JPH11237095A - 自然循環式空気調和機並びにその室外側熱交換器及び室内側熱交換器 - Google Patents

自然循環式空気調和機並びにその室外側熱交換器及び室内側熱交換器

Info

Publication number
JPH11237095A
JPH11237095A JP10040401A JP4040198A JPH11237095A JP H11237095 A JPH11237095 A JP H11237095A JP 10040401 A JP10040401 A JP 10040401A JP 4040198 A JP4040198 A JP 4040198A JP H11237095 A JPH11237095 A JP H11237095A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
indoor
air conditioner
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10040401A
Other languages
English (en)
Inventor
Akihiro Matsushita
章弘 松下
Itsutarou Akiyama
逸太郎 秋山
Yasunori Shida
安規 志田
Takashi Okazaki
多佳志 岡崎
Akio Fukushima
章雄 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10040401A priority Critical patent/JPH11237095A/ja
Publication of JPH11237095A publication Critical patent/JPH11237095A/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】 【課題】 外気が室内温度より低くなった時、外気エネ
ルギーを利用して効率良く、室内を冷房する自然循環式
空気調和機を得ることを目的とする。 【解決手段】 室外空気と冷媒とを熱交換させる室外側
熱交換器、前記冷媒の循環量を調整する流量調整装置、
及び前記冷媒と室内空気とを熱交換させる室内側熱交換
器が順次配管で接続された自然循環式空気調和機におい
て、制御装置が、前記室外空気の温度が所定温度以下の
時、前記室内空気の温度に応じて前記流量調整装置の弁
開度を制御する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は冷媒の自然循環サイ
クルを利用した空気調和機に関する。
【0002】
【従来の技術】近年,携帯電話をはじめとする移動体通
信の普及によって、電算機室や移動体通信の中継電子機
器を納めた基地局(シェルタ)に代表されるような電子
機器の発熱を除去する分野が急速に広がっており、これ
らの電子機器を利用する場所では年間を通しての冷房運
転が必要となっている。
【0003】また、これらの場所では,特に夏季に、室
内で発生する電子機器の熱負荷に加えて,室外から壁を
介して伝導される外気熱負荷やドア・隙間等からの侵入
負荷等があるため、その夏季条件負荷に応じた冷房能力
を有する空気調和機を選定し、その選定した空気調和機
で室内を冷房する。このため、特に、外気温度が低くな
る冬季においても、夏季負荷に応じて選定した冷房能力
の空気調和機を運転することになるため、運転電力消費
量が高くなり、不経済であった。
【0004】なお、冬季間だけ空気調和機を運転せず
に、温度の低い外気を導き入れて吸気冷房を行う方法も
あるが,この方法では、霧,雨,雪,塵埃の侵入を防ぐ
ための装置を必要とするだけでなく,吸気により室内が
陽圧(室外圧力より高くなる現象)になって吸気量が変
動すると共に、外気温度が変動するため、安定した冷房
を行うための複雑な制御機構が必要となる。
【0005】また、特開平9−68355号公報に示さ
れるように、夏季は空気調和機の圧縮機を運転して通常
の冷房を行い、冬季間だけ空気調和機の圧縮機を停止し
て、室内温度と室外温度との温度差(室内と室外の熱エ
ネルギ差)に起因して生じる冷媒の比重差、および室外
機と室内機との高低差(位置エネルギ差)による自重差
を利用し、空気調和機冷媒回路内の冷媒を室内機と室外
機との間で自然循環させ、室内を冷房する所謂自然循環
式の冷房ヒートポンプ等がある。
【0006】次に、この従来の自然循環式空気調和機に
ついて図8を用いて説明する。この図8において,1は
冷媒を循環する圧縮機、2は室外機5に設けられ、冷媒
ガスを外気エネルギーにより凝縮して冷媒液にする凝縮
器,4はこの凝縮器2が凝縮した冷媒液を蒸発器7の出
口温度により減圧・流量調整して蒸発器7の蒸発能力が
最大になるようにすると共に、冷媒液が圧縮機1へ流れ
ないように、即ち、冷媒液が蒸発器7の出口で全て冷媒
過熱ガスになるように、それ自体の弁開度を調整して冷
媒の流量を調整する膨張弁、6はこの膨張弁4を介して
凝縮器と蒸発器とを接続する液配管、7は室内機9に設
けられ、冷媒液の蒸発潜熱により室内空気を冷却する蒸
発器,10はこの蒸発器7と圧縮機1とを接続する吸入
ガス配管,11は圧縮機1と凝縮器2とを接続する吐出
