WO2017059637A1 - 一种tft阵列基板、显示面板及其制作方法 - Google Patents

一种tft阵列基板、显示面板及其制作方法 Download PDF

Info

Publication number
WO2017059637A1
WO2017059637A1 PCT/CN2015/098966 CN2015098966W WO2017059637A1 WO 2017059637 A1 WO2017059637 A1 WO 2017059637A1 CN 2015098966 W CN2015098966 W CN 2015098966W WO 2017059637 A1 WO2017059637 A1 WO 2017059637A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
alignment film
substrate
tft array
array substrate
Prior art date
Application number
PCT/CN2015/098966
Other languages
English (en)
French (fr)
Inventor
赵永超
谢忠憬
赵仁堂
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/908,525 priority Critical patent/US20170261817A1/en
Publication of WO2017059637A1 publication Critical patent/WO2017059637A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133769Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers comprising an active, e.g. switchable, alignment layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a TFT array substrate, a display panel, and a method of fabricating the same.
  • Thin film transistor liquid crystal display (Thin Film Transistor Liquid Crystal Display, referred to as TFT LCD, has the characteristics of small size, low power consumption, no radiation, etc., and has been rapidly developed in recent years.
  • liquid crystal panels mainly have a twisted nematic type (Twist). Nematic, TN), Vertical Alignment (VA), In-Plane Conversion (In Panel Switching, IPS), fringe field switch type (Fringe Field Display mode such as Switching, FFS).
  • Twist twisted nematic type
  • VA Vertical Alignment
  • IPS In-Plane Conversion
  • FFS fringe field switch type
  • the IPS and FFS display modes have been widely used in liquid crystal panels because of their high contrast and fast response.
  • Liquid crystal panels using the IPS and FFS display modes require initial alignment of the liquid crystal during fabrication.
  • the alignment of the liquid crystal is performed by a rubbing alignment method in which the alignment film disposed on the surface of the array substrate and the color filter substrate is rubbed by a rubbing roller with fluff to form the same on the alignment film.
  • the pretilt angle of the direction causes the liquid crystal molecules to be obliquely arranged at a pretilt angle in the same direction, and has a uniform optical rotation.
  • the frictional alignment causes particle contamination of the alignment film, resulting in a decrease in product yield; and the friction alignment method also generates static electricity, which damages the transistor and causes defects in the liquid crystal panel.
  • the current mainstream alignment method is to use optical alignment.
  • ultraviolet light is irradiated onto the semiconductor, which easily causes leakage of the semiconductor material, thereby affecting device performance.
  • the technical problem to be solved by the present invention is to provide a TFT array substrate, a display panel and a manufacturing method thereof, which can prevent ultraviolet polarized light from being irradiated onto a semiconductor layer in a photo-alignment process, thereby improving the performance of the TFT device.
  • a technical solution adopted by the present invention is to provide a TFT array substrate, wherein the TFT array substrate includes a first substrate and a gate layer, a buffer layer, a semiconductor layer, which are sequentially formed on the first substrate, a first insulating layer, a filter layer, a second insulating layer, and a first alignment film layer; wherein the filter layer includes a black matrix region, and the black matrix region corresponds to the semiconductor layer in a vertical direction.
  • a common electrode layer is further included between the first insulating layer and the filter layer; and a pixel electrode layer is further included between the second insulating layer and the first alignment film layer.
  • the buffer layer is SiOx or SiNx; the first insulating layer and the second insulating layer are organic insulating layers.
  • the semiconductor layer is an oxide semiconductor IGZO.
  • connection direction of the black matrix region and the semiconductor layer is set at a predetermined angle with the vertical direction.
  • a display panel including a TFT array substrate, an alignment film substrate, and a liquid crystal layer sandwiched between the TFT array substrate and the alignment film substrate, wherein the TFT
  • the array substrate includes a first substrate and a gate layer, a buffer layer, a semiconductor layer, a first insulating layer, a filter layer, a second insulating layer, and a first alignment film layer sequentially formed on the first substrate; wherein, the filter The slice layer includes a black matrix region corresponding to the semiconductor layer in a vertical direction;
  • the alignment film substrate includes a second substrate and a second alignment film layer formed on the second substrate; wherein the first alignment film layer and the second layer
  • the alignment film layers are all located on the side close to the liquid crystal layer.
  • a common electrode layer is further included between the first insulating layer and the filter layer; and a pixel electrode layer is further included between the second insulating layer and the first alignment film layer.
  • the buffer layer is SiOx or SiNx; the first insulating layer and the second insulating layer are organic insulating layers.
  • the semiconductor layer is an oxide semiconductor IGZO.
  • connection direction of the black matrix region and the semiconductor layer is set at a predetermined angle with the vertical direction.
  • another technical solution adopted by the present invention is to provide a method for fabricating a display panel, comprising: sequentially forming a gate layer, a buffer layer, a semiconductor layer, and a first insulating layer on a first substrate.
  • the filter layer comprises a black matrix region, the black matrix region corresponds to the semiconductor layer in a vertical direction; and the ultraviolet aligning light is used from the first alignment film layer a first alignment film layer is irradiated on a side away from the first substrate to form a TFT array substrate; a second alignment film layer is formed on the second substrate; and a second polarized light is removed from the second alignment film layer away from the second substrate
