 101 outputs a signal received from the personal computer 11 to the alarm region setting unit 113.
  • the alarm area setting unit 113 sets the alarm area detected based on the signal received from the setting communication unit 101 as the alarm area to be monitored.
  • the alarm region setting unit 113 outputs a signal indicating the alarm region to be monitored to the validation unit 112.
  • the validation unit 112 detects the alarm region to be monitored based on the signal received from the alarm region setting unit 113.
  • the alarm area setting unit 113 corresponds to an embodiment of an “alarm area setting unit”.
  • the operator can associate each switch such as the start switch 12 and the loading start switches 13 and 14 with the operation area to be monitored.
  • the start switch 12 corresponds to the operation region
  • the loading start switch 13 corresponds to the operation region 1
  • the loading start switch 14 corresponds to the operation region 2.
  • the setting communication unit 101 receives a signal indicating the operation area associated with each switch from the personal computer 11.
  • the setting communication unit 101 outputs a signal received from the personal computer 11 to the monitoring setting unit 111.
  • the monitoring setting unit 111 sets an operation area associated with each switch based on the signal received from the setting communication unit 101.
  • the monitoring setting unit 111 outputs a signal indicating the setting content to the validation unit 112.
  • the validation unit 112 detects an operation area associated with each switch based on the signal received from the monitoring setting unit 111.
  • the monitoring setting unit 111 corresponds to an embodiment of an “area validation setting unit”.
  • the operator can set the light curtain to be activated and the light curtain to be deactivated among the light curtains 21 to 25 according to the activated operation area among the plurality of operation areas.
  • the operation area 0 when the operation area 0 is validated and becomes the monitoring area 0, the light curtain 21 and the light curtain 22 are invalidated, while the light curtain 23, the light curtain 24, and the light curtain. 25 is activated.
  • the operation area 1 When the operation area 1 is activated and becomes the monitoring area 1, the light curtain 22 and the light curtain 23 are invalidated, while the light curtain 21, the light curtain 24, and the light curtain 25 are activated.
  • the operation area 2 When the operation area 2 is activated and becomes the monitoring area 2, the light curtain 21 and the light curtain 24 are invalidated, while the light curtain 22, the light curtain 23, and the light curtain 25 are activated.
  • the operation area 3 is activated to become the monitoring area 3, the light curtain 23, the light curtain 22, and the light curtain 25 are activated while the light curtain 23 and the light curtain 24 are invalidated.
  • the setting communication unit 101 sends a signal indicating the setting for enabling or disabling the light curtains 21 to 25 to the personal computer. 11 is received.
  • the setting communication unit 101 outputs a signal received from the personal computer 11 to the monitoring setting unit 111.
  • the monitoring setting unit 111 sets the activation or deactivation of each of the light curtains 21 to 25 in association with the operation area.
  • the monitoring setting unit 111 outputs a signal indicating the setting content to the validation unit 112.
  • the validation unit 112 detects the setup state of validation or invalidation of each of the light curtains 21 to 25 based on the signal received from the monitoring setting unit 111.
  • the monitoring setting unit 111 corresponds to an embodiment of a “detection validation setting unit”.
  • the light curtains 21 to 25 are connected to the protection stop signal input unit 102.
  • the protection stop signal input unit 102 receives a signal indicating light shielding by the operator or the like from the light curtain as a protection stop signal.
  • the protection stop signal input unit 102 outputs the protection stop signal received from each of the light curtains 21 to 25 to the operation control unit 110.
  • the operation control unit 110 Based on the protection stop signal received from the protection stop signal input unit 102, the operation control unit 110 detects the light curtain in which entry from the outside is detected.
  • the operation control unit 110 When the operation control unit 110 detects a light curtain that has been detected to enter from the outside, the operation control unit 110 outputs a signal for de-energizing the electromagnetic switch 62 to the electromagnetic switch 62 via a servo-on output unit 108 described later.
  • the operation control unit 110 corresponds to an embodiment of an “operation control unit”.
  • the reset signal input unit 103 is connected to the start switch 12.
  • the reset signal input unit 103 receives a signal generated by operating the start switch 12 from the start switch 12 as a reset signal.
  • the reset signal input unit 103 outputs the reset signal received from the activation switch 12 to the validation unit 112.
  • the enabling unit 112 detects that the start switch 12 has been operated based on the reset signal received from the reset signal input unit 103. Then, the enabling unit 112 detects an operation area associated with the operated activation switch 12. Then, the validation unit 112 validates the detected motion area as a monitoring area. In the present embodiment, the enabling unit 112 validates the operation area 0 as the monitoring area 0 when a reset signal is input.
  • the monitoring activation signal input unit 104 is connected to the loading start switches 13 and 14. When the loading start switches 13 and 14 are operated by the operator, the monitoring activation signal input unit 104 uses the signal generated by the operation of the loading start switches 13 and 14 as a monitoring activation signal. Receive from 13,14. The monitoring activation signal input unit 104 outputs the monitoring activation signal received from the loading start switches 13 and 14 to the validation unit 112. The validation unit 112 detects that the loading start switches 13 and 14 are operated based on the monitoring activation signal received from the monitoring activation signal input unit 104. Then, the enabling unit 112 detects an operation region associated with the operated loading start switches 13 and 14. Further, the validation unit 112 validates the detected operation area as a monitoring area.
  • the validation unit 112 validates the operation area 1 as the monitoring area 1 when a monitoring activation signal indicating that the loading start switch 13 has been operated is input. In addition, when a monitoring activation signal indicating that the loading start switch 14 has been operated is input, the enabling unit 112 validates the operation area 2 to become the monitoring area 2.
  • the enabling unit 112 outputs a signal indicating the monitoring region to the operation control unit 110 when the operating region is enabled to be a monitoring region.
  • the validation unit 112 corresponds to an embodiment of the “validation unit”.
  • the motion control unit 110 detects the motion region that becomes the monitoring region based on the signal received from the validation unit 112, and restricts the motion of the robot 30 within the detected monitoring region.
  • the position signal input unit 105 is connected to an encoder 70 provided on each axis of the robot 30.
  • the position signal input unit 105 receives a signal transmitted from the encoder 70 to the drive control device 50 as a position signal.
  • the position signal input unit 105 outputs the position signal received from the encoder 70 to the operation control unit 110.
  • the motion control unit 110 calculates the rotation direction and rotation angle of each axis based on the position signal received from the position signal input unit 105, and restricts the operation of the robot 30 based on the calculated rotation direction and rotation angle of each axis.
  • the monitoring cancellation signal input unit 106 is connected to the drive control device 50.
  • the monitoring release signal input unit 106 receives a signal indicating that the operation in the monitoring area is completed from the drive control device 50 as a monitoring release signal.
  • the monitoring cancellation signal input unit 106 outputs the monitoring cancellation signal received from the drive control device 50 to the invalidation unit 115.
  • the invalidating unit 115 detects the completion of the stacking operation based on the monitoring cancellation signal and also detects the monitoring area where the operation is completed. Then, the invalidation unit 115 invalidates the detected monitoring area and releases the monitoring state. Further, the invalidating unit 115 outputs a signal indicating the operation region in which the monitoring state is released to the operation control unit 110.
  • the operation control unit 110 detects an operation region in which the monitoring state is released based on the signal received from the invalidation unit 115.
  • the drive control device 50 lights or blinks the loading completion lamps 15 and 16 when the loading operation of the robot 30 is completed. For example, when the loading operation on the first pallet is completed within the range of the monitoring area 1, the drive control device 50 lights or blinks the loading completion lamp 15, and the second within the range of the monitoring area 2. When the loading operation on the pallet is completed, the loading completion lamp 16 is turned on or blinked.
  • the status communication unit 107 is connected to the drive control device 50.
  • the status communication unit 107 receives a signal indicating a state related to the control of the operation control unit 110 (for example, setting of a monitoring area and an alarm area) from the operation control unit 110.
  • the status communication unit 107 detects the monitoring region and alarm region set based on the signal received from the operation control unit 110, and outputs a signal indicating the detected monitoring region and alarm region to the drive control device 50.
  • the drive control device 50 operates the robot 30 within the monitoring area and the alarm area. For example, when the monitoring area 1 is set, the drive control device 50 performs a stacking operation within the range of the monitoring area 1.
  • the status communication unit 107 receives a stop signal from the operation control unit 110 for causing the drive control device 50 to stop the braking of the robot 30 when the robot 30 is out of the alarm region.
  • the status communication unit 107 outputs a stop signal received from the operation control unit 110 to the drive control device 50.
  • the drive control device 50 controls the servo amplifier 61 to stop the braking of the motor 71. As a result, the robot 30 is braked and stopped in the monitoring area without interrupting the power supply to the servo amplifier 61.
  • the servo-on output unit 108 is connected to the electromagnetic switch 62.
  • the servo-on output unit 108 receives a signal for energizing or de-energizing the electromagnetic switch 62 from the operation control unit 110.
  • the servo-on output unit 108 outputs a signal received from the operation control unit 110 to the electromagnetic switch 62.
  • the motion control unit 110 predicts the position of the robot 30 that can travel by inertia when the power supply to the servo amplifier 61 is cut off at predetermined intervals. Then, the operation control unit 110 predicts whether or not the robot 30 is outside the monitoring area by proceeding with inertia.
  • the operation control unit 110 outputs a signal to the electromagnetic switch 62 via the servo-on output unit 108 to deenergize the electromagnetic switch 62 when it is predicted that the robot 30 will be out of the monitoring region due to inertia. . Thereby, the electric power from the motive power source 60 is not supplied to the servo amplifier 61, and the operation of the robot 30 gradually stops.
  • the brake signal output unit 109 is connected to the brake 72.
  • the brake signal output unit 109 receives a signal for energizing or de-energizing the brake 72 from the operation control unit 110.
  • the brake signal output unit 109 outputs the signal received from the operation control unit 110 to the brake 72 as a brake signal.
  • the operation control unit 110 outputs a brake signal to the brake 72 for deenergizing the brake 72 via the brake signal output unit 109.
  • the brakes 72 apply brakes to the respective axes while the motor 71 is stopped.
  • the operation mode of the robot 30 includes an auto mode in which the robot 30 automatically performs the loading operation, a manual mode in which the operator manually moves the robot 30 to perform the loading operation, and the robot 30 performs the loading operation. There is a teach mode that teaches the robot 30 to perform the operation automatically. 8 and 9 show the operation of the robot 30 in the auto mode.
  • the robot 30 moves to the encoder confirmation position in the motion region 0 under the control of the drive control device 50.
  • the robot 30 corrects the origin of the position of the detection disk included in each encoder 70 at the encoder confirmation position.
  • the motion control device 100 cuts off the power supply to the servo amplifier 61 when any of the light curtain 23, the light curtain 24, and the light curtain 25 detects the entry of an operator or the like into the monitoring area 0.
  • the operation area 1 is newly activated and becomes the monitoring area 1. That is, the monitoring area 0 and the monitoring area 1 are monitored by the operation control device 100.
  • the drive control device 50 performs the stacking operation on the first pallet within the range of the monitoring area 0 and the monitoring area 1 together.
  • the motion control device 100 restricts the operation of the robot 30 so that the robot 30 operates within the range of the combined region of the monitoring region 0 and the monitoring region 1.
  • the motion control device 100 advances by inertia when the power supply to the servo amplifier 61 is cut off, so that the motion range of the robot 30 is within one of the monitoring region 0 and the monitoring region 1.
  • the power to the servo amplifier 61 is predicted if the operation range of the robot 30 is not included in any of the monitoring area 0 and the monitoring area 1. The supply is cut off and the operation of the robot 30 is stopped.
  • the motion control device 100 supplies power to the servo amplifier 61 while the robot 30 operates within the monitoring area 0. Do not block.
  • the motion control apparatus 100 predicts that the robot 30 is out of the range of the monitoring area 0, the power supply to the servo amplifier 61 is cut off.
  • the operation control apparatus 100 does not cut off the power supply to the servo amplifier 61.
  • the motion control device 100 cuts off the power supply to the servo amplifier 61 when any of the light curtain 21, the light curtain 24, and the light curtain 25 detects entry of a worker or the like into the monitoring area.
  • the motion control apparatus 100 does not cut off the power supply to the servo amplifier 61 even if the robot 30 passes through the light curtain 23.
  • the operation area 2 is newly activated and becomes the monitoring area 2. That is, the monitoring area 0, the monitoring area 1, and the monitoring area 2 are monitored by the operation control apparatus 100.
  • the drive control device 50 performs the stacking operation on the first pallet and the second pallet within the range of the monitoring area 0, the monitoring area 1, and the monitoring area 2.
  • the motion control apparatus 100 restricts the operation of the robot 30 so that the robot 30 operates within the range of the combined region of the monitoring region 0, the monitoring region 1, and the monitoring region 2.
  • the motion control apparatus 100 proceeds in inertia when power supply to the servo amplifier 61 is cut off, so that the robot is placed in any one of the monitoring area 0, the monitoring area 1, and the monitoring area 2.
  • the power supply to the servo amplifier 61 is not cut off, while the motion range of the robot 30 is included in any of the monitoring region 0, the monitoring region 1, and the monitoring region 2. If it is predicted that no power is supplied to the servo amplifier 61, the operation of the robot 30 is stopped.
  • the motion control device 100 shuts off the power supply to the servo amplifier 61 when any of the light curtain 21, the light curtain 22, and the light curtain 25 detects entry of a worker or the like into the monitoring area.
  • the motion control apparatus 100 does not cut off the power supply to the servo amplifier 61 even if the robot 30 passes through the light curtain 23 and the light curtain 24.
  • the drive control device 50 lights or blinks the loading completion lamp 15. Then, the operation control apparatus 100 invalidates the monitoring area 1 and cancels the monitoring state. Since the monitoring area 1 is invalidated, the light curtain 21 is invalidated. For this reason, the operator can enter the first station through the light curtain 21, and can carry out the first pallet on which the stacking operation has been completed.
  • a predetermined operation area is activated according to the work content, and further, the light curtain that is activated according to which operation area is activated is invalidated. Divided into light curtains. Further, since the operation of the robot is restricted within the monitoring area by the operation control device 100, the worker can proceed with the work safely outside the monitoring area. That is, by adding the operation control device 100 externally to the drive control device 50, the interlock between the robot 30 and the worker is established.
  • FIG. 10 is a flowchart illustrating an example of the operation control process executed by the operation control apparatus 100. Note that the operation control process shown in FIG. 10 is executed at predetermined cycle intervals (for example, 10 msec intervals) by each processing unit included in the operation control apparatus 100.
  • predetermined cycle intervals for example, 10 msec intervals
  • the operation control device 100 determines whether or not a monitoring start signal is input by operating the loading start switches 13 and 14 by the operator (S10).
  • the motion control device 100 detects the motion region associated with the operated loading start switches 13 and 14 (S11).
  • the motion control apparatus 100 validates the detected motion area and sets it as a monitoring area (S12).
  • the operation control apparatus 100 validates or invalidates the light curtain according to the monitoring area. Thereafter, the operation control apparatus 100 ends this routine.
  • the operation control device 100 determines whether or not an entry from the outside by an operator or the like has been detected by the activated light curtain (S13).
  • the motion control device 100 stops the operation of the robot 30 by shutting off the power supply to the servo amplifier 61 when the light curtain detects an entry from the outside by an operator or the like (YES in S13). Thereafter, the operation control apparatus 100 ends this routine.
  • the motion control device 100 detects the current position of the robot 30 based on the rotation direction and rotation angle of each axis detected by the encoder 70 when no entry from the outside is detected by the light curtain (NO in S13). S15).
  • the operation control device 100 determines whether an alarm area is set (S16). If the alarm area is not set (NO in S16), the operation control apparatus 100 proceeds to the process of S19. On the other hand, when the warning area is set (YES in S16), the motion control apparatus 100 determines whether or not the robot 30 is outside the warning area based on the current position of the robot 30 detected in the process of S15. (S17).
  • the operation control device 100 determines that the robot 30 is within the alarm area (NO in S17)
  • the operation control device 100 proceeds to the process of S19.
  • a stop signal is output to the drive control device 50 (S18).
  • the motion control device 100 predicts the stop position of the robot 30 that can proceed by inertial rotation of each axis when the power supply to the servo amplifier 61 is cut off (S19).
  • the motion control device 100 determines whether or not the predicted position of the robot 30 is a position within the range of one monitoring area (S20). When the predicted position of the robot 30 is not within the range of the one monitoring area, that is, when the robot 30 goes out of the range of the one monitoring area by proceeding with inertia (NO in S20), the predicted position of the robot 30 is It is determined whether or not the position is within the range of another monitoring area (S21). When the predicted position of the robot 30 is not a position within the range of the other monitoring area, that is, when the robot 30 goes out of the range of the other monitoring area by proceeding with inertia (NO in S21), The power supply to the servo amplifier 61 is cut off and the operation of the robot 30 is stopped (S22). Thereafter, the operation control apparatus 100 ends this routine.
  • the motion control apparatus 100 does not cut off the power supply to the servo amplifier 61. End the routine.
  • the operation of the robot 30 is limited so that the robot 30 operates in at least one of the plurality of operation regions.
  • the robot 30 is not limited to the motion area 0 as shown in FIG. 8A, and the robot 30 is not limited to the motion area 0, the motion area 1, and the motion area 2 as shown in FIG. It can work. For this reason, work can be efficiently performed by the robot 30. Further, as shown in FIG. 8A, and the robot 30 is not limited to the motion area 0 as shown in FIG. 8A, and the robot 30 is not limited to the motion area 0, the motion area 1, and the motion area 2 as shown in FIG. It can work. For this reason, work can be efficiently performed by the robot 30. Further, as shown in FIG.
  • the area in any one of the operation area 1 and the operation area 2 Is predicted to include the motion range of the robot 30, the power supply to the servo amplifier 61 is not cut off, but the motion range of the robot 30 is not included in any of the motion region 1 and the motion region 2. Is predicted, the power supply to the servo amplifier 61 is cut off. For this reason, the worker can safely proceed with work outside the range of the combined area of the monitoring area 0 and the monitoring area 1. Thereby, the work efficiency by the robot 30 can be improved while ensuring safety.
  • an area where the plurality of operation areas overlap each other is also a monitoring area.
  • the conveyor region is also a monitoring region, and power supply to the servo amplifier 61 is cut off.
  • the power supply is cut off.
  • the determination result can be obtained at a higher speed than in the case where the determination is performed by complicated processing such as image processing using a camera.
  • a stop signal is output from the motion control device 100 to the drive control device 50.
  • the robot 30 is braked and stopped by the control of the servo amplifier 61 by the drive control device 50 before the power supply to the servo amplifier 61 is cut off by the operation control device 100. For this reason, it is possible to avoid beforehand that the power supply to the servo amplifier 61 is interrupted by the operation control device 100.
  • the power supply to the servo amplifier 61 is cut off by the operation control device 100. For this reason, for example, even when an operator enters the monitoring area, it is possible to prevent the operator from being exposed to danger by the robot 30.
  • the light curtain 23 is provided at a boundary portion between the motion region 0 and the motion region 1 and a boundary portion between the motion region 1 and the motion region 2.
  • the light curtain 24 is provided at the boundary between the operation area 0 and the operation area 2 and at the boundary between the operation area 1 and the operation area 2.
  • the light curtains 23 and 24 are provided at the boundary portion where the plurality of operation regions overlap.
  • the light curtains 23 and 24 do not detect an approach from the outside due to an arm or the like if both of the plurality of operation areas are monitoring areas.
  • the light curtains 23 and 24 detect the approach from one monitoring area to the other monitoring area by an arm or the like, and thereby to the servo amplifier 61. There is no inconvenience that the power supply is interrupted.
  • the start switch 12 and the loading start switches 13 and 14 can be associated with one of the operation areas by the operator using the personal computer 11. In this way, since each of the switches is associated with a plurality of activated areas, the worker activates a desired operating area by simply changing the switch to be operated according to the work content.
  • the robot 30 can be operated within the operation area.
  • the plurality of operation areas overlap with each other in a part of the areas, but the present invention is not limited to this.
  • a plurality of operation areas may be adjacent to each other without including an overlapping area. If a plurality of operation areas are adjacent to each other without including overlapping areas, the operation control apparatus 100 may operate as follows. That is, when the motion control device 100 predicts that the motion range of the robot 30 is included in the range of any one of the plurality of adjacent motion regions, the motion control device 100 does not cut off the power supply to the servo amplifier 61, If it is predicted that the operation range of the robot 30 is not included in the range of any of the adjacent operation regions, the power supply to the servo amplifier 61 is cut off.
  • the monitoring area 1 and the monitoring area 2 shown in FIG. 8B are adjacent to each other without overlapping.
  • the motion control apparatus 100 predicts that the robot 30 moves out of the monitoring area 0 and moves to the monitoring area 1, even if the monitoring area 1 is set, the operation range of the robot 30 is within the monitoring area 0 range. Therefore, the power supply to the servo amplifier 61 may be cut off.
  • the operation control apparatus 100 may operate as follows. That is, if the motion control apparatus 100 predicts that the robot 30 is included in the range of any one of a plurality of adjacent motion regions, the motion control device 100 does not cut off the power supply to the servo amplifier 61, but If it is predicted that the robot 30 is not included in any of the operation areas, the power supply to the servo amplifier 61 may be cut off. For example, it is assumed that the monitoring area 1 and the monitoring area 2 shown in FIG. 8B are adjacent to each other without overlapping.
  • the motion control apparatus 100 predicts that the robot 30 is outside the range of the monitoring area 0 and moves to the monitoring area 1, the monitoring area 1 is set, and the robot 30 after the prediction operation is within the range of the monitoring area 1 If included, the power supply to the servo amplifier 61 is not cut off.
  • the motion control apparatus 100 predicts that the robot 30 moves out of the range of the monitoring area 0 and moves to the monitoring area 1, the robot 30 after the predicting operation is monitored even if the monitoring area 1 is set. If not included in the range, the power supply to the servo amplifier 61 may be cut off.
  • the operator can set an operation region in which the operation of the robot 30 is permitted.
  • the operator sets a prohibited region in which entry by the robot 30 is prohibited. It may be possible.
  • the prohibited area is set by a prohibited area setting unit (not shown) of the operation control device 100.
  • the operation control unit 110 cuts off the power supply to the servo amplifier 61 when it is predicted that the robot 30 will enter the prohibited area by proceeding with inertia when the power supply to the servo amplifier 61 is cut off. It may be a thing.
  • the prohibited area is not set by the operator, but may be automatically set by the operation control apparatus 100.
  • the operation area has to be set including the R axis of the robot 30. If the operation region is set without including the R axis of the robot 30 by the operator, the set operation region may be automatically changed to a prohibited region by the operation control device 100.
  • the movable device does not enter the set prohibited area, so that the worker can safely work in the prohibited area.
  • the operator can set the operation area in the direction parallel to the installation surface, but the present invention is not limited to this.
  • the operator may be able to set the operation area in a direction perpendicular to the installation surface.
  • the motion control device 100 determines whether each configuration of the robot 30 is within a predetermined motion region by proceeding with inertia when the power supply to the servo amplifier 61 is cut off. Also good.
  • the motion control device 100 includes a position where the robot 30 is highest (for example, the upper limit point shown in FIG. 2), and a position of the bottom side of the end effector 44 of the robot 30 (for example, the lower limit point shown in FIG. 2). Is determined, and it is determined whether or not the upper limit point and the lower limit point exist in the vertical monitoring area. Then, the motion control device 100 may cut off the power supply to the servo amplifier 61 when it is predicted that the upper limit point and the lower limit point are outside the vertical monitoring region as a result of the determination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

