WO2017057095A1 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
WO2017057095A1
WO2017057095A1 PCT/JP2016/077696 JP2016077696W WO2017057095A1 WO 2017057095 A1 WO2017057095 A1 WO 2017057095A1 JP 2016077696 W JP2016077696 W JP 2016077696W WO 2017057095 A1 WO2017057095 A1 WO 2017057095A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon number
organic molecule
quantum dots
photoelectric conversion
quantum
Prior art date
Application number
PCT/JP2016/077696
Other languages
English (en)
French (fr)
Inventor
和也 村本
有哉 古久保
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201680054355.6A priority Critical patent/CN108028288B/zh
Priority to JP2017521176A priority patent/JP6196418B2/ja
Priority to US15/762,030 priority patent/US10283656B2/en
Publication of WO2017057095A1 publication Critical patent/WO2017057095A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/824Group II-VI nonoxide compounds, e.g. CdxMnyTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/825Heterojunction formed between semiconductor materials that differ in that they belong to different periodic table groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Definitions

  • the present invention relates to a photoelectric conversion device using quantum dots.
  • FIG. 3 is a schematic cross-sectional view partially showing a conventional photoelectric conversion device taking a quantum dot solar cell as an example.
  • the quantum dot layer 103 is provided on the semiconductor substrate 101.
  • the quantum dot layer 103 is composed of quantum dots 103a, which are semiconductor particles, and an inorganic matrix 103b disposed around the quantum dots 103a.
  • the photoelectric conversion device of the present disclosure includes a quantum dot layer in which a plurality of quantum dots are integrated on a main surface of a semiconductor substrate.
  • the quantum dot layer has two or more organic molecules having different carbon numbers between the plurality of quantum dots.
  • (A) is sectional drawing which shows typically one Embodiment of the photoelectric conversion apparatus of this indication, (b) expanded and showed the quantum dot aggregate shown in the broken-line frame in (a). It is a schematic diagram. It is a schematic diagram which shows the state where the aggregate of quantum dots was connected and integrated
  • the quantum dots 103a and the matrix 103b often differ greatly in thermal expansion coefficient due to their materials.
  • the quantum dot layer on the semiconductor substrate 101 side is caused by a difference in thermal expansion coefficient between the quantum dot layer 103 and the semiconductor substrate 101. Large distortion may occur in the 103.
  • the quantum dot layer 103 is formed on the main surface of the semiconductor substrate 101 with a large area, the strain increases depending on the area of the quantum dot layer 103, and thus obtained as a result of the quantum confinement effect. Variation in energy levels and continuity of the band structure are hindered. As a result, it becomes difficult to take out the carriers generated in the quantum dot layer 103 to the outside, and it becomes difficult to increase the power generation efficiency.
  • the present disclosure has been made in view of such problems. And the power generation efficiency can be improved by the configuration shown below.
  • FIG. 1A is a cross-sectional view schematically showing an embodiment of the photoelectric conversion device of the present disclosure
  • FIG. 1B is an enlarged view of the quantum dot aggregate shown in the broken line frame in FIG. It is the shown schematic diagram.
  • the photoelectric conversion device of the present disclosure includes the semiconductor substrate 1 and the quantum dot layer 3 provided on the upper surface side as the photoelectric conversion layer 5.
  • a glass substrate 9 is attached to the upper surface side of the photoelectric conversion layer 5 via a transparent conductive film 7.
  • an electrode layer 11 is provided on the lower surface side of the photoelectric conversion layer 5.
  • the glass substrate 9 side is the sunlight incident side
  • the electrode layer 11 side is the sunlight emission side.
  • FIG. 1A the number of quantum dot layers 3 formed on the semiconductor substrate 1 is simplified and only one layer is shown, but the quantum dot layer 3 has a structure in which at least several tens of layers are stacked.
  • the quantum dot layer 3 has two or more types of organic molecules 4 having different carbon numbers between the plurality of quantum dots 3a.
  • the quantum dots 3a integrated in the quantum dot layer 3 are connected by organic molecules 4 having a lower elastic modulus than the inorganic matrix. ing. Thereby, the quantum dot layer 3 becomes low overall in rigidity. In addition, distortion due to the difference in thermal expansion coefficient generated between the quantum dot layer 3 and the semiconductor substrate 1 is reduced. Thereby, the continuity of the band structure in the quantum dot layer 3 is easily maintained. Thus, carriers generated in the quantum dot layer 3 can be easily taken out and the power generation efficiency can be increased.
  • the difference in the thermal expansion coefficient between the quantum dot layer 3 and the semiconductor substrate 1 is 1 ⁇ 10 ⁇ 6 / ° C. or more, particularly 2 ⁇ 10 ⁇ 6 / ° C.
  • the above photoelectric conversion layer 5 is effective.
  • the semiconductor substrate 1 for example, Si (CTE: 3.6 ⁇ 4.1 ⁇ 10 -6 /K),GaAs(CTE:5.5 ⁇ 6.5 ⁇ 10 -6 / K), InP (4.
  • One type selected from the group of 1 to 4.8 ⁇ 10 ⁇ 6 / K) and GaN (CTE: 3.1 to 5.8 ⁇ 10 ⁇ 6 / K) can be selected as a preferable one.
  • the semiconductor substrate 1 is selected based on a semiconductor substrate having a lattice constant and a thermal expansion coefficient that are close to the lattice constant and the thermal expansion coefficient of the semiconductor particles that form the quantum dots 3a and that has a small band gap.
