WO2017056216A1 - 音声信号生成装置、音声信号生成方法、及び、プログラム - Google Patents

音声信号生成装置、音声信号生成方法、及び、プログラム Download PDF

Info

Publication number
WO2017056216A1
WO2017056216A1 PCT/JP2015/077683 JP2015077683W WO2017056216A1 WO 2017056216 A1 WO2017056216 A1 WO 2017056216A1 JP 2015077683 W JP2015077683 W JP 2015077683W WO 2017056216 A1 WO2017056216 A1 WO 2017056216A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
audio signal
rising
input
audio
Prior art date
Application number
PCT/JP2015/077683
Other languages
English (en)
French (fr)
Inventor
真琴 林
義晴 南川
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2017542577A priority Critical patent/JP6603725B2/ja
Priority to PCT/JP2015/077683 priority patent/WO2017056216A1/ja
Publication of WO2017056216A1 publication Critical patent/WO2017056216A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control

Definitions

  • the present invention relates to a technology for reproducing an audio signal with high sound quality.
  • Patent Document 2 describes a method of correcting a sound attack (rising) by calculating a difference from data one or several samples before and increasing the value as the difference increases. As a result, Patent Document 2 suppresses deterioration of rising even in a speaker that does not have high responsiveness to rising.
  • An object of the present invention is to provide an audio signal generation method capable of improving the quality of reproduced sound even when the reproduction volume is low.
  • the invention according to claim 1 is an audio signal generation device, which is input by an input unit that inputs an audio signal, a rising signal generation unit that generates a rising signal indicating a rising edge of the audio signal, and the input unit. Synthesizing means for synthesizing the audio signal and the rising signal in accordance with the reproduction volume.
  • the invention according to claim 7 is an audio signal generation method executed by an audio signal generation device, wherein an input step of inputting an audio signal and a rising signal generation step of generating a rising signal indicating a rising edge of the audio signal. And a synthesizing step of synthesizing the audio signal input by the input means and the rising signal in accordance with a reproduction volume.
  • the invention according to claim 8 is a program executed by an audio signal generation device including a computer, an input means for inputting an audio signal, a rising signal generating means for generating a rising signal indicating the rising edge of the audio signal,
  • the computer is caused to function as a synthesizing unit that synthesizes the audio signal input by the input unit and the rising signal in accordance with a reproduction volume.
  • FIG. 1 shows a configuration of an audio signal generation device according to a first embodiment.
  • the rising signal composition ratio and the effect of distortion reduction processing are shown. It is a figure for demonstrating the effect of a start-up emphasis process.
  • generation apparatus which concerns on 2nd Example is shown. It is a figure explaining the effect by 2nd Example. It is a flowchart of the rising emphasis process by 2nd Example.
  • the audio signal generation device includes an input unit that inputs an audio signal, a rising signal generation unit that generates a rising signal indicating a rising edge of the audio signal, and an audio input by the input unit. Synthesizing means for synthesizing the signal and the rising signal according to the reproduction volume.
  • a rising signal indicating the rising edge is generated from the input audio signal. Then, the input audio signal and the rising signal are synthesized according to the reproduction volume. Thereby, since the rising signal is synthesized with the audio signal at an appropriate ratio according to the reproduction volume, the sound quality of the reproduction sound can be improved regardless of the reproduction volume.
  • the rising signal is generated based on an audio signal input by the input unit and a signal obtained by processing the audio signal with a low-pass filter.
  • the rising signal is generated from the audio signal and the signal obtained by processing the audio signal with the low-pass filter.
  • the rising signal is generated based on an audio signal input by the input unit and a signal obtained by processing the audio signal with a high-pass filter.
  • the rising signal is generated from the audio signal and the signal obtained by processing the audio signal with the high-pass filter.
  • the synthesizing unit when the magnitude of the rising signal is less than a threshold, is configured to output the rising signal to the audio signal according to the magnitude of the rising signal. Change the amount of synthesis. In this aspect, even when the magnitude of the rising signal is less than the threshold value, the rising signal is synthesized with the audio signal. Preferably, when the magnitude of the rising signal is less than a threshold value, the synthesizing unit decreases the amount of the rising signal combined with the audio signal as the rising signal becomes smaller.