  • the second alignment film layer is laterally irradiated to form an alignment film substrate; the TFT array substrate and the alignment film substrate are laminated, and a liquid crystal layer is formed between the first alignment film and the second alignment film.
  • the step of sequentially forming a gate layer, a buffer layer, a semiconductor layer, a first insulating layer, a filter layer, a second insulating layer and a first alignment film layer on the first substrate specifically including: on the first substrate A gate layer, a buffer layer, a semiconductor layer, a first insulating layer, a common electrode layer, a filter layer, a second insulating layer, a pixel electrode layer, and a first alignment film layer are sequentially formed.
  • connection direction between the black matrix region and the semiconductor layer is at a predetermined angle; and the first alignment film layer is irradiated from the side of the first alignment film layer away from the first substrate by ultraviolet polarized light to form a TFT array substrate.
  • the step of specifically includes: irradiating the first alignment film layer at a predetermined angle from a side of the first alignment film layer away from the first substrate by using ultraviolet polarized light to form a TFT array substrate.
  • the ultraviolet polarized light has a wavelength in the range of 200 nm to 400 nm.
  • the buffer layer is SiOx or SiNx; the first insulating layer and the second insulating layer are organic insulating layers.
  • the semiconductor layer is an oxide semiconductor IGZO.
  • the present invention provides a TFT array substrate including a first substrate and a gate layer, a buffer layer, a semiconductor layer, and a first layer sequentially formed on the first substrate.
  • the black matrix region is blocked from being irradiated onto the semiconductor layer. Further, the semiconductor is prevented from being affected in performance after being irradiated with ultraviolet polarized light.
  • FIG. 1 is a schematic structural view of a first embodiment of a TFT array substrate of the present invention
  • FIG. 2 is a plan view of the filter layer 105 in the first embodiment of the TFT array substrate of the present invention
  • FIG. 3 is a schematic structural view of a second embodiment of a TFT array substrate of the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of a display panel of the present invention.
  • FIG. 5 is a schematic diagram of a split structure of an embodiment of a display panel of the present invention.
  • FIG. 6 is a flow chart of an embodiment of a method of fabricating a display panel of the present invention.
  • the TFT array substrate includes a first substrate 100 and a gate layer 101, a buffer layer 102, a semiconductor layer 103, and a first layer formed on the first substrate 100.
  • the above layers are formed on the first substrate 100, generally by physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the first substrate 100 is generally a transparent glass substrate, and a transparent plastic substrate may be used when manufacturing a flexible curved display panel.
  • the gate layer 101 is generally made of metallic chromium (Cr) and chromium alloy material, molybdenum crucible (Mo Ta) alloy, aluminum (Al) and aluminum alloy, titanium (Ti), copper (Cu) or tungsten (W) and other materials. It should be noted that the gate layer 101 here is an etched patterned gate layer 101.
  • the buffer layer 102 may also be called a gate insulating layer, and may be a one-layer or two-layer structure; one layer may be one of SiOx, SiNx or a mixture of the two; and two layers may be a structure of one layer of SiOx and SiNx. .
  • the semiconductor layer 103 also called an active layer, may be amorphous silicon (a-Si) or polycrystalline silicon (p-Si), or may be a metal oxide semiconductor such as indium gallium zinc oxide (IGZO). It should be noted that the semiconductor layer 103 here is an etched patterned semiconductor layer 103 corresponding to the above-described patterned gate layer 101 in the vertical direction.
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • IGZO indium gallium zinc oxide
  • the first insulating layer 104 and the second insulating layer 106 may have a structure similar to that of the buffer layer 102 described above, or may be an organic insulating layer made of an organic material, for example, benzocyclobutene.
  • the first alignment film layer 107 is generally formed using a PI liquid, and the main component of the PI liquid is a polyimide having a photosensitive group with ultraviolet rays and a solvent.
  • PI liquid refers to a kind of LCD used to make
  • the chemical liquid of the alignment film is printed on the conductive glass and baked to form an alignment film, which can provide a pretilt angle to the liquid crystal molecules, so that the rotation direction of the liquid crystal molecules is more uniform.
  • the filter layer 105 includes a color filter region 1051 and a black matrix region 1052, wherein the black matrix region 1052 corresponds to the semiconductor layer 103 in the vertical direction.
  • the filter layer 105 is distributed by an array of a plurality of filter regions 1051 of different colors, and the area between each two adjacent filter regions 1051 is Black matrix area 1052.
  • the filter layer 105 is sequentially arranged by three color filters of red, green, and blue (R, G, B), and each filter corresponds to one pixel region, that is, corresponds to one TFT. structure.
  • the black matrix region 1052 is an opaque portion deposited between the three primary color (R, G, B) patterns. Its main role is to prevent backlight leakage, improve display contrast, prevent color mixing and increase color purity. Since the optical density of the black matrix is required to be 3 or more, a method of sputtering a chromium (Cr) layer on the substrate glass and then etching out a desired pattern is still employed. However, in recent years, a method of preparing a black matrix by photolithography using a resin resist containing a black dye is becoming increasingly popular.
  • the filter layer 105 may be disposed in the TFT substrate in the original CF substrate.
  • the TFT substrate further includes a pixel electrode; in other embodiments, if the TFT substrate is used for an IPS or FFS type liquid crystal display, the TFT substrate A pixel electrode and a common electrode are also included.
