WO2017060986A1 - 冷凍サイクル装置 - Google Patents
冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2017060986A1 WO2017060986A1 PCT/JP2015/078485 JP2015078485W WO2017060986A1 WO 2017060986 A1 WO2017060986 A1 WO 2017060986A1 JP 2015078485 W JP2015078485 W JP 2015078485W WO 2017060986 A1 WO2017060986 A1 WO 2017060986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- compressor
- decompression device
- refrigerant
- refrigeration cycle
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
Definitions
- the present invention relates to a refrigeration cycle apparatus that can be operated by switching between a cooling mode and a heating mode.
- the liquid refrigerant after passing through the decompression device becomes a gas refrigerant in a heat exchanger functioning as an evaporator, and this gas refrigerant is sucked into the compressor.
- the refrigerant sucked by the compressor is in a gas state. This is because if the liquid refrigerant is sucked into the compressor, the compressor may be broken, and the operation efficiency of the refrigeration cycle is reduced.
- a gas-liquid separator (accumulator) is provided on the suction side of the compressor, thereby suppressing liquid refrigerant from flowing into the compressor.
- the volume of the accumulator is generally set to about 70% of the total amount of refrigerant circulating in the refrigeration cycle apparatus in order to suppress the inflow of liquid refrigerant into the compressor.
- the accumulator is generally installed in a housing such as a machine room together with a compressor, a flow path switching device, and the like.
- the housing of the machine room is also enlarged. For example, because the space on the rooftop or dedicated site where the machine room is installed is limited, a refrigeration cycle apparatus capable of suppressing liquid back has been desired for miniaturization of the accumulator.
- the present invention has been made against the background of the above-described problems, and provides a refrigeration cycle apparatus capable of suppressing liquid back when the cooling mode is switched to the heating mode.
- the refrigeration cycle apparatus of the present invention includes a compressor, a first heat exchanger, a second heat exchanger connected in series with the first heat exchanger, the first heat exchanger, and the second heat exchange.
- a main pressure reducing device connected between the compressor and a first flow path for flowing the refrigerant discharged from the compressor in the cooling mode to the first heat exchanger, and discharged from the compressor in the heating mode.
- a flow path switching device that forms a second flow path for flowing a refrigerant through the second heat exchanger, and a branching between the first heat exchanger and the main pressure reducing device, and the main pressure reducing device and the second heat
- a bypass circuit connected in parallel with the main decompressor, the bypass circuit and the second heat exchanger being lower in the direction of gravity than the first heat exchanger.
- the flow path switching device forms the second flow path, and then the compressor is stopped, the main decompression device is closed, and then the liquid movement time elapses.
- the main decompressor and the compressor operate based on the load in the heating mode.
- FIG. 1 is a circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 1.
- FIG. 2 is a hardware configuration diagram of the refrigeration cycle apparatus according to Embodiment 1.
- FIG. It is a control flowchart when the operation of the refrigeration cycle apparatus according to Embodiment 1 is switched from the cooling mode to the heating mode.
- 3 is a timing chart for explaining the operation of the actuator in the transient operation according to the first embodiment. It is a circuit block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 1, and has shown the state of transient operation. It is a circuit block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 1, and has shown the state of heating mode.
- 3 is a circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 2.
- FIG. 10 is a timing chart for explaining the operation of the actuator in the transient operation according to the second embodiment.
- FIG. [Configuration of refrigeration cycle equipment] 1 is a circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 1.
- FIG. 1 while the path
- the refrigeration cycle apparatus 1 includes a compressor 2, a flow path switching device 3 provided on the discharge side of the compressor 2, a first heat exchanger 4, a main decompression device 5, A two-heat exchanger 6 and an accumulator 7 have a refrigeration circuit connected by piping.
- the refrigeration cycle apparatus 1 is branched from the first heat exchanger 4 and the main decompressor 5 and connected between the main decompressor 5 and the second heat exchanger 6 and provided in parallel with the main decompressor 5.
- a bypass circuit 8 which is a circuit is provided inside the refrigeration circuit. Inside the refrigeration circuit, a refrigerant accompanying a phase change such as carbon dioxide or R410A circulates.
- the refrigeration cycle apparatus 1 exemplified in the first embodiment functions as a part of a chilling unit in which the water in the water circuit 14 heated or cooled by the second heat exchanger 6 is used for indoor air conditioning or the like.
- the water circuit 14 and the pump 15 are not essential components in the refrigeration cycle apparatus according to the present invention.
- Compressor 2 sucks and compresses low-pressure refrigerant and discharges it as high-pressure refrigerant.
- the compressor 2 is an inverter compressor, for example, having a variable refrigerant discharge capacity.
- the refrigerant circulation amount in the refrigeration cycle apparatus 1 is controlled by adjusting the discharge capacity of the compressor 2.
- the main decompression device 5 decompresses the high-pressure refrigerant.
- An apparatus having a valve body whose opening degree can be adjusted, for example, an electronically controlled expansion valve, can be used as the main pressure reducing apparatus 5.
- the flow path switching device 3 connects the discharge side of the compressor 2 to the first heat exchanger 4 and connects the suction side of the compressor 2 to the second heat exchanger 6 so that the refrigerant discharged from the compressor 2
- the first flow path through the first heat exchanger 4 and the discharge side of the compressor 2 is connected to the second heat exchanger 6 and the suction side of the compressor 2 is connected to the first heat exchanger 4
- coolant discharged from the compressor 2 to the 2nd heat exchanger 6 is selectively performed.
- the flow path switching device 3 is a device that has a valve body provided in a pipe through which a refrigerant flows and switches the flow path as described above by switching the open / close state of the valve body.
- the first heat exchanger 4 is a refrigerant-air heat exchanger having a flow path through which refrigerant flows. In the first heat exchanger 4, heat is exchanged between the refrigerant flowing through the flow path and the air outside the flow path.
- a blower 13 is provided in the vicinity of the first heat exchanger 4, and heat exchange in the first heat exchanger 4 is promoted by the air from the blower 13.
- the blower 13 is, for example, a blower having a variable rotation speed, and the heat absorption amount of the refrigerant in the first heat exchanger 4 is adjusted by adjusting the rotation speed of the blower 13.
- the second heat exchanger 6 is a refrigerant-water heat exchanger having a flow path through which refrigerant flows and a flow path through which water in the water circuit 14 flows. In the second heat exchanger 6, heat exchange is performed between the refrigerant and water.
- the refrigeration cycle apparatus 1 can be operated by switching between cooling and heating.
- the flow path switching device 3 connects the discharge side of the compressor 2 to the first heat exchanger 4 to form a first flow path through which the refrigerant discharged from the compressor 2 flows to the first heat exchanger 4.
- the first heat exchanger 4 functions as a condenser and the second heat exchanger 6 functions as an evaporator.
- the flow path switching device 3 connects the second heat exchanger 6 on the discharge side of the compressor 2 to form a second flow path for flowing the refrigerant discharged from the compressor 2 to the second heat exchanger 6.
- the first heat exchanger 4 functions as an evaporator and the second heat exchanger 6 functions as a condenser.
- the 1st heat exchanger 4 functions as a heat source side heat exchanger
- the 2nd heat exchanger 6 functions as a utilization side heat exchanger.
- the heat exchange capacity of the first heat exchanger 4 is larger than the heat exchange capacity of the second heat exchanger 6.
- the 1st heat exchanger 4 and the 2nd heat exchanger 6 should just be a heat exchanger which has the flow path through which a refrigerant
- the accumulator 7 is a container that stores refrigerant therein, and is installed on the suction side of the compressor 2.
- a pipe through which the refrigerant flows is connected to the upper part of the accumulator 7, and a pipe from which the refrigerant flows out is connected to the lower part, and the refrigerant is gas-liquid separated in the accumulator 7. The gas refrigerant separated from the gas and liquid is sucked into the compressor 2.
- the bypass circuit 8 is a circuit that connects between the first heat exchanger 4 and the main decompressor 5 and between the main decompressor 5 and the second heat exchanger 6, and is in parallel with the main decompressor 5. It is a provided circuit.
- a first sub decompression device 9, a refrigerant tank 11, and a second sub decompression device 10 are connected in series to the bypass circuit 8 in order from the side closer to the first heat exchanger 4. That is, the refrigerant tank 11 is disposed between the first sub decompression device 9 and the second sub decompression device 10 which are two decompression devices.
- a circuit excluding the bypass circuit 8, the compressor 2, the first heat exchanger 4, the main decompression device 5, and the second heat exchanger may be referred to as a main circuit.
- the first sub decompressor 9 and the second sub decompressor 10 depressurize the high-pressure refrigerant.
- a device provided with a valve element whose opening degree can be adjusted, for example, an electronically controlled expansion valve, can be used as the first sub decompression device 9 and the second sub decompression device 10.
- the refrigerant tank 11 is a container that stores refrigerant therein.