  • Another aspect of the above sound signal generating device further includes a detecting means for detecting the magnitude of the voice signal input by the input means, and the synthesizing means is in accordance with the magnitude of the detected voice signal. Then, the threshold value is changed.
  • the synthesizing unit decreases the threshold as the size of the audio signal detected by the detecting unit decreases.
  • an audio signal generation method executed by an audio signal generation apparatus includes an input step of inputting an audio signal and a rising signal generation step of generating a rising signal indicating a rising edge of the audio signal. And a synthesizing step of synthesizing the audio signal input by the input means and the rising signal in accordance with a reproduction volume. Also by this method, since the rising signal is synthesized with the audio signal at an appropriate ratio according to the reproduction volume, the sound quality of the reproduction sound can be improved regardless of the reproduction volume.
  • a program executed by an audio signal generation device including a computer includes an input unit that inputs an audio signal, a rising signal generation unit that generates a rising signal indicating a rising edge of the audio signal, The computer is caused to function as a synthesizing unit that synthesizes the audio signal input from the input unit and the rising signal in accordance with a reproduction volume.
  • This program can be recorded on a recording medium and handled.
  • FIG. 1 schematically shows an audible impression when an audio signal is reproduced.
  • FIG. 1A shows the electrical characteristics (waveform) of reproduced sound of an audio signal.
  • Waveform C1 shows the electrical characteristics of the reproduced sound when an audio signal having a rectangular waveform is reproduced at a high volume
  • waveform C2 shows the electric characteristic of the reproduced sound when an audio signal having a rectangular waveform is reproduced at a small volume. Show properties.
  • FIG. 1B shows an audible impression image by the user when the audio signal having a rectangular waveform as described above, that is, a reproduction sound having a rising edge or a falling edge is reproduced at a large volume and a small volume.
  • the reproduced sound is loud, as shown in the waveform C3, the auditory impression of the user can clearly feel the outline of the sound, that is, the rise and fall.
  • the reproduced sound is at a low volume, as shown in the waveform C4
  • it is felt that the rising or falling edge of the reproduced sound is lost in the user's audible impression.
  • the outline and sharpness of the reproduced sound are reduced auditorily.
  • a process for enhancing the rising edge of the reproduced sound (hereinafter, also referred to as “rising edge enhancing process”) is performed, so that even if the reproduced sound is at a low volume, As in the case of the volume, it should be possible to obtain a sharp sound quality.
  • FIG. 2 shows the configuration of the audio signal generating apparatus according to the first embodiment.
  • the audio signal generation device 10 includes a filter 11, a delay 12, adders 13 to 14, a switch 15, an absolute value calculator 16, and amplifiers 17 to 19.
  • the absolute value calculator 16 and the amplifiers 17 to 18 constitute a distortion reduction block BK described later.
  • the input signal X (t) is a rectangular wave such as the waveform W1 in order to facilitate understanding of the rising emphasis process of this embodiment.
  • the input signal X (t) is supplied to the filter 11 and the delay 12.
  • the filter 11 is a low-pass filter configured by an FIR filter using a Hamming window, and extracts a low-frequency component of the input signal X (t). Therefore, the output of the filter 11 is a signal Blur (t) having a waveform W2 in which the rising and falling of the input signal X (t) are eliminated.
  • the signal Blur (t) is supplied to the adder 13.
  • the delay 12 generates an input signal X ′ (t) obtained by delaying the input signal X (t) by the same delay amount as the delay amount given to the input signal X (t) by the processing of the filter 11 and adds Supply to vessels 13 and 14. That is, the delay 12 is provided in order to match the time axes of the signal Blur (t) generated by the filter 11 and the input signal X (t).
  • the adder 13 subtracts the signal Blur (t) from the input signal X ′ (t) to generate the signal Edge (t), and supplies the signal Edge (t) to the switch 15, the absolute value calculator 16, and the amplifier 18.
  • the signal Edge (t) obtained by subtracting the signal Blur (t) from the input signal X ′ (t) peaks at the rising and falling positions of the original input signal X (t) as shown by the waveform W3.
  • a signal having Thus, the signal Edge (t) is a signal indicating the rising edge of the input signal X (t) and corresponds to the rising signal of the present invention.