  • the ultraviolet polarized light is irradiated from the side of the alignment film principle substrate perpendicular to the upper surface of the array substrate, the first When the film layer 107 is aligned, since the black matrix region 1052 in the filter layer 105 corresponds to the semiconductor layer 103 in the vertical direction, the ultraviolet polarized light is blocked by the black matrix region 1052 during the irradiation, so that it cannot be irradiated onto the semiconductor layer 103. .
  • the present embodiment provides a TFT array substrate including a first substrate and a gate layer, a buffer layer, a semiconductor layer, a first insulating layer, a filter layer, and the like, which are sequentially formed on the first substrate. a second insulating layer and a first alignment film layer; wherein the filter layer comprises a black matrix region, and the black matrix region corresponds to the semiconductor layer in a vertical direction.
  • the black matrix region is blocked from being irradiated onto the semiconductor layer. Further, the semiconductor is prevented from being affected in performance after being irradiated with ultraviolet polarized light.
  • the TFT array substrate includes a first substrate 300 and a gate layer 301, a buffer layer 302, a semiconductor layer 303, and a second layer sequentially formed on the first substrate 300.
  • the first insulating layer 304 and the filter layer 306 of the present embodiment further include a common electrode layer 305; the second insulating layer 307 and the first alignment film layer 309 further include a pixel electrode. Layer 308.
  • the buffer layer 301 is SiOx or SiNx or the like
  • the first insulating layer 304 and the second insulating layer 307 are organic insulating layers
  • the semiconductor layer 303 is an oxide semiconductor such as indium gallium zinc oxide (IGZO).
  • the filter layer 306 includes a color filter region 3061 and a black matrix region 3062, and the black matrix region 3062 is disposed at a predetermined angle with respect to the wiring direction of the semiconductor layer and the vertical direction.
  • the black matrix region 3062 in the present embodiment can be appropriately extended in the direction of the color filter region 3061 in the same pixel, and in the process of optical alignment of the TFT substrate, when the ultraviolet polarized light is from
  • the black matrix region can be blocked, and the semiconductor layer cannot be irradiated, thereby preventing the semiconductor from being affected by the ultraviolet polarized light.
  • the display panel 400 includes a TFT array substrate 401, an alignment film substrate 402, and a liquid crystal layer 403 sandwiched between the TFT array substrate 401 and the alignment film substrate 402.
  • the TFT array substrate 401 includes a first substrate 4010 and a gate layer 4011, a buffer layer 4012, and a semiconductor layer sequentially formed on the first substrate 4010. 4013.
  • a common electrode layer 4015 may be further included between the first insulating layer 4014 and the filter layer 4016; and a pixel electrode layer 4018 may be further included between the second insulating layer 4017 and the first alignment film layer 4019.
  • the alignment film substrate 402 includes a second substrate 4020 and a second alignment film layer 4021 formed on the second substrate 4020.
  • first alignment film layer 4019 and the second alignment film layer 4021 are both located on the side close to the liquid crystal layer 403.
  • the TFT array substrate 401 and the alignment film substrate 402 are irradiated with ultraviolet polarized light, respectively, and are irradiated from the side close to the alignment film.
  • the ultraviolet polarized light illuminates the alignment film from the side of the alignment film principle substrate, it is blocked by the black matrix region, so that it cannot be irradiated onto the semiconductor layer, thereby preventing the semiconductor from being ultraviolet-coated. Performance is affected after polarized light exposure.
  • a flowchart of an embodiment of a method for fabricating a display panel of the present invention includes:
  • Step 601 sequentially forming a gate layer, a buffer layer, a semiconductor layer, a first insulating layer, a filter layer, a second insulating layer and a first alignment film layer on the first substrate; wherein the filter layer comprises a black matrix The region, the black matrix region corresponds to the semiconductor layer in the vertical direction.
  • the step specifically includes sequentially forming a gate layer, a buffer layer, a semiconductor layer, a first insulating layer, a common electrode layer, a filter layer, a second insulating layer, and a pixel on the first substrate.
  • An electrode layer and a first alignment film layer are sequentially forming a gate layer, a buffer layer, a semiconductor layer, a first insulating layer, a common electrode layer, a filter layer, a second insulating layer, and a pixel on the first substrate.
  • Step 602 illuminating the first alignment film layer from the side of the first alignment film layer away from the first substrate by using ultraviolet polarized light to form a TFT array substrate.
  • the ultraviolet polarized light has a wavelength in the range of 200 nm to 400 nm.
  • Step 603 Form a second alignment film layer on the second substrate.
  • Step 604 irradiate the second alignment film layer from the side of the second alignment film layer away from the second substrate by using ultraviolet polarized light to form an alignment film substrate.
  • Step 605 Laying a TFT array substrate and an alignment film substrate, and forming a liquid crystal layer between the first alignment film and the second alignment film.
  • Step 602 is specifically to adopt ultraviolet polarized light from a side of the first alignment film layer away from the first substrate at a predetermined angle.
  • the first alignment film layer is irradiated to form a TFT array substrate.
  • the alignment film is The black matrix region is occluded so as not to be irradiated onto the semiconductor layer, thereby preventing the semiconductor from being affected by the performance after being irradiated with ultraviolet polarized light.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)