- the second heat exchanger 6 and the refrigerant tank 11 are provided below the first heat exchanger 4 in the direction of gravity. More preferably, the compressor 2 and the accumulator 7 are further provided below the first heat exchanger 4 in the direction of gravity. Specifically, the lower end portion of the first heat exchanger 4 indicated by the symbol A in FIG. 1 is the lower end of the compressor 2, the accumulator 7, the second heat exchanger 6, and the refrigerant tank 11 indicated by the symbol B in FIG. It is higher than the part.
- the upper end portions of the compressor 2, the accumulator 7, the second heat exchanger 6, and the refrigerant tank 11 are located below the lower end portion A of the first heat exchanger 4.
- the compressor 2, the accumulator 7, the second heat exchanger 6, and the refrigerant tank 11 are installed on the bottom surface of a casing such as a machine room, and the first heat exchange is performed on the upper side of the casing constituting the machine room.
- a vessel 4 can be installed.
- volume of refrigerant tank 11 and second heat exchanger 6 The sum of the volume of the refrigerant tank 11 and the volume of the second heat exchanger 6 is equal to or greater than the volume of all the refrigerants.
- the total volume of the refrigerant tank 11 and the second heat exchanger 6 is 14 L or more.
- the volume of the refrigerant tank 11 can be 8.5 L
- the volume of the second heat exchanger 6 can be 5.5 L, but the specific volumes of the refrigerant tank 11 and the second heat exchanger 6 are the same. It is not limited to.
- FIG. 2 is a hardware configuration diagram of the refrigeration cycle apparatus according to the first embodiment.
- the refrigeration cycle apparatus 1 includes a control device 20 that performs overall control.
- the controller 20 operates the actuators by issuing commands to the compressor 2, the flow switching device 3, the main decompressor 5, the first sub decompressor 9, the second sub decompressor 10, and the blower 13.
- the control device 20 includes a memory 21 and a timer 22.
- the control apparatus 20 has the liquid movement time progress determination part 23 as a functional block.
- the control device 20 is constituted by a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor) that executes a program stored in the memory 21.
- CPU Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor
- each function executed by the control device 20 is realized by software, firmware, or a combination of software and firmware.
- Software and firmware are described as programs and stored in the memory 21.
- the CPU implements each function of the control device 20 by reading and executing a program stored in the memory 21.
- the memory 21 is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
- control device 20 may be realized by dedicated hardware, and a part may be realized by software or firmware.
- hardware for example, a single circuit, a composite circuit, an ASIC, an FPGA, or a combination of these is used.
- the liquid movement time elapsed determination unit 23 counts the time measured by the timer 22 and determines whether or not the liquid movement time in the liquid movement operation described later has elapsed. The liquid movement time is determined in advance and stored in the memory 21.
- FIG. 3 is a control flowchart when the operation of the refrigeration cycle apparatus according to Embodiment 1 is switched from the cooling mode to the heating mode. As shown in FIG. 3, when switching from the cooling mode to the heating mode, after the cooling mode (S1), the heating mode (S3) is executed after the transient operation (S2).
- the control device 20 decelerates the compressor 2 (S21) and switches the flow path switching device 3 to the heating mode side (S22).
- the control device 20 stops the compressor 2 (S23) and closes the main decompression device 5 (S24).
- the control device 20 controls the first sub decompression device 9 and the second sub decompression device 10 to be in an open state (S25), and waits until the liquid moving time elapses (S26). If liquid movement time passes (S26: Yes), the control apparatus 20 will transfer to heating mode (S3).
- the control device 20 controls the opening of the main decompression device 5 to the set opening required in the heating mode (S31). Subsequently, the control device 20 controls the first sub decompression device 9 and the second sub decompression device 10 to the set opening required in the heating mode (S32). Thereafter, the control device 20 drives the compressor 2 (S33).
- FIG. 4 is a timing chart for explaining the operation of the actuator in the transient operation according to the first embodiment.
- FIG. 5 is a circuit configuration diagram of the refrigeration cycle apparatus according to Embodiment 1, showing a state of transient operation.
- FIG. 6 is a circuit configuration diagram of the refrigeration cycle apparatus according to Embodiment 1, and shows a state of the heating mode.
- the flow path switching device 3 is switched to the cooling side. Specifically, as shown in FIG. 1, the flow path switching device 3 connects the discharge side of the compressor 2 to the first heat exchanger 4 and connects the suction side of the compressor 2 to the second heat exchanger 6. Connected to.
- the compressor 2, the main decompression device 5, the first sub decompression device 9, the second sub decompression device 10, and the blower 13 are appropriately controlled according to the air conditioning load. Control of these actuators in the cooling mode is not the essence of the present invention, and arbitrary control can be performed.
- the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows into the first heat exchanger 4 via the flow path switching device 3.
- the high-temperature and high-pressure refrigerant exchanges heat with the air blown from the blower 13 in the first heat exchanger 4, drops in temperature, and flows out of the first heat exchanger 4.
- the refrigerant that has flowed out of the first heat exchanger 4 is depressurized by the main decompression device 5 and flows into the second heat exchanger 6 as a low-temperature and low-pressure refrigerant.
- the first sub decompression device 9 and the second sub decompression device 10 may be controlled to be opened so that the refrigerant flows through the bypass circuit 8.
- the first sub decompression device is provided in parallel with the main decompression device 5.
- 9 and the second sub decompression device 10 decompress the refrigerant. Whether or not the refrigerant flows through the bypass circuit 8 in the cooling mode may be determined according to the air conditioning load.
- the refrigerant that has been decompressed to a low temperature and low pressure exchanges heat with the water flowing through the water circuit 14 in the second heat exchanger 6, rises in temperature, and flows out from the second heat exchanger 6.
- the refrigerant that has flowed out of the second heat exchanger 6 flows into the accumulator 7 via the flow path switching device 3 and is separated into gas and liquid in the accumulator 7.
- the gas refrigerant in the accumulator 7 is sucked into the compressor 2.
- the water flowing through the water circuit 14 is cooled by the refrigerant flowing through the second heat exchanger 6 that is the use side heat exchanger, and the cooled water is used for indoor cooling.
- Transient operation As shown in FIG. 4, when the transient operation is started, first, the compressor 2 is decelerated and the flow path switching device 3 is switched to the heating side. Specifically, the flow path switching device 3 connects the discharge side of the compressor 2 to the second heat exchanger 6 and connects the suction side of the compressor 2 to the first heat exchanger 4. When the flow path switching device 3 is switched to the heating side, a stop command is immediately issued to the compressor 2 and the compressor 2 stops. The liquid back to the compressor 2 can be suppressed by stopping the compressor 2 immediately after the flow path switching device 3 is switched to the heating side. In FIG. 4, the period from the start of deceleration of the compressor 2 until the stop command is issued to the compressor 2 is referred to as a cooling standby operation.
- the liquid transfer operation is performed after the cooling standby operation. Specifically, when the compressor 2 is stopped, a fully closed command is issued to the main pressure reducing device 5, and the main pressure reducing device 5 is fully closed. When the main decompression device 5 is fully closed, a fully open command is issued to the first sub decompression device 9, and the first sub decompression device 9 is fully opened. When the first sub decompression device 9 is fully opened, a fully open command is issued to the second sub decompression device 10, and the second sub decompression device 10 is fully opened. While the main decompression device 5 is in a fully closed state and the first sub decompression device 9 and the second sub decompression device 10 are in a fully open state, the process waits until the liquid moving time has elapsed.
- the main decompression device 5 Since the main decompression device 5 is in a fully closed state and the first sub decompression device 9 is in a fully open state, all the refrigerant in the first heat exchanger 4 flows into the bypass circuit 8, passes through the first sub decompression device 9, The refrigerant is stored in the refrigerant tank 11, the pipe connecting the refrigerant tank 11 below the refrigerant tank 11 and the second heat exchanger 6, and the second heat exchanger 6.
- a command is issued to the main decompression device 5 while the compressor 2 is stopped, and the main decompression device 5 is brought into an opening state corresponding to the heating load.
- a command is issued to the first sub decompression device 9, and the first sub decompression device 9 enters an opening state corresponding to the heating load.
- a command is issued to the second sub decompression device 10, and the second sub decompression device 10 enters an opening state corresponding to the heating load.
- a heating standby operation is performed for the start of the heating mode. Specifically, the main decompression device 5, the first secondary decompression device 9, and the second secondary decompression device 10 are driven to the capacity required in the heating mode by driving the compressor 2 while maintaining the state as it is. Increase driving ability. Thereafter, the heating mode is executed.
- the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows into the second heat exchanger 6 via the flow path switching device 3.
- the high-temperature and high-pressure refrigerant exchanges heat with the water flowing through the water circuit 14 in the second heat exchanger 6, drops in temperature, and flows out from the second heat exchanger 6.
- the refrigerant flowing out of the second heat exchanger 6 is decompressed by the main decompression device 5 and flows into the first heat exchanger 4 as a low-temperature and low-pressure refrigerant.