ガス配管である。また、12は圧縮機1と並列に設けら
れ、吸入ガス配管10及び吐出ガス配管11と接続され
たバイパス配管、13はこのバイパス配管12に設けら
れた電磁弁、15は図示してないが、この電磁弁13の
開閉及び圧縮機1の運転動作を室内外温度差により制御
する制御装置である。なお、室外機5(凝縮器2)は、
必ず室内機9(蒸発器7)より高い位置に設置されてい
る。
【0007】次に、この構成の動作について説明する
が、ここでは、夏季における通常の空気調和機の冷房動
作についての説明は省略し、冬季における冷房動作につ
いてのみ説明する。この冬季においては、まず、制御装
置15が、室外温度より室内温度が高いことを検知する
と、圧縮機運転を停止してバイパス配管12に設けられ
た電磁弁を開くので、室内電子機器の熱で温められた高
温の室内空気と蒸発器7を介して熱交換された冷媒は比
重の軽いガスとなり、この軽い冷媒ガスはバイパス配管
12から外気で冷却された凝縮器2へ進み、冷媒液とな
る。
【0008】次に、この冷媒液は室外機と室内機との高
低差による自重の差によって凝縮器2から膨張弁4を介
して蒸発器7へ送られる。次に、この蒸発器7へ送られ
た冷媒液は、再び、電子機器で温められた温度の高い室
内空気と熱交換されるので、比重の小さい冷媒ガスとな
り、バイパス配管12から再び凝縮器2内へ進むことに
なる。この繰り返しにより、圧縮機1が停止していて
も、冷媒は、蒸発器7、配管12、電磁弁13、凝縮器
2、膨張弁4、再び蒸発器7ヘと順次自然に循環するの
で、空調対象空間である室内が冷房される。
【0009】しかし、前述したように、膨張弁4は蒸発
器7の出入口配管の温度差(過熱度)により、それ自体
の弁開度を調整するため、蒸発器7の出口配管温度が入
口配管温度より所定温度以上(例えば、過熱度が5de
g℃に調整されていれば5℃以上)高くなければ、膨張
弁4が開かないので、冷媒は流れない。即ち、蒸発器7
の入口配管温度が凝縮温度(外気温度)とほぼ等しくな
り、室内温度が蒸発器7の出口温度とほぼ等しくなる自
然循環冷房方式においては、外気温度が室内温度より5
℃以上低くならなければ、冷媒は流れないことになる。
【0010】また、一般的に、特に温度式膨張弁4は夏
場の高低圧差(通常フロン22で16kg/cm2、即ち、
自然循環方式の高低差に換算すると約130mの高低差
に相当)を基準として構造・機構設計をしているため、
蒸発温度と凝縮温度の差が5℃以下、圧力換算すると
0.9kg/cm2以下、即ち、ヘッド差換算で約8m以下
であれば、冷媒流量制御ができなくなつたり、あるい
は、不安定な制御になったりする。
【0011】このため、従来の温度式膨張弁4を用いて
自然循環冷房を行う時に、凝縮器2と蒸発器7との高低
差が8m以下ものでは、図8の膨張弁4と並列に更に電
磁弁(図示せず)を設け、この電磁弁を開いて自然循環
冷房していた。また、このような装置では、この電磁弁
を室内温度に基づいてON−OFF制御しているため、
室内負荷変動に対する応答速度が遅くなり、室内温度の
変動巾の大きい状態で自然循環冷房を行うことになる。
【0012】また一方、凝縮器2と蒸発器7の高低差が
8m以上で設置され、膨張弁の冷媒調整作動がうまくい
くのものでも、蒸発器7の出入口配管温度差(過熱度)
により膨張弁4の開度を調整して自然循環冷房をしてい
るため、例えば、過熱度5℃になるように膨張弁4の開
度を調整し、外気(室外)温度が0℃であったすると、
蒸発器7へ供給された0℃の冷媒液を出口で5℃の過熱
冷媒ガスになるように膨張弁の開度を調整制御するた
め、自然循環冷房においては圧縮機1が停止し、圧縮機
1への液バックを考慮しなくてもよいのにも関らず、常
に液バックを考慮して膨張弁を過熱度調整分だけ絞って
しまうため、常に、蒸発器7の定挌蒸発能力(定格熱交
換能力)以下の冷却能力で冷房運転を行うことになる。
【0013】なお、自然循環を利用した空気調和機の他
の従来例としては,特開平8―313001号公報に掲
載された吸収式空気調和機の例がある。この例でも,膨
張弁の開度を室内機(蒸発器)の出入口温度差(過熱
度)が所定の値になるように制御する自然循環方式の空
気調和機が開示されている。
【0014】また,前述の蒸発器7と凝縮器2との高低
差による自重圧力差を利用して自然循環冷房する時、温
度式膨張弁4の最少作動差圧(0.9kg/cm2)の他
に、凝縮器2、蒸発器7、液配管6、ガス配管10、お
よび冷媒回路内の開閉弁部などの冷媒流路における圧力
損失を加味する必要があることは、言うまでもない。
【0015】
【発明が解決しようとする課題】以上説明したように、
従来の自然循環式空気調和機では,蒸発器の出入口温度
差(過熱度)により膨張弁の開度を調整しているため、
蒸発器の熱交換能力を充分に発揮できないという問題点
があった。
【0016】また、特に、温度式膨張弁を用いた場合、
その作動差圧以上に相当する蒸発器と凝縮器との高低差
(ヘッド差)を有するように、凝縮器を蒸発器より高く
設置したり、あるいは、膨張弁を用いて冷媒流量を制御
せず、単に電磁弁を開いて冷媒を流すため、据え付け条
件が制約されたり、室内温度が安定しないという問題点
があった。
【0017】この発明は係る問題点を解決するためにな
されたもので、経済的で、使い勝手が良く、室内負荷に