Abstract

一种TFT阵列基板、显示面板及其制作方法,该TFT阵列基板包括第一基板(100)以及依次形成于第一基板(100)上的栅极层(101)、缓冲层(102)、半导体层(103)、第一绝缘层(104)、滤光片层(105)、第二绝缘层(106)和第一配向膜层(107);其中,滤光片层(105)包括黑矩阵区域(1052),黑矩阵区域(1052)在垂直方向上对应于半导体层(103)。从而能够在光配向制程中,防止紫外偏振光照射到半导体层(103)上,提高了TFT器件的性能。

Description

一种TFT阵列基板、显示面板及其制作方法
【技术领域】
本发明涉及显示技术领域,特别是涉及一种TFT阵列基板、显示面板及其制作方法。
【背景技术】
薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,简称TFT LCD)具有体积小、功耗低、无辐射等特点,近年来得到了迅速的发展。
目前,根据液晶的初始排列与液晶在电场中的动作方式来区分,液晶面板主要有扭曲向列型(Twist Nematic,TN)、垂直排列型(Vertical Alignment,VA)、面内转换型(In Panel Switching,IPS)、边缘场开关型(Fringe Field Switching,FFS)等显示模式。其中,由于IPS和FFS显示模式具有对比度高,响应速度快的特点,在液晶面板中已得到广泛应用。
采用IPS和FFS显示模式的液晶面板在制造时,需要对液晶进行初始配向。现有技术中,对液晶进行配向是采用摩擦配向方式,其过程是:用带有绒毛的摩擦辊滚动摩擦设置在阵列基板和彩色滤光片基板表面的配向膜,以在配向膜上形成同一方向的预倾角,使得液晶分子朝着同一方向以预倾角倾斜排列,而具有一致的旋光性。但是,摩擦配向会对配向膜造成颗粒污染,造成产品良率下降;并且,摩擦配向方式还会产生静电,击伤晶体管,导致液晶面板出现缺陷。
因此在IPS和FFS的配向技术中,现在主流的配向方法是使用光配向。但是在光配向的制程中,紫外光照射到半导体上很容易引起半导体材料漏电,从而影响器件性能。
【发明内容】
本发明主要解决的技术问题是提供一种TFT阵列基板、显示面板及其制作方法,能够在光配向制程中,防止紫外偏振光照射到半导体层上,提高了TFT器件的性能。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种TFT阵列基板,其中,TFT阵列基板包括第一基板以及依次形成于第一基板上的栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层;其中,滤光片层包括黑矩阵区域,黑矩阵区域在垂直方向上对应于半导体层。
其中,第一绝缘层和滤光片层之间还包括公共电极层;第二绝缘层和第一配向膜层之间还包括像素电极层。
其中,缓冲层为SiOx或SiNx;第一绝缘层和第二绝缘层为有机绝缘层。
其中,半导体层为氧化物半导体IGZO。
其中,黑矩阵区域与半导体层的连线方向与垂直方向呈预定角度设置。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示面板,包括TFT阵列基板、配向膜基板以及夹持于TFT阵列基板和配向膜基板之间的液晶层,其中,TFT阵列基板包括第一基板以及依次形成于第一基板上的栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层;其中,滤光片层包括黑矩阵区域,黑矩阵区域在垂直方向上对应于半导体层;配向膜基板包括第二基板以及形成于第二基板上的第二配向膜层;其中,第一配向膜层和第二配向膜层均位于靠近液晶层的一侧。
其中, 第一绝缘层和滤光片层之间还包括公共电极层;第二绝缘层和第一配向膜层之间还包括像素电极层。
其中,缓冲层为SiOx或SiNx;第一绝缘层和第二绝缘层为有机绝缘层。
其中,半导体层为氧化物半导体IGZO。
其中,黑矩阵区域与半导体层的连线方向与垂直方向呈预定角度设置。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示面板的制作方法,其中,包括:在第一基板上依次形成栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层;其中,滤光片层包括黑矩阵区域,黑矩阵区域在垂直方向上对应于半导体层;采用紫外偏振光从第一配向膜层上远离第一基板的一侧照射第一配向膜层,以形成TFT阵列基板;在第二基板上形成第二配向膜层;采用紫外偏振光从第二配向膜层上远离第二基板的一侧照射第二配向膜层,以形成配向膜基板;将TFT阵列基板和配向膜基板层叠设置,并在第一配向膜和第二配向膜之间形成液晶层。
