WO2017059507A1 - Composição de blenda de pol(acr!lon(triuvlignina e sua utilização na f5âção por fusão de precursor de fibra carbono - Google Patents

Composição de blenda de pol(acr!lon(triuvlignina e sua utilização na f5âção por fusão de precursor de fibra carbono Download PDF

Info

Publication number
WO2017059507A1
WO2017059507A1 PCT/BR2016/000106 BR2016000106W WO2017059507A1 WO 2017059507 A1 WO2017059507 A1 WO 2017059507A1 BR 2016000106 W BR2016000106 W BR 2016000106W WO 2017059507 A1 WO2017059507 A1 WO 2017059507A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
polyacrylonitrile
production
carbon fiber
leads
Prior art date
Application number
PCT/BR2016/000106
Other languages
English (en)
French (fr)
Inventor
Nilton Pereira Alves
Original Assignee
Laboratórios Químicos E Metrológicos Quimlab Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratórios Químicos E Metrológicos Quimlab Ltda filed Critical Laboratórios Químicos E Metrológicos Quimlab Ltda
Priority to US15/766,336 priority Critical patent/US20180282535A1/en
Priority to EP16852913.9A priority patent/EP3366723A4/en
Publication of WO2017059507A1 publication Critical patent/WO2017059507A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/08Homopolymers or copolymers of vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • D01F9/17Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate from lignin
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Definitions