応じて安定した冷房運転をする信頼性の高い自然循環式
空気調和機を得ることを目的とする。
【0018】また、熱交換能力の良い蒸発器(室内側熱
交換器)と凝縮器(室外側熱交換器)を得ることを目的
とする。
【0019】
【課題を解決するための手段】この発明に係る自然循環
式空気調和機並びにその室外側熱交換器及び室内側熱交
換器においては、室外空気と冷媒とを熱交換させる室外
側熱交換器、前記冷媒の循環量を調整する流量調整装
置、及び前記冷媒と室内空気とを熱交換させる室内側熱
交換器が順次配管で接続された自然循環式空気調和機に
おいて、制御手段が、前記室外空気の温度が所定温度以
下の時、前記室内空気の温度に応じて前記流量調整装置
の冷媒循環量を制御するものである。
【0020】また、室外空気と冷媒とを熱交換させる室
外側熱交換器、前記冷媒の循環量を調整する流量調整装
置、及び前記冷媒と室内空気とを熱交換させる室内側熱
交換器とが順次配管で接続された自然循環式空気調和機
において、制御手段が、前記室外空気の温度が所定温度
以下の時、前記室外空気の温度に応じて前記流量調整装
置の冷媒循環量を制御するものである。
【0021】また、前記制御装置が、前記室内空気の温
度が所定温度以上の時、前記流量調整装置の弁開度を全
開にして前記冷媒の循環量を制御するものである。
【0022】また、圧縮機及び当該圧縮機と並列に配管
で接続された電磁弁が、前記室外側熱交換器と室内側熱
交換器との間に設けられ、前記制御装置が、前記室外空
気の温度が所定温度以上の時、前記電磁弁を閉じて前記
圧縮機を運転するものである。
【0023】また、前記室外側熱交換器が、各段・列に
配置された複数の熱交換パイプを有し、これらの各段・
列の熱交換パイプを組み合わせて前記室外空気の流れに
対して並列に形成された複数の冷媒流路が、前記冷媒を
順次降流するように構成されたものである。
【0024】また、前記室内側熱交換器が、各段・列に
配置された複数の熱交換パイプを有し、これらの各段・
列の熱交換パイプを組み合わせて前記室外空気の流れに
対して並列に形成された複数の冷媒流路が、前記冷媒を
順次昇流するように構成されたものである。
【0025】前記室内側熱交換器出口から前記室外側熱
交換器入口までの間を接続するガス配管径を前記室外側
熱交換器出口から前記室内側熱交換器入口までの間を接
続する液配管径よりも大きくしたものである。
【0026】
【発明の実施の形態】実施の形態1.以下に,本発明の
実施の形態1における自然循環式空気調和機について説
明する。図1は、この実施の形態1における空気調和機
の構成図である。この図において,2は室外機5に設け
られ、外気エネルギーにより冷却して冷媒ガスを冷媒液
にする室外側熱交換器である凝縮器、3はこの凝縮器2
へ外気を送風する室外ファン,40はこの凝縮器2が凝
縮した冷媒液の流量を室内温度センサ50からの室内温
度により流量調整する電子式膨張弁(弁の最少作動差圧
0kg/cm2)等の流量調整装置であり、この流量調整装
置40は室内温度センサ50からの室内温度と目標室内
温度とを比較して流量調整弁の開度を制御する制御装置
を有している。なお、この制御装置は流量調整装置40
と別に設けられていても良い。また、6はこの流量調整
装置40を介して凝縮器と蒸発器とを接続する液配管,
7は室内機9に設けられ、冷媒液の蒸発潜熱により室内
空気を冷却する室内側熱交換器である蒸発器,8はこの
蒸発器7へ室内空気を送風する室内ファン、10はこの
蒸発器7と凝縮器とを接続する吸入ガス配管、50は基
地局52等の室内に設けられ、室内温度を検知する温度
センサ、52は基地局等の室内である。
【0027】なお、ここでいう自然循環式空気調和機に
おいては、凝縮器2、流量調整装置40、及び蒸発器7
を順次配管で接続した閉回路内には,常温で熱授受され
ることにより、蒸発してガスになったり或は凝縮して液
になったり、その相状態を変化させる熱媒体,例えばフ
ロン冷媒等が流れる。また、図1に示すように、室外機
5(凝縮器2)は、必ず室内機9(蒸発器7)より高い
位置に設置され、冷媒がガス状態で入る凝縮器の入口は
出口よりも高い位置に設け、液化した冷媒が順次出口側
へ降下するようにし、また、蒸発器7の入口は逆に、出
口よりも低い位置に設け、気化した冷媒ガスは順次出口
側へ上昇するように構成する。
【0028】次に、この動作について説明する。まず、
図1に示されるように、順次配管で接続された凝縮器
2、流量調整装置40、及び蒸発器7の閉回路内の冷媒
は、室内の電子機器の熱で温められた高温の室内空気と
蒸発器7を介して熱交換され、比重の軽いガスとなり、
ガス配管10を通って、蒸発器7より高い位置に設置さ
れた室外の凝縮器2へ流れる。次に、この室外の凝縮器
2へ流れた冷媒ガスは、室外の冷たい外気と凝縮器2を
介して熱交換されて冷却され、比重の大き重い冷媒液と
なる。次に、この重い冷媒液は室外機と室内機との高低
差による自重の差によって凝縮器2から弁の最少作動差
圧が0kg/cm2の流量調整装置40を介して液配管6に
より蒸発器7へ送られるので、再び、温度の高い室内空
気と熱交換され、比重の小さい軽い冷媒ガスとなり、再
び凝縮器2へ送られて冷却され、冷媒液となる。この繰
り返しにより、空調対象空間である室内は外気エネルギ
ーによって冷房される。