其中,在第一基板上依次形成栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层的步骤,具体包括:在第一基板上依次形成栅极层、缓冲层、半导体层、第一绝缘层、公共电极层、滤光片层、第二绝缘层、像素电极层和第一配向膜层。
其中,黑矩阵区域与半导体层的连线方向与垂直方向呈预定角度设置;采用紫外偏振光从第一配向膜层上远离第一基板的一侧照射第一配向膜层,以形成TFT阵列基板的步骤,具体包括:采用紫外偏振光从第一配向膜层上远离第一基板的一侧按预定角度照射第一配向膜层,以形成TFT阵列基板。
其中,紫外偏振光的波长范围为200nm-400nm。
其中,缓冲层为SiOx或SiNx;第一绝缘层和第二绝缘层为有机绝缘层。
其中,半导体层为氧化物半导体IGZO。
本发明的有益效果是:区别于现有技术的情况,本发明通过提供一种TFT阵列基板,包括第一基板以及依次形成于第一基板上的栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层;其中,该滤光片层包括黑矩阵区域,黑矩阵区域在垂直方向上对应于半导体层。通过上述方式,本实施方式能够在对TFT基板进行光配向的制程中,当紫外偏振光从配向膜原理基板的一侧照射配向膜时,被黑矩阵区域遮挡,从而不能照射到半导体层上,进而防止半导体在被紫外偏振光照射后性能受到影响。
【附图说明】
图1是本发明TFT阵列基板第一实施方式的结构示意图;
图2是本发明TFT阵列基板第一实施方式中滤光片层105的俯视图;
图3是本发明TFT阵列基板第二实施方式的结构示意图;
图4是本发明显示面板一实施方式的结构示意图;
图5是本发明显示面板一实施方式的拆分结构示意图;
图6是本发明显示面板的制作方法一实施方式的流程图。
【具体实施方式】
参阅图1,本发明TFT阵列基板第一实施方式的结构示意图,该TFT阵列基板包括第一基板100以及依次形成于第一基板100上的栅极层101、缓冲层102、半导体层103、第一绝缘层104、滤光片层105、第二绝缘层106和第一配向膜层107。
其中,在第一基板100上形成以上各层,一般是采用物理气相沉积(PVD)或化学气相沉积(CVD)的方法。
第一基板100一般是透明的玻璃基板,在制作柔性曲面的显示面板时,也可以采用透明的塑料基板。
栅极层101一般采用金属铬(Cr)以及铬的合金材料、钼钽(Mo Ta)合金、铝(Al)以及铝合金、钛(Ti)、铜(Cu)或钨(W)等材料制作。值得说明的是,这里的栅极层101是经过蚀刻后的图形化的栅极层101。
缓冲层102也可以叫做栅极绝缘层,可以是一层或两层的结构;一层可以是SiOx、SiNx中的一种或两者的混合物;两层可以是SiOx和SiNx各一层的结构。
半导体层103也叫做有源层,可以是非晶硅(a-Si)或多晶硅(p-Si),也可以是金属氧化物半导体,如铟镓锌氧化物(IGZO)。值得说明的是,这里的半导体层103是经过蚀刻后的图形化的半导体层103,该半导体层103在垂直方向上与上述的图形化的栅极层101相对应。
第一绝缘层104和第二绝缘层106可以是如上述缓冲层102类似的结构,也可以是采用有机材料制作的有机绝缘层,例如,苯并环丁烯。
第一配向膜层107一般是采用PI液形成的,PI液的主要成份是带紫外线光敏基团的聚酰亚胺和溶剂。PI液指的是一种用来制作LCD 配向膜的化学液体,印刷在导电玻璃上经过烘烤后成为配向膜,可以给液晶分子提供一个预倾角,使得液晶分子的旋转方向一致性更好。
滤光片层105包括彩色滤光片区域1051以及黑矩阵区域1052,其中,黑矩阵区域1052在垂直方向上对应于半导体层103。
具体地,参阅图2,对应于整个TFT基板,滤光片层105是由多个不同颜色的滤光片区域1051阵列分布的,每两个相邻的滤光片区域1051之间的区域为黑矩阵区域1052。
在一种实施方式中,滤光片层105是由红、绿、蓝(R、G、B)三色滤光片依次排列分布的,每个滤光片对应一个像素区域,即对应一个TFT结构。
黑矩阵区域1052是沉积在三基色(R、G、B)图案之间的不透光部分。它的主要作用是防止背光泄漏,提高显示对比度,防止混色和增加颜色的纯度。由于黑矩阵的光密度要求在3以上,因此仍延用在基片玻璃上溅射铬(Cr)层,然后光刻出所需图案的方法。但近年来,采用含有黑色染料的树脂光刻胶,用光刻法制备黑矩阵的方法正日趋普及。
在其他实施方式中,该滤光片层105可以是将原有的CF基板中的滤光片层设置于TFT基板当中。
另外,在一种实施方式中,若该TFT基板用于TN型液晶显示器,TFT基板中还包括像素电极;在其他实施方式中,若该TFT基板用于IPS或FFS型液晶显示器,该TFT基板中还包括像素电极和公共电极。
再次参阅图1,有了上述的TFT阵列基板的结构,当在对TFT基板进行光配向的制程中,当紫外偏振光从配向膜原理基板的一侧垂直于该阵列基板的上表面照射第一配向膜层107时,由于滤光片层105中的黑矩阵区域1052在垂直方向上与半导体层103对应,紫外偏振光在照射过程中被黑矩阵区域1052遮挡,从而不能照射到半导体层103上。