  • organic molecules 4 having different carbon numbers are bonded to the quantum dots 3a.
  • the organic molecules 4 having a small number of carbon atoms are present so that the plurality of quantum dots 3a are brought into close proximity to each other. In this way, an aggregate 3A formed by collecting a plurality of quantum dots 3a is formed.
  • the organic molecule 4 having a small number of carbon atoms present around the quantum dots 3a exhibits a function as a passivation film. Thereby, the confinement effect of the carriers generated in the quantum dots 3a is enhanced, and the short circuit current density (Jsc) can be improved.
  • the quantum dot layer 3 is in a state in which the aggregate 3A of the quantum dots 3a formed by bonding the organic molecules 4 to the plurality of quantum dots 3a as one unit is connected by the organic molecules 4. .
  • FIG. 1 (a) only the organic molecules 4 (4a) extending toward the outside of the aggregate 3A are shown for convenience of the size of the drawing, but this aggregate 3A is shown in FIG. 1 (b).
  • organic molecules 4b that connect adjacent quantum dots 3a are provided.
  • Aggregates 3A are connected by organic molecules 4a extending outward.
  • the organic molecules 4a and the organic molecules 4b differ in the number of carbons that are elements constituting the main chain.
  • the organic molecule 4a is an organic molecule 4 having more carbon atoms than the organic molecule 4b, it is referred to as a high carbon number organic molecule 4a.
  • the organic molecule 4b is an organic molecule 4 having a smaller number of carbon atoms than the high carbon number organic molecule 4a, the organic molecule 4b is a low carbon number organic molecule 4b.
  • the high carbon number organic molecule 4a and the low carbon number organic molecule 4b may have different carbon numbers in each.
  • the low carbon number organic molecules 4b forming the aggregate 3A organic molecules 4 having 20 or less carbon atoms are preferable because the degree of integration between the quantum dots 3a can be increased.
  • the low carbon number organic molecules 4b for bonding the quantum dots 3a and the high carbon number organic molecules 4a for connecting the aggregates 3A are significantly different in carbon number.
  • the high carbon number organic molecule 4a is preferably one having 1.5 or more times the carbon number of the low carbon number organic molecule 4b.
  • the ratio of the carbon number of the high carbon number organic molecule 4a to the carbon number of the low carbon number organic molecule 4b is 1.5 times or more, the quantum dots 3a are preferentially connected to each other by the low carbon number organic molecule 4b. .
  • the aggregates 3A are preferentially connected by the high carbon number organic molecules 4a.
  • the quantum effect of the quantum dots 3a is easily developed.
  • the plurality of aggregates 3A are connected mainly by the high carbon number organic molecules 4a, the rigidity of the quantum dot layer 3 can be reduced.
  • various methane series hydrocarbons having a carbon skeleton having a chain structure and a carbon number of 20 or less are preferably used.
  • Specific examples include pentene (5 carbon atoms), hexane (6 carbon atoms), heptane (7 carbon atoms), dodecene (12 carbon atoms), and octadecene (17 carbon atoms).
  • pentene 5 carbon atoms
  • hexane (6 carbon atoms)
  • dodecene (12 carbon atoms) dodecene (12 carbon atoms)
  • octadecene 17 carbon atoms
  • a combination in which octadecene or dodecene is applied as the high carbon number organic molecule 4a and pentene or hexane is applied as the low carbon number organic molecule 4b is preferable.
  • These are combinations in which the carbon number ratio between the high carbon number organic molecule 4a and
  • the shape of the quantum dot 3a may be any shape such as a spherical shape such as an ellipsoid or a sphere, a hexahedron shape including a cube or a rectangular parallelepiped, a thin film shape, and a wire shape, but 3 between the adjacent quantum dots 3a.
  • a spherical shape or a polyhedron with an aspect ratio close to 1 (1 to 1.5) is preferable because it is easy to form a dimensionally continuous band structure.
  • the carrier conductivity in the quantum wire is increased.
  • the aspect ratio is close to 1 (1 to 1.5) and is equivalent to the polyhedron.
  • Short circuit current density can be obtained.
  • the number of quantum wires having a diameter decreasing in the length direction within the unit area is 10% or more of the total number of quantum dots 3a. good.
  • the maximum diameter in a spherical shape or a thin film shape is preferably 3 nm to 50 nm.
  • the diameter of the wire (quantum wire) is preferably 3 to 50 nm and the length is preferably 100 to 10000 nm.
  • the interval between the quantum dots 3a in the aggregate 3A, that is, the length of the low carbon number organic molecules 4b existing between the quantum dots 3a is preferably 2 to 10 nm.
  • the size of the quantum dots 3a constituting the aggregate 3A and the interval between the quantum dots 3a are within the above ranges, a regular long-period structure of electrons is formed between the plurality of quantum dots 3a in the aggregate 3A. It becomes easier to form. This makes it possible to form a continuous band structure.
  • the size of the quantum dots 3a and the interval between the quantum dots 3a can be adapted to various conditions according to the specific application and the conditions of the manufactured device.
  • the quantum dots 3a are mainly composed of semiconductor particles and preferably have an energy gap (Eg) of 0.15 to 1.20 ev.
  • FIG. 2 shows a part of the quantum dot layer, and is a schematic diagram showing a state in which the aggregates of the quantum dots are linked by high carbon number organic molecules.