【0029】なお、凝縮器2から蒸発器7へ送る冷媒液
量は、流量調整装置40の制御装置が温度センサからの
検知結果(室内温度)と目標室内温度とを比較し、この
比較結果、即ち、室内負荷に応じて、その弁の開度を調
整して制御する。また、この制御動作の開始・終了は、
流量調整装置40の制御装置が外気温度センサー(図示
せず)からの室外温度と目標室内温度を比較し、この比
較結果で、室外温度(室外温度に相当する凝縮温度また
は流量調整装置の入口温度等)が所定温度(目標室内温
度等)より低いか高いかを確認して行うようにしても良
いし、あるいは利用者が、外気温度が目標室内温度より
低いか高いかを確認し、この確認結果で流量調整装置4
0の電源を入切して、動作させるようにしても良い。
【0030】また、この構成における室外温度0℃、室
内温度25℃の時の冷凍サイクルのモリエル線図を図7
に示す。
【0031】以上説明したように、流量調整装置40の
制御装置は、蒸発器7の出入口温度差による過熱度では
なく、室内負荷である室内温度と目標室内温度との温度
差、即ち室内温度に応じて弁開度を制御し、蒸発器7へ
送る冷媒液量を制御するので、簡単な構成で、大気中の
異物の侵入を防止しながら、室内負荷の変動に対応して
大気エネルギーを効率良く活用しながら室内を冷房にす
る経済的な自然循環式空気調和機が得られる。
【0032】また、制御装置が流量調整装置40の弁開
度を調整する時、室内温度と目標室内温度との温度差が
所定値以上、例えば、5deg℃以上の時に全開にし、
0〜5deg℃の間ではリニアに室内温度と目標室内温
度との温度差に基づいて弁開度を調整し、0℃の時は全
閉にするように調整すると、更に効率良く室内をスピー
ディに冷房するようになるため、更に、経済的で、使い
勝手の良い自然循環式空気調和機が得られる。
【0033】実施の形態2.以下に,本発明の実施の形
態2における自然循環式空気調和機について説明する。
図2は本実施の形態2における空気調和機の構成図であ
る。この図2において、51は室外に設けられ、外気温
度を検知する外気温度センサで、この外気温度センサ5
1は制御装置(図示せず)と繋がっており、この制御装
置は流量調整装置40と繋がっている。また、実施の形
態1で説明した符号と同じ符号は同じものを示す。な
お、この実施の形態2においては、外気温度センサの検
知結果により流量調整装置40の弁開度を制御するもの
である。
【0034】次に、この動作について説明する。一般的
に、基地局52内に設置される通信機器の仕様が決まれ
ば、通信機器の発熱量が決まり、また、基地局52内の
壁等の室内仕様が決まれば、各室内外温度差における壁
面からの放熱量が決まるのであるから、仮に目標室内温
度を例えば25℃と予め決めておけば、各室外温度にお
ける各壁面からの放熱量は決まる。即ち、各室外温度に
おける室内負荷(放熱量と発熱量の合計熱量)が決ま
る。
【0035】一方、この冷房方式においては、外気エネ
ルギーによって室内負荷を除去して目標室内温度に維持
するものであるから、目標室内温度と各室外温度との温
度差における、即ち目標室内温度は一定であるから各室
外温度における凝縮器2及び蒸発器7の放熱・冷却能力
が求まり、凝縮器2と蒸発器7との仕様が決まると共
に、前述の各室外温度における室内負荷(必要冷却能
力)から蒸発器7へ流す各室外温度における必要冷媒量
が求まるので、この結果から各室外温度における流量調
整装置40の弁開度を求めておけば、各室外温度におけ
る流量調整装置40の弁開度が決まる。
【0036】次に、この求めた関係結果を予め制御装置
に記憶させる。次に、この記憶結果の各室外温度におけ
る流量調整装置40の弁開度と外気温度センサからの検
知結果とを制御装置が比較し、この比較結果に基づいて
流量調整装置40の弁開度を制御し、室外温度に応じ
て、即ち室内負荷に応じて室内を冷房する。なお、室内
温度より低い温度の外気を利用した自然循環式冷房をす
るかしないかは、制御装置が外気温度センサからの検知
結果と予め設定された温度(例えば20℃)と比較して
決定する。
【0037】以上説明したように、外気温度センサーの
みにより、自然循環式冷房を行うか、行わないかを決定
し、この決定により流量調整装置40の弁開度を制御し
て室内を冷房するようになるため、更に、構成部品が少
なく、経済的で、使い勝手の良い自然循環式空気調和機
が得られる。
【0038】実施の形態3.以下に,本発明の実施の形
態3における自然循環式空気調和機について説明する。
図3は本実施の形態3における自然循環式空気調和機の
構成図である。この図に示すように、1は凝縮器2と蒸
発器7との間の吸入ガス配管ラインに設けられ、冷媒を
圧縮して循環する圧縮機、12はこの圧縮機1と並列に
設けられ、吸入ガス配管10及び吐出ガス配管11と接
続されたバイパス配管、13はこのバイパス配管12に
設けられた電磁弁、55は制御装置(図示せず)と接続
され、蒸発器7の出口冷媒温度を検知する出口温度検知
手段である。なお、実施の形態1で説明した符号と同じ
符号は同じものを示すので、説明を省略する。
【0039】また、この実施の形態3においては、実施
の形態1に圧縮機1、冷媒温度検知手段55、外気温度
センサ51、及び外気温度により自然循環冷房と圧縮機
運転による強制循環冷房のいずれかを選択する選択部を