区别于现有技术,本实施方式通过提供一种TFT阵列基板,包括第一基板以及依次形成于第一基板上的栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层;其中,该滤光片层包括黑矩阵区域,黑矩阵区域在垂直方向上对应于半导体层。通过上述方式,本实施方式能够在对TFT基板进行光配向的制程中,当紫外偏振光从配向膜原理基板的一侧照射配向膜时,被黑矩阵区域遮挡,从而不能照射到半导体层上,进而防止半导体在被紫外偏振光照射后性能受到影响。
参阅图3,本发明TFT阵列基板第二实施方式的结构示意图,该TFT阵列基板包括第一基板300以及依次形成于第一基板300上的栅极层301、缓冲层302、半导体层303、第一绝缘层304、公共电极层305、滤光片层306、第二绝缘层307、像素电极层308和第一配向膜层309。
区别于上述第一实施方式,本实施方式的第一绝缘层304和滤光片层306之间还包括公共电极层305;第二绝缘层307和第一配向膜层309之间还包括像素电极层308。
具体地,缓冲层301为SiOx或SiNx等,第一绝缘层304和第二绝缘层307为有机绝缘层,半导体层303为氧化物半导体,例如铟镓锌氧化物(IGZO)。
在本实施方式中,滤光片层306包括彩色滤光片区域3061和黑矩阵区域3062,黑矩阵区域3062与半导体层的连线方向与垂直方向呈预定角度设置。
区别于上述第一实施方式,本实施方式中的黑矩阵区域3062可以在同一像素中向彩色滤光片区域3061的方向适当延伸,在对TFT基板进行光配向的制程中,当紫外偏振光从配向膜原理基板的一侧倾斜照射配向膜时,也能够黑矩阵区域遮挡,从而不能照射到半导体层上,进而防止半导体在被紫外偏振光照射后性能受到影响。
参阅图4,本发明显示面板一实施方式的结构示意图,该显示面板400包括TFT阵列基板401、配向膜基板402以及夹持于TFT阵列基板401和配向膜基板402之间的液晶层403。
同时参阅图5,本发明显示面板一实施方式的拆分结构示意图,其中,TFT阵列基板401包括第一基板4010以及依次形成于第一基板4010上的栅极层4011、缓冲层4012、半导体层4013、第一绝缘层4014、滤光片层4016、第二绝缘层4017和第一配向膜层4019。另外,第一绝缘层4014和滤光片层4016之间还可以包括公共电极层4015;第二绝缘层4017和第一配向膜层4019之间还可以包括像素电极层4018。
配向膜基板402包括第二基板4020以及形成于第二基板4020上的第二配向膜层4021。
值得注意的是,第一配向膜层4019和第二配向膜层4021均位于靠近液晶层403的一侧。
本实施方式中,分别对TFT阵列基板401和配向膜基板402进行紫外偏振光照射,均从靠近配向膜的一侧照射。在对TFT阵列基板401进行光配向的制程中,当紫外偏振光从配向膜原理基板的一侧照射配向膜时,被黑矩阵区域遮挡,从而不能照射到半导体层上,进而防止半导体在被紫外偏振光照射后性能受到影响。
参阅图6,本发明显示面板的制作方法一实施方式的流程图,该方法包括:
步骤601:在第一基板上依次形成栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层;其中,滤光片层包括黑矩阵区域,黑矩阵区域在垂直方向上对应于半导体层。
在一具体的实施方式中,该步骤具体包括:在第一基板上依次形成栅极层、缓冲层、半导体层、第一绝缘层、公共电极层、滤光片层、第二绝缘层、像素电极层和第一配向膜层。
步骤602:采用紫外偏振光从第一配向膜层上远离第一基板的一侧照射第一配向膜层,以形成TFT阵列基板。
其中,紫外偏振光的波长范围为200nm-400nm。
步骤603:在第二基板上形成第二配向膜层。
步骤604:采用紫外偏振光从第二配向膜层上远离第二基板的一侧照射第二配向膜层,以形成配向膜基板。
步骤605:将TFT阵列基板和配向膜基板层叠设置,并在第一配向膜和第二配向膜之间形成液晶层。
在其他实施方式中,黑矩阵区域与半导体层的连线方向与垂直方向呈预定角度设置,则步骤602具体为采用紫外偏振光从第一配向膜层上远离第一基板的一侧按预定角度照射第一配向膜层,以形成TFT阵列基板。
区别于现有技术,本实施方式通过将滤光片层设置于TFT基板中,在对TFT基板进行光配向的制程中,当紫外偏振光从配向膜原理基板的一侧照射配向膜时,被黑矩阵区域遮挡,从而不能照射到半导体层上,进而防止半导体在被紫外偏振光照射后性能受到影响。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种TFT阵列基板,其中,所述TFT阵列基板包括第一基板以及依次形成于所述第一基板上的栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层;