- the first sub decompression device 9 and the second sub decompression device 10 may be controlled to be opened so that the refrigerant flows through the bypass circuit 8.
- the first sub decompression device is provided in parallel with the main decompression device 5.
- 9 and the second sub decompression device 10 decompress the refrigerant. Whether or not the refrigerant flows through the bypass circuit 8 in the heating mode may be determined according to the air conditioning load.
- the low-temperature and low-pressure refrigerant exchanges heat with the air blown from the blower 13 in the first heat exchanger 4, rises in temperature, and flows out of the first heat exchanger 4.
- the refrigerant that has flowed out of the first heat exchanger 4 flows into the accumulator 7 via the flow path switching device 3 and is separated into gas and liquid in the accumulator 7.
- the gas refrigerant in the accumulator 7 is sucked into the compressor 2.
- the heating mode is set with the surplus refrigerant stored in the refrigerant tank 11.
- the first sub decompression device 9 and the second sub decompression device 10 are controlled to perform. Thereby, heating mode is performed, without a surplus refrigerant
- the refrigerant in the first heat exchanger 4 is connected to the refrigerant tank 11, the piping connecting the refrigerant tank 11 and the second heat exchanger 6, and the second heat. Collected in exchanger 6. Therefore, when the heating mode is started, there is almost no liquid refrigerant in the first heat exchanger 4. Therefore, even when switching from the cooling mode to the heating mode and starting the heating mode, the liquid refrigerant flowing from the first heat exchanger 4 to the suction side of the compressor 2 can be reduced. For this reason, even when the accumulator 7 is downsized, the liquid refrigerant is unlikely to overflow from the accumulator 7, and the liquid back to the compressor 2 can be suppressed. Since the accumulator 7 can be reduced in size, a housing such as a machine room that houses the accumulator 7 and the like can also be reduced in size, and a compact refrigeration cycle apparatus 1 can be obtained.
- the liquid movement time is a value determined by the physical properties of the refrigerant and the specifications of the refrigeration cycle apparatus 1, and can be calculated by the following method.
- ⁇ P is a liquid head of the liquid level of the first heat exchanger 4 and the liquid levels of the second heat exchanger 6 and the refrigerant tank 11.
- ⁇ P1 is a pipe pressure loss.
- ⁇ P2 is the pressure loss of the first sub decompression device 9 and the second sub decompression device 10.
- the amount of liquid movement per unit time is derived by the following formula.
- X, Y, and Z are as follows.
- the time required for the movement of all the liquid refrigerants can be calculated by the following expression (7) obtained by integrating the expression (6) of the liquid movement amount per unit time.
- the total amount of refrigerant is approximated by the amount of refrigerant in the first heat exchanger 4 that is an evaporator in the cooling mode.
- the compressor 2 when switching from the cooling mode to the heating mode, the compressor 2 is stopped after switching the flow path switching device 3 to the heating mode side, and then the main decompression device 5 is closed to move the liquid. Wait until time has passed. In this liquid movement time, the liquid refrigerant in the first heat exchanger 4 functioning as an evaporator in the cooling mode can be moved to the bypass circuit 8 and the second heat exchanger 6, so the heating mode is started. The liquid back
- FIG. [Configuration of refrigeration cycle equipment]
- FIG. another configuration example of the bypass circuit will be described.
- differences from the first embodiment will be mainly described, and the same components as those in the first embodiment are denoted by the same reference numerals.
- FIG. 7 is a circuit configuration diagram of the refrigeration cycle apparatus according to the second embodiment.
- FIG. 7 shows the state of transient operation.
- the second embodiment is different from the first embodiment in the configuration of the bypass circuit 8A.
- 8 A of bypass circuits are piping which connects between the 1st heat exchanger 4 and the main pressure reduction device 5, and between the main pressure reduction device 5 and the 2nd heat exchanger 6, Comprising: It is comprised by the piping provided in parallel.
- the bypass circuit 8A is not provided with the first sub decompression device 9, the second sub decompression device 10, and the refrigerant tank 11.
- a part of the piping constituting the second heat exchanger 6 and the bypass circuit 8A is provided below the first heat exchanger in the direction of gravity. More desirably, the compressor 2 and the accumulator 7 are also provided below the first heat exchanger 4 in the direction of gravity. Specifically, the lower end portion of the first heat exchanger 4 indicated by reference symbol A in FIG. 7 is located higher than the lower end portion of the second heat exchanger 6 indicated by reference symbol B in FIG. More desirably, the upper end portion of the second heat exchanger 6 is located below the lower end portion A of the first heat exchanger 4.
- capacitance of the 1st heat exchanger 4 was larger than the capacity
- FIG. 8 is a timing chart for explaining the operation of the actuator in the transient operation according to the second embodiment.
- the operations of the compressor 2, the flow path switching device 3, and the main decompression device 5 in the transient operation of the second embodiment are the same as those of the first embodiment. That is, when the transient operation is started, the compressor 2 is decelerated and the flow path switching device 3 is switched to the heating side. When the flow path switching device 3 is switched to the heating side, a stop command is immediately issued to the compressor 2 and the compressor 2 stops. When the compressor 2 stops, it waits until the liquid moving time elapses.
- the flow of the refrigerant in the transient operation will be described with reference to FIG.
- the compressor 2 stops the refrigerant moves using the head difference.
- the refrigerant in the first heat exchanger 4 moves downward due to gravity and accumulates in the bypass circuit 8A, the pipe connecting the bypass circuit 8A and the second heat exchanger 6, and the second heat exchanger 6.
- the fully decompressed command is issued to the main decompression device 5 while the compressor 2 is stopped, and the main decompression device 5 is fully opened. Thereafter, the heating standby operation is performed as in the first embodiment.
- Embodiment 2 when switching from the cooling mode to the heating mode, the compressor 2 is stopped after switching the flow path switching device 3 to the heating mode side, and then the main decompression device 5 is closed to move the liquid. Wait until time has passed. During this liquid movement time, the liquid refrigerant in the first heat exchanger 4 functioning as an evaporator in the cooling mode can be moved to the bypass circuit 8A and the second heat exchanger 6, so the heating mode is started. The liquid back
- the cooling standby operation according to the first and second embodiments, the example in which the compressor 2 is stopped after performing the deceleration operation of the compressor 2 is shown.
- the deceleration operation of the compressor 2 may not be performed, and the compressor 2 may be stopped after the flow path switching device 3 is switched to the heating side.
- the refrigeration cycle apparatus 1 of Embodiments 1 and 2 includes the compressor 2, the first heat exchanger 4, and the second heat exchanger 6 connected in series with the first heat exchanger 4.
- a main decompression device 5 connected between the first heat exchanger 4 and the second heat exchanger 6, and a first flow for flowing the refrigerant discharged from the compressor 2 in the cooling mode to the first heat exchanger 4
- a flow path switching device 3 that forms a second flow path that forms a passage and flows the refrigerant discharged from the compressor 2 in the heating mode to the second heat exchanger 6, and the first heat exchanger 4 and the main decompression device 5
- a bypass circuit 8 that is connected between the main decompression device 5 and the second heat exchanger 6 and is provided in parallel with the main decompression device 5, and includes the bypass circuit 8 and the second heat
- the exchanger 6 is disposed below the first heat exchanger 4 in the direction of gravity, and when the operation is switched from the cooling mode to the heating mode.
- the flow path switching device forms the second flow path, and then the compressor 2 is stopped, the main decompression device 5 is closed, and then the liquid movement time elapses.
- the main decompression device 5 and the compressor 2 operate based on the heating mode load.
- capacitance of the 1st heat exchanger 4 is larger than the capacity
- the apparatus 10 is connected in series, the refrigerant tank 11 is disposed below the first heat exchanger 4 in the direction of gravity, and when the operation is switched from the cooling mode to the heating mode, the compressor 2
- the flow switching device 3 forms the second flow channel in a state where the operation is performed, and then the main decompression device 5 is closed, the first sub decompression device 9 and the second sub decompression device 10 are opened, and then the liquid
- the main decompression device 5, the first sub decompression device 9, the second sub decompression device 10, and the compressor 2 may be configured to operate based on the load in the heating mode.
- the total of the volume of the refrigerant tank 11 and the volume of the second heat exchanger 6 may be equal to or greater than the volume of all refrigerants in the refrigeration cycle apparatus 1.
- the liquid movement time may be obtained by the above equation (7).