  • the state in which the high carbon number organic molecules 4a exist around the aggregate 3A is surrounded by a circle and represented as a complex 3B of quantum dots, but when the quantum dot layer 3 is viewed in a longitudinal section, or When viewed in plan, high carbon number organic molecules 4a exist between the actual aggregates 3A so as to fill the gaps (S).
  • a region where a plurality of (in this case, three) composites 3B are adjacent is surrounded by a broken line. In this case, the three adjacent composite bodies 3B are arranged so as to form a triple point at the center.
  • the composite 3B may include a mixture having a variation range of 0.5 to 2 when the average size is 1.
  • the composites 3B having a small size are filled in the gaps between the composites 3B having a large size, so that the filling rate of the composites 3B can be increased.
  • the degree of integration of the composite 3B is increased, and the amount of carriers generated can be increased.
  • the short circuit current density (Jsc) can be increased.
  • Aggregate 3A is a composite structure formed by densely gathering a plurality of quantum dots 3a.
  • the aggregate 3A and the high carbon number organic molecule 4a which are portions where the quantum dots 3a are densely gathered, have different color tones when the cross section of the quantum dot layer 3 is observed using a reflection electron image of an electron microscope. Can be distinguished from what appears.
  • the actual contour Lo of the complex 3B is a region that follows the midpoint between two adjacent aggregates 3A and connects the midpoints around the aggregate 3A.
  • the high carbon number organic molecule 4a and the low carbon number organic molecule 4b can be distinguished by observation with a scanning tunneling microscope.
  • the cross-sectional view shown in FIG. 2 shows the vicinity of the outermost surface of the quantum dot layer 3, that is, when the composite bodies 3B are stacked, the outermost surface of the composite body 3B
  • the quantum dots 3a constituting the body 3B have irregularities due to the difference in density.
  • the surface of the composite 3B is curved due to the unevenness formed by the plurality of quantum dots 3a.
  • the surface of the composite 3B has such a concave-convex curved surface, sunlight can be received vertically somewhere on the curved surface even if the direction of the sun changes. Thereby, the fall of the intensity
  • an organic molecule solution containing one or more organic molecules 4 having different carbon numbers was prepared in a predetermined container.
  • the organic molecule 4 pentene (carbon number 5), hexane (carbon number 6), heptane (carbon number 7), dodecene (carbon number 12) and octadecene (carbon number 17) were used.
  • the composition was adjusted so as to be equimolar.
  • Acetone was used as the solvent.
  • the solvent may have to be changed depending on the type of the organic molecule 4, but any one of organic solvents selected from toluene, isopropyl alcohol, ethanol, methanol, and the like can be used in the same manner in addition to acetone.
  • PbS lead sulfide
  • the addition amount of the organic molecules 4 was adjusted so as to be 5 when the semiconductor particles were 1 by mass ratio.
  • the low carbon number organic molecules 4b were bonded to the surface of the quantum dots 3a by the stirring operation for a long time, and the quantum dots 3a were aggregated by a certain number (several tens to thousands).
  • high carbon number organic molecules 4a having a large number of carbon atoms were mainly bonded around the aggregate 3A in which the quantum dots 3a were aggregated.
  • a precursor of the aggregate 3A was formed.
  • the viscosity characteristics of the organic molecule solution containing the precursor of the aggregate 3A showed thixotropic properties.
  • the silicon substrate had a thickness of 100 ⁇ m and an area of 10 mm ⁇ 10 mm.
  • the integrated film (quantum dot layer 3) of aggregates 3A of quantum dots 3a was formed on the silicon substrate by drying the solvent.
  • the quantum dot layer 3 thus formed had a thickness of about 0.1 ⁇ m.
  • a transparent conductive film 7 made of indium tin is formed on the surface of the quantum dot layer 3 formed on the silicon substrate by vapor deposition, and finally, a glass substrate 9 is used on the surface of the transparent conductive film 7 with an adhesive.
  • the sample of the produced photoelectric conversion device was processed and cross-sectional observation was performed using a transmission electron microscope.
  • the aggregate 3A was stacked in the quantum dot layer 3 as shown in FIG.
  • the surface of the quantum dot layer 3 observed before forming the transparent conductive film 7 was a shape having an uneven curved surface.
  • the low molecular number organic molecules 4b are mainly present inside the aggregate 3A analyzed by the flight secondary ion mass spectrometer (TOF-SIMS) together with the transmission electron microscope, and the high carbon is mainly disposed around the aggregate 3A. It was confirmed that several organic molecules 4a exist.
  • quantum wires made of ZnTe (average diameter: 3 nm, average length: 1500 nm) prepared by a pulse electrolysis method were prepared. In this case, a quantum wire having a diameter reduction of 10% in the length direction was used.
  • the short-circuit current density (Jsc) is 8.5 mA / cm for samples (Nos. 4 to 8) prepared using organic molecules having high and low carbon numbers as organic molecules.
  • the short circuit current density (Jsc) was higher than that of the samples (No. 1 to 3) in which only one kind of organic molecule was used.
  • sample No. in Table 1 The electromotive force was detected in any of the samples prepared by replacing the quantum dots 3a of 1 to 8 with PbS to ZnTe quantum wires, and a short-circuit current density comparable to that of Samples 1 to 8 was obtained.