  • the purpose of the present invention is to describe the composition of polyacrylonitrile (PAN) and lignin blend suitable for melt spinning and its use in the production of carbon fiber, employing glycerin and its derivatives as plasticizers. .
  • Lignin is a three-dimensional aromatic polymer found in the vegetable kingdom formed by the polymerization of three monomers in varying degrees, derived from p-coumaryl alcohol (p-hydroxyphenyl), coniferyl alcohol (guaiacil) and synaphyl alcohol (syringii). as small.
  • Signols are incorporated into the polymeric chain as phenylpropanoids as shown in Formula 1 below, abbreviated such as H, G and S, which are respectively p-hydroxyphenyl, guaiacsl and syringyl groups
  • Gymnosperms have lignin which consists practically of G clusters with small amounts of H clusters, whereas dicotyledon angiosperms have G and S clusters with very little.
  • H The monocotyledonous plants present lignin containing mixture of the three groups.
  • Lignin corresponds to 20 to 35% of raw wood, and after its separation from cellulose is burned by the paper industry in the form of "black liquor” for energy use.
  • Existing processes for their separation from cellulose and hemicellulose in industry imply aggressive hydrolytic chemical treatments that generally lead to fragmentation of the polymer chain, such as the "Kraft Process", which leads to low molecular weight molecules.
  • the literature describes the obtaining of lignin by various processes with molecular weight values below 1 kDa to above 1000 kDa. Most of the molecular mass values of isolated lignins obtained by the Kraft Process are of the order of 1 kDa to 12 kDa and considering the 166 g molecular weight phenylpropanoid monomer, the degree of
  • DMAc hepatotoxic toxicity
  • fetal development suspected teratogen
  • ACGSH and OSHA (USA) recommend an exposure limit (TLV-TWA) of 10 ppm for this substance.
  • Environmental and occupational risk factors are one of the biggest impediments to the deployment of wet pass spinning mills in developed passes, and are now mostly located in Asia, in countries such as China, Turkey and India, where legislation is less stringent.
  • Lignin extracted from wood using solvents known as "Lignin Organosolv”
  • Lignin Organosolv would theoretically be better suited for carbon precursor fiber production because it is chemically purer and of higher molecular weight, but its production is small and priced higher than Lignin.
  • the fibers obtained by the present invention have characteristics similar to those produced by wet spinning processes and can therefore be processed in conventional carbon fiber ovens.
  • PAN is considered a non-thermoplastic polymer as the cyclization temperature of the polymer chain is lower than its melting temperature. It can be seen from Formula 2 that cyclization begins when PAN is heated above 18 ° C, producing new bonds with the same or adjacent chain nitriles, resulting in a dark, fragile and infusible product. Cyclization is also accompanied by high energy release and if uncontrolled by heat removal, the polymer temperature rises further and may reach above 300 ° C when mass loss occurs due to the release of gases such as ammonia. , water, hydrogen cyanide and carbon oxides.
  • gases such as ammonia. , water, hydrogen cyanide and carbon oxides.
  • plasticizers with high dipolar moment and high boiling point mainly consisting of glycerine and glycerine carbonate (GC)
  • halogenated thermal stabilizers such as glycerine-derived halohydrins, such as 1-chlorine 2,3-propanedioi, 1, 3-dichloro 2-propanol, 1-bromo 2,3-propanediol, phosphoglyceric acids such as 2-phosphoglyceric acid and 3-phosphoglyceric acid and the chlorinated polyvinyl chloride (PVC) and pollvinylidene chloride (PVDC) polymers, the inventor found that The effect of PAN fusion is similar to that observed by the use of high pressure water.
  • PVC polyvinyl chloride
  • PVDC pollvinylidene chloride
  • the PAN can be kept molten for a reasonable time to allow its thermoplastic conformation in extruder.
  • Lignin Kraft because it has chains with phenolic groupings that are polar, can be blended with the same substances that cause the plasticization of PAN.
  • NAP forming homogeneous biends with spinning rheologies
  • Glycerin and its derivatives after melting and cooling PAN / Ugnine bienda are incorporated into the filaments.
  • the entire melt and plasticization process takes place directly in the extruder, allowing the molten material to be transported and pumped using gear pumps to a spinneret containing tens or hundreds of holes of the order of 100 to 500 pm in diameter, forming the many strands. that are stretched.
  • the great advantage of the use of glycerin and its derivatives in this invention as plasticizers to obtain blends is that they are completely water soluble and therefore easily removed from the fibers in a step called in this patent "DISPLASTING". performed after spinning, using hot water at 80 * 0 to 95 ° C. This step is very similar to washing the fibers to remove residual solvents in the wet spinning process. After deplastification, the fibers are dried, drawn into rolls at temperatures of 150 ° C to 70 ° C, pressed and wound.
  • plasticizers and combinations thereof used in this invention are up to 35% and the polymers used may contain up to 30% comonomers, mainly vinyl acetate (VA), methylene acrylate (MA), methacrylate. of methyl ( ⁇ ⁇ ), itaconic acid (IA), acrylamide, acrylic acid (AA), vinylidene chloride (VDC), spyrene (S) and vinyltoiuene (VT).
  • VA vinyl acetate
  • MA methylene acrylate
  • IA itaconic acid
  • AA acrylic acid
  • VDC vinylidene chloride
  • S vinyltoiuene
  • VT vinyltoiuene
  • deplastification is not economically viable and therefore the best alternative is its disposal as an auxiliary nutrient in a biological sewage treatment plant
  • glycerine carbonate and glycerine fatty monoesters undergo hydrolysis releasing glycerine.
  • the phosphoric acid produced in hydrolysis is also an important nutrient.
  • Another alternative to the disposal of glycerine-containing baths is its use as a raw material for the synthesis of several useful substances, among which we can mention the gamma-polygutamic acid biopolymer ( ⁇ -PGA), formed by fermentation with Bacillus natto, the same. which produces the typical Japanese fermented soy food known as Natto.
  • ⁇ -PGA gamma-polygutamic acid biopolymer
  • FIG. 1 - Flowchart of the production process of the bite bend P ⁇ N / Lignin fibers produced by melting (meiting spinning) in extruder, according to this patent application.
  • FIG. 2 Cross-section by 3D X-ray microtomography of 8% PAN-co-PVA blend fibers with 25% Lignin Kraft, and the homogeneity of lignin distribution in the polymer matrix can be observed.
  • FIG. 3 DSC of a sample of a 6% PAN-co-PVA copolymer with 25% Lignin Kraft plasticized with 18% glycerin 5% glycerin carbonate.
  • FIG. 4 Infrared Spectroscopy (FT!) With spectral comparison of Lignin Kraft (upper), PAN-co-PS (10%) (medium), and 10% PAN-co-PS blending fiber samples with 20% of Lignin Kraft is plasticized with 15% glycerine and 10% glycerine carbonate,
  • FIG. 5 Infrared Spectroscopy (FTSR) with spectral comparison of 10% PAN-co-PS blended fiber samples with 20% Lignin Kraft and plasticized with 1.5% glycerin and 10% glycerine carbonate before, and after washing with water at 93 ° C.
  • FTSR Infrared Spectroscopy
  • C and D Lower, longitudinal and transverse section of carbon fiber obtained by carbonization at 1000 ° C of 10% PAN-co-PVA blend precursor with 20% Lignina Kraft stabilized at 185 ° C for 60 min. and oxidized at 280 ° C for 30 min (SEM).
  • the present invention describes the process allowing the production of Thermoplastic Polyacrylonitrile fiber for the manufacture of carbon fiber, comprising the following steps: (i) preparing a mixture of PAN, Lignin copolymer, glycerin-derived plasticizers, stabilizers and additives in powder or pellet form; (II) transfer to a virus scanner; (II!) Subjecting step (I) to an extrusion process; (IV) obtain the fibers; (V) perform fiber deplastification in hot baths; (VI) perform the drying of the fibers; (VII) hot-drying the fibers; VIU) apply oil of ensimage; IX) obtain fiber spools,
  • Figure 1 which shows the flowchart of the PAN / Lignin blending melting spinning process of this invention
  • the copolymer mixed with the plasticizers in powder form is fed into the funnel of the exuder.
  • the virus carrier operates in a temperature range of 50 ° C to 250 ° C and fuses the PAN / Lignin blend, homogenization and transport to a gear pump which has the function of producing a high pumping pressure of the viscous fluid through the spinneret.
  • 50 to 200 bore circumferential spinners having diameters of 200 to 500 ⁇ m were used.
  • the already cooled filaments are led to several hot baths containing solvents capable of dissolving the plasticizers employed and not attacking the fibers.
  • glycerine and glycerine carbonate are used as plasticizers, water, ethanol, methanol, propanol, isopropanol and their aqueous solutions may be used.
  • Fiber plasticizers use the maximum possible temperature of the water bath which can be from 90 ° C to 95 ° C in Cuba 3, depending on the local atmospheric pressure. In this third vat the evaporation and renewal bath replacement rate is 5% / hour.
  • temperatures should be reduced by 10 ° C, and the temperature in the third bath should not exceed 80 ° C. Methanol may also be used, Further care should be taken as their vapors are very toxic.
  • Each vat of the degassing bath of this invention was 15 cm high, 20 cm wide and 150 cm long, with a useful capacity of 40 L.
  • the heating was performed with 6000 W electrical resistance, allowing temperature adjustment. with a variation of +/- 3 ° C.
  • the renovation of the baths was performed
  • the fibers are conveyed to a heated roller quintet at 140 ° C to 1.60 ° C and typical 50 m / min speed for drying and then to another heated roller quintet. same temperature with typical speed of 200 m / min where drawing is performed.
  • Lubricated and antistatic oil (ensimaging) spray is already applied to already stretched fibers, which is important for the production of coils with more uniform cables and little filament breakage.
  • the fibers produced according to this invention have a moisture content of ⁇ 1% and a density of from 0.1% to 0.5%.
  • the filaments have homogeneous distribution of lignin in the polymeric matrix, have no voids or holes and the diameters may vary according to the draw rate of 10 to 50 microns as shown in Figure 2.
  • plasticized PAN its melting zone is at a temperature of approximately QQ ° C below the exothermic cyclization temperature of the chain, which allows the use of extruders to produce biend fiber.
  • allo-momentum substances such as water and glycerine derivatives, makes the nitrilic nitrogen dipole preferentially attracted. hydrocarbons of the OH groups of these substances, delaying the formation of crosslinks with carbons neighboring the chain, allowing their fusion.
  • cyclization stabilizers may be: high boiling inorganic acids such as phosphoric acid in the form of their glycerine esters such as phosphoglyceric acids, most commonly 2-phosphoglyceric acid and 3 phosphoric acid; glycerine-derived halohydrins such as 1-chloro 2,3-propanediol, 1,3-dichloro-2-propanol, 1-bromo 2,3-propanediol, 1,3-dibromo 2-propanol; and the polyvinyl chloride (PVC) and polyvinylidene chloride (PVDC) chlorinated polymers.
  • high boiling inorganic acids such as phosphoric acid in the form of their glycerine esters such as phosphoglyceric acids, most commonly 2-phosphoglyceric acid and 3 phosphoric acid
  • glycerine-derived halohydrins such as 1-chloro 2,3-propanediol, 1,3-dichloro
  • additives in this invention such as glycerin derived fatty acid mono- and diesters, more specifically the
  • Glyceride monostearate, Glyceride distearate, Glyceride monooleate, Glyceride dioleate, Glyceride monolaurate, Glyceride monophthalmitate, Glyceride monomyristate and mixtures thereof are referred to as ethylene propylene carbonate ethanesium carbonate, ethylene dehydroglyceride, diethylene glycol, triethylene glycol and mixtures thereof are called viscosity reducers.
  • the proportions used of plasticizers and additives in the present invention are at most 35% and cyclization stabilizers. a maximum of 5%.
  • the inventor solved the problem of eliminating unwanted fiber plasticizers in the thermal stabilization step by introducing a DISPLASIFICATION bath.
  • the use of non-water soluble plasticizers would result in the use of other types of organic solvents to remove them from the fibers, which would be a major economic and environmental disadvantage for the spinning melt flaction process proposed in this invention.
  • the fibers exiting the DISPLASTIFICATION bath are similar to those produced by wet spinning processes and can be stabilized, oxidized and carbonized in traditional carbon fiber furnaces.
  • Figure 4 shows by Infrared Spectroscopy (FTIR) the spectral comparison of Lignin Kraft (upper), PAN-co-PS (10%) (medium), and PAN-co-PS 10 bend fiber samples. % with 20% Lignin Kraft and plasticized with 15% glycerin and 10% glycerin carbonate.
  • the 3400 cm- 1 band which corresponds to the OH group vibration-mode hydrogen stretching mode, is only observed in the bienda due to presence of glycerin added in plasticization
  • the 2240 cm- 1 band is attributed to the nitric group present in PAN and bienda. Bands between 1200 and 1100 cm-1 are assigned to
  • Figure 5 shows by Infrared Spectroscopy (FTIR) the spectral comparison of 10% PAN-co-PS bend fiber samples with 20% Lignin Kraft and plasticized with 15% glycerin and 10% carbonate. glycerine before and after washing with water at 93 ° C in the DEPLASIFICATION bath. The efficiency of the deplastification process is evidenced by the absence of the 3400 cm "1 band in the washed bienda fiber, referring to the OH grouping present in glycerin and glycerine carbonate, used as plasticizers. Therefore, the fibers after washing are no longer thermoplastic.
  • FTIR Infrared Spectroscopy
  • the fibers exited from the DISPLASTING bath are similar to those produced by the wet process in that they consist essentially of PAN and lignin copolymers and, therefore, the stabilization, oxidation and carbonization stages are also similar to those used for traditional precursor fibers.
  • the deplastified PAN / Lignin blend fibers when held isothermally at 180 to 190 ° C are stabilized at a time equivalent to the fibers produced by the wet process, but the color gradient easily observed during the process with the PAN fibers, which are initially white to yellow, gold, brown and black at the end of the process, cannot be visualized with the blending fibers, as the present lignin gives them a dark initial color.
  • oxidation and carbonization processes are performed as for any PAN precursor, producing carbon fibers with a C content> 90%, toughness> 500 Pa and optimum mechanical properties for various applications.
  • copolymers of the present invention have more than 70% acrylonitrile derived units copolymerized with one or more comonomers and represented by acrylic units such as:
  • Lignin Kraft used in this invention was commercially purchased from Sigma-ASdrich of Brazil, which according to the seller was produced by Lignoboost process.
  • the molecular weight M w was approximately 10 kDa
  • the pH of the 3% solution was 10, 5
  • the sulfur content was 3.3%
  • the carbon content 50.1% Gravimetric analysis of ash content at 750 C yielded 0.35%.
  • the glycerin mentioned in this invention has been purified to from biodiesel glycerine by chemical treatment and removal of water and methanol by vacuum heating without distillation. Due to low glycerin content, unconverted fatty acids, lecithins, sodium hydroxide, sodium salts, and methane are present! residual, its use as a plasticizer of PAN is not possible without its purification. For this, a residual glycerin sample supplied by Bioverde company located in Taubaté (Brazil) with 85% content was submitted to the following process, based on the literature and described in ev. Virtual Quim., 2014, 6 (6), pgs.
  • Glycerin Carbonate was purchased from Huntsman and marketed under the brand name Jeffsol Giycerine Carbonate; PVC was purchased from Braskem and
  • glycerine fatty esters were purchased from Polytechno Chemical Industries; etiSenoglycol and
  • diethylene glycol were purchased from Oxiteno; acrylonitrile, vinyl acetate, itaconic acid and acrylamide monomers were sold by Radifibras; All other raw materials were purchased from Sigma-Aldrich do Brasil.
  • acrylic copolymers described in this patent were produced by suspension polymerization using acrylamide! onilitri As comonomers, persu! potassium fact (primer oxidizing agent), sodium bisulfite (activator, reducing agent), ammonium ferrous sulfate (redox catalyst) and tetrasodium EDTA (agent. sequins) , as described in the literature, "Acrilic Technology and Applications,” James C. Mason, 1995, pgs. 37-67.
  • Example 01 Approximately 1500 g (54.7%) of 6% vinyl acetate copolymerized PAN with 138,000 w , moisture content 0.7% and particle size ⁇ 20 pm, was mixed in a biender at 75 ° C. ° C with stirring 500,0g (18.2%) of Kraft lignin, 525 g (19.2%) of glycerin, 40 g (1 5%) of 3-on 1, 2-propanadiol 110 1.0g (3.4%) glyceryl monostearate, 50.0g (1.8%) g 85% phosphoric acid and 18.0g (0.8%) ethylene After 20 minutes of homogenization the mixture was cooled by 1 daughter-in-law.
  • the mass obtained was sieved and the through fraction less than 100 m was separated and fed into a 20 mm screw extruder and extruded at a speed of 60 rpm, with 5 heating zones, the first 210 C, the second, the third and fourth zones with 205 C and the fifth zone comprising the 210 ° C gear pump and spinneret.
  • the spinneret had 90 holes with a diameter of 250 ⁇ .
  • the fiber cable was desplastificado with hot water in three baths with respective temperatures of 70 ° C, 80 ° C and 93 dried with a speed of 40 m / min at 30 ° C in a quintet rolls and stretched at 150 ° C with speed 120 m / min in another quintet, being applied bath of ensimagem (Stantex - Puicra Chemicals) and then coiled.
  • the fibers obtained in this example were black, diameter of 25 pm, resistance of 1 cN / tex, moisture content of 0.9% and ensimage content of 0.3%.
  • a 90-strand fiber cable with 25% Lignin content in the bend was stabilized at 180 ° C for 60 minutes and heated at a rate of 10 ° C / min to 280 ° C. The temperature was maintained for 20 minutes. minutes The black oxidized fiber was charred at 1000 ° C in nitrogen atmosphere for 12 minutes. The yield was 58.3% carbon, with 2Gpm diameter, 650 MPa toughness and 75 GPa modulus.
  • Example 02 Approximately 1500 g (51.3%) of copolymerized PAN with 6.0% vinyl acetate at 138,000 w , moisture content 0.7% and particle size ⁇ 20 ⁇ , was mixed in a blender. at 90 ° C under stirring with 500 g (17.1%) Lignin Kraft, 586g (20.0%) glycerine, 147 g (5.0%) glycerine carbonate, 29.0 g (1.0%) ) of 3- chloro-1,2-propanediol. 70.0 g (2.4%) glyceryl monooleate, 65.0 (2.2%) g 85% phosphoric acid and 28.0 g (1.0%) ethylene glycol. After 20 minutes of homogenization the mixture was cooled for 1 hour.
  • the obtained mass was sieved and the passing fraction less than 100 pm was separated and fed into a 20 mm screw extruder and extruded at a speed of 75 rpm, with 5 zones.
  • the second, third and fourth zone with 210 ° C and the fifth zone comprising the gear pump and the 205 ° spinneret.
  • the spinneret had 50 holes with a diameter of 500 ⁇ m .
  • the fiber cable was deplastified with hot water in three baths at respective temperatures of 70 ° C, 80 ° C and 93 ° C, dried at a speed of 50 m / min at 130 ° C in a roll quintet and stretched at 150 ° C.
  • the fibers obtained in this example were black, 28 ⁇ diameter, 9 cN / tex strength, 0.6% humidity and 0.4% ensimage content.
  • the lignin content in this blend was 25%.
  • the 50-strand fiber cable was stabilized at 18 ° C for 60 minutes and heated at a rate of 10 ° C / min to 275 ° C. The temperature was maintained for 20 minutes.
  • the black oxidized fiber was charred at 1000 ° C under nitrogen atmosphere for 12 minutes. The yield was 58.5% carbon, diameter 19 ⁇ m, toughness 690 Mpa, 82 GPa.
  • Example 03 Approximately 1600 g (557%) of eopolymerized PAN with 10% styrene with Jvl w 158,000, 0.50% moisture content and ⁇ 20 pm particle size, was mixed in a blender at 90 ° C under ; stirring with 400g (13.9%) Lignin Kraft 500g (17.4%) glycerine, 150g (5.2%) glycerine carbonate, 71.0g (2.5%) 3-bromine 1,2-propanediol, 35.0g (1.2%) of NORVIC SP 700 HF PVC (Braskem), 80.0g (2.8%) 85% phosphoric acid and 35.0g (1.2%) ) of diethylene glycol
  • the mixture was cooled for 1 hour.
  • the mass obtained was sieved and the through fraction less than 100 ⁇ was separated and fed into a 20 mm screw extruder and extruded at a speed of 60 rpm, with 4 heating zones, the first with 195 ° C, the second and third at 200 ° C and the fourth at 200 ° C comprising a 3 mm bore head.
  • the extrudate was stretched to 1.5 mm in diameter and cut into 2 mm long pellets.
  • the fiber cable was desplastificado with hot water in three baths with respective temperatures of 70 ° C, 80 ° C and 93 ° C, dried at a speed of 40 m / min to 140 ° C in a quintet rolls and stretched 150 ° C at a speed of 150 m / min in another quintet, followed by an ensimage bath (Stantex - Pulcra Chemicals) and then wound up.
  • the fibers obtained in this example were dark in color, 22 ⁇ diameter, 14 cN / ile resistance, 0.6% moisture content and 0.26% ensimage content.
  • the lignin content in this blend was 20%.
  • 120-strand fiber cable has been stabilized at 190 " C for 60 minutes and heated at a rate of 10 ° C / min to 275 ° C. The temperature was maintained for 10 minutes. The black oxidized fiber was charred at 1000 ° C under nitrogen atmosphere for 12 minutes. The yield was 57.5% carbon, with 22 ⁇ m diameter, 780 MPa toughness and 95 GPa modulus.
  • Example 04 Approximately 1600 g (57.6%) of the polymerized PAN with 2.4% acrylamide and 2.5% methyl acrylate with M w 163.000, moisture content 0.70% and particle size ⁇ . 20 pm, was mixed in a beaker at 90 ° C under stirring with 400g (14.4%) Lignin raft, 300g (10.8%) glycerine, 300g (10.8%) glycerine carbonate 40.0g (1.4%) mixture of 60% glyceride monostearate and 40% glyceride distearate, 32.0 (1.2%) of PVC NORVIC SP 700 HF, 52.0g (1, 9 %) mixture containing 2-phosphoglycolic acids and 3-phosphoglycolic acid with 25% phosphoric acid and 55.0g (2.0%) propylene carbonate.
  • the fibers obtained in this example were black, 35 ⁇ diameter, 9 c / tex strength, 0.4% moisture and 0.28% ensimage content.
  • the lignin content in this blend was 20%.
  • the 50-strand fiber cable was stabilized at 180 ° C for 60 minutes and heated at a rate of 10 ° C / min to 275 ° C. The temperature was maintained for 20 minutes.
  • the black oxidized fiber was charred at 100 ° C under nitrogen atmosphere for 12 minutes. The yield was 58.7% carbon, with diameter of 24 pm, toughness of 678 MPa and modulus of 67 GPa.
  • Example 05 Approximately 1440 g (47.3%) of PAN copolymerized with 4.6% methyl acrylate and 6.0% styrene with w 121,000, moisture content 0.50% and particle size. ⁇ 20 pm was mixed in a biender 9 '0 ° C under stirring with 580g (18.4%) of Kraft lignin, 550g (18.1%) of glycerin, 280 g (9.2%) of carbonate glycerine, 22.0 g (0.7%) of 1,3-dichloro 2-propanol, 73.0 g (2.4%) of a mixture of 60% glyceryl monostearate and 40% glyceride distearate, 60, 0g (2.0%) 85% phosphoric acid and 60.0g (2.0%) propylene carbonate.
  • the mixture was cooled for 1 hour.
  • the mass obtained was sieved and the through fraction less than 00 pm was separated and fed into a 20 mm screw extruder and extruded at a speed of 60 rpm, with 4 heating zones, the first with 195 ° C, the second and third 200 ° C and the fourth zone with 1.98 ° C comprising a head hole 3 mm in diameter.
  • the extrudate was stretched to 2.0 mm in diameter and cut into 2 mm long piles.
  • the fiber cable was desp ⁇ as ⁇ ificado with hot water in three baths with respective temperatures of 70 ° C, 80 ° C and 93 ° C, dried at a speed of 55 m / min to 145 C in a quintet rolls and stretched at 150 ° C with speed 160 m / min in another quintet, being applied bath of ensimagem (Stantex - Pulcra Chemicals) and then coiled.
  • the fibers obtained in this example were black 23 mm in diameter, resistance of 8 cN / tex, humidity of 0.5% and ensimage content of 0.22%.
  • the lignin content in this blend was 28%.
  • the 150 filament fiber cable was stabilized at 180 ° C for 60 minutes and heated at a rate of 10 ° C / min to 275 ° C. The temperature was maintained for 20 minutes.
  • the black oxidized fiber was charred at 1000 ° C under nitrogen atmosphere for 12 minutes. The yield was 57.8% carbon, with 17 ⁇ m diameter, 635 GPa toughness and 82 GPa modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