- the liquid transfer operation can be performed in the liquid transfer time suitable for the system configuration of the refrigeration cycle apparatus 1. Since useless liquid transfer operation is not performed, the cooling mode can be promptly shifted to the heating mode.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
冷房モードから暖房モードに切り替えたときの液バックを抑制することのできる冷凍サイクル装置を提供する。 冷凍サイクル装置1は、第一熱交換器4と主減圧装置5との間から分岐して主減圧装置と第二熱交換器6との間に接続され、主減圧装置と並列に設けられたバイパス回路8、8Aを備え、バイパス回路は、第一熱交換器よりも重力方向において下側に配置されており、冷房モードから暖房モードへ運転が切り替わる際、圧縮機2が動作している状態で流路切替装置3は第二流路を形成し、その後、圧縮機が停止し、主減圧装置が閉じ、その後、液移動時間が経過すると、主減圧装置及び圧縮機が暖房モードの負荷に基づいて動作する。
Description
本発明は、冷房モードと暖房モードとを切り替えて運転することのできる冷凍サイクル装置に関する。
従来、気液分離器を圧縮機の吸入側に設け、蒸発した冷媒が気液分離器で気液分離された後、圧縮機に吸い込まれて再び圧縮されるように構成されたチリングユニットが提案されている(例えば、特許文献1参照)。
冷凍サイクル装置においては、減圧装置を通過した後の液冷媒は、蒸発器として機能する熱交換器においてガス冷媒となり、このガス冷媒が圧縮機に吸入される。圧縮機が吸入する冷媒はガス状態であるのが理想的である。液冷媒が圧縮機に吸入されると、圧縮機の故障を招く可能性があり、また冷凍サイクルの運転効率を低下させるからである。液冷媒が圧縮機に吸入される液バックが生じないように、蒸発器の出口側、つまり圧縮機の吸入側の過熱度を目標値に近づけるように減圧装置を過熱度制御する冷凍サイクル装置もある。
ところが、冷房モードから暖房モードへモードを切り替えて運転すると、液バックが生じるおそれがあった。具体的には、冷房モードの際には凝縮器として機能する熱交換器に冷媒が滞留しており、この状態で冷房モードから暖房モードへ運転を切り替えると、冷凍回路の高低圧が反転し、凝縮器の冷媒が圧縮機に向かう流れとなり、液バックが生じるおそれがあった。このため、冷房モードから暖房モードに切り替えたときでも液バックを抑制することのできる冷凍サイクル装置が望まれていた。
特許文献1に記載の装置では、圧縮機の吸入側に気液分離器(アキュムレータ)を設けることで、圧縮機に液冷媒が流入するのを抑制している。ここで、アキュムレータの容積は、圧縮機への液冷媒の流入を抑制するため、冷凍サイクル装置内を循環する全冷媒量の7割程度とされるのが一般的である。アキュムレータは一般に圧縮機や流路切替装置等とともに機械室等の筐体に設置されるが、アキュムレータの容積が大きいため、機械室の筐体も大型化してしまう。機械室が設置される例えば屋上や専用敷地のスペースは限られていることから、アキュムレータの小型化のためにも、液バックを抑制できる冷凍サイクル装置が望まれていた。
本発明は、上述のような課題を背景としてなされたものであり、冷房モードから暖房モードに切り替えたときの液バックを抑制することのできる冷凍サイクル装置を提供するものである。
本発明の冷凍サイクル装置は、圧縮機と、第一熱交換器と、前記第一熱交換器と直列に接続された第二熱交換器と、前記第一熱交換器と前記第二熱交換器との間に接続された主減圧装置と、冷房モードで前記圧縮機から吐出された冷媒を前記第一熱交換器に流す第一流路を形成し、暖房モードで前記圧縮機から吐出された冷媒を前記第二熱交換器に流す第二流路を形成する流路切替装置と、前記第一熱交換器と前記主減圧装置との間から分岐して前記主減圧装置と前記第二熱交換器との間に接続され、前記主減圧装置と並列に設けられたバイパス回路と、を備え、前記バイパス回路及び前記第二熱交換器は、前記第一熱交換器よりも重力方向において下側に配置されており、前記冷房モードから前記暖房モードへ運転が切り替わる際、前記圧縮機が動作している状態で前記流路切替装置は前記第二流路を形成し、その後、前記圧縮機が停止し、前記主減圧装置が閉じ、その後、液移動時間が経過すると、前記主減圧装置及び前記圧縮機が前記暖房モードの負荷に基づいて動作するものである。
本発明によれば、冷房モードから暖房モードに移行したときの圧縮機への液バックを抑制することができる。
本発明の実施の形態に係る冷凍サイクル装置について図面を参照して説明する。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。
実施の形態1.
[冷凍サイクル装置の構成]
図1は、実施の形態1に係る冷凍サイクル装置の回路構成図である。図1では、冷媒の流れる経路を太線で概念的に示すとともに、冷媒の流れる方向を矢印で示している。図1に示すように、冷凍サイクル装置1は、圧縮機2と、圧縮機2の吐出側に設けられた流路切替装置3と、第一熱交換器4と、主減圧装置5と、第二熱交換器6と、アキュムレータ7とが配管で接続された冷凍回路を有する。冷凍サイクル装置1には、第一熱交換器4と主減圧装置5から分岐して主減圧装置5と第二熱交換器6との間に接続され、主減圧装置5と並列に設けられた回路であるバイパス回路8が設けられている。冷凍回路の内部には、二酸化炭素やR410A等の相変化を伴う冷媒が循環する。実施の形態1で例示する冷凍サイクル装置1は、第二熱交換器6で加熱または冷却された水回路14の水が室内の空調等に利用される、チリングユニットの一部として機能する。なお、水回路14及びポンプ15は、本発明に係る冷凍サイクル装置に必須の構成ではない。
[冷凍サイクル装置の構成]
図1は、実施の形態1に係る冷凍サイクル装置の回路構成図である。図1では、冷媒の流れる経路を太線で概念的に示すとともに、冷媒の流れる方向を矢印で示している。図1に示すように、冷凍サイクル装置1は、圧縮機2と、圧縮機2の吐出側に設けられた流路切替装置3と、第一熱交換器4と、主減圧装置5と、第二熱交換器6と、アキュムレータ7とが配管で接続された冷凍回路を有する。冷凍サイクル装置1には、第一熱交換器4と主減圧装置5から分岐して主減圧装置5と第二熱交換器6との間に接続され、主減圧装置5と並列に設けられた回路であるバイパス回路8が設けられている。冷凍回路の内部には、二酸化炭素やR410A等の相変化を伴う冷媒が循環する。実施の形態1で例示する冷凍サイクル装置1は、第二熱交換器6で加熱または冷却された水回路14の水が室内の空調等に利用される、チリングユニットの一部として機能する。なお、水回路14及びポンプ15は、本発明に係る冷凍サイクル装置に必須の構成ではない。
圧縮機2は、低圧冷媒を吸入して圧縮し、高圧冷媒として吐出する。圧縮機2は、冷媒の吐出容量が可変な、例えばインバータ圧縮機である。冷凍サイクル装置1内の冷媒循環量は、圧縮機2の吐出容量を調整することにより制御される。
主減圧装置5は、高圧冷媒を減圧する。開度を調整可能な弁体を備えた装置、例えば電子制御式膨張弁を主減圧装置5として用いることができる。
流路切替装置3は、圧縮機2の吐出側を第一熱交換器4に接続するとともに圧縮機2の吸入側を第二熱交換器6に接続して、圧縮機2から吐出された冷媒を第一熱交換器4に流す第一流路を形成する動作と、圧縮機2の吐出側を第二熱交換器6に接続するとともに圧縮機2の吸入側を第一熱交換器4に接続して、圧縮機2から吐出された冷媒を第二熱交換器6に流す第二流路を形成する動作と、を選択的に行う。流路切替装置3は、冷媒が流れる配管に設けられた弁体を有し、この弁体の開閉状態を切り替えることによって上述のような流路の切り替えを行う装置である。
第一熱交換器4は、冷媒が流れる流路を有する冷媒-空気熱交換器である。第一熱交換器4では、流路を流れる冷媒と、流路の外部の空気との間で熱交換が行われる。第一熱交換器4の近傍には送風機13が設けられており、送風機13からの空気によって第一熱交換器4における熱交換が促進される。送風機13は、例えば回転数が可変の送風機であり、第一熱交換器4における冷媒の吸熱量は、送風機13の回転数を調整することにより調整される。
第二熱交換器6は、冷媒が流れる流路と水回路14の水が流れる流路とを有する冷媒-水熱交換器である。第二熱交換器6では、冷媒と水との間で熱交換が行われる。
冷凍サイクル装置1は、冷房と暖房とを切り替えて運転できる。冷房モードでは、流路切替装置3が圧縮機2の吐出側を第一熱交換器4に接続して圧縮機2から吐出された冷媒を第一熱交換器4に流す第一流路を形成し、第一熱交換器4は凝縮器として機能するとともに第二熱交換器6は蒸発器として機能する。暖房モードでは、流路切替装置3が圧縮機2の吐出側を第二熱交換器6を接続して圧縮機2から吐出された冷媒を第二熱交換器6に流す第二流路を形成し、第一熱交換器4は蒸発器として機能するとともに第二熱交換器6は凝縮器として機能する。第一熱交換器4が熱源側熱交換器として機能し、第二熱交換器6が利用側熱交換器として機能する。冷房モードと暖房モードで要求される負荷を考慮し、第一熱交換器4の熱交換容量は、第二熱交換器6の熱交換容量よりも大きい。なお、第一熱交換器4及び第二熱交換器6は、冷媒が流れる流路を有する熱交換器であればよく、熱交換対象は上記の例に限定されない。