有する制御装置を付加し、外気温度が目標室内温度以上
のときは、圧縮機1の運転により冷房を行い、目標室内
温度以下のときは、圧縮機1の運転を停止し、電磁弁1
3を開いて自然循環冷房を行えるようにしたものであ
る。
【0040】以下に、この動作について説明する。ま
ず、電源が入れられると、制御装置の選択部は、外気温
度センサ51からの検知結果(外気温度)が目標室内温
度以上か以下を判別して自然循環冷房か強制循環冷房の
いずれかを選択する。次に、この選別結果で、外気温度
が目標室内温度以上のときは、制御装置が圧縮機1の運
転及び電磁弁13を閉じる指示を行い、目標室内温度以
下のときは、圧縮機1の運転を停止し、電磁弁13を開
く指示をして自然循環冷房を行えようにする。なお、制
御装置が圧縮機1の運転を指示した時は、流量調整装置
40の弁開度を出口温度検知手段55の検知結果(蒸発
器の出口冷媒ガスの過熱度)に基づいて制御し、室内を
冷房するが、この冷房で室内温度が目標室内温度以下に
なれば、圧縮機1の運転を停止し、以上になれば、圧縮
機1の運転を再開する。また、圧縮機の運転を停止し、
電磁弁13を開く指示をして自然循環冷房を指示した時
は、実施の形態1で説明したように、流量調整装置40
の弁開度を室内温度センサ50の検知結果(室内温度)
に基づいて制御し、室内を冷房する。
【0041】以上説明したように、外気温度が目標室内
温度以上のときは、制御装置が圧縮機の運転による冷房
を行い、目標室内温度以下のときは、圧縮機の運転を停
止して自然循環冷房を行えるようにしたので、経済的
で、常に冷房が行える使い勝手の良い空気調和機が得ら
れる。
【0042】なお、この実施の形態3においては、自然
循環冷房を行う時、流量調整装置40の弁開度を室内温
度センサ50の検知結果(室内温度)に基づいて制御し
たが、実施の形態2のように、流量調整装置40の弁開
度を室外温度センサ51の検知結果(室内温度)に基づ
いて制御するようにすると、自然循環冷房において実施
の形態2とほぼ同様の効果が得られる。
【0043】実施の形態4.以下に,この自然循環式空
気調和機の凝縮器について説明する。図4は本実施の形
態4における自然循環式空気調和機の凝縮器の構成図で
ある。この図において、2は複数の熱交換パイプを各段
・列に配置し、この配置した各段と列を組み合わせて並
列に形成された各冷媒流路を冷媒が順次降流するように
構成された室外側熱交換器である凝縮器、24はこの凝
縮器2の各冷媒流路の入口側熱交換パイプと接続され、
蒸発器7からの冷媒を各冷媒流路に分配する凝縮器入口
分配部、26は凝縮器の熱交換パイプ外表面に設けら
れ、冷媒の熱を放出するフィン、28は凝縮器2の各冷
媒流路の出口側熱交換パイプと接続され、各冷媒流路の
冷媒を集める凝縮器出口集合部である。
【0044】次に、この動作について説明する。なお、
自然循環式冷房においては、一般に,凝縮器内の冷媒流
路が下から上方向に形成されると,凝縮した液冷媒が重
力によって滞留あるいは逆流し,出口配管28に液冷媒
が確実に供給されないため,自然循環冷房が行われなか
ったり、あるいは冷房能力が低下するという現象が生じ
る。
【0045】このため、本実施の形態4における凝縮器
2では,例えば、蒸発器7から吸入ガス配管10を介し
て凝縮器2に流入したガス冷媒を,凝縮器入口分配部2
4が熱交換配管の各列を基準として各冷媒流路を形成
し、分岐して流すのではなく、図4に示すように、各段
及び各列を組み合わせ、各冷媒流路を上下の2流路に分
岐し、この分岐して分配した冷媒が室外空気の流れに対
向して上から下方向へ流れるように各冷媒流路を形成す
ると、前列が後列より常に温度が高くなることなく、前
列と後列の冷媒温度がほぼ平均化されながら外気と熱交
換して凝縮し、この凝縮した液冷媒が重力によって順次
下方へ流れる。その後,この下方へ流れた冷媒液は凝縮
器出口集合部28で集合されて液配管6へ流出する。
【0046】このように構成すると、冷媒が室外空気の
流れに対向して滞留あるいは逆流することなくスムース
に流れるため、冷媒が確実に循環し、熱交換能力が向上
した信頼性の高い自然循環式空気調和機の室外側熱交換
器が得られる。
【0047】実施の形態5.以下に、自然循環式空気調
和機の蒸発器(室内側熱交換器)について説明する。図
5はこの実施の形態5における自然循環式空気調和機の
蒸発器の構成図である。この図において、7は複数の熱
交換パイプを各段・列に配置し、この配置した各段と列
を組み合わせて並列に形成された各冷媒流路を冷媒が順
次流れるように構成された室内側熱交換器である蒸発
器、34この蒸発器7の各冷媒流路の入口熱交換パイプ
と接続され、流量調整装置40からの冷媒を各冷媒流路
に分配する蒸発器入口分配部、36は蒸発器の熱交換パ
イプ外表面に設けられ、冷媒の熱を放出するフィン、3
8は蒸発器7の各冷媒流路の出口熱交換パイプと接続さ
れ、各冷媒流路の冷媒を集める蒸発器出口集合部であ
る。
【0048】次に、この動作について説明する。なお、
自然循環式冷房においては、一般に,蒸発器内の冷媒流
路が上から下方向に形成されると,蒸発して気化した軽
いガス冷媒が重力によって滞留あるいは逆流するため,
自然循環冷房が行われなかったり、あるいは冷房能力が
低下するという現象が生じる。