駆動制御装置(100)は、複数の動作領域のうち、少なくとも一の動作領域を有効化して、有効化した動作領域内でロボット(30)が動作するようにロボット(30)の動作を制限する。さらに、駆動制御装置(100)は、動作領域1および動作領域2といった複数の動作領域が有効化された場合、動作領域1および動作領域2のいずれかの動作領域の範囲内にロボット(30)が含まれると予測するとサーボアンプ(61)への電力供給を遮断しない一方で、動作領域1および動作領域2のいずれの動作領域の範囲内にもロボット(30)が含まれないと予測するとサーボアンプ(61)への電力供給を遮断する。

Description

可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法
 本発明は、可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法に関し、特に、駆動制御装置による駆動装置の制御によって動作する可動装置の動作制御装置、可動装置と駆動制御装置と動作制御装置とを備えた動作制御システム、および駆動制御装置による駆動装置の制御によって動作する可動装置の動作制御方法に関する。
 従来より、所定の動作領域内で産業用ロボットなどの可動装置を動作させる制御装置が知られている。
 たとえば、特許第5271499号公報(特許文献1)には、作業者によって設定された動作領域内でロボットを動作させるとともに、ロボットが動作領域外になる場合にロボットへの電力供給を遮断する制御装置が開示されている。この制御装置によれば、作業者によって設定された動作領域内でロボットが動作するようにロボットの動作が制限されるため、ロボットが誤作動などで暴走することがなく、作業者は動作領域外で安全に作業を進めることができる。
特許第5271499号公報
 作業内容によっては、一の動作領域に限るよりも複数の動作領域に亘ってロボットを動作させる方が作業効率が上がる場合がある。その一方で、複数の動作領域に亘ってロボットを動作させようとした場合、ロボットの動作を制限しなければならない領域が増えるため、作業者の安全性を確保することが難しくなる。しかし、特許文献1に開示された制御装置においては、一の動作領域内でロボットを動作させることについては鑑みられているが、複数の動作領域に亘ってロボットを動作させることについては何ら鑑みられていない。このため、特許文献1に開示された制御装置においては、安全性を確保しつつ可動装置による作業効率を向上させることができなかった。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、安全性を確保しつつ可動装置による作業効率を向上させることができる可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法を提供することである。
 本発明は、駆動制御装置による駆動装置の制御によって動作する可動装置の動作制御装置である。動作制御装置は、有効化部と、動作制御部とを備える。有効化部は、可動装置が動作可能な複数の動作領域の中から少なくとも一の動作領域を有効化する。動作制御部は、有効化部によって有効化された動作領域である有効化領域の範囲内で可動装置が動作するように可動装置の動作を制限する。動作制御部は、有効化部によって複数の動作領域に含まれる第1動作領域および第2動作領域が有効化された場合、第1動作領域および第2動作領域のいずれかの動作領域の範囲内に可動装置が含まれると予測すると駆動装置への電力供給を遮断しない一方で、第1動作領域および第2動作領域のいずれの動作領域の範囲内にも可動装置が含まれないと予測すると駆動装置への電力供給を遮断する。
 この動作制御装置によれば、複数の動作領域のうち、少なくとも一の動作領域内で可動装置が動作するように可動装置の動作が制限される。すなわち、一の動作領域に限らず複数の動作領域内でも可動装置が動作できるため、可動装置によって効率よく作業を進めることができる。さらに、第1動作領域および第2動作領域といった複数の動作領域が有効化された場合でも、第1動作領域および第2動作領域のいずれかの動作領域の範囲内に可動装置が含まれると予測されると駆動装置への電力供給が遮断されない一方で、第1動作領域および第2動作領域のいずれの動作領域の範囲内にも可動装置が含まれないと予測されると駆動装置への電力供給が遮断される。このため、作業者は第1動作領域および第2動作領域を併せた領域の範囲外で安全に作業を進めることができる。これにより、安全性を確保しつつ可動装置による作業効率を向上させることができる。
 好ましくは、第1動作領域と第2動作領域とは一部の領域が重複する。第1動作領域および第2動作領域の少なくとも一方が有効化領域である場合、第1動作領域と第2動作領域とが重複する領域も有効化領域となる。
 この動作制御装置によれば、たとえば、第1動作領域が有効化領域であるにも関わらず、第1動作領域と重複する第2動作領域が有効化領域でないことによって、両者が重複する領域が有効化領域ではなくなって駆動装置への電力供給が遮断されてしまうといった不都合が生じない。
 好ましくは、動作制御部は、駆動装置への電力供給を遮断した場合に惰性で進行することによって可動装置が有効化領域の範囲外になると予測すると、駆動装置への電力供給を遮断する。
 この動作制御装置によれば、駆動装置への電力供給が遮断されたときに可動装置が惰性で進行した場合を考慮しても、可動装置が有効化領域の範囲外になることがない。このため、作業者は有効化領域の範囲外で安全に作業を進めることができる。
 好ましくは、動作制御装置は、警報領域設定部をさらに備える。警報領域設定部は、有効化領域の範囲内で所定の警報領域を設定する。動作制御部は、可動装置が警報領域の範囲外になる場合に、駆動制御装置に停止信号を出力することによって駆動制御装置に駆動装置を制御させて可動装置を停止させる。
 この動作制御装置によれば、可動装置が警報領域の範囲外になる場合に駆動制御装置による駆動装置の制御によって可動装置が制動停止される。このため、動作制御装置によって駆動装置への電力供給が遮断されてしまうことを事前に回避することができる。
 好ましくは、動作制御装置は、進入検出部をさらに備える。進入検出部は、有効化領域への外部からの進入を検出するように構成されている。動作制御部は、進入検出部によって有効化領域への外部からの進入が検出された場合、駆動装置への電力供給を遮断する。
 この動作制御装置によれば、有効化領域への外部からの進入があった場合に駆動装置への電力供給が遮断されるため、たとえば、作業者が有効化領域へ進入した場合でも、可動装置によって作業者が危険にさらされてしまうことを回避することができる。
 好ましくは、進入検出部は、第1動作領域と第2動作領域との境界部分に設けられている。進入検出部は、第1動作領域および第2動作領域が有効化領域であれば、外部からの進入を検出しない。
 この動作制御装置によれば、第1動作領域および第2動作領域が有効化領域であるにも関わらず、進入検出部によって一方の有効化領域から他方の有効化領域への進入が検出されることで駆動装置への電力供給が遮断されてしまうといった不都合が生じない。
 好ましくは、動作制御装置は、複数の動作領域に対応付けられた複数の進入検出部を備える。さらに、動作制御装置は、複数の進入検出部のうち、有効化領域への外部からの進入の検出を有効化する進入検出部と、有効化領域への外部からの進入の検出を無効化する進入検出部とを設定する検出有効化設定部を備える。
 この動作制御装置によれば、所望の進入検出部に対して有効化領域への外部からの進入の検出を有効化したり、あるいは無効化したりすることができる。
 好ましくは、動作制御装置は、複数のスイッチのそれぞれに対応付けられた複数の動作領域を有効化する領域有効化設定部をさらに備える。
 この動作制御装置によれば、複数のスイッチのそれぞれと有効化される複数の動作領域とが対応付けられる。このため、作業者は、作業内容に応じて操作するスイッチを変えるだけで所望の動作領域を有効化させてその動作領域内で可動装置を動作させることができる。
 好ましくは、動作制御装置は、可動装置による進入が禁止される禁止領域を設定する禁止領域設定部をさらに備える。動作制御部は、駆動装置への電力供給を遮断した場合に惰性で進行することによって可動装置が禁止領域の範囲内になると予測すると、駆動装置への電力供給を遮断する。
 この動作制御装置によれば、設定された禁止領域内には可動装置が進入することがないため、作業者は禁止領域内で安全に作業を進めることができる。
 本発明に係る動作制御システムは、可動装置と、駆動制御装置と、上述したいずれかの動作制御装置とを備える。
 この動作制御システムによれば、可動装置と駆動制御装置と動作制御装置とを用いることで、安全性を確保しつつ可動装置による作業効率を向上させることができる。
 本発明は、駆動制御装置による駆動装置の制御によって動作する可動装置の動作制御方法である。動作制御方法は、有効化ステップと、動作制御ステップとを備える。有効化ステップは、可動装置が動作可能な複数の動作領域の中から少なくとも一の動作領域を有効化する。動作制御ステップは、有効化ステップによって有効化された動作領域である有効化領域の範囲内で可動装置が動作するように可動装置の動作を制限する。動作制御ステップは、有効化ステップによって複数の動作領域に含まれる第1動作領域および第2動作領域が有効化された場合、第1動作領域および第2動作領域のいずれかの動作領域の範囲内に可動装置が含まれると予測すると駆動装置への電力供給を遮断しない一方で、第1動作領域および前記第2動作領域のいずれの動作領域の範囲内にも可動装置が含まれないと予測すると駆動装置への電力供給を遮断するステップを含む。
 この動作制御方法によれば、複数の動作領域のうち、少なくとも一の動作領域内で可動装置が動作するように可動装置の動作が制限される。すなわち、一の動作領域に限らず複数の動作領域内でも可動装置が動作できるため、可動装置によって効率よく作業を進めることができる。さらに、第1動作領域および第2動作領域といった複数の動作領域が有効化された場合でも、第1動作領域および第2動作領域のいずれかの動作領域の範囲内に可動装置が含まれると予測されると駆動装置への電力供給が遮断されない一方で、第1動作領域および第2動作領域のいずれの動作領域の範囲内にも可動装置が含まれないと予測されると駆動装置への電力供給が遮断される。このため、作業者は第1動作領域および第2動作領域を併せた領域の範囲外で安全に作業を進めることができる。これにより、安全性を確保しつつ可動装置による作業効率を向上させることができる。
ロボットが動作する工場内のレイアウト構成の一例を示す図である。 上面および側面から見たロボットの機械構成を示す図である。 動作制御システムの全体構成を示す図である。 動作領域の設定の一例について説明するための図である。 (a)は動作領域0について説明するための図である。(b)は動作領域1について説明するための図である。(c)は動作領域2について説明するための図である。(d)は動作領域3について説明するための図である。 (a)は監視領域内でのロボットの動作について説明するための図である。(b)は警報領域を逸脱した場合のロボットの動作について説明するための図である。 (a)はロボットのアームを矩形でモデル化した図である。(b)はロボットのウェイトを矩形でモデル化した図である。(c)はロボットのエンドエフェクタを矩形でモデル化した図である。 (a)は監視領域0の範囲内でロボットが積み付け作業を行なう様子を示す図である。(b)は監視領域0および監視領域1を併せた領域の範囲内でロボットが積み付け作業を行なう様子を示す図である。(c)は監視領域0、監視領域1、および監視領域2を併せた領域の範囲内でロボットが積み付け作業を行なう様子を示す図である。 (a)は監視領域0および監視領域2を併せた領域の範囲外に作業者が進入する様子を示す図である。(b)は監視領域0および監視領域2を併せた領域の範囲内に作業者が進入する様子を示す図である。 動作制御装置が実行する動作制御処理の一例を示すフローチャートである。
 本発明の実施形態について、図面を参照しながら詳細に説明する。なお、参照する図面において、同一または相当する部分には同一の参照番号を付してその説明は繰り返さない。
 [工場内のレイアウト構成]
 図1は、ロボット30が動作する工場内のレイアウト構成の一例を示す図である。工場内には、コンベヤ領域がある。コンベヤ領域には、荷物を搬送するコンベヤ26が設置されている。コンベヤ領域の両隣には、第1ステーションおよび第2ステーションが設けられている。第1ステーションには、コンベヤ26で搬送された荷物がロボット30によって積み付けられる第1パレットが設置されている。第2ステーションには、コンベヤ26で搬送された荷物がロボット30によって積み付けられる第2パレットが設置されている。