    其中,所述滤光片层包括黑矩阵区域,所述黑矩阵区域在垂直方向上对应于所述半导体层。
  2. 根据权利要求1所述的TFT阵列基板,其中,
    所述第一绝缘层和所述滤光片层之间还包括公共电极层;
    所述第二绝缘层和所述第一配向膜层之间还包括像素电极层。
  3. 根据权利要求1所述的TFT阵列基板,其中,
    所述缓冲层为SiOx或SiNx;
    所述第一绝缘层和第二绝缘层为有机绝缘层。
  4. 根据权利要求1所述的TFT阵列基板,其中,所述半导体层为氧化物半导体IGZO。
  5. 根据权利要求1所述的TFT阵列基板,其中,所述黑矩阵区域与所述半导体层的连线方向与垂直方向呈预定角度设置。
  6. 一种显示面板,包括TFT阵列基板、配向膜基板以及夹持于所述TFT阵列基板和配向膜基板之间的液晶层;
    所述TFT阵列基板包括第一基板以及依次形成于所述第一基板上的栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层;其中,所述滤光片层包括黑矩阵区域,所述黑矩阵区域在垂直方向上对应于所述半导体层;
    所述配向膜基板包括第二基板以及形成于所述第二基板上的第二配向膜层;其中,所述第一配向膜层和第二配向膜层均位于靠近所述液晶层的一侧。
  7. 根据权利要求6所述的显示面板,其中,
    所述第一绝缘层和所述滤光片层之间还包括公共电极层;
    所述第二绝缘层和所述第一配向膜层之间还包括像素电极层。
  8. 根据权利要求6所述的显示面板,其中,
    所述缓冲层为SiOx或SiNx;
    所述第一绝缘层和第二绝缘层为有机绝缘层。
  9. 根据权利要求6所述的显示面板,其中,所述半导体层为氧化物半导体IGZO。
  10. 根据权利要求6所述的显示面板,其中,所述黑矩阵区域与所述半导体层的连线方向与垂直方向呈预定角度设置。
  11. 一种显示面板的制作方法,其中,包括:
    在第一基板上依次形成栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层;其中,所述滤光片层包括黑矩阵区域,所述黑矩阵区域在垂直方向上对应于所述半导体层;
    采用紫外偏振光从所述第一配向膜层上远离所述第一基板的一侧照射所述第一配向膜层,以形成TFT阵列基板;
    在第二基板上形成第二配向膜层;
    采用紫外偏振光从所述第二配向膜层上远离所述第二基板的一侧照射所述第二配向膜层,以形成配向膜基板;
    将所述TFT阵列基板和所述配向膜基板层叠设置,并在所述第一配向膜和所述第二配向膜之间形成液晶层。
  12. 根据权利要求11所述的方法,其中,在第一基板上依次形成栅极层、缓冲层、半导体层、第一绝缘层、滤光片层、第二绝缘层和第一配向膜层的步骤,具体包括:
    在第一基板上依次形成栅极层、缓冲层、半导体层、第一绝缘层、公共电极层、滤光片层、第二绝缘层、像素电极层和第一配向膜层。
  13. 根据权利要求11所述的方法,其中,所述黑矩阵区域与所述半导体层的连线方向与垂直方向呈预定角度设置;
    采用紫外偏振光从所述第一配向膜层上远离所述第一基板的一侧照射所述第一配向膜层,以形成TFT阵列基板的步骤,具体包括:
    采用紫外偏振光从所述第一配向膜层上远离所述第一基板的一侧按所述预定角度照射所述第一配向膜层,以形成TFT阵列基板。
  14. 根据权利要求11所述的方法,其中,所述紫外偏振光的波长范围为200nm-400nm。
  15. 根据权利要求11所述的方法,其中,
    所述缓冲层为SiOx或SiNx;
    所述第一绝缘层和第二绝缘层为有机绝缘层。
  16. 根据权利要求11所述的方法,其中,所述半导体层为氧化物半导体IGZO。
PCT/CN2015/098966 2015-10-09 2015-12-25 一种tft阵列基板、显示面板及其制作方法 WO2017059637A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/908,525 US20170261817A1 (en) 2015-10-09 2015-12-25 TFT Array Substrate, LCD Panel and Method of Fabricating the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510648877.6 2015-10-09
CN201510648877.6A CN105204254B (zh) 2015-10-09 2015-10-09 一种tft阵列基板、显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2017059637A1 true WO2017059637A1 (zh) 2017-04-13