Abstract

半導体基板(1)の主面上に複数の量子ドット(3a)が集積されてなる量子ドット層(3)を有する。量子ドット層(3)は、複数の量子ドット(3a)間に炭素数の異なる2種以上の有機分子(4)を有している。複数の量子ドット(3a)が炭素数の少ない低炭素数有機分子(4b)によって結合された量子ドット(3a)の凝集体(3A)を成しており、該凝集体(3A)の外側に炭素数の多い高炭素数有機分子(4a)が結合している。

Description

光電変換装置
 本発明は、量子ドットを利用した光電変換装置に関する。
 近年、太陽電池の更なる光電変換効率の向上を目指して量子ドットを用いた太陽電池の開発が行われている(例えば、特許文献1を参照)。図3は、量子ドット太陽電池を例とする従来の光電変換装置を部分的に示す断面模式図である。図3に示す光電変換装置の場合、半導体基板101上に量子ドット層103が備えられている。量子ドット層103は、半導体粒子である量子ドット103aと、その周囲に配置された無機質のマトリクス103bとで構成されている。
特開2006-114815号公報
 本開示の光電変換装置は、半導体基板の主面上に複数の量子ドットが集積されてなる量子ドット層を備えている。前記量子ドット層は、前記複数の量子ドット間に炭素数の異なる2種以上の有機分子を有している。
(a)は、本開示の光電変換装置の一実施形態を模式的に示す断面図であり、(b)は、(a)における破線枠内に示した量子ドット凝集体を拡大して示した模式図である。 量子ドットの凝集体が高炭素数有機分子によって連結されて集積された状態を示す模式図である。 量子ドット太陽電池を例とする従来の光電変換装置を部分的に示す断面模式図である。
 例えば、図3に示した光電変換装置の場合、量子ドット層103において、量子ドット103aとマトリクス103bとは、それらの材質に起因して熱膨張係数が大きく異なっている場合が多い。このような量子ドット層103が半導体基板101上に多数層形成されると、量子ドット層103と半導体基板101との間の熱膨張係数の差に起因して、半導体基板101側の量子ドット層103内に大きな歪みが生じることがある。
 また、量子ドット層103内の半導体基板101側とは反対側の太陽光の入射面側においても、元々の量子ドット103aとマトリクス103bとの間の熱膨張係数の差に起因した歪みが量子ドット層103内生じていることが少なくない。
 このような場合に、半導体基板101の主面上に大きな面積で量子ドット層103を形成すると、量子ドット層103の面積に依存するように歪みが増大することから、量子閉じ込め効果の結果として得られるエネルギー準位のばらつきやバンド構造の連続性が妨げられる。その結果、量子ドット層103で発生するキャリアを外部に取りだし難くなり、発電効率を高めることが困難になる。本開示は、このような課題に鑑みてなされたものである。そして、以下に示す構成により発電効率を向上できる。
 図1(a)は、本開示の光電変換装置の一実施形態を模式的に示す断面図であり、(b)は、(a)における破線枠内に示した量子ドット凝集体を拡大して示した模式図である。
 本開示の光電変換装置は、半導体基板1と、その上面側に設けられた量子ドット層3とを光電変換層5として備えるものである。この光電変換層5の上面側には透明導電膜7を介してガラス基板9が貼り付けられている。一方、光電変換層5の下面側には電極層11が設けられている。この場合、ガラス基板9側が太陽光の入射側となり、電極層11側は太陽光の出射側となる。図1(a)では、半導体基板1上に形成した量子ドット層3の層数を単純化し1層しか示していないが、量子ドット層3は少なくとも数十層積層された構造となる。ここで、量子ドット層3は、複数の量子ドット3a間に炭素数の異なる2種以上の有機分子4を有する。
 本開示の光電変換装置では、量子ドット層3内に集積された量子ドット3aが、図3に示した無機質のマトリックスとは異なり、この無機質のマトリックスよりも弾性率の低い有機分子4によって連結されている。これにより量子ドット層3は全体的に剛性が低くなる。また、量子ドット層3と半導体基板1との間に発生する熱膨張係数の差に起因する歪みが小さくなる。これにより、量子ドット層3におけるバンド構造の連続性が維持されやすくなる。こうして、量子ドット層3内に生成されるキャリアを外部に取り出し易くなり、発電効率を高めることが可能になる。
 量子ドット3aに有機分子4を結合させた構造は、量子ドット層3と半導体基板1との間の熱膨張係数の差が1×10-6/℃以上、特に、2×10-6/℃以上あるような光電変換層5において効果的なものとなる。半導体基板1としては、例えば、Si(CTE:3.6~4.1×10-6/K)、GaAs(CTE:5.5~6.5×10-6/K)、InP(4.1~4.8×10-6/K)およびGaN(CTE:3.1~5.8×10-6/K)の群から選ばれる1種を好適なものとして選択することができる。この場合、半導体基板1は、格子定数および熱膨張係数が量子ドット3aとなる半導体粒子の格子定数および熱膨張係数に近く、かつバンドギャップが小さいものを目安に選択される。
 この量子ドット層3では、上述のように、量子ドット3aに炭素数の異なる有機分子4が結合している。この場合、炭素数の少ない有機分子4が複数の量子ドット3aを近接させて結合するように存在している。こうして複数の量子ドット3aが集まってできた凝集体3Aが形成される。この場合、量子ドット3aの周囲に存在している炭素数の少ない有機分子4はパシベーション膜としての機能を示すものとなる。これにより量子ドット3a内に生成したキャリアの閉じ込め効果が高まり、短絡電流密度(Jsc)の向上を図ることができる。
 量子ドット層3は、複数の量子ドット3aに有機分子4が結合してできた量子ドット3aの凝集体3Aを1単位として、その凝集体3Aが有機分子4によって連結された状態となっている。図1(a)では、図面のサイズの都合上、凝集体3Aの外側に向けて延びた有機分子4(4a)しか示していないが、この凝集体3Aは、図1(b)に示しているように、その内部に、近接している量子ドット3a同士を連結する有機分子4bを有している。また、凝集体3Aは、その外側に向けて延びた有機分子4aによって連結されている。ここで、有機分子4aと有機分子4bとは主鎖を成す元素である炭素の数が異なる。以下、有機分子4aは有機分子4bよりも炭素数の多い有機分子4であることから高炭素数有機分子4aとする。一方、有機分子4bは高炭素数有機分子4aよりも炭素数の少ない有機分子4であることから低炭素数有機分子4bとする。なお、高炭素数有機分子4aおよび低炭素数有機分子4bは、それぞれにおいて炭素数が異なるものが混在していても良い。