アキュムレータ7は、内部に冷媒を貯留する容器であり、圧縮機2の吸入側に設置されている。アキュムレータ7の上部には冷媒が流入する配管が接続され、下部には冷媒が流出する配管が接続されており、アキュムレータ7内において冷媒が気液分離される。気液分離されたガス冷媒は、圧縮機2に吸入される。
バイパス回路8は、第一熱交換器4と主減圧装置5との間と、主減圧装置5と第二熱交換器6との間を接続する回路であって、主減圧装置5と並列に設けられた回路である。バイパス回路8には、第一熱交換器4に近い側から順に、第一副減圧装置9と、冷媒タンク11と、第二副減圧装置10とが、直列に接続されている。すなわち、二つの減圧装置である第一副減圧装置9と第二副減圧装置10との間に、冷媒タンク11が配置されている。なお、説明の便宜上、冷凍サイクル装置1を構成する冷凍回路のうち、バイパス回路8を除く回路であって、圧縮機2、第一熱交換器4、主減圧装置5、及び第二熱交換器6が接続された回路を、メイン回路と称することがある。
第一副減圧装置9及び第二副減圧装置10は、高圧冷媒を減圧する。開度を調整可能な弁体を備えた装置、例えば電子制御式膨張弁を、第一副減圧装置9及び第二副減圧装置10として用いることができる。冷媒タンク11は、内部に冷媒を貯留する容器である。
[冷凍サイクル装置1の構成要素の位置関係]
冷凍サイクル装置1を構成する要素のうち、第二熱交換器6及び冷媒タンク11は、重力方向において第一熱交換器4よりも下側に設けられている。より望ましくは、さらに圧縮機2及びアキュムレータ7が、第一熱交換器4よりも重力方向において下側に設けられている。具体的には、図1に符号Aで示す第一熱交換器4の下端部は、図1に符号Bで示す圧縮機2、アキュムレータ7、第二熱交換器6、及び冷媒タンク11の下端部よりも高い位置にある。より望ましくは、第一熱交換器4の下端部Aよりも下側に、圧縮機2、アキュムレータ7、第二熱交換器6、及び冷媒タンク11の上端部が位置している。例えば、圧縮機2、アキュムレータ7、第二熱交換器6、及び冷媒タンク11を、機械室などの筐体の底面に設置し、この機械室を構成する筐体の上側に、第一熱交換器4を設置することができる。
冷凍サイクル装置1を構成する要素のうち、第二熱交換器6及び冷媒タンク11は、重力方向において第一熱交換器4よりも下側に設けられている。より望ましくは、さらに圧縮機2及びアキュムレータ7が、第一熱交換器4よりも重力方向において下側に設けられている。具体的には、図1に符号Aで示す第一熱交換器4の下端部は、図1に符号Bで示す圧縮機2、アキュムレータ7、第二熱交換器6、及び冷媒タンク11の下端部よりも高い位置にある。より望ましくは、第一熱交換器4の下端部Aよりも下側に、圧縮機2、アキュムレータ7、第二熱交換器6、及び冷媒タンク11の上端部が位置している。例えば、圧縮機2、アキュムレータ7、第二熱交換器6、及び冷媒タンク11を、機械室などの筐体の底面に設置し、この機械室を構成する筐体の上側に、第一熱交換器4を設置することができる。
[冷媒タンク11と第二熱交換器6の容積]
冷媒タンク11の容積と、第二熱交換器6の容積との合計は、全冷媒の容積以上である。例えば、密度が1000kg/m3の冷媒を14kg用いた場合、冷媒タンク11と第二熱交換器6の容積の合計は、14L以上である。この場合、例えば冷媒タンク11の容積を8.5L、第二熱交換器6の容積を5.5Lとすることができるが、冷媒タンク11及び第二熱交換器6の具体的な容積はこれに限定されない。
冷媒タンク11の容積と、第二熱交換器6の容積との合計は、全冷媒の容積以上である。例えば、密度が1000kg/m3の冷媒を14kg用いた場合、冷媒タンク11と第二熱交換器6の容積の合計は、14L以上である。この場合、例えば冷媒タンク11の容積を8.5L、第二熱交換器6の容積を5.5Lとすることができるが、冷媒タンク11及び第二熱交換器6の具体的な容積はこれに限定されない。
[ハードウェア構成]
図2は、実施の形態1に係る冷凍サイクル装置のハードウェア構成図である。冷凍サイクル装置1は、全体の制御を司る制御装置20を備える。制御装置20は、圧縮機2、流路切替装置3、主減圧装置5、第一副減圧装置9、第二副減圧装置10、及び送風機13に対して指令を出すことにより、これらアクチュエータの動作を制御する。制御装置20は、メモリ21及びタイマ22を有する。また、制御装置20は、機能ブロックとして、液移動時間経過判定部23を有する。
図2は、実施の形態1に係る冷凍サイクル装置のハードウェア構成図である。冷凍サイクル装置1は、全体の制御を司る制御装置20を備える。制御装置20は、圧縮機2、流路切替装置3、主減圧装置5、第一副減圧装置9、第二副減圧装置10、及び送風機13に対して指令を出すことにより、これらアクチュエータの動作を制御する。制御装置20は、メモリ21及びタイマ22を有する。また、制御装置20は、機能ブロックとして、液移動時間経過判定部23を有する。
制御装置20は、メモリ21に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。
制御装置20がCPUの場合、制御装置20が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ21に格納される。CPUは、メモリ21に格納されたプログラムを読み出して実行することにより、制御装置20の各機能を実現する。ここで、メモリ21は、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。
なお、制御装置20の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。ハードウェアで実現する場合には、例えば、単一回路、複合回路、ASIC、FPGA、またはこれらを組み合わせたものが用いられる。
液移動時間経過判定部23は、タイマ22が計測する時間をカウントし、後述する液移動運転における液移動時間が経過したか否かを判定する。液移動時間は、予め定められてメモリ21に記憶されている。
[冷房モードから暖房モードへの切り替え]
図3は、実施の形態1に係る冷凍サイクル装置の、冷房モードから暖房モードへ運転を切り替えるときの制御フローチャートである。図3に示すように、冷房モードから暖房モードへ切り替えるときには、冷房モード(S1)の後、過渡運転(S2)を経てから暖房モード(S3)を実行する。
図3は、実施の形態1に係る冷凍サイクル装置の、冷房モードから暖房モードへ運転を切り替えるときの制御フローチャートである。図3に示すように、冷房モードから暖房モードへ切り替えるときには、冷房モード(S1)の後、過渡運転(S2)を経てから暖房モード(S3)を実行する。
過渡運転(S2)では、制御装置20は、圧縮機2を減速させ(S21)、流路切替装置3を暖房モード側に切り替える(S22)。次に、制御装置20は、圧縮機2を停止させ(S23)、主減圧装置5を閉じる(S24)。続けて制御装置20は、第一副減圧装置9及び第二副減圧装置10を開状態に制御し(S25)、液移動時間が経過するまで待機する(S26)。液移動時間が経過すると(S26:Yes)、制御装置20は、暖房モードに移行する(S3)。
暖房モード(S3)では、制御装置20は、主減圧装置5の開度を、暖房モードで要求される設定開度に制御する(S31)。続けて制御装置20は、第一副減圧装置9及び第二副減圧装置10を、暖房モードで要求される設定開度に制御する(S32)。その後制御装置20は、圧縮機2を駆動する(S33)。
以上、冷房モードから過渡運転を経て暖房モードを開始する制御の流れを説明した。次に、図4~図6及び図1を参照して、冷凍サイクル装置1を構成する各アクチュエータの動作及び冷媒の流れを説明する。図4は、実施の形態1に係る過渡運転におけるアクチュエータの動作を説明するタイミングチャートである。図5は、実施の形態1に係る冷凍サイクル装置の回路構成図であり、過渡運転の状態を示している。図6は、実施の形態1に係る冷凍サイクル装置の回路構成図であり、暖房モードの状態を示している。
[冷房モード]
冷房モードでは、流路切替装置3は冷房側に切り替えられている。具体的には、図1に示すように、流路切替装置3は、圧縮機2の吐出側を第一熱交換器4に接続するとともに、圧縮機2の吸入側を第二熱交換器6に接続している。圧縮機2、主減圧装置5、第一副減圧装置9、第二副減圧装置10、及び送風機13は、空調負荷に応じて適宜制御されている。冷房モードにおけるこれらアクチュエータの制御は、本発明の本質ではなく、任意の制御を行うことができる。
冷房モードでは、流路切替装置3は冷房側に切り替えられている。具体的には、図1に示すように、流路切替装置3は、圧縮機2の吐出側を第一熱交換器4に接続するとともに、圧縮機2の吸入側を第二熱交換器6に接続している。圧縮機2、主減圧装置5、第一副減圧装置9、第二副減圧装置10、及び送風機13は、空調負荷に応じて適宜制御されている。冷房モードにおけるこれらアクチュエータの制御は、本発明の本質ではなく、任意の制御を行うことができる。