Descreve um método de produção de fibras por processo de fusão em extrusoras de fiação, pelo emprego de composição contendo Pol.iacrilonitri.ia (PAN), Lignina e plastificantes 'de elevado ponto de ebulição e momento dipolar, como a glicerina e o carbonato de glicerina. A utilização de estabiiizantes térmicos também derivados de glicerina halogenada, conhecida como haiodridinas, e aditivos derivados da esterifiçação da glicerina com ácidos graxos e fosfórico também são descritos. Através da remoção dos plastificantes e dos aditivos solúveis em solventes poíares como a água e álcoois, logo após a etapa de fiação, é possível a produção de fibras da blenda PAN/Lignina com características similares àquelas produzidas por processo tradicionais de fiação úmida, utilizadas largamente na produção de fibra de carbono. Destaca-se que a Lignina utilizada pode ser aquela obtida pelo Processo Kraft. A glicerina empregada como plastificante pode ser oriunda da produção de biodiesel, não necessitando ser purificada por processo de destilação.

Description

COMPOSIÇÃO DE BLENDA DE POL(ACR!LON(TRiUVLIGNINA E SUA
UTILIZAÇÃO NA F5ÂÇÃO POR FUSÃO DE PRECURSOR DE FIBRA
CARBONO
Campo da invenção
[001] À presente patente de Privilégio de Invenção, tem por objet vo descrever composição de blenda de poiiacrifonitrila (PAN) e lignina adequada a fiação por fusão e também de sua utilização na produção de fibra de carbono, empregando glicerina e seus derivados como plastificantes.
Estado da técnica
[002] Atualmente 90% da fibra de carbono produzida no mundo é obtida empregando-se precursor de poliacriionitríla. É conhecido que aproximadamente de 50 a 60% dos custos de fabricação da fibra de carbono de PAN é devida ao precursor. Por este motivo, pesquisas são realizadas por várias instituições no mundo, como, por exemplo, o Oak Ridge National Laboratory (USA) com a finalidade de buscar alternativas de redução dos custos do precursor, para que as fibras de carbono possam ter aplicações principalment no mercado automobilístico, que não necessita de fibras de alta tenacidade como aquelas utilizadas nos setores aeronáutico e aeroespacial. Para veículos automotores, uma redução de 10% na massa se traduz em uma economia de 6 a 7% de combustível. Entre as opções mais pesquisadas atualmente para redução do custo do precursor de fibra de carbono está a utilização de métodos de fiação da PAN por fusão, que não faz uso de solventes e o emprego de outras fontes de carbono alternativas e mais baratas, como a lignina,
[003] A lignina é um polímero aromático tridimensional encontrado no reino vegetai formado peia polimerização de três monômeros em vários graus, derivados do álcool p-coumarílico (p-hidroxifenil), álcool coniferilico (guaiacil) e o álcool sinapílico (siringii) , conhecidos como iígnóís. Os Signóis são incorporados na cadeia polimérica na forma de fenilpropanoides conforme mostrados na Fórmula 1 abaixo, abreviadas como H, G e S, que são respectivamente os grupos p-hidroxifenil, guaiacsl e siringil As plantas gimnospermas possuem lignina que consiste praticamente de agrupamentos G com pequenas quantidades de agrupamentos H, enquanto que as angiospermas dicotiledôneas apresentam agrupamentos G e S com muito pouco H. As plantas monocotiledôneas apresentam lignina contendo mistura dos três agrupamentos.
Fórmulas 1 - Feniípropanoides encontrados na Lig
Figure imgf000004_0001
[004] A lignina corresponde de 20 a 35% da madeira bruta, e apôs a sua separação da celulose é queimada pela indústria de papel na forma de "licor negro" para aproveitamento de energia. Os processos existentes para sua separação da celulose e hemiceíulose na indústria implicam em tratamentos químicos hidrolíticos agressivos que levam geralmente a fragmentação da cadeia polimérica, como por exemplo, o "Processo Kraft", que conduz a moléculas de baixo peso molecular. A literatura descreve a obtenção de lignina por diversos processos com valores de peso molecular inferiores a 1 kDa até acima de 1000 kDa. A maioria dos valores de massa molecular de lígninas isoladas obtidas pelo Processo Kraft, são da ordem de 1 kDa a 12 kDa e considerando o monômero fenilpropanoide guaíacíl com peso molecular de 166, o grau de
polimerização destas ligninas variam de 6 a 72. [005] Sozinha esta lignina, devido ao aíto teor de cinzas e baixo peso molecular, não é adequada para fiação por processo úmido (wet spinning), por produzir colódios de baixa viscosidade. Pelo mesmo motivo, por processos de fiação por fusão (melting spinning), produzir fibras frágeis e quebradiças. Outro grande problema na produção de fibra de carbono com precursor de lignina é a sua dificuldade de estabilização térmica aníes do estágio de carbonização. Alguns processos descrevem a modificação química da lignina por acetilação ou fenolização para que as fibras possam se tornar estáveis e não fundíveis em uma faixa de temperatura típica de .2.00° G a 300°C, o que acaba encarecendo o processo, tornando sem vantagem a utilização desta matéria prima de baixo custo. Com relação às fibras de carbono que são produzidas a partir da lignina, que mesmo tendo aito teor de carbono em torno de 63%, suas propriedades mecânicas são basiante inferiores àqueias produzidas com a PAN, e dificilmente poderão ser utilizadas em aplicações estruturais nas indústrias aeronáutica e aeroespacial.
[008] Os desafios são muitos e por isso existem poucas patentes publicadas referente à utilização da lignina como precursora de fibra de carbono, sendo que umas das primeiras, US 5344921 de 1994 de Sudo et al. descreve a fiação de um composto obtido pela reação da lignina com fenoí na temperatura de 180°C por 3 a 5 horas. A patente US 7678358 B2 e 7794824 B2 de Ecker et al. de 2010 descrevem a obtenção de fibras a partir da lignina acetilada, produzida pela reação entre a lignina
(softwood) com anídrido acético e piridína como catalisador, Estas fibras foram estabilizadas a 240 C por duas horas no ar e carbonizadas a
1 150°G por duas horas. Destaca~se que todo o processo não foi realizado de forma contínua, produzíndo-se somente monofilamenío de fibra de carbono de diâmetro na ordem de 50 a 100 pm. Com relação à utilização da lignina em bíendas com copolímeros de PAN para produção de fibra de carbono, a patente US 8771832B2 de 2014 de Bísseít et al. descreve fiação úmida de um colódio contendo de 10 a 45% de uma mistura de PAN/Lignina dissolvidos em Dimetííacetamida (DMAc). A fibra de carbono produzida apresentou diâmetro da ordem de 20 μηι, tenacidade de 82 Ksi e módulo de 7,8 Msí. Apesar de esta patente levar a produção de cabos contínuos de fibras da bienda PAN/Lignina, todo o processo foi realizado por fiação úmída que tem o impacto negativo relacionado com o emprego de solventes tóxicos, como a reciclagem, que demanda aíto consumo de energia, perdas por degradação química na fase de destilação e grande volume de efluentes líquidos que precisam ser tratados antes do descarte em rios e lagoas.
Pontos deficientes do estado da técnica
1) Processos de fiação úmida
[007] Por questões económicas e ambientais, em processos tradicionais de fiação úmida da PAN ou de blendas PAN/Lignina, faz-se necessário a recuperação e reciclagem de todos os solventes
empregados, que são altamente poluidores da água e do solo. Por exemplo, na fiação usando DMF e DMAc, para cada tonelada de fibra produzida, é utilizada aproximadamente de 2 a 3 toneladas de solventes. A recuperação dos solventes é feita com grande consumo de energia em unidades de destilação e concentração a vácuo, mas mesmo assim a água resultante destes processos contém concentrações pequenas de solventes e necessitam ser tratadas posteriormente em estações de tratamento químicas ou biológicas, para serem descartadas em rios ou reutilizadas. No caso da recuperação da DMF e DMAc ocorre uma perda de até 5% por ciclo de destilação devido à formação dos respectivos ácidos ( ácido fórmico e acético) e metilamina, que não podem ser mais reconvertidos nos solventes originais. Estas perdas somente podem ser compensadas pela compra de mais solventes novos. Além disso, os processos de fiação úmida e seca resultam em risco da segurança ocupacional aos operadores, devido à inalação de vapores de solventes que têm alta toxicidade. A DMAc, junto com a DMF, são os solvente mais utilizados atualmente na fiação úmida da PAN. A DMAc é considerada hepatotóxica por efeito acumulativo, pode afetar a fertilidade em humanos e o desenvolvimento fetal (suspeito agente teratogeno). Para operários na industria a ACGSH e OSHA (USA) recomendam um limite de exposição (TLV-TWA) de 10 ppm para esta substância. Os fatores de riscos ambientais e ocupacionais são um dos maiores obstáculos impeditivos de implantação de fábricas de fiação por processo úmido em passes desenvolvidos, ficando atualraente a maior parte localizadas na Ásia, em países como a China, Turquia e índia, onde as legislações são menos rigorosas.
2) Processos de fiação por fusão
[008] A lignina mais produzida no mundo, a Lignina Kraft, pode ser fundida facilmente quando aquecida entre 150°C e 25G'C! mas não possui propriedades reoSógicas de fiação, principalmente por apresentar baixo peso molecular, teor de cinzas elevado de 1 a 2%, alto teor de voláteis, provenientes de compostos de enxofre. Por estes motivos é praticamente impossível empregá-la em uma extrusora de fiação sem um tratamento adequado de fracionamento para separação de frações de peso
molecular maiores, de remoção de sais de metais alcalinos
(dessalinização) e compostos de enxofre (dessulfurização). Estas características indesejadas na lignina são decorrentes do processo de deslignificação da madeira pelo emprego de agentes hidrolíticos como hidróxido de sódio e sulfeto de sódio, que leva à fragmentação da cadeia tridimensional em moiéculas de baixo peso molecular, além de
produzirem modificações químicas com a introdução de agrupamentos sulfonados. A lignina extraída da madeira empregando solventes, conhecida como "Lignina Organosolv", teoricamente seria mais adequada para produção de fibra precursora de carbono, por ser quimicamente mais pura e de peso molecular maior, mas sua produção é pequena e tem preço maior que a Lignina Kraft.
[009] Como exposto, somente uma parte da Lignina Kraft pode ser utilizada no processo de fiação por fusão, mas mesmo assim, as fibras produzidas, não podem ser transformadas em fibra de carbono se não forem passíveis de estabilização térmica, devido à dificuldade que os fragmentos de lignina apresentam de formarem ligações cruzadas entre as moléculas. Observa-se que a Lignina Kraft de eucalipto obtida por processo Lignoboost, que funde em temperatura de 150 a 2Q0°C, pode ser mantida fundida por uma ou mais horas no ar, antes de se observar aumento significativo da sua viscosidade, indicando com isso que a oxidação que leva a formação de ligações cruzadas é muito lenta. Para contornar esta situação alguns inventores propuseram a modificação química da lignina pelo emprego de outras substâncias, ou até mesmo de mistura de frações de lignina obtidas de diferentes tipos de madeira (softwood e hard ood), o que leva áo encarecimento do processo como um todo e com isso desaparecendo parte da vantagem financeira no emprego de uma matéria prima barata.
[010] Foi pensando principalmente na produção de fibra de carbono de baixo custo que levou a realização da presente invenção, conslderando-se: aspectos de simpíificação que o processo de fiação por fusão acarreta quando comparado com os de fiação úmida; emprego de matérias primas baratas e de baixa toxicidade; uso de matérias primas oriundas de recursos renováveis e que provoquem baixo impacto ambiental; que as fibras obtidas possam ser estabilizadas/oxidadas de forma semelhante às fibras precursoras produzidas em processos convencionais.