 第1ステーションと外部との境界、第2ステーションと外部との境界、第1ステーションとコンベヤ領域との境界、第2ステーションとコンベヤ領域との境界、およびコンベヤ領域と外部との境界のそれぞれには、ライトカーテン21~25が設けられている。ライトカーテン21~25は、投光器および受光器を含み、投光器から受光器に向けて出射された光が作業者および搬送物などの物体によって遮られたか否かを検出する。
 このような構成により、ライトカーテン21~25は、所定領域への物体の進入または所定領域からの物体の退出を検出することが可能である。たとえば、ライトカーテン21は、作業者による外部から第1ステーションへの進入を検出する。ライトカーテン23は、作業者による第1ステーションからコンベヤ領域への進入を検出する。なお、ライトカーテン21~25は、「進入検出部」の一実施形態に対応する。
 第1ステーションの付近にはロボット制御盤10が設置されている。ロボット制御盤10には、ロボット30を制御するための複数の装置が組み込まれている。ロボット制御盤10には、起動スイッチ12と、積付開始スイッチ13,14と、積付完了ランプ15,16と、設定用のパソコン11とが結線によって接続されている(結線の図示は省略する)。
 起動スイッチ12は、作業者がロボット30を起動させる際に操作するスイッチである。積付開始スイッチ13,14は、作業者がロボット30を動作させてコンベヤで搬送された荷物をパレットに積み付けさせる際に操作するスイッチである。積付完了ランプ15,16は、ロボット30による積み付け作業が完了したことを点灯または点滅によって作業者に報知するランプである。なお、起動スイッチ12および積付開始スイッチ13,14は、「複数のスイッチ」の一実施形態に対応する。
 [ロボットの機械構成]
 図2は、上面および側面から見たロボット30の機械構成を示す図である。なお、図2に示すロボット30の機械構成は一例であり、その他の機械構成を有するロボットであってもよい。
 本実施の形態のロボット30は、設置面に固定された円筒状の設置台40と、設置台40の上面に設けられた本体部35と、本体部35に接続された下アーム33と、下アーム33とともに本体部35に接続された支持アーム41と、支持アーム41に接続されたウェイト34と、下アーム33および支持アーム41に接続された上アーム32と、上アーム32に接続されたリンク43と、リンク43に接続されたツール31と、ツール31の先端に設けられたエンドエフェクタ44とを備えている。なお、図2において、エンドエフェクタ44の形状は簡略化して示されている。
 本体部35は、設置台40に取り付けられた後述のモータ71の軸(軸45に沿ったモータ軸)に接続されている。下アーム33は、本体部35に取り付けられたモータ71の軸(軸38に沿ったモータ軸)に接続されている。上アーム32は、支持アーム41に取り付けられたモータ71の軸(軸37に沿ったモータ軸)に接続されている。ツール31は、リンク43に取り付けられたモータ71の軸(軸42に沿ったモータ軸)に接続されている。なお、各モータ71の図示は省略する。
 以下では、説明の便宜上、軸45をR軸、軸38をO軸、軸37をD軸、および軸42をT軸と称する。また、下アーム33および上アーム32を単にアームとも称する。
 本体部35は、モータ軸の回転によってR軸を中心に回転する。本体部35の回転に伴ない、アームおよびエンドエフェクタ44が設置面と平行に移動する。
 下アーム33は、モータ軸の回転によってO軸を中心に回転する。上アーム32は、モータ軸の回転によってD軸を中心に回転する。下アーム33のO軸周りの回転または上アーム32のD軸周りの回転に伴ない、エンドエフェクタ44がR軸に近づいたり遠のいたりする。たとえば、下アーム33および上アーム32が設置面と平行に近づくとR軸とエンドエフェクタ44との距離が次第に長くなり、下アーム33および上アーム32が設置面と垂直に近づくとR軸とエンドエフェクタ44との距離が次第に短くなる。
 ウェイト34は、O軸およびD軸に掛かる負荷を軽減する。ウェイト34は、支持アーム41にボルト39で固定されているが、アームの回転に応じて移動する。
 ツール31は、モータ軸の回転によってT軸を中心に回転する。ツール31のT軸周りの回転に伴ない、エンドエフェクタ44が設置面に平行に回転する。
 このように、ロボット30は、本体部35、アーム、およびツール31を動かすことによって、エンドエフェクタ44を所望の位置に移動させるとともに所望の姿勢に維持させることができる。そして、エンドエフェクタ44は、搬送された荷物を掴んでパレットに積み付けることができる。なお、ロボット30は、「可動装置」の一実施形態に対応する。
 [動作制御システムの全体構成]
 図3は、動作制御システム1の全体構成を示す図である。ロボット30の各軸(R軸,O軸,D軸,T軸)には、モータ71と、エンコーダ70と、ブレーキ72とが設けられている。
 モータ71は、たとえばギヤードモータであり、ロボット30の各軸を回転させる。エンコーダ70は、ロボット30の各軸の回転方向および回転角度を検出する。なお、エンコーダ70は、各軸の回転角度を絶対値で検出するアブソリュートエンコーダであってもよいし、各軸の回転角度を所定位置に対する相対値で検出するインクリメンタルエンコーダであってもよい。ブレーキ72は、たとえば無励磁作動形の電磁ブレーキである。ブレーキ72が非通電中はロボット30の各軸にブレーキがかけられる。
 ロボット制御盤10は、電磁開閉器62と、サーボアンプ61と、駆動制御装置50と、動作制御装置100とを備える。
 電磁開閉器62が通電と非通電とで切り替えられることによって、外部に設置された動力電源60とサーボアンプ61との間の経路が閉成または開放される。たとえば、電磁開閉器62が通電中は動力電源60とサーボアンプ61との間の経路が閉成され、動力電源60からの電力がサーボアンプ61に供給される。一方、電磁開閉器62が非通電中は動力電源60とサーボアンプ61との間の経路が開放され、動力電源60からのサーボアンプ61への電力供給が遮断される。なお、電磁開閉器62は、後述する動作制御装置100によって通電と非通電とで切り替えられる。
 サーボアンプ61は、駆動制御装置50からの指令に基づきモータ71を駆動して各軸を回転させる。サーボアンプ61は、電磁開閉器62を介して供給された動力電源60からの電力を用いて作動する。電磁開閉器62が非通電になって動力電源60からの電力供給が遮断された場合、サーボアンプ61はモータ71を駆動することができない。この場合、ロボット30の各軸には各モータ71からの駆動力および制動力が与えられない。したがって、各軸は、いわゆるフリーラン状態で惰性で動作した後に停止する。なお、サーボアンプ61は、「駆動装置」の一実施形態に対応する。なお、サーボアンプ61が有する機能と同じ機能をモータ71が有していてもよく、この場合はモータ71が「駆動装置」の一実施形態に対応する。
 駆動制御装置50は、サーボアンプ61を制御してモータ71を駆動させる。駆動制御装置50は、作業者によって入力されたプログラムに基づきモータの回転速度などをサーボアンプ61に指令する。このように、駆動制御装置50は、サーボアンプ61を制御してモータ71を駆動することによってロボット30を動作させることができる。なお、駆動制御装置50は、「駆動制御装置」の一実施形態に対応する。
 工場内における、ロボット30と作業者との共同した作業を、図1および図2を用いて説明する。作業者が起動スイッチ12を操作すると、駆動制御装置50の制御によってロボット30のシステムが起動して準備状態となる。作業者が積付開始スイッチ13を操作すると、ロボット30がコンベヤ26で搬送された荷物を第1ステーションの第1パレットに積み付けを開始する。ロボット30が第1ステーションで動作している間、作業者は第1ステーションに立ち入らずに外部で待機する。第1パレットでの積み付けが完了すると、積付完了ランプ15が点灯または点滅する。そして、作業者は、第1ステーションに進入し、第1パレットに積み付けられた荷物を外部に運び出す。
 ロボット30は、駆動制御装置50のモータ制御によって動作するが、駆動制御装置50による制御ではロボット30の動作の安全が保障されない虞がある。たとえば、上記の例の場合、ロボット30が第1ステーションで積み付け作業をしているときに駆動制御装置50の誤作動でロボット30が第1ステーションから外部に逸脱する可能性がある。また、駆動制御装置50が取得したエンコーダ70からの検出値に誤差がある場合、駆動制御装置50による制御によってロボット30が誤作動を引き起こす虞もある。一方、既存の駆動制御装置50にセーフティPLC(programmable logic controller)のような制御システムを導入すれば、安全性の確保をより確かなものにすることはできる。しかし、既存の駆動制御装置50を改造などすれば、その分時間もコストも掛かってしまう。
 このため、本実施の形態の動作制御システム1では、駆動制御装置50とは別に安全性を確保するために動作制御装置100が設けられている。動作制御装置100は、既存の駆動制御装置50に結線によって外付けされる。動作制御装置100は、ロボット30が動作可能な領域(動作領域とも称する)のうち、監視中の動作領域(監視領域とも称する)の範囲内でロボット30が動作するようにロボット30の動作を制限する。
 動作領域は、作業者による起動スイッチ12または積付開始スイッチ13,14の操作によって有効化され、監視状態となる。すなわち、作業者は、自分の判断に基づき有効化すべき(監視すべき)動作領域を選択する。監視領域内では動作制御装置100によってロボット30の動作が許可され、監視領域外では動作制御装置100によってロボット30の動作が禁止される。このように、動作制御装置100によって監視領域内でロボット30の動作を制限すれば、作業者は監視領域外で安全に作業を進めることができる。なお、動作制御装置100は、「動作制御装置」の一実施形態に対応する。また、監視領域は、「有効化領域」の一実施形態に対応する。
 [動作領域および監視領域]
 ここで、図4を用いて、動作領域および監視領域について具体的に説明する。図4は、動作領域の設定の一例について説明するための図である。作業者は、パソコン11(図3参照)を用いて、ロボット30の動作領域を予め設定することができる。なお、作業者は、一の動作領域を設定することも、複数の動作領域を設定することもできる。
 動作領域は、ロボット30の設置面と平行方向に設定される。動作領域は、必ずロボット30のR軸を含んで設定されなければならず、最大で16点の頂点を有する多角形で設定される。
 具体的には、ロボット30のR軸の中心がX-Y座標の(0,0)に設定された上で、X-Y座標で表された各頂点が設定される。たとえば、図4に示す例では、R軸の中心がX-Y座標の(0,0)に設定された上で、P(0)がX-Y座標の(X0,Y0)に、P(1)がX-Y座標の(X1,Y1)に、P(2)がX-Y座標の(X2,Y2)に、P(3)がX-Y座標の(X3,Y3)に、P(4)がX-Y座標の(X4,Y4)に設定されている。なお、動作領域は、ロボット30のR軸に加えてその他の軸を含んで設定されてもよいし、R軸を含まずにその他の軸を含んで設定されてもよい。また、動作領域は、16点に限らずその他の数の頂点で設定されてもよいし、矩形に限らず円形などで設定されてもよい。
 このように、作業者は、動作領域を任意に設定することで、動作制御装置100の制御によって作業内容に応じた適切な監視領域内でロボット30を動作させることができる。
 ところで、作業内容によっては、一の動作領域に限るよりも複数の動作領域に亘ってロボット30を動作させる方が作業効率が上がる場合がある。たとえば、図1に示されたレイアウトのように、第1ステーションおよび第2ステーションといった複数のステーションでロボット30による荷物の積み付け作業が必要な場合がある。この場合、作業者は、第1ステーションを含んだ動作領域および第2ステーションを含んだ動作領域を設定した上で、これら複数の動作領域に亘ってロボットを動作させることができれば作業効率を上げることができる。
 そこで、本実施の形態においては、一の動作領域に限らず、複数の動作領域を作業者に設定させることができるようになっている。
 図5は、動作領域0~動作領域3といった4つの動作領域について説明するための図である。図5(a)に示すように、動作領域0はコンベヤ領域を監視するための領域である。監視状態となった動作領域0を監視領域0と称する。図5(b)に示すように、動作領域1はコンベヤ領域および第1ステーションを含む領域を監視するための領域である。監視状態となった動作領域1を監視領域1と称する。図5(c)に示すように、動作領域2はコンベヤ領域および第2ステーションを含む領域を監視するための領域である。監視状態となった動作領域2を監視領域2と称する。図5(d)に示すように、動作領域3はコンベヤ領域、第1ステーション、および第2ステーションを含む領域を監視するための領域である。監視状態となった動作領域3を監視領域3と称する。