図1に示すように、冷房モードでは、圧縮機2から吐出された高温高圧の冷媒は、流路切替装置3を介して第一熱交換器4に流入する。高温高圧の冷媒は、第一熱交換器4において送風機13から送風される空気と熱交換し、温度低下して第一熱交換器4から流出する。第一熱交換器4から流出した冷媒は、主減圧装置5で減圧され、低温低圧の冷媒となって第二熱交換器6に流入する。第一副減圧装置9及び第二副減圧装置10を開状態に制御してバイパス回路8を冷媒が流れるようにしてもよく、この場合は、主減圧装置5と並行して第一副減圧装置9及び第二副減圧装置10で冷媒が減圧される。冷房モードにおいてバイパス回路8に冷媒を流すか否かは、空調負荷に応じて決定すればよい。減圧されて低温低圧となった冷媒は、第二熱交換器6において水回路14を流れる水と熱交換し、温度上昇して第二熱交換器6から流出する。第二熱交換器6を流出した冷媒は、流路切替装置3を介してアキュムレータ7に流入し、アキュムレータ7内において気液分離される。アキュムレータ7内のガス冷媒は、圧縮機2に吸入される。
このように冷房モードでは、利用側熱交換器である第二熱交換器6を流れる冷媒によって水回路14を流れる水を冷却し、この冷却された水が室内の冷房に用いられる。
[過渡運転]
図4に示すように、過渡運転を開始すると、まず、圧縮機2が減速し、流路切替装置3が暖房側に切り替わる。具体的には、流路切替装置3は、圧縮機2の吐出側を第二熱交換器6に接続するとともに、圧縮機2の吸入側を第一熱交換器4に接続する。流路切替装置3が暖房側に切り替わると、直ちに圧縮機2に停止指令が出され、圧縮機2が停止する。流路切替装置3が暖房側に切り替わってから直ちに圧縮機2を停止させることで、圧縮機2への液バックを抑制することができる。図4では、圧縮機2の減速を開始してから圧縮機2に停止指令が出されるまでの期間を、冷房待機運転と称している。
図4に示すように、過渡運転を開始すると、まず、圧縮機2が減速し、流路切替装置3が暖房側に切り替わる。具体的には、流路切替装置3は、圧縮機2の吐出側を第二熱交換器6に接続するとともに、圧縮機2の吸入側を第一熱交換器4に接続する。流路切替装置3が暖房側に切り替わると、直ちに圧縮機2に停止指令が出され、圧縮機2が停止する。流路切替装置3が暖房側に切り替わってから直ちに圧縮機2を停止させることで、圧縮機2への液バックを抑制することができる。図4では、圧縮機2の減速を開始してから圧縮機2に停止指令が出されるまでの期間を、冷房待機運転と称している。
冷房待機運転の次は、液移動運転を行う。具体的には、圧縮機2が停止すると、主減圧装置5に対して全閉指令が出され、主減圧装置5が全閉状態になる。主減圧装置5が全閉状態になると、第一副減圧装置9に対して全開指令が出され、第一副減圧装置9が全開状態になる。第一副減圧装置9が全開状態になると、第二副減圧装置10に対して全開指令が出され、第二副減圧装置10が全開状態になる。主減圧装置5が全閉状態で、かつ第一副減圧装置9及び第二副減圧装置10が全開の状態で、液移動時間が経過するまで待機する。
液移動運転の冷媒の流れを、図5を参照して説明する。図5に示すように、第一熱交換器4の出口側と、第二熱交換器6の出口側とが、バイパス回路8を介して接続されている状態である。圧縮機2が停止したことで、冷媒はヘッド差を利用して移動する。大容量の第一熱交換器4内の冷媒は、重力により下方へ移動する。主減圧装置5は全閉状態、第一副減圧装置9は全開状態であるので、第一熱交換器4内の冷媒はすべて、バイパス回路8に流入し、第一副減圧装置9を経て、冷媒タンク11、冷媒タンク11よりも下側にある冷媒タンク11と第二熱交換器6とを接続する配管内、及び第二熱交換器6に貯まっていく。
図4に示すように、液移動時間が経過すると、圧縮機2は停止した状態のまま、主減圧装置5に対して指令が出され、主減圧装置5は暖房負荷に応じた開度状態になる。次に、第一副減圧装置9に対して指令が出され、第一副減圧装置9が暖房負荷に応じた開度状態になる。次に、第二副減圧装置10に対して指令が出され、第二副減圧装置10は暖房負荷に応じた開度状態になる。
液移動運転の次は、暖房モードの開始に向けた暖房待機運転を行う。具体的には、主減圧装置5、第一副減圧装置9、及び第二副減圧装置10についてはそのままの状態を維持したまま、圧縮機2を駆動して、暖房モードで要求される能力まで運転能力を上昇させる。その後は、暖房モードを実行する。
図6に示すように、暖房モードを開始すると、圧縮機2から吐出された高温高圧の冷媒は、流路切替装置3を介して第二熱交換器6に流入する。高温高圧の冷媒は、第二熱交換器6において水回路14を流れる水と熱交換し、温度低下して第二熱交換器6から流出する。第二熱交換器6から流出した冷媒は、主減圧装置5で減圧され、低温低圧の冷媒となって第一熱交換器4に流入する。第一副減圧装置9及び第二副減圧装置10を開状態に制御してバイパス回路8を冷媒が流れるようにしてもよく、この場合は、主減圧装置5と並行して第一副減圧装置9及び第二副減圧装置10で冷媒が減圧される。暖房モードにおいてバイパス回路8に冷媒を流すか否かは、空調負荷に応じて決定すればよい。低温低圧の冷媒は、第一熱交換器4において送風機13から送風される空気と熱交換し、温度上昇して第一熱交換器4から流出する。第一熱交換器4を流出した冷媒は、流路切替装置3を介してアキュムレータ7に流入し、アキュムレータ7内において気液分離される。アキュムレータ7内のガス冷媒は、圧縮機2に吸入される。
暖房モードのときに、第一熱交換器4と第二熱交換器6との熱交換容量の差によって余剰冷媒が生じる場合には、余剰冷媒を冷媒タンク11内に貯めた状態で暖房モードを行うように第一副減圧装置9及び第二副減圧装置10を制御する。これにより、余剰冷媒がメイン回路を循環することなく暖房モードが行われる。
前述のように、暖房モードを開始する前の過渡運転において、第一熱交換器4内の冷媒を冷媒タンク11、冷媒タンク11と第二熱交換器6とを接続する配管、及び第二熱交換器6に集めた。したがって、暖房モードを開始するときには、第一熱交換器4内には液冷媒がほとんど無い状態である。したがって、冷房モードから暖房モードに切り替えて暖房モードを開始するときでも、第一熱交換器4から圧縮機2の吸入側に流入する液冷媒を減少させることができる。このため、アキュムレータ7を小型化した場合でも、液冷媒がアキュムレータ7からオーバーフローしにくく、圧縮機2への液バックを抑制することができる。アキュムレータ7を小型化できるので、アキュムレータ7等を収容する機械室等の筐体も小型化でき、コンパクトな冷凍サイクル装置1を得ることができる。
[液移動時間の算出方法]
次に、過渡運転の液移動運転における液移動時間の算出方法を説明する。液移動時間は、冷媒物性と、冷凍サイクル装置1の仕様により定まる値であり、以下に示す方法で算出することができる。
次に、過渡運転の液移動運転における液移動時間の算出方法を説明する。液移動時間は、冷媒物性と、冷凍サイクル装置1の仕様により定まる値であり、以下に示す方法で算出することができる。
以下に示す式に含まれる記号は、次の意味である。
h:液面高さの差[m]≒第一熱交換器4の高さ-第二熱交換器6の高さ
L:配管長さ[m]
d:配管内径[m]
Cv:各減圧装置の流量係数[-]
A:配管断面積[m2]
B:単位換算 3600^2*10^6
n:減圧装置の個数[-]
m:並列接続配管本数[-]
Gr:液移動量[kg/s]
g:重力加速度[kgm/s2]
ν:動粘度[m2/s]
ρ:液密度[kg/m3]
h:液面高さの差[m]≒第一熱交換器4の高さ-第二熱交換器6の高さ
L:配管長さ[m]
d:配管内径[m]
Cv:各減圧装置の流量係数[-]
A:配管断面積[m2]
B:単位換算 3600^2*10^6
n:減圧装置の個数[-]
m:並列接続配管本数[-]
Gr:液移動量[kg/s]
g:重力加速度[kgm/s2]
ν:動粘度[m2/s]
ρ:液密度[kg/m3]
まず、冷凍サイクル装置1の圧損バランスΔPに関し、以下の式が成り立つ。ここで、ΔPは、第一熱交換器4の液面と、第二熱交換器6及び冷媒タンク11の液面との液ヘッドである。ΔP1は、配管圧損である。ΔP2は、第一副減圧装置9及び第二副減圧装置10の圧損である。
また、液ヘッドΔPについては、以下の式が成り立つ。
配管圧損ΔP1[Pa]については、以下の式が成り立つ。
摩擦損失係数λについては、以下の式が成り立つ。
減圧装置圧損ΔP2[Pa]については、以下の式が成り立つ。
以上の5つの式を整理すると、次の式によって単位時間あたりの液移動量が導かれる。
ここで、X、Y、Zは以下のとおりである。
Z:ρg
X:0.3164*(d/ν)^(-0.25)*Lρ/(2d)*{1/(Aρm)}^1.75
Y:B/{ρ(86.5Cv)^2}
Z:ρg
X:0.3164*(d/ν)^(-0.25)*Lρ/(2d)*{1/(Aρm)}^1.75
Y:B/{ρ(86.5Cv)^2}
単位時間当たりの液移動量の式(6)を積分した以下の式(7)により、すべての液冷媒の移動に要する時間、すなわち液移動時間を算出することができる。なお、全冷媒量は、冷房モード時における蒸発器である第一熱交換器4内の冷媒量で近似される。
以上のように実施の形態1では、冷房モードから暖房モードに切り替える際、流路切替装置3を暖房モード側に切り替えた後に圧縮機2を停止させ、その後、主減圧装置5を閉じて液移動時間が経過するまで待機するようにした。この液移動時間において、冷房モード時に蒸発器として機能していた第一熱交換器4内の液冷媒を、バイパス回路8及び第二熱交換器6に移動させることができるので、暖房モードを開始したときの圧縮機2への液バックを抑制することができる。
実施の形態2.