Sumário da invenção
[011] Os problemas técnicos mencionados anteriormente foram solucionados nesta presente invenção, permitindo a produção de fibra precursora de carbono partindo-se da blenda de PAN/Lígnina , fiada por processo de fusão (melting spínning) em equipamentos convencionais, empregando como plastificantes, matérias primas derivadas da cadeia de produção de bíodieseí, como a glicerina ou gSícerol. A transesterifi cação de óleos vegetais leva a produção de 10% de glicerina, o que faz /
atualmente ser uma matéria prima de potencia! uso industriai devido ao seu baixo custo, grande produção e atoxicídade, por fazer parte de todos os trigiicerídeos que existem nos seres vivos. As fibras obtidas peia presente invenção apresentam características semelhantes àquelas produzidas por processos de fiação úmida e por isso, podem ser processadas em fornos convencionais para fibra de carbono.
[012] Conforme descrito na literatura a PAN, é considerado um polímero não termoplástico, já que a temperatura de cicíização da cadeia poliménca é inferior a da sua fusão. Pode-se verificar na Fórmula 2 que a cicíização se inicia quando a PAN é aquecida acima de 18G°C, produzindo novas ligações com os nitrogénio nitrílicos da mesma cadeia ou adjacentes (cross iinks), resultando em um produto escuro, frágil e infusívei. A cicíização é também acompanhada de grande liberação de energia e se não for controlada peia remoção do calor, a temperatura do polímero eieva-se ainda mais, podendo chegar acima de 300°C, quando ocorre perda de massa devido à liberação de gases como amónia, água, áddo cianídrico e óxidos de carbono.
Fórmula 2 - Cicíização da PAN
Figure imgf000009_0001
[013] Em 1988 Opferkuch et ai- da companhia Monsanto, descreveram na patente US 3388202 denominada " ethod for melting acrylonitrile polymers and copolymers" , um método de fundir a PAN em um cilindro aquecido com êmbolo, empregando líquidos não solventes de alta polaridade como a formamída e etiícíanoacetato, sendo uma das primeiras que abordaram o tema da fusibilidade da PAN, Também é descrito no livro "Acryíic Fiber Technology and Applications" editado por James C. Masson em 1δ95, que este polímero quando misturado com substâncias de elevado momento dipoíar, como a água, pode ser fundido a alta pressão em temperaturas abaixo de 20Q°C na forma de um hidrato e conformado termopíasticamente em fibras. Nestas condições, a interação intramolecular dos dipolos do agrupamento CN vizinhos são enfraquecidas e o polímero funde, sem ocorrer a cicíização da cadeia. Pelo uso de substâncias plastificantes com elevado momento dipolar e alto ponto de ebulição, principalmente constituídos de glicerina e carbonato de giicersía (GC), empregando estabiiizantes térmicos halogenados como as halohidrínas derivadas da glicerina, como 1 -cloro 2,3-propanodioí, 1 ,3-dicloro 2-propanol , 1 -bromo 2,3-propanodiol, ácidos fosfogíicéricos como o 2-fosfoglícérico e ácido 3-fosfoglicérico e os polímeros clorados cloreto de polivinila (PVC) e cloreto de pollvinilideno (PVDC), o inventor descobriu que o efeito da fusão da PAN é semelhante àquele observado peio uso da água a alta pressão. Nestas condições, a PAN pode ser mantida fundida por um tempo razoável de modo a permitir a sua conformação termoplástica em extrusora. Da mesma forma, a Lignina Kraft, por apresentar cadeias com agrupamentos fenóiicos que são polares, pode ser blendada com as mesmas substâncias que provocam a plastificação da PAN, O inventor verificou que é possível a incorporação de até 30% de Lignina Kraft com diversos copolímeros de PAN, formando biendas homogéneas, com reologias de fiação
satisfatórias.
[014] A glicerina e seus derivados após a fusão e resfriamento da bienda de PAN/Ugnína, ficam incorporados nos filamentos. Todo o processo de plastificação e de fusão ocorre diretamente na extrusora, permitindo que o material fundido seja transportado e bombeado com uso de bombas de engrenagem para uma fieira contendo dezenas ou centenas de furos da ordem de 100 a 500 pm de diâmetro, formando os muitifilamentos que são estirados. A grande vantagem do uso da glicerina e seus derivados, nesta presente invenção, como plastificantes para obtenção da blenda, é que são completamente solúveis em água e por isso, facilmente removidos das fibras, em uma etapa chamada nesta patente de "DESPLASTlFfCAÇÃO", sendo realizada logo após a fiação, com emprego de água quente entre 80*0 a 95°C, Esta etapa é bastante semelhante à lavagem das fibras para remoção dos solventes residuais no processo de fiação úmida, Após a desplastifica ão, as fibras são secadas, estiradas em rolos com temperatura de 150°C a 70°C, ensimadas e bobinadas.
[015] As quantidades de plastificantes e suas combinações, utilizada nesta invenção, são de no máximo 35% e os polímeros utilizados podem conter até 30% de comonômeros, principalmente, acetato de vinila (VA), acrílâto de metiia (MA), metacrilato de metíla (Μ Α), ácido itacônico (IA), acriíamida , ácido acrílico (AA), cloreto de viníiideno (VDC), esfireno (S) e víníltoiueno (VT). As fibras precursoras assim obtidas, por estarem desplastificadas, podem ser estabilizadas e oxidadas em temperaturas entre 180*0 e 280°C e carbonizadas entre 1000°C e 1500°C. Os plastificantes que saem da fibra e ficam no banho apresentam baixa toxicidade e alta taxa de bíodegradação por serem constituídos
basicamente de glicerina misturada com seus derivados, podem ser descartados em estação de tratamento biológica
[018] Uma vez que a glicerina é uma matéria prima abundante no mercado devido a ser resíduo de 10% da quantidade de óleos vegetais empregados na produção de biodieseí, seu preço atua! no Brasil em 2014 foi de US3 200/Ton com uma produção estimada de 300.000 Ton/Ano e consumo na ordem de 40.000 Ton/Ano, existindo portanto um excedente de 260.000 Ton/Ano no pais, A produção mundial de glicerina é crescente, sendo estimada em 2015 como > 2 milhões de toneladas. Estes dados mostram que, devido ao baixo preço e grande oferta, o custo de energia necessária para recuperação da glicerina do banho de
desplastifícação, não é viável economicamente e por isso, a melhor alternativa é o seu descarte como nutriente auxiliar em estação de tratamento biológica de esgoto sanitário ou doméstico, já que é
completamente metabolizada por microrganismos que a utilizam como fonte de energia. Em testes realizados em laboratório com banhos ricos em glicerina com demanda química de oxigénio (DQO) de 50000 mg/L e fator de diluição 10x com esgoto sanitário com concentração de DQO de 20000 mg/L, foi demonstrado que, em 12 horas de tratamento, o teor de glicerina foi reduzido em 93% e com 24 horas em 96%. Outros derivados de glicerina na forma halohidrínas quando presentes e utilizados em baixas concentrações, como por exemplo, 1 -cloro 2,3-propanodiol, são facilmente hidroHzados em pH 9 para produzir glicerina e liberar íon cloreto. Da mesma forma o carbonato de glicerina e os monoésteres graxos de glicerina sofrem hidrólise liberando a glicerina. Quando se emprega ácidos fosfoglicéricos como aditivos, o ácido fosfórico produzido na hidrólise também é um nutriente importante. Outra alternativa ao descarte dos banhos contendo glicerina é a sua utilização como matéria prima de síntese de diversas substancias úteis, entre elas podemos citar o biopolímero ácido gama-poligíutâmico (γ-PGA), formado peia fermentação com o "Bacillus natto", o mesmo que produz a comida típica japonesa fermentada de soja conhecida como Natto. Várias patentes descrevem a síntese do y-PGA em meios contendo principalmente glicerina em concentrações de até 80g/L, entre elas a patente US 6989251 de Lee et ai. de 2006. O y-PGA, como a glicerina, é atóxico e em solução aquosa é altamente viscoso, possuindo a capacidade de flocuiar a maioria dos metais pesados presentes em água. Por esse motivo seu emprego em tratamento de água para substituição de poliacriiatos, poliacrilamidas e sais de alumínio, é crescente.
[G 7] A caracterização da presente solicitação de patente de Privilégio de Invenção ora proposta é feita por meio de figuras
representativas .da "COMPOSIÇÃO DE BLENDA DE
POLIACRILONÍTRILA LIGNINA E SUA UTILIZAÇÃO NA FIAÇÃO POR FUSÃO DE PRECURSO DE FIBRA CARBONO", de ta! modo, que o método possa ser integralmente reproduzido por técnica adequada.
[018] A partir das figuras elaboradas, se fundamenta a parte descritiva do relatório, através de uma numeração detalhada e
consecutiva, onde se escíarece aspectos que possam ficar subentendidos pela representação adotada, de modo a determinar claramente a proteção pleiteada.
[019] Estas figuras são meramente ilustrativas, podendo apresentar variações.
Breve descrição dos desenhos imagens da invenção
[020] A seguir, para melhor entendimento e compreensão de como se constitui a "COMPOSIÇÃO DE BLENDA DE
POLIACRILONITRILA/L!GNINA E SUA UTILIZAÇÃO NA FIAÇÃO POR FUSÃ DE PRECURSOR DE FIBRA CARBONO" que aqui se pleiteia, apresentam-se as figuras ilustrativas em anexo, onde se vê:
[021] A FIG. 1 - Fluxograma do processo de produção das fibras da bíenda PÃN/Lignína produzidas por fusão (meiting spinning) em extrusora, segundo esta solicitação de patente.
[022] A FIG. 2 - Secção transversal por microtomografia de raios-X 3D de fibras da blenda PAN-co-PVA 8% com 25% de Lignina Kraft, podendo-se observar a homogeneidade da distribuição da lignina na matriz de polimérica.
[023] A FIG. 3 ~ DSC de uma amostra de um copolímero de PAN-co-PVA 6% com 25% de Lignina Kraft plastificada com 18% de glicerina 5% de carbonato de glicerina. [024] Â FIG. 4 Espectroscopia de Infravermelho (FT! ) com a comparação espectral de amostras de Lignina Kraft (superior), PAN-co- PS (10%) (meio), e fibra de blenda de PAN-co-PS 10% com 20% de Lignina Kraft e plastificada com 15% de glicerina e 10% de carbonato de giicerina,
[025] A FIG. 5 - Espectroscopia de Infravermelho (FTSR) com a comparação espectral de amostras de fibra de blenda de PAN-co-PS 10% com 20% de Lignina Kraft e plastificada com 1.5% de glicerina e 10% de carbonato de glicerina antes, e após a lavagem com água a 93°C.
[026] A FIG. 6 - A e B parte superior, secções longitudinais da fibra precursora de blenda de PAN-co-PVA 10% com 20% de Lignina Kraft . C e D parte inferior, secção longitudinal e transversal de fibra de carbono obtida peia carbonização a 1000°C de precursor da blenda de PAN-co-PVA 10% com 20% de Lignina Kraft estabilizado a 185 por 60 min. e oxidado a 280°C por 30 min (MEV).
Descrição detalhada da invenção
[027] A presente invenção descreve o processo que permite a produção de fibra de Poíiacrifonitrila Termoplástica destinada à fabricação de fibra de carbono, compreendendo as seguintes etapas: (i) preparar uma mistura de copolímero de PAN, Lignina, plastificantes derivados de glicerina, estabilizantes e aditivos na forma de pó ou péletes; (II) transferir para uma exírusora; (II!) sujeitar a etapa (I) a um processo de extrusão; (IV) obter as fibras (V) realizar a desplastificação das fibras em banhos quentes; (VI) realizar a secagem das fibras; (VII) realizar a esíiragem a quente das fibras; VIU) aplicar óleo de ensimagem; IX) obter bobinas das fibras,