 図5に示すように、複数の動作領域は互いに一部の領域で重複している。たとえば、動作領域0と動作領域1とはコンベヤ領域が重複している。動作領域0と動作領域2とはコンベヤ領域が重複している。動作領域0と動作領域3とはコンベヤ領域が重複している。動作領域1と動作領域2とはコンベヤ領域が重複している。動作領域1と動作領域3とはコンベヤ領域および第1ステーションを含む領域が重複している。動作領域2と動作領域3とはコンベヤ領域および第2ステーションを含む領域が重複している。なお、いずれの動作領域においてもコンベヤ領域を含む理由は、本実施の形態の場合、コンベヤ領域にロボット30が設置され、かつ動作領域が必ずロボット30のR軸を含んで設定されるためである。
 このように、一の動作領域に限らず複数の動作領域の範囲内でもロボット30が動作できるため、ロボット30の動作によって効率よく作業を進めることができる。
 [監視領域内でのロボットの動作制限]
 次に、監視領域内でのロボット30の動作制限について、図6(a)および図7を参照しながら説明する。図6(a)は、監視領域内でのロボットの動作について説明するための図であり、図7は、ロボットの各構成を矩形でモデル化した図である。
 図7に示すように、動作制御装置100は、駆動制御装置50の制御によりロボット30が動作している間、ロボット30の各要素を矩形でモデル化して各要素の動作を予測する。たとえば、図7(a)に示すように、動作制御装置100は、ロボット30のアームを矩形でモデル化して、右に旋回するアームの動作を予測する。図7(b)に示すように、動作制御装置100は、ウェイト34を矩形でモデル化して、アームの右旋回に伴なって動くウェイト34の動作を予測する。図7(c)に示すように、動作制御装置100は、エンドエフェクタ44を矩形でモデル化して、アームの右旋回および伸縮に伴なって動くエンドエフェクタ44の動作を予測する。なお、各要素の動作の予測は、各要素の移動範囲および通過経路などの予測を含む。
 動作制御装置100は、駆動制御装置50により制御されてロボット30(正確にはロボット30のアーム、ウェイト34、エンドエフェクタ44)が動作している間、所定周期間隔(たとえば、10msec間隔)ごとにエンコーダ70からの検出値を用いてロボット30の各軸の回転方向および回転角度を算出する。また、動作制御装置100は、仮に電磁開閉器62を非通電にしてサーボアンプ61への電力供給を遮断した場合を所定周期間隔ごとに想定する。
 サーボアンプ61への電力供給が遮断されると、ロボット30の各軸に対するモータの駆動力および制動力がなくなるため、いわゆるフリーラン状態で各軸が惰性で回転する。つまり、サーボアンプ61への電力供給を遮断したとしても、各軸が惰性で回転することによって、ロボット30が電力供給の遮断位置から少し進行することになる。
 そこで、動作制御装置100は、ロボット30の各軸が惰性で回転することによって進行し得るロボット30の停止位置を予測する。ロボット30が停止する予測位置は、サーボアンプ61への電力供給が遮断された時点での各軸の回転角度、回転方向、および回転速度から求められる。
 動作制御装置100は、現在位置でのロボット30のモデル化された矩形の各頂点と、予測位置でのロボット30のモデル化された矩形の各頂点とをそれぞれ繋ぐ線分を割り出す。動作制御装置100は、割り出した各線分と、監視領域の境界線とで、ベクトルの外積計算を用いた交差判定を行なう。動作制御装置100は、線分の交差判定において、割り出したいずれかの線分が監視領域の境界線を交差していないと判定した場合、ロボット30の予測位置が監視領域内の位置であると判定する。一方、動作制御装置100は、線分の交差判定において、割り出したいずれかの線分が監視領域の境界線を交差していると判定した場合、ロボット30の予測位置が監視領域外の位置であると判定する。なお、線分の交差判定は周知の技術であるため詳細な説明は割愛する。
 このように、動作制御装置100は、ロボット30が動作している間、現在位置でサーボアンプ61への電力供給を遮断したときに惰性で進行することによってロボット30が到達する位置を所定周期間隔ごとに予測し、予測した位置が監視領域外になるか否かを判定する。そして、動作制御装置100は、惰性で進行することによってロボット30が監視領域外になると予測するとサーボアンプ61への電力供給を遮断する。
 たとえば、図6(a)に示すように、ロボット30のアームが監視領域内の位置Aから右旋回する場合を想定する。この例において、動作制御装置100は、アームの位置が位置Bであるときの判定で、サーボアンプ61への電力供給を遮断した場合に惰性で進行することによってロボット30が監視領域外になる間際である位置Cまで惰性で進行すると予測する。仮にアームの位置が位置Bを通り過ぎた後にサーボアンプ61への電力供給が遮断されると、惰性で進行することによってロボット30は監視領域外になる可能性が高い。このため、動作制御装置100は、アームが位置Bに達したときにサーボアンプ61への電力供給を遮断する。これにより、アームが惰性で進行しても、監視領域外になる間際である位置Cで停止することになる。
 [警報領域]
 次に、警報領域について説明する。図6(b)は、警報領域を逸脱した場合のロボット30の動作について説明するための図である。作業者は、パソコン11を用いて、監視領域内で警報領域を予め設定することができる。なお、警報領域は、図4を用いて説明した動作領域の設定と同様の方法で設定される。
 前述したように、動作制御装置100は、ロボット30が監視領域外になる手前でサーボアンプ61への電力供給を遮断する。しかし、一旦サーボアンプ61への電力供給が遮断されてしまうと、復旧作業に時間が掛かって作業者の手間になり、また、駆動制御装置50によるロボット30の自動運転が中断されて生産性が下がってしまう。そこで、動作制御装置100は、ロボット30が警報領域外になると、駆動制御装置50にロボット30を制動停止させるための停止信号を出力する。
 たとえば、図6(b)に示すように、ロボット30のアームが監視領域内の位置aから右旋回する場合を想定する。この例において、動作制御装置100は、アームが警報領域外になる間際である位置bに達したときに停止信号を駆動制御装置50に出力する。これにより、駆動制御装置50は、動作制御装置100から停止信号が入力されたときにロボット30を制動停止させることができ、サーボアンプ61への電力供給を遮断することなく監視領域内である位置cでロボット30を制動停止させることができる。
 [動作制御装置の内部構成]
 次に、再び図3を参照しながら動作制御装置100の内部構成について説明する。動作制御装置100は、設定用通信部101によってパソコン11と通信可能である。作業者は、パソコン11で設定ツールのアプリケーションを起動して、設定ツールを介して各種設定を行なうことができる。
 たとえば、作業者によってパソコン11で動作領域を設定するデータ(たとえば、図4に示す各頂点のXおよびYの値)が入力された場合、設定用通信部101は、設定された動作領域を示す信号をパソコン11から受ける。設定用通信部101は、パソコン11から受けた信号を動作領域設定部116に出力する。動作領域設定部116は、設定用通信部101から受けた信号に基づき検出した動作領域を監視対象の動作領域として設定する。そして、動作領域設定部116は、監視対象の動作領域を示す信号を有効化部112に出力する。有効化部112は、動作領域設定部116から受けた信号に基づき、監視対象の動作領域を検出する。
 作業者によってパソコン11で警報領域を設定するデータが入力された場合、設定用通信部101は、設定された警報領域を示す信号をパソコン11から受ける。設定用通信部101は、パソコン11から受けた信号を警報領域設定部113に出力する。警報領域設定部113は、設定用通信部101から受けた信号に基づき検出した警報領域を監視対象の警報領域として設定する。そして、警報領域設定部113は、監視対象の警報領域を示す信号を有効化部112に出力する。有効化部112は、警報領域設定部113から受けた信号に基づき、監視対象の警報領域を検出する。なお、警報領域設定部113は、「警報領域設定部」の一実施形態に対応する。
 また、作業者は、起動スイッチ12および積付開始スイッチ13,14といった各スイッチと監視対象になる動作領域とを対応付けることができる。たとえば、本実施の形態においては、起動スイッチ12が動作領域0に対応し、積付開始スイッチ13が動作領域1に対応し、積付開始スイッチ14が動作領域2に対応する。
 作業者によってパソコン11で各スイッチに対応付ける動作領域を設定するデータが入力された場合、設定用通信部101は、各スイッチに対応付けられた動作領域を示す信号をパソコン11から受ける。設定用通信部101は、パソコン11から受けた信号を監視設定部111に出力する。監視設定部111は、設定用通信部101から受けた信号に基づき、各スイッチに対応付けられた動作領域を設定する。そして、監視設定部111は、設定内容を示す信号を有効化部112に出力する。有効化部112は、監視設定部111から受けた信号に基づき、各スイッチに対応付けられた動作領域を検出する。なお、監視設定部111は、「領域有効化設定部」の一実施形態に対応する。
 さらに、作業者は、複数の動作領域のうち、有効化された動作領域に応じて、ライトカーテン21~25のうち、有効化するライトカーテンおよび無効化するライトカーテンを設定することができる。
 たとえば、本実施の形態においては、動作領域0が有効化されて監視領域0になる場合、ライトカーテン21およびライトカーテン22が無効化される一方で、ライトカーテン23、ライトカーテン24、およびライトカーテン25が有効化される。動作領域1が有効化されて監視領域1になる場合、ライトカーテン22およびライトカーテン23が無効化される一方で、ライトカーテン21、ライトカーテン24、およびライトカーテン25が有効化される。動作領域2が有効化されて監視領域2になる場合、ライトカーテン21およびライトカーテン24が無効化される一方で、ライトカーテン22、ライトカーテン23、およびライトカーテン25が有効化される。動作領域3が有効化されて監視領域3になる場合、ライトカーテン23およびライトカーテン24が無効化される一方でライトカーテン21、ライトカーテン22、およびライトカーテン25が有効化される。
 作業者によってパソコン11で有効化または無効化するライトカーテンを設定するデータが入力された場合、設定用通信部101は、各ライトカーテン21~25について有効化または無効化の設定を示す信号をパソコン11から受信する。設定用通信部101は、パソコン11から受けた信号を監視設定部111に出力する。監視設定部111は、設定用通信部101から受けた信号に基づき、動作領域に対応付けて各ライトカーテン21~25の有効化または無効化を設定する。そして、監視設定部111は、設定内容を示す信号を有効化部112に出力する。有効化部112は、監視設定部111から受けた信号に基づき、各ライトカーテン21~25の有効化または無効化の設定状態を検出する。なお、監視設定部111は、「検出有効化設定部」の一実施形態に対応する。
 各ライトカーテン21~25は、保護停止信号入力部102に接続されている。各ライトカーテン21~25によって作業者などによる外部からの進入が検出された場合、保護停止信号入力部102は、作業者などによる遮光を示す信号を保護停止信号としてライトカーテンから受ける。保護停止信号入力部102は、各ライトカーテン21~25から受けた保護停止信号を動作制御部110に出力する。動作制御部110は、保護停止信号入力部102から受けた保護停止信号に基づき、外部からの進入が検出されたライトカーテンを検出する。動作制御部110は、外部からの進入が検出されたライトカーテンを検出すると、後述のサーボオン出力部108を介して電磁開閉器62を非通電にする信号を電磁開閉器62に出力する。なお、動作制御部110は、「動作制御部」の一実施形態に対応する。
 リセット信号入力部103は、起動スイッチ12に接続されている。作業者によって起動スイッチ12が操作された場合、リセット信号入力部103は、起動スイッチ12が操作されたことによって生成された信号をリセット信号として起動スイッチ12から受ける。リセット信号入力部103は、起動スイッチ12から受けたリセット信号を有効化部112に出力する。有効化部112は、リセット信号入力部103から受けたリセット信号に基づき起動スイッチ12が操作されたことを検出する。そして、有効化部112は、操作された起動スイッチ12に対応付けられた動作領域を検出する。そして、有効化部112は、検出した動作領域を有効化して監視領域とする。本実施の形態において、有効化部112は、リセット信号が入力された場合、動作領域0を有効化して監視領域0とする。