 凝集体3Aを形成している低炭素数有機分子4bとしては、量子ドット3a同士の集積度を高められるという理由から、炭素数が20以下の有機分子4が良い。このとき、量子ドット3a同士を結合させるための低炭素数有機分子4bと凝集体3A同士を連結させるための高炭素数有機分子4aとは炭素数が大きく異なっている。例えば、高炭素数有機分子4aは炭素数が低炭素数有機分子4bの炭素数の1.5倍以上であるものが良い。高炭素数有機分子4aの炭素数と低炭素数有機分子4bの炭素数との比が1.5倍以上であると、量子ドット3a同士は低炭素数有機分子4bによって優先的に連結される。一方、凝集体3A間は高炭素数有機分子4aによって優先的に連結される。量子ドット3a間が主に低炭素数有機分子4bにより連結されることによって量子ドット3aの量子効果が発現しやすくなる。一方、複数の凝集体3Aが主に高炭素数有機分子4aにより連結されると、量子ドット層3の剛性を低くすることが可能になる。
 有機分子4としては、炭素骨格が鎖式構造であり、炭素数が20以下である種々のメタン列炭化水素を適用するのが良い。具体的には、例えば、ペンテン(炭素数5)、ヘキサン(炭素数6)、ヘプタン(炭素数7)、ドデセン(炭素数12)およびオクタデセン(炭素数17)を挙げることができる。この中で、高炭素数有機分子4aとしてオクタデセンまたはドデセンを適用し、低炭素数有機分子4bとしてペンテンまたはヘキサンを適用する組合せが良い。これらは高炭素数有機分子4aと低炭素数有機分子4bとの間の炭素数の比が2倍以上となる組合せである。これにより光電変換装置の短絡電流密度(Jsc)の向上を図ることができる。
 量子ドット3aの形状は、楕円体、球体などの球形状、立方体や直方体などを含む6面体形状、薄膜形状およびワイヤー形状など、いずれの形状でもよいが、隣接する量子ドット3aとの間で3次元的に連続したバンド構造を形成しやすいという理由からは、球形状、もしくはアスペクト比が1に近い(1~1.5)多面体が良い。
 量子ドット3aがワイヤー形状(量子細線)である場合には、量子細線内におけるキャリアの伝導性が高まるため、この場合も上記したアスペクト比が1に近い(1~1.5)多面体と同等の短絡電流密度を得ることができる。ここで、量子細線としては、その両端で異なる直径を有するものを含む方が良い。両端で直径の異なる量子細線は長さ方向に量子化準位の分布を有するものになることから、直径が小さく量子化準位の大きい領域で短い波長の光が吸収され、直径が大きく量子化準位の小さい領域で長い波長の光が吸収される。これにより1本の量子細線で波長の異なる光を吸収できるようになることから、より高い短絡電流密度を得ることができる。この場合、量子ドット層3を断面視したときに、単位面積内において、長さ方向に直径が減少している量子細線が個数比で量子ドット3aの総数の10%以上含まれているのが良い。
 量子ドット3aのサイズは、例えば、球形状や薄膜形状においては最大径が3nm~50nmであるのが良い。ワイヤー形状の場合には、ワイヤー(量子細線)の直径が3~50nm、長さとしては100~10000nmであるのが良い。また、凝集体3A中における量子ドット3a同士の間隔、すなわち、量子ドット3a間に存在する低炭素数有機分子4bの長さとしては2~10nmであるのが良い。
 凝集体3Aを構成している量子ドット3aのサイズや量子ドット3a同士の間隔が上記の範囲であると、凝集体3A中において、複数の量子ドット3a間に電子の規則的な長周期構造が形成されやすくなる。これにより連続したバンド構造を形成することが可能となる。なお、量子ドット3aのサイズおよび各量子ドット3a間の間隔は、特定の応用および製造されるデバイスの条件に従って種々の条件を適合できる。
 量子ドット3aは、半導体粒子を主体とするものからなり、エネルギーギャップ(Eg)が0.15~1.20evを有するものが好適である。具体的には、量子ドット5aの材料としては、ゲルマニウム(Ge)、シリコン(Si)、ガリウム(Ga)、インジウム(In)、リン(P)、亜鉛(Zn)、ヒ素(As)、アンチモン(Sb)、銅(Cu)、鉄(Fe)、硫黄(S)、鉛(Pb)、テルル(Te)およびセレン(Se)から選ばれるいずれか1種またはこれらの化合物半導体が良い。
 図2は、量子ドット層の一部を示すものであり、量子ドットの凝集体が高炭素数有機分子によって連結された状態を示す模式図である。図2では、凝集体3Aの周囲に高炭素数有機分子4aが存在している状態を円で囲って量子ドットの複合体3Bとして表しているが、量子ドット層3を縦断面視したときあるいは平面視したときに、実際の凝集体3Aの間には、その隙間(S)を埋めるように高炭素数有機分子4aが存在している。また、図2では、複数個(この場合、3個)の複合体3Bが隣接している領域を破線で囲って示している。この場合、隣接する3個の複合体3Bは、中心部に三重点を形成するように配置されている。また、複合体3Bは平均のサイズを1としたときのバラツキの範囲が0.5~2の範囲にあるものが混在していても良い。サイズの異なる複合体3Bが混在していると、サイズの大きい複合体3Bの隙間にサイズの小さい複合体3Bが充填されるようになることから、複合体3Bの充填率を高めることができる。これにより複合体3Bの集積度が高まり、キャリアの生成量を増やすことができる。また、短絡電流密度(Jsc)を高めることができる。
 凝集体3Aは、複数の量子ドット3aが密に集まってできた複合組織である。この場合、量子ドット3aが密に集まった部分である凝集体3Aと高炭素数有機分子4aとは、量子ドット層3の断面を電子顕微鏡の反射電子像を用いて観察したときに色調が異なって見えることから区別することができる。この場合、複合体3Bの実際の輪郭Loは、隣接している2つの凝集体3Aの間の中点を辿り、その中点を凝集体3Aの周りでつないだ領域となる。高炭素数有機分子4aと低炭素数有機分子4bとは、走査型トンネル顕微鏡による観察によって区別することができる。