[028] De acordo com a Figura 1, que mostra o fluxograma do processo de melting spínning da blenda de PAN/Lignina desta presente invenção, o copolímero misturado com os plastificantes na forma de pó são alimentados no funil da exírusora. A exírusora opera em uma faixa de temperatura de 50°C a 250°C e faz a fusão da blenda de PAN/Lignina, homogeneização e o transporte para uma bomba cie engrenagem que tem a função de produzir uma alta pressão de bombeamento do fluído viscoso pela fieira. Nesta presente invenção utilizaram-se fieiras circufares de 50 até 200 furos, com diâmetros de 200 até 500 pm. Logo após a saída da fieira, os filamentos já resfriados, são conduzidos para diversos banhos quentes contendo solventes capazes de dissolverem os plastificantes empregados e que não atacam as fibras. No caso do uso da glicerina e carbonato de glicerina como plastificantes, podem ser utilizados a água, etanol, metanol, propanol, isopropanol e suas soluções aquosas.
[029] Com emprego de água como solvente de desplastifícação as temperaturas de trabalho ficam entre 70°C e 93°G, sendo realizadas em 3 estágios para minimizar o arraste de plastificantes solubilizados de uma cuba para outra. A Cuba 1 trabalha na temperatura de 70 C com taxa de renovação do banho de 15%/hora. A temperatura da Guba 2 é de 80°C e taxa de renovação de 5%/hora. Para a remoção completa dos
plastificantes das fibras utiliza-se a máxima temperatura possível do banho de água que pode ser de 90 C a 95°C na Cuba 3, dependendo da pressão atmosférica local. Nesta terceira cuba a taxa de reposição do banho por evaporação e renovação é de 5%/hora.
[030] Com emprego da solução de etanol de 25% a 50% como líquido de desplastifícação as temperaturas devem ser reduzidas de 10*C, sendo que a temperatura no terceiro banho não deve ultrapassar 80°G. O metanol também pode ser utilizado, mais cuidados adicionais devem ser utilizados, já que seus vapores são muito tóxicos.
[031] Cada cuba do banho de desplastifícação desta presente invenção apresentou 15 cm de altura, 20 cm de largura e 150 cm de comprimento, com capacidade útil de 40 L. O aquecimento foi realizado com resistência elétrícas de 6000 W, permitindo ajuste de temperatura com variação de +/- 3°C. A renovação dos banhos foi realizado
empregando bombas peristãlticas asterfíex. [032] Logo após a saída do banho as fibras são conduzidas a um quinteto de rolos aquecidos entre 140°C a 1,60'C e velocidade típica de 50 m/min para a secagem e em seguida para outro quinteto de rolos aquecido a mesma temperatura com velocidade típica de 200 m/mín, onde se realiza a estiragem. Nas fibras já estiradas aplica-se por spray óleo lubrificante e antiestático (ensimagem) que é importante para a produção de bobinas com cabos mais uniformes e com pouca quebra de filamentos.
[033] As fibras produzidas de acordo com esta invenção possuem um teor de umidade <1 % e ensimagem de 0,1 % a 0,5%. Os filamentos possuem distribuição homogénea da lignina na matriz polimérica, não apresentam vazios ou furos e os diâmetros podem varia de acordo com a taxa de estiragem de 10 a 50 mícrons, conforme pode ser visto na Figura 2.
[034] No processo descrito, o inventor resolveu o problema da fiação da PA por processo melting spinning, realizando a sua
plastificação com o emprego da glicerina e seus derivados. De acordo com a Figura 3, pode-se ver claramente por análise de calorimetria exploratória diferencia (DSC) da blenda de PAN copolimerizada com 6% de acetato de polivinila (PVA) com 25% de lignina kraft e plastificada com 18% de glicerina e 5% de carbonato de glicerina, o pico endotérmico de fusão em 206°C, logo antes do pico exotérmico relacionado a ciclização da cadeia polimérica em 319°C. Isto significa, que a presença da lignina, não impediu a formação de ligação cruzadas da PAN, o que é crucial para a estabilização térmica das fibras.
[035] Para a PAN plastificada, a sua zona de fusão se situa em temperatura de aproximadamente QQ°C abaixo da temperatura de ciclização exotérmica da cadeia, o que permite a utilização de extrusoras para produção de fibras das biendas. A plastificação da PAN com substâncias de alio momento dipoiar como água e derivados de glicerina, faz com que o dípolo do nitrogénio nitrilico seja preferencialmente atraído peíos dspo!os dos hidrogênios dos grupos OH destas substâncias, retardando a formação de ligações cruzadas com carbonos vizinhos da cadeia, permitindo a sua fusão.
[036] Mesmo com o aquecimento da PAN plastificada com glicerina, carbonato de gliceriia e suas misturas, a sua cicíização inicia entre 5 a 10 minutos decorridos após fusão, observado pela alteração de cor do polímero fundido que de um amarelo claro e fluido torna-se marrom escuro e viscoso. Esse tempo de permanência na forma fundida é muito curto para seu processamento em extrusora, Descobriu-se que se alguns aditivos halogenadas ou fosforados foram adicionados em pequenas concentrações junto com os plastificantes da PAN, o polímero pode permanecer fundido por até 1 hora, tempo suficiente para permitir seu processamento contínuo. Estes aditivos são denominados nesta presente invenção, como estabíiizantes de cicíização e podem ser: ácidos inorgânicos de alto ponto de ebulição como o ácido fosfórico na forma de seus ésteres com glicerina, como os ácidos fosfoglícé ricos, mais comumeníe o 2-fosfoglicértco e ácido 3-fosfogíicérico; halohidrinas derivadas da glicerina, como 1 -cloro 2,3-propanodíol, 1 ,3-dicloro 2- propanol , 1 -bromo 2,3-propanodiol, 1 ,3-dibromo 2-propanol; e os polímeros clorados cloreto de polivinila (PVC) e cloreto de polívinilídeno (PVDC).
[037] Outros aditivos nesta invenção como os mono e di ésteres de ácido graxos derivados de glicerina, mais especificamente o
monoestearato de gliceriia, diestearato de gliceriia, monooleato de gliceriia, dioleato de gliceriia, monolaurato de gliceriia, monòpalmitato de gliceriia, dípalmitato de gliceriia, monomiristato de gliceriia e suas misturas, são denominados lubrificantes e as substâncias carbonato de etileno, carbonato de propíleno, etilenoglícoi, dietílenoglicol, trietilenog!icol e suas misturas são denominados redutores de viscosidade.
[038] As proporções utilizadas de plastificantes e aditivos, na presente invenção, são de no máximo 35% e estabilizantes de ciciízação no máximo de 5%.
[039] Ao mesmo tempo, peia seieção de substâncias que são solúveis em água, o inventor resolveu o problema da eliminação dos plastificantes das fibras, que são indesejados na etapa de estabii izaçáo térmica, introduzindo um banho de DESPLASTIFICAÇÃO. A utiiízação de plastificantes não solúveis em água acarretaria no uso de outros tipos de solventes orgânicos para eliminá-los das fibras, o que seria uma grande desvantagem económica e ambiental para o processo de flação meltíng spinning proposto nesta invenção. Com isso, as fibras ao saírem do banho de DESPLASTIFiCAÇÃO, são semelhantes àquelas produzida por processos de fiação úmida e podem ser estabilizadas, oxidadas e carbonizadas em fornos tradicionais de produção de fibra de carbono.
[040] A Figura 4 mostra por Espectroscopia de Infravermelho (FTIR) a comparação espectral de amostras de Lignina Kraft (superior), PAN-co-PS (10%) (meio), e fibra de bienda de PAN-co-PS 10% com 20% de Lignina Kraft e plastificada com 15% de glicerina e 10% de carbonato de glicerina, A banda de 3400 cm"1, que corresponde ao modo víbracíonal de estiramento de hidrogénio de grupo OH, somente é observada na bienda devido a presença de glicerina adicionada na plastificação. A banda de 2240 cm"1 é atribuída ao grupo nítriia presente na PAN e na bienda. As bandas entre 1200 e 1100 cm-1 são atribuídas aos
monômeros guaiaci! e siringil encontrados na Lignina Kraft, que podem ser observados também nas fibras da bienda.
[041] A Figura 5 mostra por Espectroscopia de Infravermelho (FTIR) a comparação espectral de amostras de fibra de bienda de PAN- co-PS 10% com 20% de Lignina Kraft e plastificada com 15% de glicerina e 10% de carbonato de glicerina antes e após a lavagem com água a 93°C no banho de DESPLASTIFICAÇÃO. A eficiência do processo de desplastíficação é evidenciada pela ausência da banda de 3400 cm"1 na fibra da bienda lavada, referente ao agrupamento OH presente na glicerina e no carbonato de glicerina, utilizados como plastificantes. Portanto, as fibras após a lavagem não são mais termoplásticas. As fibras saídas do banho de DESPLASTiFiCAÇÂO são similares àquelas produzidas por processo umido por serem constituídas essencialmente de copolímeros de PAN e lignina e, por isso os estágios de estabilização, oxidação e carbonização são também similares aos empregados para as fibras precursoras tradicionais.
[042] As fibras da blenda de PAN/Lignina desplastificadas ao serem mantidas isotermicamente entre 180 a 190° C, são estabilizadas em intervalo de tempo equivalente às fibras produzidas pelo processo umido, mas, o gradiente de coloração facilmente observado durante o processo com as fibras de PAN, que inicialmente são brancas, passando para amarelas, douradas, marrom e no finai do processo negras, não podem ser visualizados com as fibras da blenda, já que a lignina presente confere a elas uma coloração inicial escura.
[043] Após estabilização térmica destas fibras, os processos de oxidação e carbonização são realizados como para qualquer precursor de PAN, produzindo fibras de carbono com teor de C > 90%, tenacidade > 500 Pa e óíimas propriedades mecânicas para aplicações diversas.
[044] Os copolímeros da presente invenção possuem mais de 70% de unidades derivadas da acrilonitrila, copolimerizada com um ou mais comonômeros, e representada por unidades acrílicas, tal como:
Figure imgf000019_0001
[045] A Lignina Kraft utilizada nesta presente invenção foi adquirida comercialmente da empresa Sigma-ASdrich do Brasil, que segundo o vendedor, foi produzida por processo Lignoboost O peso molecular Mw foi aproximadamente 10 kDa, o pH da solução 3% foi 10,5, o teor de enxofre foi de 3,3% e o teor de carbono de 50,1 %. Análise gravimétrica do teor de cinzas a 750 C resultou em 0,35%.
[048] A glicerina mencionada nesta invenção, foi purificada a partir de glicerina de biodíesel por tratamento químico e remoção de água e metanol por aquecimento a vácuo, sem destilação. Devido ao baixo teor de glicerina, presença ácidos graxos não convertidos, lecitinas, hidróxido de sódio, sais de sódio, e metano! residual, não é possível a sua utilização como plastificante da PAN sem sua purificação. Para isto, amostra de glicerina residual fornecida pela empresa Bioverde localizada na cidade de Taubaté (Brasil) com teor de 85% foi submetida ao seguinte processo, baseado na literatura e descrito em ev. Virtual Quim., 2014, 6 (6), pgs. 1564-1582: Para 5,0 kg de glicerina bruta aquecida a 70°C adicionou-se, sob agitação, 100 mi de ácido fosfórico 85%. Nestas condições e após decantação, os ácidos graxos e lecitinas são separados da glicerina. Esta glicerina foi filtrada em leito de carvão ativado para remoção de cor e em seguida passada em um cartucho de resina de troca iônica contendo resina catiôníca Amberíite IR 120 para remoção de sais de sódio. Esta glicerina foi aquecida a 90 C sob vácuo por 1 hora para remoção de água e metanol residual. O produto final apresentou teor de pureza de 97%, cinzas de 0,047% è sódio < 20 mg/kg (ppm) e pode ser utilizado como plastificante da bienda de PAN/Lignina nesta invenção.
[047] As outras matérias primas aqui utilizadas, como: Carbonato de Glicerina foi adquirido da Huntsman e comercializado com a marca Jeffsol Giycerine Carbonate; o PVC foi adquirido da Braskem e
comercializado com a marca Norvic; os ésteres graxos de glicerina foram adquiridos da Polytechno Indústrias Químicas; o etiSenoglicol e
dietilenoglicol foram adquiridos da Oxiteno; os monômeros acrilonitrila, acetato de vinila, ácido itacôníco e acrilamida foram cedidos pela empresa Radifibras; todas as demais matérias primas foram adquiridas da Sigma- Aldrich do Brasil.