 監視起動信号入力部104は、積付開始スイッチ13,14に接続されている。作業者によって積付開始スイッチ13,14が操作された場合、監視起動信号入力部104は、積付開始スイッチ13,14が操作されたことによって生成された信号を監視起動信号として積付開始スイッチ13,14から受ける。監視起動信号入力部104は、積付開始スイッチ13,14から受けた監視起動信号を有効化部112に出力する。有効化部112は、監視起動信号入力部104から受けた監視起動信号に基づき積付開始スイッチ13,14が操作されたことを検出する。そして、有効化部112は、操作された積付開始スイッチ13,14に対応付けられた動作領域を検出する。さらに、有効化部112は、検出した動作領域を有効化して監視領域とする。本実施の形態において、有効化部112は、積付開始スイッチ13が操作されたことを示す監視起動信号が入力された場合、動作領域1を有効化して監視領域1とする。また、有効化部112は、積付開始スイッチ14が操作されたことを示す監視起動信号が入力された場合、動作領域2を有効化して監視領域2とする。
 有効化部112は、動作領域を有効化して監視領域とした場合、監視領域を示す信号を動作制御部110に出力する。なお、有効化部112は、「有効化部」の一実施形態に対応する。動作制御部110は、有効化部112から受けた信号に基づき監視領域となった動作領域を検出し、検出した監視領域内でロボット30の動作を制限する。
 位置信号入力部105は、ロボット30の各軸に設けられたエンコーダ70に接続されている。位置信号入力部105は、エンコーダ70から駆動制御装置50に対して送信された信号を位置信号として受ける。位置信号入力部105は、エンコーダ70から受けた位置信号を動作制御部110に出力する。動作制御部110は、位置信号入力部105から受けた位置信号に基づき各軸の回転方向および回転角度を算出し、算出した各軸の回転方向および回転角度に基づきロボット30の動作を制限する。
 監視解除信号入力部106は、駆動制御装置50に接続されている。駆動制御装置50の制御によってロボット30の積み付け作業が完了すると、監視解除信号入力部106は、監視領域内での作業が完了したことを示す信号を監視解除信号として駆動制御装置50から受ける。監視解除信号入力部106は、駆動制御装置50から受けた監視解除信号を無効化部115に出力する。無効化部115は、監視解除信号に基づき積み付け作業が完了したことを検出するとともに、作業が完了した監視領域を検出する。そして、無効化部115は、検出した監視領域を無効化して監視状態を解除する。さらに、無効化部115は、監視状態を解除した動作領域を示す信号を動作制御部110に出力する。動作制御部110は、無効化部115から受けた信号に基づき監視状態が解除された動作領域を検出する。
 なお、駆動制御装置50は、ロボット30の積み付け作業が完了すると、積付完了ランプ15,16を点灯または点滅させる。たとえば、駆動制御装置50は、監視領域1の範囲内で第1パレットへの積み付け作業が完了した場合には、積付完了ランプ15を点灯または点滅させ、監視領域2の範囲内で第2パレットへの積み付け作業が完了した場合には、積付完了ランプ16を点灯または点滅させる。
 ステータス通信部107は、駆動制御装置50に接続されている。ステータス通信部107は、動作制御部110の制御に関する状態(たとえば、監視領域および警報領域の設定など)を示す信号を動作制御部110から受ける。ステータス通信部107は、動作制御部110から受けた信号に基づき設定されている監視領域および警報領域を検出し、検出した監視領域および警報領域を示す信号を駆動制御装置50に出力する。駆動制御装置50は、ステータス通信部107から受けた信号に基づき、監視領域および警報領域の範囲内でロボット30を動作させる。たとえば、駆動制御装置50は、監視領域1が設定されている場合、監視領域1の範囲内で積み付け作業を行なう。
 また、ステータス通信部107は、ロボット30が警報領域外になる場合に、駆動制御装置50にロボット30を制動停止させるための停止信号を動作制御部110から受ける。ステータス通信部107は、動作制御部110から受けた停止信号を駆動制御装置50に出力する。駆動制御装置50は、ステータス通信部107から停止信号を受けると、サーボアンプ61を制御してモータ71を制動停止する。これにより、ロボット30は、サーボアンプ61への電力供給が遮断されることなく監視領域内で制動停止される。
 サーボオン出力部108は、電磁開閉器62に接続されている。サーボオン出力部108は、電磁開閉器62を通電または非通電にするための信号を動作制御部110から受ける。サーボオン出力部108は、動作制御部110から受けた信号を電磁開閉器62に出力する。たとえば、動作制御部110は、ロボット30が動作している間、サーボアンプ61への電力供給を遮断した場合に惰性で進行し得るロボット30の位置を所定周期間隔ごとに予測する。そして、動作制御部110は、惰性で進行することによってロボット30が監視領域外になるか否かを予測する。動作制御部110は、惰性で進行することによってロボット30が監視領域外になると予測した場合に、サーボオン出力部108を介して電磁開閉器62を非通電にする信号を電磁開閉器62に出力する。これにより、動力電源60からの電力がサーボアンプ61に供給されず、ロボット30の動作が次第に停止する。
 ブレーキ信号出力部109は、ブレーキ72に接続されている。ブレーキ信号出力部109は、ブレーキ72を通電または非通電にする信号を動作制御部110から受ける。ブレーキ信号出力部109は、動作制御部110から受けた信号をブレーキ信号としてブレーキ72に出力する。たとえば、動作制御部110は、ロボット30の各軸の回転が停止した場合、ブレーキ信号出力部109を介してブレーキ72を非通電にするブレーキ信号をブレーキ72に出力する。これにより、モータ71が停止中はブレーキ72によって各軸にブレーキがかけられる。
 [積み付け作業]
 次に、上記の構成を有する動作制御システム1を用いた積み付け作業の一例について図8および図9を参照しながら説明する。なお、ロボット30の運転モードには、ロボット30が積み付け作業を自動で行なうオートモードと、作業者が手動でロボット30を動かして積み付け作業を行なうマニュアルモードと、ロボット30が積み付け作業を自動で行なうためにロボット30に動作を教え込むティーチモードとがある。図8および図9では、オートモードによるロボット30の動作を示す。
 まず、動作制御装置100の電源が投入されると、駆動制御装置50の制御によってロボット30が動作領域0内のエンコーダ確認位置に移動する。ロボット30はエンコーダ確認位置で各エンコーダ70が有する検出用のディスクの位置を原点補正する。
 図8(a)に示すように、作業者が起動スイッチ12を操作すると、動作領域0のみが有効化されて監視領域0となる。また、監視領域0が設定されたため、ライトカーテン21およびライトカーテン22が無効化される一方で、ライトカーテン23、ライトカーテン24、およびライトカーテン25が有効化される。動作制御装置100は、ライトカーテン23、ライトカーテン24、およびライトカーテン25のいずれかで作業者などの監視領域0への進入が検出されると、サーボアンプ61への電力供給を遮断する。
 図8(b)に示すように、作業者が積付開始スイッチ13を操作すると、新たに動作領域1が有効化されて監視領域1となる。すなわち、監視領域0および監視領域1が動作制御装置100の監視対象となる。駆動制御装置50は、監視領域0および監視領域1を併せた領域の範囲内で第1パレットへの積み付け作業を行なう。そして、動作制御装置100は、監視領域0および監視領域1を併せた領域の範囲内でロボット30が動作するようにロボット30の動作を制限する。具体的に、動作制御装置100は、サーボアンプ61への電力供給を遮断させたときに惰性で進行することによって、監視領域0および監視領域1のいずれかの領域内にロボット30の動作範囲が含まれると予測するとサーボアンプ61への電力供給を遮断しない一方で、監視領域0および監視領域1のいずれの領域内にもロボット30の動作範囲が含まれないと予測するとサーボアンプ61への電力供給を遮断してロボット30の動作を停止させる。
 たとえば、図8(a)に示すように監視領域0のみが設定されている場合、動作制御装置100は、ロボット30が監視領域0の範囲内で動作する間はサーボアンプ61への電力供給を遮断しない。一方、動作制御装置100は、ロボット30が監視領域0の範囲外になると予測した場合、サーボアンプ61への電力供給を遮断する。しかし、動作制御装置100は、ロボット30が監視領域0の範囲外になると予測した場合であっても、図8(b)に示すように監視領域1が設定されている場合、ロボット30の動作範囲は監視領域1に含まれる。この場合、動作制御装置100は、サーボアンプ61への電力供給を遮断しない。
 また、監視領域0に加えて監視領域1が設定されたため、新たにライトカーテン23が無効化されるとともにライトカーテン21が有効化される。動作制御装置100は、ライトカーテン21、ライトカーテン24、およびライトカーテン25のいずれかで作業者などの監視領域への進入が検出された場合、サーボアンプ61への電力供給を遮断する。一方、ライトカーテン23は無効化されているため、動作制御装置100は、ロボット30がライトカーテン23を通過してもサーボアンプ61への電力供給を遮断しない。
 図8(c)に示すように、作業者が積付開始スイッチ14を操作すると、新たに動作領域2が有効化されて監視領域2となる。すなわち、監視領域0、監視領域1、および監視領域2が動作制御装置100の監視対象となる。駆動制御装置50は、監視領域0、監視領域1、および監視領域2を併せた領域の範囲内で第1パレットおよび第2パレットへの積み付け作業を行なう。そして、動作制御装置100は、監視領域0、監視領域1、および監視領域2を併せた領域の範囲内でロボット30が動作するようにロボット30の動作を制限する。具体的に、動作制御装置100は、サーボアンプ61への電力供給を遮断させたときに惰性で進行することによって、監視領域0、監視領域1、および監視領域2のいずれかの領域内にロボット30の動作範囲が含まれると予測するとサーボアンプ61への電力供給を遮断しない一方で、監視領域0、監視領域1、および監視領域2のいずれの領域内にもロボット30の動作範囲が含まれないと予測するとサーボアンプ61への電力供給を遮断してロボット30の動作を停止させる。
 また、監視領域0および監視領域1に加えて監視領域2が設定されたため、新たにライトカーテン24が無効化されるとともにライトカーテン22が有効化される。動作制御装置100は、ライトカーテン21、ライトカーテン22、およびライトカーテン25のいずれかで作業者などの監視領域への進入が検出された場合、サーボアンプ61への電力供給を遮断する。一方、ライトカーテン23およびライトカーテン24は無効化されているため、動作制御装置100は、ロボット30がライトカーテン23およびライトカーテン24を通過してもサーボアンプ61への電力供給を遮断しない。
 図9(a)に示すように、第1パレットへの積み付け作業が完了すると、駆動制御装置50は、積付完了ランプ15を点灯または点滅させる。そして、動作制御装置100は、監視領域1を無効化して監視状態を解除する。監視領域1が無効化されたため、ライトカーテン21が無効化される。このため、作業者はライトカーテン21を通って第1ステーション内に進入することができ、積み付け作業が完了した第1パレットを外部に搬出することができる。
 一方、図9(b)に示すように、監視領域1が無効化されたため、ライトカーテン23が有効化される。このため、作業者が不意にライトカーテン23を通過してしまうと、動作制御装置100によってサーボアンプ61への電力供給が遮断される。
 このように、複数の動作領域のうち、作業内容に応じて所定の動作領域が有効化され、さらに、いずれの動作領域が有効化されたかに応じて有効化されるライトカーテンと無効化されるライトカーテンとに分けられる。さらに、動作制御装置100によって、監視領域内でロボットの動作が制限されるため、作業者は監視領域外で安全に作業を進めることができる。すなわち、駆動制御装置50に外付けて動作制御装置100を加えることによって、ロボット30と作業者とのインターロックが確立される。
 [動作制御装置の処理]
 次に、動作制御装置100の具体的な処理について図10のフローを参照しながら説明する。図10は、動作制御装置100が実行する動作制御処理の一例を示すフローチャートである。なお、図10に示す動作制御処理は、動作制御装置100が有する各処理部によって所定周期間隔(たとえば、10msec間隔)で実行される。
 動作制御装置100は、作業者によって積付開始スイッチ13,14が操作されることで監視起動信号が入力されたか否かを判定する(S10)。動作制御装置100は、監視起動信号が入力された場合(S10でYES)、操作された積付開始スイッチ13,14に対応付けられた動作領域を検出する(S11)。動作制御装置100は、検出した動作領域を有効化して監視領域とする(S12)。なお、このとき、動作制御装置100は、監視領域に応じてライトカーテンを有効化または無効化する。その後、動作制御装置100は、本ルーチンを終了する。