Family

ID=54952014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098966 WO2017059637A1 (zh) 2015-10-09 2015-12-25 一种tft阵列基板、显示面板及其制作方法

Country Status (3)

Country Link
US (1) US20170261817A1 (zh)
CN (1) CN105204254B (zh)
WO (1) WO2017059637A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953584A (en) * 1996-10-02 1999-09-14 Lg Electronics Inc. Method of fabricating liquid crystal display device having alignment direction determined
US20050264737A1 (en) * 2004-05-28 2005-12-01 Fujitsu Display Technologies Corporation Liquid crystal display device and method of producing the same
CN1723413A (zh) * 2002-12-09 2006-01-18 株式会社日立显示器 液晶显示装置及其制造方法
CN101750820A (zh) * 2008-11-28 2010-06-23 株式会社半导体能源研究所 液晶显示装置
CN101750821A (zh) * 2008-12-03 2010-06-23 株式会社半导体能源研究所 液晶显示器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3240858B2 (ja) * 1994-10-19 2001-12-25 ソニー株式会社 カラー表示装置
KR20060115778A (ko) * 2005-05-06 2006-11-10 삼성전자주식회사 박막 트랜지스터 기판, 이를 포함하는 액정표시장치와 그제조 방법
CN103309081B (zh) * 2013-05-30 2016-12-28 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN103353699A (zh) * 2013-06-24 2013-10-16 京东方科技集团股份有限公司 一种阵列基板、其制备方法及显示装置
CN104360557B (zh) * 2014-11-26 2017-04-26 京东方科技集团股份有限公司 阵列基板及其制造方法,以及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953584A (en) * 1996-10-02 1999-09-14 Lg Electronics Inc. Method of fabricating liquid crystal display device having alignment direction determined
CN1723413A (zh) * 2002-12-09 2006-01-18 株式会社日立显示器 液晶显示装置及其制造方法
US20050264737A1 (en) * 2004-05-28 2005-12-01 Fujitsu Display Technologies Corporation Liquid crystal display device and method of producing the same
CN101750820A (zh) * 2008-11-28 2010-06-23 株式会社半导体能源研究所 液晶显示装置
CN101750821A (zh) * 2008-12-03 2010-06-23 株式会社半导体能源研究所 液晶显示器

Also Published As

Publication number Publication date
US20170261817A1 (en) 2017-09-14
CN105204254B (zh) 2019-01-04
CN105204254A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
CN105974636B (zh) 液晶显示面板的制作方法
WO2017166341A1 (zh) Tft基板的制作方法及制得的tft基板
CN103676376B (zh) 阵列基板及其制作方法及应用该阵列基板的液晶显示面板
TW200424626A (en) Method of manufacturing liquid crystal display device
WO2018170971A1 (zh) 阵列基板及其制作方法
US8952387B2 (en) Thin film transistor array substrate and method for manufacturing the same
WO2019119889A1 (zh) 阵列基板及其制造方法、液晶显示面板及其制造方法
US6853433B2 (en) Liquid crystal display device having soda-lime glass and method of fabricating the same
WO2018036027A1 (zh) Ips型阵列基板的制作方法及ips型阵列基板
WO2019090919A1 (zh) 一种像素单元、阵列基板及显示面板
KR20170054598A (ko) 표시 장치 및 이의 제조 방법
WO2019071846A1 (zh) Coa型液晶显示面板及其制作方法
WO2020093458A1 (zh) 阵列基板及其制备方法、液晶显示面板、显示装置
CN103676390B (zh) 一种阵列基板及其制作方法、显示装置
WO2017181463A1 (zh) 阵列基板及其制造方法、液晶显示器
CN105629598B (zh) Ffs模式的阵列基板及制作方法
WO2016041216A1 (zh) 一种液晶显示面板
WO2018161432A1 (zh) 显示面板的制造方法、线栅偏光片及其制造方法
US7397519B2 (en) Liquid crystal display device and method of fabrication thereof having dummy layer and plurality of contact holes formed through ohmic contact, semiconductive and gate insulating layers
KR20150101514A (ko) 광배향제, 이를 포함하는 액정 표시 장치 및 그 제조 방법
KR20110064272A (ko) 액정표시장치 및 그 제조방법
WO2017124595A1 (zh) 显示面板制作方法及液晶显示器
WO2015168927A1 (zh) 阵列面板及其制作方法
WO2013166741A1 (zh) 液晶显示装置及其制造方法
WO2013174012A1 (zh) 液晶显示面板及其应用的显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14908525

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905735

Country of ref document: EP

Kind code of ref document: A1