[048] Para melhor demonstrar as realizações preferidas, que são representativas, mas não limitativas aos experimentos realizados, é apresentado a seguir exemplos de aplicação da presente invenção; os copolímeros acrílicos descritos nessa patente foram produzidos por polimerização em suspensão empregando acri!onilitri!a, comonômeros, persu!fato de potássio (iniciador, agente oxidante), bissulfito de sódio (ativador, agente redutor), sulfato ferroso amoniacal (catalisador redox) e EDTA tetrassódico (agente que.lante), conforme meíolologia descrita na literatura, "Acrilic Ffber Technology and Applications", James C. Mason, 1995, pgs. 37 â 67.
[049] Exemplo 01 : aproximadamente 1500 g (54,7%) de PAN copolimerizado com 6 % de acetato de vinila com w 138,000 , teor de umídade de 0,7% e granulometria < 20 pm, foi misturada em um biender a 75°C sob agitação com 500,0g (18,2%) de Lignina Kraft, 525, Og (19,2%) de glicerina, 40, Og (1 ,5%) de 3~ on 1 ,2-propanadiol, 110,0g (3,4%) de monoestearato de giicerila, 50,0g (1 ,8%) g de ácido fosfórico 85% e 18,0g (0,8%) de etiienogiicoL Após 20 minutos de homogeneização a mistura foi resfriada por 1 nora. A massa obtida foi classificada em peneira a fração passante menor que 100 m foi separada e alimentada numa extrusora de rosca 20 mm e extrudada uma velocidade de 60 rpm, com 5 zonas de aquecimento, sendo que a primeira zona com 210 C, a segunda, terceira e quarta zona com 205 C e a quinta zona compreendendo a bomba de engrenagem e â fieira com 210°C. Neste exemplo a fieira apresentou 90 furos com diâmetro de 250 μηι. O cabo de fibras foi desplastificado com água quente em três banhos com as respectivas temperaturas de 70'C, 80*C e 93 , secado com velocidade de 40 m/min a 30*C em um quinteto de rolos e estirado a 150°C com velocidade 120 m/min em outro quinteto , sendo aplicado banho de ensimagem (Stantex - Puicra Chemicals) e em seguida bobinado. As fibras obtidas neste exemplo se apresentaram de cor negra, diâmetro de 25 pm, resistência de 1 cN/tex, umidade de 0,9% e teor de ensimagem de 0,3%.
[050] Um cabo de fibra com 90 filamentos e teor de Lignina 25% na bienda, foi estabilizado a 180°C por 60 minutos e aquecido a uma velocidade de 10 °C/ min até 280°C. A temperatura foi mantida por 20 minutos. A fibra oxidada de cor negra foi carbonizada a 1000°C em atmosfera de nitrogénio por 12 minutos. O rendimento foi de 58,3% de carbono, com diâmetro de 2Gpm, tenacidade de 650 MPa e módulo de 75 GPa.
[051] Exemplo 02: aproximadamente 1500 g (51 ,3%) de PAN copolimerízado com 6,0 % de acetato de viniia com w 138,000 , teor de umidade de 0,7% e granulometría < 20 μιη, foi misturada em um blender a 90 C sob agitação com 500 g (17,1%) de Lignina Kraft, 586g (20,0%) de glicerina, 147 g (5,0%) de carbonato de glicerina, 29,0 g (1 ,0%) de 3- c!oro-1 ,2-prõpanodíoi. 70,0 g (2,4%) de monooleato de glicerila, 65,0 (2,2%) g de ácido fosfórico 85% e 28,0 g (1 ,0%) de eíílenoglícol. Após 20 minutos de homogeneização a mistura foi resfriada por 1 hora, A massa obtida foi classificada em peneira e a fração passante menor que 100 pm foi separada e alimentada numa extrusora de rosca 20 mm e extrudada uma velocidade de 75 rpm, com 5 zonas de aquecimento, sendo que a primeira zona com 205*0. a segunda, terceira e quarta zona com 210 C e a quinta zona compreendendo a bomba de engrenagem e a fieira com 205 C. Neste exemplo a fieira apresentou 50 furos com diâmetro de 500 ym. O cabo de fibras foi desplastificado com água quente em três banhos com as respectivas temperaturas de 70°Ο, 80° 0 e 93 , secado com velocidade de 50 m/min a 130°C em um quinteto de rolos e estirado a 150°C com velocidade 120 m/min em outro quinteto , sendo aplicado banho de ensimagem (Stantex - Puicra Chemicals) e em seguida bobinado. As fibras obtidas neste exemplo se apresentaram de cor negra, diâmetro de 28 μτη, resistência de 9 cN/tex, umidade de 0,6% e teor de ensimagem de 0,4%. O teor de lignina nesta blenda foi de 25%.
[052] O cabo de fibra com 50 filamentos, foi estabilizado a 18Q por 60 minutos e aquecido a uma velocidade de 10°C/ min até 275°C. A temperatura foi mantida por 20 minutos. A fibra oxidada de cor negra foi carbonizada a 1000°C em atmosfera de nitrogénio por 12 minutos. Q rendimento foi de 58,5% de carbono, com diâmetro de 19 pm, tenacidade de 690 Mpa módulo de 82 GPa. [053] Exemplo 03: aproximadamente 1600 g (557%) de PAN eopolímerizado com 10 % de estireno com Jvlw 158,000 , teor de umidade de 0,50% e granulomeíria < 20 pm, foi misturada em um blender a 90°C sob; agitação com 400g (13,9%) de Lignina Kraft 500g (17,4%) de glicerina, 150 g (5,2%) de carbonato de glicerina, 71 ,0 g (2,5%) de 3- bromo-1,2-propanodiol, 35,0g (1 ,2%) de PVC NORVIC SP 700 HF (Braskem), 80,0 g (2,8%) de ácido fosfórico 85% e 35,0 g (1 ,2%) de dietiienogiicol
[054] Após 20 minutos de homogeneização a mistura foi resfriada por 1 hora. A massa obtida foi classificada em peneira e a fração passante menor que 100 μηί foi separada e alimentada numa extrusora de rosca 20 mm e extrudada a uma velocidade de 60 rpm, com 4 zonas de aquecimento, sendo que a primeira zona com 195°C, a segunda e terceira com 200°C e a quarta zona com 200°C compreendendo um cabeçote de furo de 3 mm de diâmetro. O extrudado foi estirado até 1 ,5 mm de diâmetro e cortado em péletes de 2 mm de comprimento.
|055] Estes péletes foram alimentados em uma extrusora de rosca 20 mm e extrudados a uma velocidade de 80 rpm, com 5 zonas de aquecimento, sendo que a primeira zona com 205°C, a segunda, terceira e quarta zona com 20Q°C e a quinta zona compreendendo a bomba de engrenagem e a fieira com 205 C. Neste exemplo a fieira apresentou 120 furos com diâmetro de 250 pm. O cabo de fibras foi desplastificado com água quente em três banhos com as respectivas temperaturas de 70'C, 80°C e 93°C, secado com velocidade de 40 m/min a 140°C em um quinteto de rolos e estirado a 150°C com velocidade 150 m/min em outro quinteto , sendo aplicado banho de ensimagem (Stantex - Pulcra Chemicals) e em seguida bobinado. As fibras obtidas neste exemplo se apresentaram de cor escura, diâmetro de 22 μηη, resistência de 14 cN/íex, umidade de 0,6% e teor de ensimagem de 0,26%. O teor de lignina nesta blenda foi de 20%.
[056] O cabo de fibra com 120 filamentos foi estabilizado a 190"C por 60 minutos e aquecido a uma velocidade de 10°C/ min até 275°C. A temperatura foi mantida por 10 minutos. A fibra oxidada de cor negra foi carbonizada a 1000 C em atmosfera de nitrogénio por 12 minutos. O rendimento foi de 57,5% de carbono, com diâmetro de 22 pm, tenacidade de 780 MPa e módulo de 95 GPa.
[057] Exemplo 04: aproximadamente 1600 g (57,6%) de PAN copoíimerizadõ com 2,4 % de acrilamida e 2,5% de acrilato de metila com Mw 163,000, teor de umidade de 0,70% e granulometria < 20 pm, foi misturada em um b!ender a 90°C sob agitação com 400g (14,4%) de Lignina raft, 300g (10,8%) de glicerina, 300 g (10,8%) de carbonato de glicerina, 40, Og (1 ,4%) de mistura de 60% de monoestearato de gliceriia e 40% de diestearato de gliceriia, 32,0 (1 ,2%) de PVC NORVIC SP 700 HF, 52, Og (1 ,9%) de mistura contendo os ácidos 2-fosfogíicérico e ácido 3- fosfoglicérico com 25% de ácido fosfórico e 55, Dg (2,0%) de carbonato de propiíeno.
[058] Após 20 minutos de homogeneização, a mistura foi resfriada por 1 hora. A massa obtida foi ciassífícada em peneira e a fração passante menor que 100 pm foi separada e alimentada numa extrusora de rosca 20 mm e exirudada a uma velocidade de 50 rpm, com 4 zonas de aquecimento, sendo que a primeira zona com 205°C, a segunda e terceira com 2GQ°C e a quarta zona com 205'C compreendendo um cabeçote de furo de 3 mm de diâmetro. O extrudado foi estirado até 2,0 mm de diâmetro e cortado em péletes de 2 mm de comprimento.
[059] Estes péletes foram alimentados em uma extrusora de rosca 20 mm e extrudados a uma velocidade de 60 rpm, com 5 zonas de aquecimento, sendo que a primeira zona com 205°C, a segunda, terceira e quarta zona com 200°C e a quinta zona compreendendo a bomba de engrenagem e a fieira com 210°C. Neste exemplo a fieira apresentou 50 furos com diâmetro de 500 μηι. O cabo de fibras foi desplasfificado com água quente em três banhos com as respectivas temperaturas de 70 C, 80°C e 93°C, secado com velocidade de 65 m/min a 140°C em um quinteto de rolos e estirado a 150'C com velocidade 130 m/min em outro quinteto , sendo aplicado banho de ensimagem (Stantex - Puicra Chemicals) e em seguida bobinado. As fibras obtidas neste exemplo se apresentaram de cor negra, diâmetro de 35 μηι, resistência de 9 c /tex, umidade de 0,4% e teor de ensimagem de 0,28%. O teor de lignina nesta blenda foi de 20%.
[060] O cabo de fibra com 50 filamentos foi estabilizado a 180°C por 60 minutos e aquecido a uma velocidade de 10°C/ min até 275°C. A temperatura foi mantida por 20 minutos. A fibra oxidada de cor negra foi carbonizada a 10Q0°C em atmosfera de nitrogénio por 12 minutos. O rendimento foi de 58,7% de carbono, com diâmetro de 24 pm, tenacidade de 678 MPa e módulo de 67 GPa.
[061] Exemplo 05: aproximadamente 1440 g (47,3 %) de PAN copolimerizado com 4,6 % de acrilato de metila e 6,0% de estíreno com w 121 ,000, teor de umidade de 0,50% e granulometria < 20 pm, foi misturada em um biender a 9'0°C sob agitação com 580g (18,4%) de Lignina Kraft, 550g (18,1 %) de glicerina, 280 g (9,2%) de carbonato de glicerina, 22, Og (0,7%) de 1 ,3-dicloro 2-propanol, 73,0 g (2,4%) de mistura de 60% de monoestearaío de giicerila e 40% de diestearato de gíiceriia, 60,0g (2,0%) de ácido fosfórico 85% e 60,0g (2,0%) de carbonato de propileno.
[062] Após 30 minutos de homogeneização a mistura foi resfriada por 1 hora. A massa obtida foi classificada em peneira e a fração passante menor que 00 pm foi separada e alimentada numa extrusora de rosca 20 mm e extrudada a uma velocidade de 60 rpm, com 4 zonas de aquecimento, sendo que a primeira zona com 195°C, a segunda e terceira com 200° C e a quarta zona com 1.98'C compreendendo um cabeçote de furo de 3 mm de diâmetro. O extrudado foi estirado até 2,0 mm de diâmetro e cortado em péieíes de 2 mm de comprimento.
[063] Estes péietes foram alimentados em uma extrusora de rosca 20 mm e extrudados a uma velocidade de 60 rpm, com 5 zonas de aquecimento, sendo que a primeira zona com 95°C, a segunda, terceira e quarta zona com 198°C e a quinta zona compreendendo a bomba de engrenagem e a fieira com 198°C. Neste exemplo a fieira apresentou 150 furos com diâmetro de 250 μιτκ . O cabo de fibras foi despíasíificado com água quente em três banhos com as respectivas temperaturas de 70°C, 80'C e 93 C, secado com velocidade de 55 m/min a 145 C em um quinteto de rolos e estirado a 150°C com velocidade 160 m/mín em outro quinteto , sendo aplicado banho de ensimagem (Stantex - Pulcra Chemicals) e em seguida bobinado. As fibras obtidas neste exemplo se apresentaram de cor negra diâmetro de 23 um, resistência de 8 cN/tex, umidade de 0,5% e teor de ensimagem de 0,22%. O teor de lignina nesta blenda foi de 28%.
[064] O cabo de fibra com 150 filamentos foi estabilizado a 180 C por 60 minutos e aquecido a uma velocidade de 10°C/ min até 275 C. A temperatura foi mantida por 20 minutos. A fibra oxidada de cor negra foi carbonizada a 1000 C em atmosfera de nitrogénio por 12 minutos. O rendimento foi de 57,8% de carbono, com diâmetro de 17 pm, tenacidade de 635 GPa e módulo de 82 GPa.
[065] Peias vantagens que oferece, e ainda, por revesti r-se de características verdadeiramente inovadoras que preenchem todos os requisitos de novidade e originalidade no género, a presente
"COMPOSIÇÃO DE BLENDA DE POLIACRILONITRiLA/UGNINA E SUA UTILIZAÇÃO NA FIAÇÃO POR FUSÃO DE PRECURSOR DE FIBRA CARBONO", reúne condições necessárias e suficientes para merecer a patente de Privilégio de invenção.