 動作制御装置100は、監視起動信号が入力されていない場合(S10でNO)、有効化されているライトカーテンによって作業者などによる外部からの進入を検出したか否かを判定する(S13)。動作制御装置100は、ライトカーテンによって作業者などによる外部からの進入を検出した場合(S13でYES)、サーボアンプ61への電力供給を遮断してロボット30の動作を停止させる(S14)。その後、動作制御装置100は、本ルーチンを終了する。
 動作制御装置100は、ライトカーテンによって外部からの進入を検出していない場合(S13でNO)、エンコーダ70によって検出された各軸の回転方向および回転角度に基づきロボット30の現在位置を検出する(S15)。
 動作制御装置100は、警報領域が設定されているか否かを判定する(S16)。動作制御装置100は、警報領域が設定されていない場合(S16でNO)、S19の処理に移行する。一方、動作制御装置100は、警報領域が設定されている場合(S16でYES)、S15の処理で検出したロボット30の現在位置に基づいて、ロボット30が警報領域外であるか否かを判定する(S17)。
 動作制御装置100は、ロボット30が警報領域内であると判定した場合(S17でNO)、S19の処理に移行する。一方、ロボット30が警報領域外であると判定した場合(S17でYES)、駆動制御装置50に停止信号を出力する(S18)。
 S19の処理において、動作制御装置100は、サーボアンプ61への電力供給を遮断した場合に各軸の惰性回転によって進行し得るロボット30の停止位置を予測する(S19)。
 動作制御装置100は、ロボット30の予測位置が一の監視領域の範囲内の位置であるか否かを判定する(S20)。ロボット30の予測位置が一の監視領域の範囲内の位置でない、すなわち惰性で進行することによって、ロボット30が一の監視領域の範囲外になる場合(S20でNO)、ロボット30の予測位置が他の監視領域の範囲内の位置であるか否かを判定する(S21)。動作制御装置100は、ロボット30の予測位置が他の監視領域の範囲内の位置でない、すなわち惰性で進行することによって、ロボット30が他の監視領域の範囲外になる場合(S21でNO)、サーボアンプ61への電力供給を遮断してロボット30の動作を停止させる(S22)。その後、動作制御装置100は、本ルーチンを終了する。
 一方、動作制御装置100は、ロボット30の予測位置がいずれかの監視領域の範囲内の位置である場合(S20でYESまたはS21でYES)、サーボアンプ61への電力供給を遮断することなく本ルーチンを終了する。
 以上のように、複数の動作領域のうち、少なくとも一の動作領域内でロボット30が動作するようにロボット30の動作が制限される。たとえば、図8(a)に示すように動作領域0のみに限らず、図8(c)に示すように動作領域0、動作領域1、および動作領域2といった複数の動作領域内でもロボット30が動作できる。このため、ロボット30によって効率よく作業を進めることができる。さらに、図8(b)に示すように、動作領域0および動作領域1といった複数の動作領域が有効化されて監視領域となった場合でも、動作領域1および動作領域2のいずれかの領域内にロボット30の動作範囲が含まれると予測されるとサーボアンプ61への電力供給が遮断されない一方で、動作領域1および動作領域2のいずれの領域内にもロボット30の動作範囲が含まれないと予測されるとサーボアンプ61への電力供給が遮断される。このため、作業者は監視領域0および監視領域1を併せた領域の範囲外で安全に作業を進めることができる。これにより、安全性を確保しつつロボット30による作業効率を向上させることができる。
 複数の動作領域のうちの少なくとも一方が監視領域である場合、複数の動作領域が互いに重複する領域も監視領域となる。たとえば、動作領域1と動作領域2とが重複するコンベヤ領域では、動作領域1および動作領域2の少なくとも一方が監視領域であれば、コンベヤ領域も監視領域となり、サーボアンプ61への電力供給が遮断されない。このため、たとえば、動作領域1が監視状態であるにも関わらず、動作領域1と重複する動作領域2が監視状態でないことによって、両者が重複する領域が監視領域ではなくなってサーボアンプ61への電力供給が遮断されてしまうといった不都合が生じない。
 サーボアンプ61への電力供給が遮断された場合に惰性で進行することによってロボット30が監視領域外になると予測されると、サーボアンプ61への電力供給が遮断される。このため、サーボアンプ61への電力供給が遮断されたときにロボット30が惰性で進行した場合を考慮しても、ロボット30が監視領域外になることがない。このため、作業者は監視領域外で安全に作業を進めることができる。
 また、ロボット30の予測位置が監視領域外の位置であるか否かの判定は、線分の交差判定で行なわれる。このため、カメラを用いた画像処理のような複雑な処理で判定する場合に比べて、高速で判定結果を得ることができる。
 ロボット30が警報領域外になる場合に動作制御装置100から駆動制御装置50に停止信号が出力される。これにより、動作制御装置100によってサーボアンプ61への電力供給が遮断される前に駆動制御装置50によるサーボアンプ61の制御によってロボット30が制動停止される。このため、動作制御装置100によってサーボアンプ61への電力供給が遮断されてしまうことを事前に回避することができる。
 有効化されたライトカーテンによって監視領域への作業者などによる外部からの進入があった場合、動作制御装置100によってサーボアンプ61への電力供給が遮断される。このため、たとえば、作業者が監視領域へ進入した場合でも、ロボット30によって作業者が危険にさらされてしまうことを回避することができる。
 図8に示すように、ライトカーテン23は、動作領域0と動作領域1との境界部分、および動作領域1と動作領域2との境界部分に設けられている。また、ライトカーテン24は、動作領域0と動作領域2との境界部分、および動作領域1と動作領域2との境界部分に設けられている。このように、ライトカーテン23,24は複数の動作領域が重なる境界部分に設けられている。そして、ライトカーテン23,24は、複数の動作領域の両方が監視領域であれば、アームなどによる外部からの進入を検出しない。これにより、複数の動作領域の両方が監視領域であるにも関わらず、ライトカーテン23,24によって一方の監視領域から他方の監視領域へのアームなどによる進入が検出されることでサーボアンプ61への電力供給が遮断されてしまうといった不都合が生じない。
 複数の動作領域に対応付けられた複数のライトカーテンがあり、作業者はパソコン11を用いて、有効化するライトカーテンおよび無効化するライトカーテンを設定することができる。このように、所望のライトカーテンに対して監視領域への外部からの進入の検出を有効化したり、あるいは無効化したりすることができる。
 起動スイッチ12および積付開始スイッチ13,14は、作業者がパソコン11を用いていずれかの動作領域に対応付けることができる。このように、各スイッチのそれぞれと有効化される複数の動作領域とが対応付けられるため、作業者は、作業内容に応じて操作するスイッチを変えるだけで所望の動作領域を有効化させてその動作領域内でロボット30を動作させることができる。
 また、各スイッチと有効化される動作領域とを対応付けること、スイッチが操作されたときにスイッチに対応する動作領域が有効化されること、監視領域に応じてライトカーテンを有効化または無効化すること、および積み付け作業が完了したときに監視領域が無効化されることなど、これら全てを作業者はパソコンを用いて予め設定することができる。このため、セーフティPLCのような特別な制御装置を用いてプログラムを組む必要がない。
 [変形例]
 以上、本発明における主な実施の形態を説明してきたが、本発明は、上記の実施の形態に限られない。
 本実施の形態においては、複数の動作領域が互いに一部の領域で重複するものであったが、これに限らない。たとえば、複数の動作領域が互いに重複する領域を含むことなく隣接するものであってもよい。仮に、複数の動作領域が互いに重複する領域を含むことなく隣接する場合、動作制御装置100は、以下のように動作してもよい。すなわち、動作制御装置100は、隣り合う複数の動作領域のうちのいずれかの動作領域の範囲内にロボット30の動作範囲が含まれると予測するとサーボアンプ61への電力供給を遮断しない一方で、隣り合う複数の動作領域のうちのいずれの動作領域の範囲内にもロボット30の動作範囲が含まれないと予測するとサーボアンプ61への電力供給を遮断する。たとえば、図8(b)に示す監視領域1と監視領域2とが重複せずに隣接する場合を想定する。動作制御装置100は、ロボット30が監視領域0の範囲外になって監視領域1に移動すると予測した場合、監視領域1が設定されていても、ロボット30の動作範囲が監視領域0の範囲内に含まれないため、サーボアンプ61への電力供給を遮断するものであってもよい。
 なお、上記の例に限らず、複数の動作領域が互いに重複する領域を含むことなく隣接する場合、動作制御装置100は、以下のように動作してもよい。すなわち、動作制御装置100は、隣り合う複数の動作領域のうちのいずれかの動作領域の範囲内にロボット30が含まれると予測するとサーボアンプ61への電力供給を遮断しない一方で、隣り合う複数の動作領域のうちのいずれの動作領域の範囲内にもロボット30が含まれないと予測するとサーボアンプ61への電力供給を遮断するものであってもよい。たとえば、図8(b)に示す監視領域1と監視領域2とが重複せずに隣接する場合を想定する。動作制御装置100は、ロボット30が監視領域0の範囲外になって監視領域1に移動すると予測した場合、監視領域1が設定されており、かつ予測動作後のロボット30が監視領域1の範囲内に含まれていれば、サーボアンプ61への電力供給を遮断しない。一方、動作制御装置100は、ロボット30が監視領域0の範囲外になって監視領域1に移動すると予測した場合、監視領域1が設定されていても、予測動作後のロボット30が監視領域1の範囲内に含まれていなければ、サーボアンプ61への電力供給を遮断するものであってもよい。
 本実施の形態においては、ロボット30の動作が許可される動作領域を作業者によって設定することができるようになっていたが、ロボット30による進入が禁止される禁止領域を作業者によって設定することができるものであってもよい。たとえば、作業者は、パソコン11から禁止領域を設定するための指令を入力すると、動作制御装置100が有する禁止領域設定部(図示は省略)によって禁止領域が設定される。そして、動作制御部110は、サーボアンプ61への電力供給を遮断した場合に惰性で進行することによってロボット30が禁止領域内に進入すると予測した場合に、サーボアンプ61への電力供給を遮断するものであってもよい。
 また、禁止領域は、作業者によって設定するものではなく、動作制御装置100によって自動的に設定されるものであってもよい。たとえば、図4などに示す本実施の形態の例では、動作領域はロボット30のR軸を含んで設定されなければならなかった。仮に作業者によってロボット30のR軸を含まずに動作領域が設定された場合、設定された動作領域は動作制御装置100によって禁止領域に自動的に変更されるものであってもよい。
 このように、禁止領域を設けることにより、設定された禁止領域内には可動装置が進入することがないため、作業者は禁止領域内で安全に作業を進めることができる。
 本実施の形態においては、作業者は設置面と平行方向に動作領域を設定することができたが、これに限らない。たとえば、作業者は設置面と垂直方向に動作領域を設定することができてもよい。さらに、動作制御装置100は、サーボアンプ61への電力供給を遮断したときに惰性で進行することによって、ロボット30の各構成が所定の動作領域内であるか否かを判定するものであってもよい。
 具体的に、動作制御装置100は、ロボット30が最も高くなる位置(たとえば、図2に示す上限点)と、ロボット30のエンドエフェクタ44の底辺の位置(たとえば、図2に示す下限点)とを予測し、上限点および下限点が垂直方向の監視領域内に存在するか否かを判定する。そして、動作制御装置100は、判定の結果、上限点および下限点が垂直方向の監視領域外になると予測された場合にサーボアンプ61への電力供給を遮断するものであってもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 動作制御システム、10 ロボット制御盤、11 パソコン、12 起動スイッチ、13,14 積付開始スイッチ、21~25 ライトカーテン、30 ロボット、50 駆動制御装置、60 動力電源、61 サーボアンプ、62 電磁開閉器、71 モータ、100 動作制御装置、110 動作制御部、112 有効化部、113 警報領域設定部。