[冷凍サイクル装置の構成]
実施の形態2では、バイパス回路の他の構成例を説明する。なお、実施の形態2では、実施の形態1との相違点を中心に説明し、実施の形態1と同様の構成については同じ符号を付している。
[冷凍サイクル装置の構成]
実施の形態2では、バイパス回路の他の構成例を説明する。なお、実施の形態2では、実施の形態1との相違点を中心に説明し、実施の形態1と同様の構成については同じ符号を付している。
図7は、実施の形態2に係る冷凍サイクル装置の回路構成図である。図7は、過渡運転の状態を示している。図7に示すように、実施の形態2は、バイパス回路8Aの構成が実施の形態1と異なる。バイパス回路8Aは、第一熱交換器4と主減圧装置5との間と、主減圧装置5と第二熱交換器6との間と、を接続する配管であって、主減圧装置5と並列に設けられた配管によって構成されている。バイパス回路8Aには、第一副減圧装置9、第二副減圧装置10、及び冷媒タンク11は設けられていない。
実施の形態1と同様に、第二熱交換器6及びバイパス回路8Aを構成する配管の一部は、重力方向において第一熱交換器よりも下側に設けられている。より望ましくは、圧縮機2及びアキュムレータ7も、第一熱交換器4よりも重力方向において下側に設けられている。具体的には、図7に符号Aで示す第一熱交換器4の下端部は、図7に符号Bで示す第二熱交換器6の下端部よりも高い位置にある。より望ましくは、第一熱交換器4の下端部Aよりも下側に、第二熱交換器6の上端部が位置している。
また、実施の形態1では、第一熱交換器4の容量は第二熱交換器6の容量よりも大きかったが、実施の形態2では、第一熱交換器4と第二熱交換器6の容量は同程度である。暖房モードのときに余剰冷媒は生じないため、実施の形態1で示した冷媒タンク11を設けていない。
図8は、実施の形態2に係る過渡運転におけるアクチュエータの動作を説明するタイミングチャートである。実施の形態2の過渡運転における圧縮機2、流路切替装置3、及び主減圧装置5の動作は、実施の形態1と同様である。すなわち、過渡運転を開始すると、圧縮機2が減速して流路切替装置3が暖房側に切り替わる。流路切替装置3が暖房側に切り替わると、直ちに圧縮機2に停止指令が出され、圧縮機2が停止する。圧縮機2が停止すると、液移動時間が経過するまで待機する。
ここで、図7を参照して過渡運転の冷媒の流れを説明する。圧縮機2が停止すると、冷媒はヘッド差を利用して移動する。第一熱交換器4内の冷媒は、重力により下方へ移動し、バイパス回路8A、バイパス回路8Aと第二熱交換器6を接続する配管内、及び第二熱交換器6に貯まっていく。
図8に示すように、液移動時間が経過すると、圧縮機2は停止した状態のまま、主減圧装置5に対して全開指令が出され、主減圧装置5が全開状態になる。その後、実施の形態1と同様に、暖房待機運転を行う。
以上のように実施の形態2では、冷房モードから暖房モードに切り替える際、流路切替装置3を暖房モード側に切り替えた後に圧縮機2を停止させ、その後、主減圧装置5を閉じて液移動時間が経過するまで待機するようにした。この液移動時間において、冷房モード時に蒸発器として機能していた第一熱交換器4内の液冷媒を、バイパス回路8A及び第二熱交換器6に移動させることができるので、暖房モードを開始したときの圧縮機2への液バックを抑制することができる。
なお、実施の形態1、2の冷房待機運転では圧縮機2の減速運転を行った後に圧縮機2を停止させる例を示した。しかし、圧縮機2の減速運転を行わなくてもよく、流路切替装置3を暖房側に切り替えた後に、圧縮機2を停止させればよい。
以上説明したように、実施の形態1、2の冷凍サイクル装置1は、圧縮機2と、第一熱交換器4と、第一熱交換器4と直列に接続された第二熱交換器6と、第一熱交換器4と第二熱交換器6との間に接続された主減圧装置5と、冷房モードで圧縮機2から吐出された冷媒を第一熱交換器4に流す第一流路を形成し、暖房モードで圧縮機2から吐出された冷媒を第二熱交換器6に流す第二流路を形成する流路切替装置3と、第一熱交換器4と主減圧装置5との間から分岐して主減圧装置5と第二熱交換器6との間に接続され、主減圧装置5と並列に設けられたバイパス回路8と、を備え、バイパス回路8及び第二熱交換器6は、第一熱交換器4よりも重力方向において下側に配置されており、冷房モードから暖房モードへ運転が切り替わる際、圧縮機2が動作している状態で前記流路切替装置は前記第二流路を形成し、その後、圧縮機2が停止し、主減圧装置5が閉じ、その後、液移動時間が経過すると、主減圧装置5及び圧縮機2が暖房モードの負荷に基づいて動作する。
この構成によれば、冷房モードのときに第一熱交換器4内に滞留している冷媒を、バイパス回路8及び第二熱交換器6に移動させた後、暖房モードを開始するので、暖房モードを開始したときの液バックを抑制することができる。
第一熱交換器4の容量は、第二熱交換器6の容量よりも大きく、バイパス回路8は、重力方向の上から順に第一副減圧装置9と、冷媒タンク11と、第二副減圧装置10とが、直列に接続されており、冷媒タンク11は、第一熱交換器4よりも重力方向において下側に配置されており、冷房モードから暖房モードへ運転が切り替わる際、圧縮機2が動作している状態で流路切替装置3が前記第二流路を形成し、その後、主減圧装置5が閉じ、第一副減圧装置9及び第二副減圧装置10が開き、その後、液移動時間が経過すると、主減圧装置5、第一副減圧装置9、第二副減圧装置10及び圧縮機2が暖房モードの負荷に基づいて動作するように構成されていてもよい。
この構成によれば、冷房モードのときに第一熱交換器4内に滞留している冷媒を、バイパス回路8、冷媒タンク11及び第二熱交換器6に移動させた後、暖房モードを開始するので、暖房モードを開始したときの液バックを抑制することができる。また、第一熱交換器4と第二熱交換器6の容量が異なる場合に、暖房モードで余剰となる冷媒を冷媒タンク11に貯めることができる。
冷媒タンク11の容積と第二熱交換器6の容積の合計は、冷凍サイクル装置1内の全冷媒の容積以上としてもよい。
この構成によれば、アキュムレータ7を設けない、あるいはアキュムレータ7を小型化した場合でも、圧縮機2への液バックを抑制することができる。
液移動時間は、上述の式(7)により求めてもよい。
この構成によれば、冷凍サイクル装置1のシステム構成に適した液移動時間で、液移動運転を行うことができる。無駄な液移動運転を行うことがないので、冷房モードから暖房モードに速やかに移行することができる。
1 冷凍サイクル装置、2 圧縮機、3 流路切替装置、4 第一熱交換器、5 主減圧装置、6 第二熱交換器、7 アキュムレータ、8 バイパス回路、8A バイパス回路、9 第一副減圧装置、10 第二副減圧装置、11 冷媒タンク、13 送風機、14 水回路、15 ポンプ、20 制御装置、21 メモリ、22 タイマ、23 液移動時間経過判定部。
Claims (4)
- 圧縮機と、
第一熱交換器と、
前記第一熱交換器と直列に接続された第二熱交換器と、
前記第一熱交換器と前記第二熱交換器との間に接続された主減圧装置と、
冷房モードで前記圧縮機から吐出された冷媒を前記第一熱交換器に流す第一流路を形成し、暖房モードで前記圧縮機から吐出された冷媒を前記第二熱交換器に流す第二流路を形成する流路切替装置と、
前記第一熱交換器と前記主減圧装置との間から分岐して前記主減圧装置と前記第二熱交換器との間に接続され、前記主減圧装置と並列に設けられたバイパス回路と、を備え、
前記バイパス回路及び前記第二熱交換器は、前記第一熱交換器よりも重力方向において下側に配置されており、
前記冷房モードから前記暖房モードへ運転が切り替わる際、
前記圧縮機が動作している状態で前記流路切替装置は前記第二流路を形成し、その後、前記圧縮機が停止し、前記主減圧装置が閉じ、その後、液移動時間が経過すると、前記主減圧装置及び前記圧縮機が前記暖房モードの負荷に基づいて動作する
冷凍サイクル装置。 - 前記第一熱交換器の容量は、前記第二熱交換器の容量よりも大きく、
前記バイパス回路は、重力方向の上から順に第一副減圧装置と、冷媒タンクと、第二副減圧装置とが、直列に接続されており、
前記冷媒タンクは、前記第一熱交換器よりも重力方向において下側に配置されており、
前記冷房モードから前記暖房モードへ運転が切り替わる際、
前記圧縮機が動作している状態で前記流路切替装置が前記第二流路を形成し、その後、前記圧縮機が停止し、前記主減圧装置が閉じ、前記第一副減圧装置及び前記第二副減圧装置が開き、その後、液移動時間が経過すると、前記主減圧装置、前記第一副減圧装置、前記第二副減圧装置及び前記圧縮機が前記暖房モードの負荷に基づいて動作する
請求項1記載の冷凍サイクル装置。 - 前記冷媒タンクの容積と前記第二熱交換器の容積の合計は、前記冷凍サイクル装置内の全冷媒の容積以上である
請求項2記載の冷凍サイクル装置。 - 前記液移動時間は、下記式により算出される時間である
請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。
ここで、Grは以下の式より導かれる。
さらに、上記式において、X,Y,Zは以下のとおりである。
Z:ρg
X:0.3164*(d/ν)^(-0.25)*Lρ/(2d)*{1/(Aρm)}^1.75
Y:B/{ρ(86.5Cv)^2}
h:液面高さの差[m]≒第一熱交換器4の高さ-第二熱交換器6の高さ
L:配管長さ[m]
d:配管内径[m]
Cv:各減圧装置の流量係数[-]
A:配管断面積[m2]
B:単位換算 3600^2*10^6
m:並列接続配管本数[-]
Gr:液移動量[kg/s]
g:重力加速度[kgm/s2]
ν:動粘度[m2/s]
ρ:液密度[kg/m3]
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017544113A JP6433602B2 (ja) | 2015-10-07 | 2015-10-07 | 冷凍サイクル装置 |