 また、図2に示した断面図が量子ドット層3の最表面付近を示すものであるとした場合、つまり、複合体3Bが積み重なっている場合には、複合体3Bの最表面は、その複合体3Bを構成する量子ドット3aの疎密差に起因して凹凸を有するものとなる。この場合、仮に、複合体3B(あるいは量子ドット層3)から有機分子4を除いてみると、複合体3Bの表面は複数の量子ドット3aによって形成される凹凸によって曲面状となる。複合体3Bの表面がこのように凹凸の曲面を有する形状であると、太陽の向きが変化しても曲面のどこかで太陽光を垂直に受けることができる。これにより量子ドット層3の表面に照射される太陽光の強度の低下を小さくすることができ、光電変換効率の高い光電変換装置を得ることができる。
 次に、本開示の光電変換装置を具体的な材料を適用して作製し、評価した例を説明する。まず、所定の容器に炭素数の異なる1種以上の有機分子4を含む有機分子の溶液を調製した。有機分子4としては、ペンテン(炭素数5)、ヘキサン(炭素数6)、ヘプタン(炭素数7)、ドデセン(炭素数12)およびオクタデセン(炭素数17)を用いた。これらの有機分子4を2種用いる場合には等モルとなるように組成を調整した。溶媒としてはアセトンを用いた。溶媒は、有機分子4の種類によって変えなければならない場合があるが、アセトンの他には、トルエン、イソプロピルアルコール、エタノールおよびメタノールなどから選ばれる有機溶媒のいずれかを同様に用いることができる。
 次に、調製した有機分子の溶液中に量子ドット3aとなる半導体粒子(ここでは、硫化鉛(PbS):熱膨張係数=19×10-6/℃、平均粒径:5nm)を投入し、室温にて約7日間撹拌した。有機分子4の添加量は、質量比で半導体粒子を1としたときに5となるように調整した。
 これらの場合、長時間の撹拌操作によって低炭素数有機分子4bが量子ドット3aの表面に結合し、量子ドット3aが一定の数(数十から数千個)だけ凝集した状態が形成された。一方、2種の有機分子4を用いた場合には、量子ドット3aが凝集した凝集体3Aの周囲には主として炭素数の多い高炭素数有機分子4aが結合した状態となっていた。こうして得られた有機分子の溶液中には凝集体3Aの前駆体が形成されていた。このとき凝集体3Aの前駆体を含む有機分子の溶液の粘度特性はチクソトロピー性を示すものであった。
 次に、片方の主面に予め電極層11として金の蒸着膜を形成した半導体基板(この場合、シリコン基板)1(熱膨張係数=4×10-6/℃)を準備した。シリコン基板は、厚みが100μm、面積が10mm×10mmであった。
 次に、凝集体3Aの前駆体を含む有機分子の溶液を、電極層11の形成されていない方のシリコン基板1の主面上に慣用的な方法(スピンコート法)を用いて塗布し、次いで、溶媒を乾燥させることによって、シリコン基板上に量子ドット3aの凝集体3Aの集積膜(量子ドット層3)を形成した。こうして形成された量子ドット層3は厚みが約0.1μmであった。
 この後、シリコン基板上に形成した量子ドット層3の表面にインジウム錫からなる透明導電膜7を蒸着法によって形成し、最後に、この透明導電膜7の表面にガラス基板9を接着剤を用いて貼り付けることによって本開示の光電変換装置を得た。
 次に、作製した光電変換装置の試料を加工して透過電子顕微鏡を用いて断面観察を行った。作製した試料のうち2種類の有機分子を用いて作製した試料では、量子ドット層3内には凝集体3Aが図2に示すように積み重なった状態となっていた。また、透明導電膜7を形成する前に観察した量子ドット層3の表面は凹凸の曲面を有する形状であった。さらに、透過電子顕微鏡とともに飛行型二次イオン質量分析器(TOF-SIMS)によって分析した凝集体3Aの内部には主として低炭素数有機分子4bが存在し、凝集体3Aの周囲には主として高炭素数有機分子4aが存在していることが確認された。
 作製した光電変換装置について、電極層11と透明導電膜7間を結線して短絡電流密度を測定したところ、表1に示す結果となった。
 また、量子ドット3aに代えて、パルス電解法により作製したZnTe製(平均直径:3nm、平均長さ:1500nm)の量子細線を準備した。この場合、長さ方向に直径が減少している量子細線が個数比で10%含まれているものを用いた。
 次に、上記半導体粒子(PbS)と同様に有機分子を加えた溶液を調製し、シリコン基板上にほぼ同じ厚みの集積膜(量子ドット層3)を有する光電変換装置を作製し、同様の評価を行った。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、有機分子として高炭素数有機分子と低炭素数有機分子とを用いて作製した試料(No.4~8)では、短絡電流密度(Jsc)が8.5mA/cm以上であり、1種類の有機分子しか用いなかった試料(No.1~3)よりも短絡電流密度(Jsc)が高かった。
 この中で、高炭素数有機分子と低炭素数有機分子との炭素数の比(高炭素数有機分子/低炭素数有機分子)が2以上である試料(No.5~8)では、10.1mA/cm以上であった。
 また、表1の試料No.1~8の量子ドット3aをPbSからZnTeの量子細線に代えて作製した試料についても、いずれも起電力が検出され、試料1~8と同程度の短絡電流密度が得られた。
 これらの結果は、量子ドット層3に炭素数の異なる2種類の有機分子を存在させたこと、光電変換層5における歪の低減が図れたこと、これに加えて、量子ドット3aの周囲に有効なパシベーション膜が形成されたことにより、量子ドット3a内におけるキャリアの閉じ込め効果が高まったことに因ると考えられる。
1、101・・・・・半導体基板
3、103・・・・・量子ドット層
3a、103a・・・量子ドット
3A・・・・・・・・凝集体
3B・・・・・・・・複合体
4・・・・・・・・・有機分子
4a・・・・・・・・高炭素数有機分子
4b・・・・・・・・低炭素数有機分子
5・・・・・・・・・光電変換層
7・・・・・・・・・透明導電膜
9・・・・・・・・・ガラス基板
11・・・・・・・・電極層