Claims (11)

  1.  駆動制御装置による駆動装置の制御によって動作する可動装置の動作制御装置であって、
     前記可動装置が動作可能な複数の動作領域の中から少なくとも一の動作領域を有効化する有効化部と、
     前記有効化部によって有効化された動作領域である有効化領域の範囲内で前記可動装置が動作するように前記可動装置の動作を制限する動作制御部とを備え、
     前記動作制御部は、前記有効化部によって複数の動作領域に含まれる第1動作領域および第2動作領域が有効化された場合、前記第1動作領域および前記第2動作領域のいずれかの動作領域の範囲内に前記可動装置が含まれると予測すると前記駆動装置への電力供給を遮断しない一方で、前記第1動作領域および前記第2動作領域のいずれの動作領域の範囲内にも前記可動装置が含まれないと予測すると前記駆動装置への電力供給を遮断する、動作制御装置。
  2.  前記第1動作領域と前記第2動作領域とは一部の領域が重複し、
     前記第1動作領域および前記第2動作領域の少なくとも一方が前記有効化領域である場合、前記第1動作領域と前記第2動作領域とが重複する領域も前記有効化領域となる、請求項1に記載の動作制御装置。
  3.  前記動作制御部は、前記駆動装置への電力供給を遮断した場合に惰性で進行することによって前記可動装置が前記有効化領域の範囲外になると予測すると、前記駆動装置への電力供給を遮断する、請求項1または2に記載の動作制御装置。
  4.  前記有効化領域の範囲内で所定の警報領域を設定する警報領域設定部をさらに備え、
     前記動作制御部は、前記可動装置が前記警報領域の範囲外になる場合に、前記駆動制御装置に停止信号を出力することによって前記駆動制御装置に前記駆動装置を制御させて前記可動装置を停止させる、請求項1~3のいずれかに記載の動作制御装置。
  5.  前記有効化領域への外部からの進入を検出するように構成された進入検出部をさらに備え、
     前記動作制御部は、前記進入検出部によって前記進入が検出された場合、前記駆動装置への電力供給を遮断する、請求項1~4のいずれかに記載の動作制御装置。
  6.  前記進入検出部は、
     前記第1動作領域と前記第2動作領域との境界部分に設けられ、
     前記第1動作領域および前記第2動作領域が前記有効化領域であれば、前記進入を検出しない、請求項5に記載の動作制御装置。
  7.  複数の動作領域に対応付けられた複数の前記進入検出部を備え、
     複数の前記進入検出部のうち、前記有効化領域への外部からの進入の検出を有効化する前記進入検出部と、前記有効化領域への外部からの進入の検出を無効化する前記進入検出部とを設定する検出有効化設定部をさらに備える、請求項5または6に記載の動作制御装置。
  8.  複数のスイッチのそれぞれに対応付けられた複数の動作領域を有効化する領域有効化設定部をさらに備える、請求項1~7のいずれかに記載の動作制御装置。
  9.  前記可動装置による進入が禁止される禁止領域を設定する禁止領域設定部をさらに備え、
     前記動作制御部は、前記駆動装置への電力供給を遮断した場合に惰性で進行することによって前記可動装置が前記禁止領域の範囲内になると予測すると、前記駆動装置への電力供給を遮断する、請求項1~8のいずれかに記載の動作制御装置。
  10.  前記可動装置と、前記駆動制御装置と、請求項1~9のいずれかに記載の前記動作制御装置とを備える、動作制御システム。
  11.  駆動制御装置による駆動装置の制御によって動作する可動装置の動作制御方法であって、
     前記可動装置が動作可能な複数の動作領域の中から少なくとも一の動作領域を有効化する有効化ステップと、
     前記有効化ステップによって有効化された動作領域である有効化領域の範囲内で前記可動装置が動作するように前記可動装置の動作を制限する動作制御ステップとを備え、
     前記動作制御ステップは、前記有効化ステップによって複数の動作領域に含まれる第1動作領域および第2動作領域が有効化された場合、前記第1動作領域および前記第2動作領域のいずれかの動作領域の範囲内に前記可動装置が含まれると予測すると前記駆動装置への電力供給を遮断しない一方で、前記第1動作領域および前記第2動作領域のいずれの動作領域の範囲内にも前記可動装置が含まれないと予測すると前記駆動装置への電力供給を遮断するステップを含む、動作制御方法。
PCT/JP2015/078506 2015-10-07 2015-10-07 可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法 WO2017060989A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580083560.0A CN108136602A (zh) 2015-10-07 2015-10-07 可动装置的动作控制装置、动作控制系统和可动装置的动作控制方法
PCT/JP2015/078506 WO2017060989A1 (ja) 2015-10-07 2015-10-07 可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法
EP15905809.8A EP3360655A4 (en) 2015-10-07 2015-10-07 MOTION CONTROL DEVICE FOR MOVABLE DEVICE, MOTOR CONTROL SYSTEM, AND METHOD FOR MOTION CONTROL FOR A MOBILE DEVICE
US15/766,493 US10836035B2 (en) 2015-10-07 2015-10-07 Operation control device for movable apparatus, operation control system, and method of controlling operations by movable apparatus
JP2017544116A JP6522769B2 (ja) 2015-10-07 2015-10-07 可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法
AU2015411123A AU2015411123B2 (en) 2015-10-07 2015-10-07 Operation Control Device for Movable Apparatus, Operation Control System, and Method of Controlling Operations by Movable Apparatus
KR1020187011740A KR102053557B1 (ko) 2015-10-07 2015-10-07 가동장치의 동작 제어 장치, 동작 제어 시스템 및 가동장치의 동작 제어 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078506 WO2017060989A1 (ja) 2015-10-07 2015-10-07 可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法