PCT/JP2015/078485 WO2017060986A1 (ja) | 2015-10-07 | 2015-10-07 | 冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/078485 WO2017060986A1 (ja) | 2015-10-07 | 2015-10-07 | 冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017060986A1 true WO2017060986A1 (ja) | 2017-04-13 |
Family
ID=58488255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078485 WO2017060986A1 (ja) | 2015-10-07 | 2015-10-07 | 冷凍サイクル装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6433602B2 (ja) |
WO (1) | WO2017060986A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017068642A1 (ja) * | 2015-10-20 | 2018-05-10 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2017061009A1 (ja) * | 2015-10-08 | 2018-06-07 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2017061010A1 (ja) * | 2015-10-08 | 2018-06-07 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2022149187A1 (ja) * | 2021-01-05 | 2022-07-14 | 三菱電機株式会社 | 冷凍サイクル装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63155972U (ja) * | 1987-04-01 | 1988-10-13 | ||
JPH11108473A (ja) * | 1997-10-03 | 1999-04-23 | Mitsubishi Heavy Ind Ltd | 空気調和機 |
JPH11237095A (ja) * | 1998-02-23 | 1999-08-31 | Mitsubishi Electric Corp | 自然循環式空気調和機並びにその室外側熱交換器及び室内側熱交換器 |
JP2002286300A (ja) * | 2001-03-28 | 2002-10-03 | Mitsubishi Electric Corp | 空気調和装置 |
JP2003042585A (ja) * | 2001-07-30 | 2003-02-13 | Hitachi Ltd | 空気調和機 |
JP2006177599A (ja) * | 2004-12-22 | 2006-07-06 | Hitachi Home & Life Solutions Inc | 空気調和機 |
JP2012007800A (ja) * | 2010-06-24 | 2012-01-12 | Mitsubishi Heavy Ind Ltd | ヒートポンプ式給湯・空調装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4164566B2 (ja) * | 2003-11-07 | 2008-10-15 | 日立アプライアンス株式会社 | 空気調和装置 |
JP2005180764A (ja) * | 2003-12-18 | 2005-07-07 | Mitsubishi Electric Corp | ヒートポンプ式空気調和機 |
JP5178597B2 (ja) * | 2009-03-23 | 2013-04-10 | 東芝キヤリア株式会社 | 空気調和機 |
-
2015
- 2015-10-07 WO PCT/JP2015/078485 patent/WO2017060986A1/ja active Application Filing
- 2015-10-07 JP JP2017544113A patent/JP6433602B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63155972U (ja) * | 1987-04-01 | 1988-10-13 | ||
JPH11108473A (ja) * | 1997-10-03 | 1999-04-23 | Mitsubishi Heavy Ind Ltd | 空気調和機 |
JPH11237095A (ja) * | 1998-02-23 | 1999-08-31 | Mitsubishi Electric Corp | 自然循環式空気調和機並びにその室外側熱交換器及び室内側熱交換器 |
JP2002286300A (ja) * | 2001-03-28 | 2002-10-03 | Mitsubishi Electric Corp | 空気調和装置 |
JP2003042585A (ja) * | 2001-07-30 | 2003-02-13 | Hitachi Ltd | 空気調和機 |
JP2006177599A (ja) * | 2004-12-22 | 2006-07-06 | Hitachi Home & Life Solutions Inc | 空気調和機 |
JP2012007800A (ja) * | 2010-06-24 | 2012-01-12 | Mitsubishi Heavy Ind Ltd | ヒートポンプ式給湯・空調装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017061009A1 (ja) * | 2015-10-08 | 2018-06-07 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2017061010A1 (ja) * | 2015-10-08 | 2018-06-07 | 三菱電機株式会社 | 冷凍サイクル装置 |
JPWO2017068642A1 (ja) * | 2015-10-20 | 2018-05-10 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2022149187A1 (ja) * | 2021-01-05 | 2022-07-14 | 三菱電機株式会社 | 冷凍サイクル装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017060986A1 (ja) | 2018-03-15 |
JP6433602B2 (ja) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102844630B (zh) | 空调热水供给复合系统 | |
JP5169295B2 (ja) | 冷凍装置 | |
CN103842747B (zh) | 制冷循环装置 | |
US10401047B2 (en) | Refrigeration cycle apparatus | |
US8950202B2 (en) | Heat pump system | |
US10208987B2 (en) | Heat pump with an auxiliary heat exchanger for compressor discharge temperature control | |
EP2584291A2 (en) | Air conditioner and operation method of the same | |
US11384965B2 (en) | Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump | |
US9989284B2 (en) | Refrigeration apparatus | |
JP6463491B2 (ja) | 冷凍サイクル装置 | |
JP6613759B2 (ja) | エンジン駆動式空気調和装置 | |
JP6433602B2 (ja) | 冷凍サイクル装置 | |
JP2017122557A (ja) | 空気調和装置 | |
JP2008175409A (ja) | 空気調和システムの運転制御方法及び空気調和システム | |
KR102165351B1 (ko) | 히트펌프 시스템 | |
EP3109566B1 (en) | Air conditioning device | |
KR101891703B1 (ko) | 제어기의 폐열을 이용한 열펌프 장치 및 이를 구비한 냉난방 장치 | |
JP6350338B2 (ja) | 空気調和装置 | |
JP5895662B2 (ja) | 冷凍装置 | |
JP6638468B2 (ja) | 空気調和装置 | |
JP2016090142A (ja) | 二段圧縮式冷凍サイクル装置及びその制御装置並びに制御方法 | |
JP2015210025A (ja) | 蓄冷システムならびに空調システム | |
JP2017116136A (ja) | 空気調和装置 | |
JP2011058749A (ja) | 空気調和装置 | |
JPWO2018073881A1 (ja) | 冷凍サイクル装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15905806 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017544113 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15905806 Country of ref document: EP Kind code of ref document: A1 |