Claims

REIVINDICAÇÕES
1. Uma composição de blenda de poliacríloniírila/lignina que leve a produção de fibra precursora de fibra de carbono caracterizada por conter:
a) Mínimo de 45% de copoiímero com teor igual ou superior a 70% do monômero acriio nitri ia.
b) Máximo de 20 % de lignina
c) Máximo de 35% de combinações de outras substâncias que permitam a fusão e fiação da blenda classificadas nos seguintes grupos e com as seguintes características:
I) Plastificantes de ponto de ebulição maior que 170*C, solúveis em água e álcoois.
li) Estabilizantes de cicíízação de ponto de ebulição maior que
170°C, solúveis em água e álcoois, ou derivados de polímeros
halogenados.
III) Lubrificantes de ponto de ebulição maior que 17G°C, solúveis era água e álcoois.
IV) Redutores de viscosidade de ponto de ebulição maior que 170°C, solúveis em água e álcoois.
2. Uma composição de blenda de pollacrilonitrila/íignina que leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1 , é caracterizada por conter copoiímero de poliacrilonitrila com no máximo 30% de comonômeros, entre eles o acetato de vínila, acrilato de metila, metacríiato de metila, ácido itacônico, acrilamida, ácido acrílico, cloreto de vinilídeno, estireno e viniltolueno.
3. Uma composição de blenda de poliacriíonitrila/lignina que leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1 , é caracterizada por conter como plastificantes, substâncias de alto ponto de ebulição, solúveis em água e álcoois, como a glicerina, o carbonato de glicerina e suas combinações.
4. Uma composição de blenda dê poliacrilonítrila/lignina que leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1 , é caracterizada por conter como estabilizantes de ciclização, substâncias de alto ponto de ebulição, solúveis em água e álcoois, derivados da glicerina como o 3-cíoro-1 ,2-propanodiol (a- ciorohidrina), 3-fluoro-1 ,2-propanodiol (α-fiuorohidrina), 3~bromo~1 ,2- propanodioi (a-bromohidrina), 1 ,3 lscioro~2-pfopano!, 1 ,3-difluoro-2- propanol, 1 ,3-dibromo-2-propano! e suas combinações.
5. Uma composição de bienda de poliacriionitrila/!ignina que leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1, é caracterizada por conter como estabilizantes de ciclização, substâncias de alto ponto de ebulição, solúveis em água e álcoois, como os ácidos inorgânicos, ácido sulfúrico e ácidos fosforados, como ácido metafosfórico, ácido ortofosfôrico, ácido pirofosfórico, ácido poíifosfórico, ácidos fosfoglicèrícos e suas combinações.
6. Uma composição de bienda de poriacrilonitriia/!ignina quê leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1 , é caracterizad por conter como estabilizantes de ciclização, polímeros e copoifmeros halogenados como o cloreto de polívinila (PVC), o brometo de poiivíniía, o cloreto de poíivinilideno (PVDC) e o fluoreto de poíivinilideno (PVDF).
7. Uma composição de bienda de poliacrilonitrila/iignina que leve a produção de fibra precursora de fibra de carbono , que de acordo com a reivindicação 4 a 8, é caracterizada por conter como estabilizantes de ciclização no máximo 5%.
8. Uma composição de bienda de poliacrilonitrila/iignina que ieve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1 , é caracterizada por conter como lubrificantes de extrusão, substâncias de alto ponto de ebulição, solúveis em água e áicoois, como os mono e di ésteres de ácido graxos derivados de glicerina, principalmente o monoestearato de gíiceriiã, diestearato de gliceríia, monooleato de glieeriia, díoieato de giicerila, monoiaurato de glícerila, monopaimitato de glicerila, dipalmitato de glicerila, monomíristato de glicerila e suas combinações.
9. Uma composição de blenda de poliacriSonitrila/lignina que leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1 , é caracterizada or conter como redutores de
viscosidade, substâncias de alto ponto de ebulição, solúveis em água e álcoois como o carbonato de etileno, carbonato de propiieno, etiíenoglicol, dietilenoglicol, tríetiienoglicoi e suas combinações.
10. Uma composição de blenda de poiiacrilonitriia/lignína que leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1 a 9, é caracterizada por utilizar no processo de
desplastificação das fibras, a água e álcoois de Ci a C3 como o metanol, etanol, propano!, isopropanoi ou suas misturas como solventes.
11. Uma composição de blenda de pofiacrilonitrila/lignina que leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 10, é caracterizada por apresentar etapa de
desplastificação que pode ser realizada de forma contínua com o processo de fiação ou descontínua diretamente nas bobinas obtidas.
12. Uma composição de blenda de polsaerilonitríla/ligmna que leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1 a l i , caracterizada por produzir fibras de poíiacrinonitrila fiadas por processo de fusão que podem ser estabilizadas termicamente e carbonizadas em equipamentos convencionais, da mesma maneira que as fibras produzidas peio processo de fiação úmida.
13. Uma composição de blenda de poliacrilonitrila/lignina que leve a produção de fibra precursora de fibra de carbono, que de acordo com a reivindicação 1 a 11 é caracterizada por produzir fibras de poiiacrílonitrila fiadas por processo de fusão que podem apresentar secção transversa! monolítica circular ou diversas, com diâmetros de 5 a 500 pm e
resistência > 5cN/tex.
PCT/BR2016/000106 2015-10-05 2016-10-05 Composição de blenda de pol(acr!lon(triuvlignina e sua utilização na f5âção por fusão de precursor de fibra carbono WO2017059507A1 (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/766,336 US20180282535A1 (en) 2015-10-05 2016-10-05 Composition of polyacrylonitrile/lignin blend and use thereof in melt spinning carbon fibre precursors
EP16852913.9A EP3366723A4 (en) 2015-10-05 2016-10-05 Composition of polyacrylonitrile/lignin blend and use thereof in melt spinning carbon fibre precursors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102015025429-6A BR102015025429A2 (pt) 2015-10-05 2015-10-05 Composição de blenda de poliacrilonitrila / lignina para a produção de fibra precursora de fibra de carbono
BRBR1020150254296 2015-10-05