Publications (1)

Publication Number Publication Date
WO2017060989A1 true WO2017060989A1 (ja) 2017-04-13

Family

ID=58487321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078506 WO2017060989A1 (ja) 2015-10-07 2015-10-07 可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法

Country Status (7)

Country Link
US (1) US10836035B2 (ja)
EP (1) EP3360655A4 (ja)
JP (1) JP6522769B2 (ja)
KR (1) KR102053557B1 (ja)
CN (1) CN108136602A (ja)
AU (1) AU2015411123B2 (ja)
WO (1) WO2017060989A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109129578A (zh) * 2017-06-28 2019-01-04 得利捷Ip 科技有限公司 安全系统
US10421187B2 (en) 2017-01-26 2019-09-24 Fanuc Corporation Robot program modification device, robot control device, robot simulation device, and robot program modification method
WO2020137176A1 (ja) * 2018-12-28 2020-07-02 京セラドキュメントソリューションズ株式会社 制御装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107378941B (zh) * 2016-05-16 2022-02-18 精工爱普生株式会社 机器人、控制装置以及机器人系统
JP7227745B2 (ja) * 2018-11-16 2023-02-22 花王株式会社 パレタイズ装置
EP3838504A1 (de) * 2019-12-19 2021-06-23 FRONIUS INTERNATIONAL GmbH Verfahren und vorrichtung zur überwachung eines bearbeitungsprozesses und bearbeitungsmaschine mit einer solchen vorrichtung
US11738956B2 (en) * 2021-01-26 2023-08-29 Target Brands, Inc. Door and light curtain control system for depalletization systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416395A (en) * 1987-07-09 1989-01-19 Fanuc Ltd Controller for industrial robot
JP2003275988A (ja) * 2002-01-15 2003-09-30 Yaskawa Electric Corp 可動範囲制限装置
JP2007283450A (ja) * 2006-04-18 2007-11-01 National Institute Of Advanced Industrial & Technology 人間ロボット共存作業用安全装置
JP2010269419A (ja) * 2009-05-22 2010-12-02 Ihi Corp ロボット制御装置およびその制御方法
JP2011212831A (ja) * 2010-03-15 2011-10-27 Yaskawa Electric Corp ロボットシステム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271499A (en) 1975-12-08 1977-06-14 Morita Kagaku Kogyo Improvement of solubility of steviocide
JPS60195602A (ja) 1984-03-16 1985-10-04 Matsushita Electric Ind Co Ltd ロボツト
JP2000006083A (ja) * 1998-06-17 2000-01-11 Komori Corp ロボットの可動範囲制限装置
JP3910130B2 (ja) * 2002-09-30 2007-04-25 ファナック株式会社 ロボットシステム
JP2005081445A (ja) * 2003-09-04 2005-03-31 Fanuc Ltd ロボットの干渉領域確認装置
JP2005305557A (ja) * 2004-04-16 2005-11-04 Funai Electric Co Ltd 移動作業ロボット
US8032253B2 (en) * 2005-03-25 2011-10-04 Kabushiki Kaisha Yaskawa Denki Automatic machine system and wireless communication method thereof
JP5271499B2 (ja) 2007-03-01 2013-08-21 株式会社安川電機 ロボットシステム
CN101984750B (zh) * 2007-10-01 2013-01-09 Abb技术有限公司 用于在工业机器人系统中控制多个轴线的方法以及工业机器人系统
JP5365524B2 (ja) * 2007-12-07 2013-12-11 株式会社安川電機 ロボット動作規制方法およびロボットシステム
FR2938508B1 (fr) * 2008-11-14 2010-12-17 Sidel Participations Installation de palettisation combinee avec acces securise
JP4648486B2 (ja) * 2009-01-26 2011-03-09 ファナック株式会社 人間とロボットとの協調動作領域を有する生産システム
JP5778891B2 (ja) 2010-01-27 2015-09-16 川崎重工業株式会社 ロボット制御装置
JP5673716B2 (ja) * 2013-03-19 2015-02-18 株式会社安川電機 ロボットシステム及び被加工物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416395A (en) * 1987-07-09 1989-01-19 Fanuc Ltd Controller for industrial robot
JP2003275988A (ja) * 2002-01-15 2003-09-30 Yaskawa Electric Corp 可動範囲制限装置
JP2007283450A (ja) * 2006-04-18 2007-11-01 National Institute Of Advanced Industrial & Technology 人間ロボット共存作業用安全装置
JP2010269419A (ja) * 2009-05-22 2010-12-02 Ihi Corp ロボット制御装置およびその制御方法
JP2011212831A (ja) * 2010-03-15 2011-10-27 Yaskawa Electric Corp ロボットシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3360655A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421187B2 (en) 2017-01-26 2019-09-24 Fanuc Corporation Robot program modification device, robot control device, robot simulation device, and robot program modification method
CN109129578A (zh) * 2017-06-28 2019-01-04 得利捷Ip 科技有限公司 安全系统
WO2020137176A1 (ja) * 2018-12-28 2020-07-02 京セラドキュメントソリューションズ株式会社 制御装置
JPWO2020137176A1 (ja) * 2018-12-28 2021-10-28 京セラドキュメントソリューションズ株式会社 制御装置
JP7156397B2 (ja) 2018-12-28 2022-10-19 京セラドキュメントソリューションズ株式会社 制御装置

Also Published As

Publication number Publication date
AU2015411123B2 (en) 2021-05-20
KR102053557B1 (ko) 2019-12-06
US20180297201A1 (en) 2018-10-18
EP3360655A4 (en) 2019-07-03
KR20180061268A (ko) 2018-06-07
US10836035B2 (en) 2020-11-17
JPWO2017060989A1 (ja) 2018-07-05
AU2015411123A1 (en) 2018-05-17
CN108136602A (zh) 2018-06-08
JP6522769B2 (ja) 2019-05-29
EP3360655A1 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
WO2017060989A1 (ja) 可動装置の動作制御装置、動作制御システム、および可動装置の動作制御方法
JP4168072B2 (ja) ロボットシステム
JP5343641B2 (ja) ロボット装置の制御装置及びロボット装置の制御方法
US9914221B2 (en) Teleoperation of machines having at least one actuated mechanism and a fault detection and recovery system
JP4817084B2 (ja) モータ駆動システム及びモータ制御装置
US10220862B2 (en) Method for operating a transport assembly in the form of a linear stator linear motor
CN106313040B (zh) 机器人系统
JP2008307618A (ja) ロボットの制御装置
US8452443B2 (en) Method for controlling a plurality of axes in an industrial robot system and an industrial robot system
JP2008191823A (ja) 安全管理方法、安全管理システムおよび安全制御機器
US9764484B2 (en) Industrial robot system optically indicating motion area of robot
CN108290292B (zh) 可变保护区的显示
JP2009050958A (ja) 停止監視機能を備えたロボット制御装置
JP2008225518A (ja) 異常時モータ減速停止制御手段を有する数値制御装置
KR20130096195A (ko) 매니퓰레이터 공정을 실행하기 위한 방법 및 장치
US10569431B2 (en) Industrial robot system optically indicating motion area of robot
JP2015000470A (ja) ロボット制御装置及びロボット制御方法
US20200171662A1 (en) Monitor system for robot and robot system
Koeppe et al. Robot-robot and human-robot cooperation in commercial robotics applications
JP6240422B2 (ja) ロボット制御システム及びロボット制御方法
JP6474339B2 (ja) ブレーキの異常による駆動軸における部材の移動を停止する機械
JP7011910B2 (ja) ロボットシステム
US20230273603A1 (en) System and Method for Adjusting Fail-Safe Monitoring in an Industrial Automation Plant
JP2009233852A (ja) 停止監視機能を備えたロボット制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544116

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766493

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011740

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015905809

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015411123

Country of ref document: AU

Date of ref document: 20151007

Kind code of ref document: A