  • the adder 13 corresponds to the rising signal generating means of the present invention.
  • the switch 15 has input terminals T1 and T2.
  • the switch 15 selects the input terminal T1 when the absolute value of the signal Edge (t) is greater than or equal to a predetermined threshold value TH, and switches the input terminal T2 when the absolute value of the rising signal Edge (t) is less than the threshold value TH. select.
  • the threshold value TH is set to a fixed value.
  • the signal Edge (t) is a signal indicating the rising and falling edges of the input signal X (t)
  • the absolute value of the signal Edge (t) is equal to or greater than the threshold value TH
  • the position thereof is changed. It can be determined that the input signal X (t) is rising.
  • the amplifier 19 is a variable amplifier that is linked to the reproduction volume Vol.
  • the amplifier 19 amplifies the signal Edge (t) with an amplification degree eff1 corresponding to the reproduction volume Vol and supplies the signal Edge (t) to the adder 14 as a signal Add (t).
  • the amplification unit 19 decreases the amplification degree eff1 when the reproduction volume Vol is high, and increases the amplification degree eff1 as the reproduction volume decreases.
  • the signal Add (t) Since the amplification unit 19 amplifies the signal Edge (t) with an amplification degree eff1 corresponding to the reproduction volume Vol, the signal Add (t) has a peak (waveform) at the rising position of the signal Edge (t) according to the reproduction volume. This is a signal in which the level of W3) (hereinafter also referred to as “peak level”) is adjusted. That is, when the playback volume is high, the peak level of the signal Edge (t) does not increase so much, and when the playback volume is low, the peak level of the signal Edge (t) increases. As a result, when the playback volume Vol is low, the signal Add (t) having a large peak level is supplied to the adder 14.
  • the adder 14 adds the signal Add (t) to the input signal X ′ (t) and outputs it as an output signal Y (t).
  • the output signal Y (t) becomes a signal in which the peak level of the input signal X ′ (t), that is, the rising and falling levels are increased.
  • the amplifier 19 amplifies the signal Edge (t) with a larger amplification level eff1 as the reproduction volume Vol is smaller. Therefore, the output signal Y (t) rises and falls as the reproduction volume Vol is smaller. The signal becomes emphasized. With this rising emphasis processing, it is possible to reproduce a sound with emphasized contours and sharpness even when the reproduction volume Vol is low.
  • the adder 14 corresponds to the combining means of the present invention.
  • the distortion reduction block BK will be described.
  • the absolute value of the signal Edge (t) is greater than or equal to the threshold value TH
  • the rising signal Edge (t) is combined with the input signal X ′ (t).
  • the signal Edge (t) is less than the threshold value TH
  • the signal Edge (t) is not added to the input signal X ′ (t).
  • the signal Edge (t) does not exceed the threshold value TH.
  • the absolute value calculator 16 calculates the absolute value of the signal Edge (t) and supplies it to the amplifier 17.
  • the amplifier 17 amplifies the output of the absolute value calculator 16 by “1 / TH” times based on the threshold value TH and supplies the amplified value to the amplifier 18.
  • the amplifier 18 is a variable amplifier, amplifies the signal from the amplifier 17 with the amplification degree eff2, and outputs the amplified signal to the terminal T2 of the switch 15.
  • the amplification degree eff2 is given by the following equation.
  • FIG. 3A shows a ratio (hereinafter referred to as “compositing ratio”) in which the signal Edge (t) is added to the input signal X ′ (t) by the adder 14.
  • the horizontal axis indicates the absolute value of the signal Edge (t), and the vertical axis indicates the composition ratio.
  • the amplification degree eff1 is the amplification degree of the amplifier 19, and is determined according to the reproduction volume Vol as described above.
  • the signal Edge (t) When the absolute value of the signal Edge (t) is greater than or equal to the threshold value TH, the signal Edge (t) is added to the input signal X ′ (t) at the synthesis ratio eff1 as described above. On the other hand, when the absolute value of the signal Edge (t) is less than the threshold value TH, the signal Edge (t) combines the product of the amplification factor eff2 of the amplifier 18 and the amplification factor eff1 of the amplifier 19 (ie, “eff2 ⁇ eff1”). The ratio is added to the input signal X ′ (t).