Publications (1)

Publication Number Publication Date
WO2017059507A1 true WO2017059507A1 (pt) 2017-04-13

Family

ID=58487129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/000106 WO2017059507A1 (pt) 2015-10-05 2016-10-05 Composição de blenda de pol(acr!lon(triuvlignina e sua utilização na f5âção por fusão de precursor de fibra carbono

Country Status (4)

Country Link
US (1) US20180282535A1 (pt)
EP (1) EP3366723A4 (pt)
BR (1) BR102015025429A2 (pt)
WO (1) WO2017059507A1 (pt)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624985A (zh) * 2018-05-29 2018-10-09 中国科学院宁波材料技术与工程研究所 一种木质素与聚丙烯腈共混纤维及其碳纤维的制备方法
CN108993379A (zh) * 2018-07-18 2018-12-14 太原理工大学 一种粉煤灰基吸附材料的制备方法及其应用
CN108997632A (zh) * 2018-06-25 2018-12-14 广东格瑞新材料股份有限公司 一种耐候pe组合物及其制备方法
CN109401163A (zh) * 2018-10-11 2019-03-01 天津工业大学 一种可熔融聚丙烯腈基树脂、制备方法及其应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019003599A2 (pt) * 2016-08-23 2019-05-21 National Research Council Of Canada. péletes de lignina e processo para produção dos mesmos
CN108047678A (zh) * 2017-12-15 2018-05-18 武汉工程大学 一种改性木质素/聚碳酸亚丙酯复合材料及其制备方法
US10633770B2 (en) 2018-01-04 2020-04-28 North Carolina State University Coagulation map for fiber spinning
WO2019165443A1 (en) * 2018-02-26 2019-08-29 The Texas A&M University System Lignin fractionation and fabrication for quality carbon fiber
DE102019119464B3 (de) * 2019-07-18 2020-11-12 Leibniz-Institut Für Polymerforschung Dresden E.V. Verfahren zur Herstellung von Lignin-PAN-basierten Polymercompounds und Lignin-PAN-basierte Polymercompounds
KR102202362B1 (ko) * 2019-11-22 2021-01-13 영남대학교 산학협력단 기계적 특성이 우수한 저가형 탄소섬유 및 이의 제조방법
CN111910291A (zh) * 2020-07-31 2020-11-10 金发科技股份有限公司 一种pan基碳纤维及其制备方法与由其制成的碳纤维
CN112482027B (zh) * 2020-11-20 2022-10-25 南京玻璃纤维研究设计院有限公司 一种碳纤维表面处理剂及处理方法
CN113583438B (zh) * 2021-08-06 2023-06-09 海南金海浆纸业有限公司 一种可生物降解的碱木质素复合材料、制备方法及其应用
WO2023225010A1 (en) * 2022-05-16 2023-11-23 North Carolina State University Melt spinning lignin/acrylic fibers
CN115305644A (zh) * 2022-07-30 2022-11-08 苏州大乘环保新材有限公司 碳纤雨水收集模块用滤透表层布及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3461082A (en) * 1964-10-10 1969-08-12 Nippon Kayaku Kk Method for producing carbonized lignin fiber
US20110024939A1 (en) * 2009-07-28 2011-02-03 Nilton Pereira Alves Thermoplastic polyacrylonitrile production process
US20120003471A1 (en) * 2010-06-30 2012-01-05 Weyerhaeuser Nr Company Lignin/polyacrylonitrile-containing dopes, fibers, and methods of making same
WO2014046826A1 (en) * 2012-09-20 2014-03-27 Graftech International Holdings Inc. Carbon fibers derived from lignin
CN103774276A (zh) * 2014-01-13 2014-05-07 东华大学 采用物理共混制备木质素/聚丙烯腈共混熔纺纤维的方法
US20150037241A1 (en) * 2011-05-18 2015-02-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for the production of lignin-containing precursor fibres and also carbon fibres

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541400B2 (en) * 2006-05-20 2009-06-02 Lutzmann H Harald Thermoplastic polyacrylonitrile compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3461082A (en) * 1964-10-10 1969-08-12 Nippon Kayaku Kk Method for producing carbonized lignin fiber
US20110024939A1 (en) * 2009-07-28 2011-02-03 Nilton Pereira Alves Thermoplastic polyacrylonitrile production process
US20120003471A1 (en) * 2010-06-30 2012-01-05 Weyerhaeuser Nr Company Lignin/polyacrylonitrile-containing dopes, fibers, and methods of making same
US20150037241A1 (en) * 2011-05-18 2015-02-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for the production of lignin-containing precursor fibres and also carbon fibres
WO2014046826A1 (en) * 2012-09-20 2014-03-27 Graftech International Holdings Inc. Carbon fibers derived from lignin
CN103774276A (zh) * 2014-01-13 2014-05-07 东华大学 采用物理共混制备木质素/聚丙烯腈共混熔纺纤维的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3366723A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624985A (zh) * 2018-05-29 2018-10-09 中国科学院宁波材料技术与工程研究所 一种木质素与聚丙烯腈共混纤维及其碳纤维的制备方法
CN108624985B (zh) * 2018-05-29 2020-07-14 中国科学院宁波材料技术与工程研究所 一种木质素与聚丙烯腈共混纤维及其碳纤维的制备方法
CN108997632A (zh) * 2018-06-25 2018-12-14 广东格瑞新材料股份有限公司 一种耐候pe组合物及其制备方法
CN108993379A (zh) * 2018-07-18 2018-12-14 太原理工大学 一种粉煤灰基吸附材料的制备方法及其应用
CN108993379B (zh) * 2018-07-18 2021-02-19 太原理工大学 一种粉煤灰基吸附材料的制备方法及其应用
CN109401163A (zh) * 2018-10-11 2019-03-01 天津工业大学 一种可熔融聚丙烯腈基树脂、制备方法及其应用

Also Published As

Publication number Publication date
EP3366723A4 (en) 2018-10-24
BR102015025429A2 (pt) 2018-03-20
EP3366723A1 (en) 2018-08-29
US20180282535A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017059507A1 (pt) Composição de blenda de pol(acr!lon(triuvlignina e sua utilização na f5âção por fusão de precursor de fibra carbono
Kaur et al. Producing high‐quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review
Frank et al. Carbon fibers: precursor systems, processing, structure, and properties
Park et al. Precursors and manufacturing of carbon fibers
KR101891367B1 (ko) 리그닌-함유 전구체 섬유 및 또한 탄소 섬유 제조를 위한 방법
CN102534870B (zh) 一种石墨烯改性的聚丙烯腈基碳纤维的制备方法
Dong et al. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber
US20100272978A1 (en) Carbon fibers and films and methods of making same
EP2925918B1 (en) Thermally reactive thermoplastic intermediate product and method of manufacturing thereof
CN102041577B (zh) 一种聚酰亚胺纤维及其制备方法
KR20080033370A (ko) 내염 섬유, 탄소 섬유 및 이들의 제조 방법
BR112014016461B1 (pt) métodos para produção de uma fibra de lignina estabilizada, e para produção de fibra de carbono estrutural
Liu et al. Amine-terminated highly cross-linked polyphosphazene-functionalized carbon nanotube-reinforced lignin-based electrospun carbon nanofibers
Nakashima et al. Mechanical properties of poly (vinylidene fluoride) nanofiber filaments prepared by electrospinning and twisting
Khan et al. Improved procedure for electro-spinning and carbonisation of neat solvent-fractionated softwood Kraft lignin
Zhou et al. Multiwalled carbon nanotube/polyacrylonitrile composite fibers prepared by in situ polymerization
Doan et al. Scalable fabrication of cross-linked porous centrifugally spun polyimide fibers for thermal insulation application
US9695525B1 (en) Methods and systems for making carbon fibers for high temperature applications
Hong et al. Air-gap spinning of cellulose/ionic liquid solution and its characterization
FR3058166A1 (fr) Procede de fabrication de fibres de carbone a partir de precurseurs biosources et fibres de carbone obtenues
US10260171B1 (en) Methods for making carbon fibers for high temperature applications
CN113151935B (zh) 一种兼具高强度与高韧性的石墨烯材料及其制备方法
KR102016272B1 (ko) 탄소 재료와 그의 제조 방법
Pan et al. Preparation and characterization of polyacrylonitrile-polyaniline blend nanofibers
BR102015025428A2 (pt) Composição de poliacrilonitrila e uso da mesma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15766336

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016852913

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016852913

Country of ref document: EP

Effective date: 20180507