Claims (5)

  1.  半導体基板の主面上に複数の量子ドットが集積されてなる量子ドット層を備え、該量子ドット層は、前記複数の量子ドット間に炭素数の異なる2種以上の有機分子を有していることを特徴とする光電変換装置。
  2.  前記有機分子として、低炭素数有機分子と、該低炭素数有機分子よりも炭素数が多い高炭素数有機分子とを有するとともに、前記複数の量子ドットが前記低炭素数有機分子によって結合されて量子ドットの凝集体を成しており、該凝集体の外側に前記高炭素数有機分子が結合していることを特徴とする請求項1に記載の光電変換装置。
  3.  複数の前記凝集体が前記高炭素数有機分子により連結されていることを特徴とする請求項2に記載の光電変換装置。
  4.  前記有機分子は炭素数が20以下であり、前記高炭素数有機分子の炭素数は前記低炭素数有機分子の炭素数の1.5倍以上であることを特徴とする請求項1乃至3のうちいずれかに記載の光電変換装置。
  5.  前記高炭素数有機分子がオクタデセンまたはドデセンであり、前記低炭素数有機分子がペンテンまたはヘキサンであることを特徴とする請求項1乃至4のうちいずれかに記載の光電変換装置。
PCT/JP2016/077696 2015-09-28 2016-09-20 光電変換装置 WO2017057095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680054355.6A CN108028288B (zh) 2015-09-28 2016-09-20 光电转换装置
JP2017521176A JP6196418B2 (ja) 2015-09-28 2016-09-20 光電変換装置
US15/762,030 US10283656B2 (en) 2015-09-28 2016-09-20 Photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-189898 2015-09-28
JP2015189898 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017057095A1 true WO2017057095A1 (ja) 2017-04-06