【0049】このため、本実施の形態5における蒸発器
7では、例えば、流量調整装置40から液管6を介して
蒸発器7に流入した液冷媒を,蒸発器入口分配部34が
熱交換配管の各列を基準として各冷媒流路を形成し、分
岐して流すのではなく、図5に示すように、各段と列と
を組み合わせ、上下の4流路に分岐し、この分岐・分配
した冷媒が室内空気の流れに対向して下から上方向へ順
次流れるように冷媒流路を形成しているので、前列が後
列より常に温度が高くなることなく、前列と後列の冷媒
温度がほぼ平均化されながら室内空気と熱交換して蒸発
し、この蒸発した軽いガス冷媒は上方へ流れる。その
後,この上方へ流れたガス冷媒は蒸発器出口集合部38
で集合されてガス配管10を介して凝縮器2へ流出す
る。
【0050】このように構成すると、冷媒が室内空気の
流れに対向して滞留あるいは逆流することなくスムース
に流れるため、冷媒が確実に循環し、熱交換能力が向上
した信頼性の高い自然循環式空気調和機の室内側熱交換
器が得られる。
【0051】実施の形態6.以下に、本発明の実施の形
態6における自然循環式空気調和機について説明する。
図6は本実施の形態による自然循環式空気調和機の構成
図である。この図6において,2は凝縮器,3は凝縮器
の室外ファン,40は電子式膨張弁等の流量調整装置,
7は蒸発器,8はこの蒸発器7へ室内空気を送風する室
内ファン,6は液配管,10はこの液配管の内管径より
数倍大きい内径のガス配管,5は室外機,9は室内機で
ある。
【0052】次に、この動作について説明する。一般
に,同一配管径,同一冷媒流量では冷媒ガス流速が液流
速に比べて大きくなるため,ガス配管10の圧力損失は
液配管6の圧力損失より大きくなる。従って、この自然
循環式冷房運転では,特に、吸入ガス配管10の配管径
を液配管6の配管径より大きくして、配管の圧力損失を
小さくし、凝縮器2と蒸発器7との高低差による冷媒液
のヘッド圧力が冷媒回路内の圧力損失に負けて循環しな
くならないように、即ち、ガス配管10の配管径を液配
管6に対して所定倍大きくし、冷媒が循環するようにす
ると共に、吸入ガス配管の圧力損失による冷媒流量の低
減を防止したものである。
【0053】このように構成すると、吸入ガス配管の圧
力損失による冷媒流量の低減を防止して確実に自然循環
冷房を行うようになるため、更に経済的で、信頼性の高
い自然循環式空気調和機が得られる。
【0054】
【発明の効果】以上説明したように、本発明によれば、
制御装置が、室外空気の温度が所定温度以下の時、室内
温度に応じて流量調整装置の弁開度を制御し、蒸発器へ
送る冷媒液量を制御するので、簡単な構成で、大気中の
異物の侵入を防止しながら、室内温度に応じて大気エネ
ルギーを効率良く活用して室内を清潔冷房する経済的な
自然循環式空気調和機が得られる。
【0055】また、制御装置が、室外空気の温度が所定
温度以下の時、その室外空気の温度に応じて前記流量調
整装置の弁開度を制御するので、外気温度センサーのみ
により、自然循環式の冷房を行うか、行わないかを決定
し、この決定により流量調整装置40の弁開度を制御し
て室内を冷房するようになるため、更に、構成部品が少
なく、経済的で、使い勝手の良い自然循環式空気調和機
が得られる。
【0056】また、制御装置が、室内空気の温度が所定
温度以上の時、流量調整装置の弁開度を全開にして冷媒
を循環させるので、更に効率良く室内をスピーディに冷
房するようになるため、更に、経済的で、使い勝手の良
い自然循環式空気調和機が得られる。
【0057】また、外気温度が所定温度以上のときは、
制御装置が圧縮機の運転による冷房を行い、所定温度以
下のときは、圧縮機の運転を停止して自然循環冷房を行
えるようにしたので、経済的で、外気温度が変動しても
常に冷房が行える使い勝手の良い空気調和機が得られ
る。
【0058】また、室外側熱交換器の各段・列の熱交換
パイプを組み合わせて室外空気の流れに対して並列に形
成された複数の冷媒流路が前記冷媒を順次降流するよう
に構成したので、冷媒が室内空気の流れに対向して滞留
あるいは逆流することなくスムースに流れるため、冷媒
が確実に循環し、熱交換能力が向上した信頼性の高い自
然循環式空気調和機の室外側熱交換器が得られる。
【0059】また、室内側熱交換器の各段・列の熱交換
パイプを組み合わせて室内空気の流れに対して並列に形
成された複数の冷媒流路が冷媒を順次昇流するように構
成されたので、冷媒が室内空気の流れに対向して滞留あ
るいは逆流することなくスムースに流れるため、冷媒が
確実に循環し、熱交換能力が向上した信頼性の高い自然
循環式空気調和機の室内側熱交換器が得られる。
【0060】また、室内側熱交換器出口から室外側熱交
換器入口までの間を接続するガス配管径を室外側熱交換
器出口から室内側熱交換器入口までの間を接続する液配
管径よりも大きくしたので、吸入ガス配管の圧力損失に
よる冷媒流量の低減を防止して確実に自然循環冷房を行
うようになるため、更に信頼性の高い自然循環式空気調
和機が得られる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1における自然循環式空
気調和機の構成図である。
【図2】 本発明の実施の形態2における自然循環式空
気調和機の構成図である。
【図3】 本発明の実施の形態3における自然循環式空
気調和機の構成図である。
【図4】 本発明の実施の形態4における自然循環式凝
縮器の構成図である。
【図5】 本発明の実施の形態5における自然循環式蒸
発器の構成図である。
【図6】 本発明の実施の形態6における自然循環式空
気調和機を示す構成図である。
【図7】 本発明の実施の形態1における自然循環式空
気調和機のモリエル線図である。
【図8】 従来の空気調和機を示す構成図である。
【符号の説明】
1 圧縮機、 2 凝縮器 、 3 室外ファン、 4
温度式膨張弁 、5室外機、 6 液配管、 7 蒸
発器、 8 室内ファン、 9 室内機、10 吸入ガ
ス配管、 12 バイパス配管、 24凝縮器入口分配
部、 26フィン、 28 凝縮器出口集合部、34蒸
発器入口分配部、 38 蒸発器出口集合部、 40
流量調整装置、 50 室内温度センサ、 51 外気
温度センサー、 55 冷媒温度検知手段。
フロントページの続き (72)発明者 岡崎 多佳志 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 福嶋 章雄 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 室外空気と冷媒とを熱交換させる室外側
    熱交換器、前記冷媒の循環量を調整する流量調整装置、
    及び前記冷媒と室内空気とを熱交換させる室内側熱交換
    器が順次配管で接続された自然循環式空気調和機におい
    て、制御手段が、前記室外空気の温度が所定温度以下の
    時、前記室内空気の温度に応じて前記流量調整装置の冷
    媒循環量を制御することを特徴とする自然循環式空気調
    和機。
  2. 【請求項2】 室外空気と冷媒とを熱交換させる室外側
    熱交換器、前記冷媒の循環量を調整する流量調整装置、
    及び前記冷媒と室内空気とを熱交換させる室内側熱交換
    器とが順次配管で接続された自然循環式空気調和機にお
    いて、制御手段が、前記室外空気の温度が所定温度以下
    の時、前記室外空気の温度に応じて前記流量調整装置の
    冷媒循環量を制御することを特徴とする自然循環式空気
    調和機。
  3. 【請求項3】 前記制御装置が、前記室内空気の温度が
    所定温度以上の時、前記流量調整装置の弁開度を全開に
    して前記冷媒の循環量を制御することを特徴とする請求
    項1に記載の自然循環式空気調和機。
  4. 【請求項4】 圧縮機及び当該圧縮機と並列に配管で接
    続された電磁弁が、前記室外側熱交換器と室内側熱交換
    器との間に設けられ、前記制御装置が、前記室外空気の
    温度が所定温度以上の時、前記電磁弁を閉じて前記圧縮
    機を運転することを特徴とする請求項1また2のいずれ
    かに記載の自然循環式空気調和機。
  5. 【請求項5】 前記室外側熱交換器が、各段・列に配置
    された複数の熱交換パイプを有し、これらの各段・列の
    熱交換パイプを組み合わせて前記室外空気の流れに対し
    て並列に形成された複数の冷媒流路が、前記冷媒を順次
    降流するように構成されたことを特徴とする請求項1か
    ら4までのいずれかに記載の自然循環式空気調和機の室
    外側熱交換器。
  6. 【請求項6】 前記室内側熱交換器が、各段・列に配置
    された複数の熱交換パイプを有し、これらの各段・列の
    熱交換パイプを組み合わせて前記室内空気の流れに対し
    て並列に形成された複数の冷媒流路が、前記冷媒を順次
    昇流するように構成されたことを特徴とする請求項1か
    ら5までのいずれかに記載の自然循環式空気調和機の室
    内側熱交換器。
  7. 【請求項7】 前記室内側熱交換器出口から前記室外側
    熱交換器入口までの間を接続するガス配管径を前記室外
    側熱交換器出口から前記室内側熱交換器入口までの間を
    接続する液配管径よりも大きくしたことを特徴とする請
    求項1または2のいずれかに記載の自然循環式空気調和
    機。
JP10040401A 1998-02-23 1998-02-23 自然循環式空気調和機並びにその室外側熱交換器及び室内側熱交換器 Pending JPH11237095A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10040401A JPH11237095A (ja) 1998-02-23 1998-02-23 自然循環式空気調和機並びにその室外側熱交換器及び室内側熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10040401A JPH11237095A (ja) 1998-02-23 1998-02-23 自然循環式空気調和機並びにその室外側熱交換器及び室内側熱交換器

Publications (1)

Publication Number Publication Date
JPH11237095A true JPH11237095A (ja) 1999-08-31

Family