Family

ID=58427614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077696 WO2017057095A1 (ja) 2015-09-28 2016-09-20 光電変換装置

Country Status (4)

Country Link
US (1) US10283656B2 (ja)
JP (1) JP6196418B2 (ja)
CN (1) CN108028288B (ja)
WO (1) WO2017057095A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200137379A (ko) 2019-05-30 2020-12-09 삼성전자주식회사 반도체 장치 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532851A (ja) * 2006-02-16 2009-09-10 ソレクサント・コーポレイション ナノ粒子増感ナノ構造太陽電池
JP2009537994A (ja) * 2006-05-15 2009-10-29 スティオン コーポレイション 半導体材料を用いた薄膜光電材料のための方法及び構造
WO2011037041A1 (ja) * 2009-09-28 2011-03-31 株式会社 村田製作所 ナノ粒子材料及び光電変換デバイス
JP2013105952A (ja) * 2011-11-15 2013-05-30 Kyocera Corp 太陽電池
JP2015103609A (ja) * 2013-11-22 2015-06-04 国立大学法人 奈良先端科学技術大学院大学 基板上へのナノ粒子の配列方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905623B2 (ja) 2004-10-18 2012-03-28 富士通株式会社 太陽電池
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
CN104388089B (zh) * 2014-11-04 2017-06-06 深圳Tcl新技术有限公司 一种杂化钙钛矿量子点材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532851A (ja) * 2006-02-16 2009-09-10 ソレクサント・コーポレイション ナノ粒子増感ナノ構造太陽電池
JP2009537994A (ja) * 2006-05-15 2009-10-29 スティオン コーポレイション 半導体材料を用いた薄膜光電材料のための方法及び構造
WO2011037041A1 (ja) * 2009-09-28 2011-03-31 株式会社 村田製作所 ナノ粒子材料及び光電変換デバイス
JP2013105952A (ja) * 2011-11-15 2013-05-30 Kyocera Corp 太陽電池
JP2015103609A (ja) * 2013-11-22 2015-06-04 国立大学法人 奈良先端科学技術大学院大学 基板上へのナノ粒子の配列方法

Also Published As

Publication number Publication date
CN108028288B (zh) 2020-03-17
JPWO2017057095A1 (ja) 2018-05-31
US20180294369A1 (en) 2018-10-11
US10283656B2 (en) 2019-05-07
CN108028288A (zh) 2018-05-11
JP6196418B2 (ja) 2017-09-13

Similar Documents

Publication Publication Date Title
Pietryga et al. Spectroscopic and device aspects of nanocrystal quantum dots
CN104937722B (zh) 利用处理量子点溶液制造的中间带半导体、异质结和光电设备,及其相关方法
US20080178924A1 (en) Photovoltaic cell and method of making thereof
Tian et al. Hybrid nanostructures for photodetectors
US20200328366A1 (en) High absorption, photo induced resonance energy transfer electromagnetic energy collector
US10714648B2 (en) Solar cell with graphene-silicon quantum dot hybrid structure and method of manufacturing the same
Hasanirokh et al. Fabrication of a light-emitting device based on the CdS/ZnS spherical quantum dots
JP6196418B2 (ja) 光電変換装置
JP6175593B1 (ja) 光電変換膜および光電変換装置
JPWO2016017763A1 (ja) 量子ドット太陽電池
JP6255417B2 (ja) 光電変換装置
JP2013211418A (ja) 太陽電池
Goodnick et al. Solar cells
CN108028287B (zh) 光电变换装置
KR101012565B1 (ko) 나노 와이어 및 나노입자를 가지는 태양전지 및 이의 제조방법
JP6441750B2 (ja) 量子ドット型太陽電池
JP6603116B2 (ja) 光電変換装置
JP6616178B2 (ja) 光電変換装置
WO2009077972A2 (en) Method for the manufacturing of photovoltaic material
JP6318259B2 (ja) 光電変換装置および光電変換モジュール
JP6239830B2 (ja) 太陽電池
JP6730038B2 (ja) 光電変換膜および光電変換装置
JP2015079870A (ja) 太陽電池
KR101438695B1 (ko) 양자링 구조를 가진 태양전지 및 이의 제조방법
JP2016027638A (ja) 光電変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017521176

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851269

Country of ref document: EP

Kind code of ref document: A1