ID=12579651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10040401A Pending JPH11237095A (ja) 1998-02-23 1998-02-23 自然循環式空気調和機並びにその室外側熱交換器及び室内側熱交換器

Country Status (1)

Country Link
JP (1) JPH11237095A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174465A (ja) * 2000-12-08 2002-06-21 Daikin Ind Ltd 冷凍装置
JP2013257086A (ja) * 2012-06-13 2013-12-26 Hitachi Appliances Inc 空気調和機及びその制御方法
JP2014202463A (ja) * 2013-04-09 2014-10-27 三菱電機株式会社 空気調和装置
JP2015135207A (ja) * 2014-01-17 2015-07-27 Gac株式会社 冷媒を自然循環させるシステム
WO2017060986A1 (ja) * 2015-10-07 2017-04-13 三菱電機株式会社 冷凍サイクル装置
CN107084543A (zh) * 2017-06-06 2017-08-22 珠海格力电器股份有限公司 水冷冷水机组及其控制方法
CN108387020A (zh) * 2018-04-08 2018-08-10 易事特集团股份有限公司 机架式复合型空调及高能效单柜数据中心
CN111854236A (zh) * 2020-08-27 2020-10-30 河北省人工影响天气办公室 改进的温控系统及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174465A (ja) * 2000-12-08 2002-06-21 Daikin Ind Ltd 冷凍装置
JP2013257086A (ja) * 2012-06-13 2013-12-26 Hitachi Appliances Inc 空気調和機及びその制御方法
JP2014202463A (ja) * 2013-04-09 2014-10-27 三菱電機株式会社 空気調和装置
JP2015135207A (ja) * 2014-01-17 2015-07-27 Gac株式会社 冷媒を自然循環させるシステム
WO2017060986A1 (ja) * 2015-10-07 2017-04-13 三菱電機株式会社 冷凍サイクル装置
CN107084543A (zh) * 2017-06-06 2017-08-22 珠海格力电器股份有限公司 水冷冷水机组及其控制方法
CN108387020A (zh) * 2018-04-08 2018-08-10 易事特集团股份有限公司 机架式复合型空调及高能效单柜数据中心
CN111854236A (zh) * 2020-08-27 2020-10-30 河北省人工影响天气办公室 改进的温控系统及方法
CN111854236B (zh) * 2020-08-27 2023-12-12 河北省人工影响天气中心 改进的温控系统及方法

Similar Documents

Publication Publication Date Title
US4608836A (en) Multi-mode off-peak storage heat pump
US20120006050A1 (en) Air-conditioning apparatus
JP2006284035A (ja) 空気調和装置およびその制御方法
JP4885481B2 (ja) 冷却装置の運転方法
JPH0235216B2 (ja)
JP2006292313A (ja) 地中熱利用装置
CN110440414A (zh) 空调系统、蓄热控制方法及化霜控制方法
JP2005147623A (ja) 空気調和機及び空気調和機の運転方法
JP3909520B2 (ja) 冷却装置
JP2002372320A (ja) 冷凍装置
JPH11237095A (ja) 自然循環式空気調和機並びにその室外側熱交換器及び室内側熱交換器
EP2375187B1 (en) Heat pump apparatus and operation control method of heat pump apparatus
JP2017194201A (ja) 空気調和機
KR20220115839A (ko) 전력 소비량을 감소시키는 전기 절감형 공조기
US20230127825A1 (en) Defrost system
KR102536079B1 (ko) 복합 칠러 시스템 및 이의 동작 방법
KR101145978B1 (ko) 폐열원 히트펌프 공조 시스템
JP4200533B2 (ja) 空調装置
JP4097405B2 (ja) エンジン冷却方法及び装置並びに冷凍装置
JP2001090990A (ja) 除湿機
JP2008116184A (ja) 冷凍サイクル装置
JPH11316038A (ja) 空気調和システム
JPH01174834A (ja) ビル空調システム
KR102326225B1 (ko) 항온항습기 및 그 제어방법
KR20030036526A (ko) 공기조화기에 있어서의 냉, 난방시스템