  • the signal Edge (t) is input at a synthesis ratio corresponding to the absolute value of the signal Edge (t). Distortion is reduced by combining with the signal X ′ (t).
  • the result of calculating the total harmonic distortion (THD) using a sine wave as an input signal is shown in FIG.
  • TDD total harmonic distortion
  • FIG. 4 is a diagram for explaining the effect of the rising emphasis processing by the audio signal generation device of the first embodiment.
  • FIG. 4 shows an example of a waveform when a known loudness process is applied to a signal and when a rising emphasis process according to the first embodiment is applied.
  • the horizontal axis represents time
  • the vertical axis represents the signal level.
  • the gray area in the figure indicates the original signal
  • the solid line indicates the component emphasized by the rising emphasis process according to the first embodiment
  • the broken line indicates the component emphasized by the loudness process.
  • the component emphasized by the loudness process exists throughout the entire signal, whereas the component emphasized by the rising emphasis process of the first embodiment, It occurs only at the rising part. Thereby, it is understood that only the rising portion of the input signal can be properly emphasized in the rising emphasis processing of the first embodiment.
  • FIG. 5 is a flowchart of the rising emphasis process in the first embodiment.
  • the filter 11 filters the input signal X (t) and generates a signal Blur (t) (step S11).
  • the adder 13 subtracts the signal Blur (t) from the input signal X ′ (t) to extract the rising component and generate the signal Edge (t) (step S12).
  • step S13 it is determined whether or not the absolute value of the signal Edge (t) is greater than or equal to a predetermined threshold value TH (step S13). If the absolute value of the signal Edge (t) is greater than or equal to the threshold value TH (step S13: Yes), the process proceeds to step S15. On the other hand, when the absolute value of the signal Edge (t) is less than the threshold value TH (step S13: No), in the distortion reduction block BK, the signal Edge (t) is multiplied by the amplification degree eff2 of the amplifier 18 to obtain the signal Edge (t ) Is recalculated, and the process proceeds to step S15.
  • step S15 the signal Edge (t) multiplied by the amplification degree eff1 of the amplifier 19 is combined with the input signal X ′ (t) by the adder 14 and output as the output signal Y (t) (step S16).
  • the rising component is added to the input signal X ′ (t) at a synthesis ratio corresponding to the reproduction volume of the input signal X (t), and is output as the output signal Y (t).
  • the threshold value TH used for switching the switch 15 is a fixed value.
  • the threshold value TH is a fixed value, when the rising level (amplitude) of the input signal X (t) is less than the threshold value TH, it is not correctly detected as a rising edge. That is, if the original level of the input signal X (t) is small, the level becomes less than the threshold TH even at the rising portion, and the rising of the input signal X (t) cannot be detected correctly. Therefore, in the second embodiment, the threshold value TH is changed according to the level of the input signal X (t). Except for this point, the second embodiment is the same as the first embodiment.
  • FIG. 6 shows a configuration of an audio signal generation device according to the second embodiment.
  • the audio signal generation device 10x according to the second embodiment has the same configuration as the audio signal generation device 10 according to the first embodiment except that an absolute value calculator 21 and an amplifier 22 are added.
  • the absolute value calculator 21 receives the input signal X (t), and the absolute value
  • the absolute value calculator 21 corresponds to the detection means of the present invention.
  • the threshold value TH which is a fixed value, is input to the amplifier 22.
  • the amplifier 22 changes the threshold value TH according to the absolute value
  • the threshold value TH2 output from the amplifier 22 is given by the following equation.
  • TH2 TH ⁇
  • This threshold value TH2 is used for determination of switching of the switch 15.
  • FIG. 7 is a diagram for explaining the effect of the second embodiment, and shows an example of the input signal waveform.
  • FIGS. 7A and 7B show a case where the threshold value TH is a fixed value as in the first embodiment
  • FIGS. 7C and 7D show the threshold value TH2 according to the second embodiment. The case where it is made proportional to the level of an input signal is shown.
  • threshold values TH and TH2 are indicated by broken lines.
  • the threshold value TH is a fixed value, if the level of the input signal is large as in the example of FIG. 7A, the rising edge is correctly detected by the threshold value TH. However, as shown in FIG. If the level is small, the rising level does not exceed the threshold value TH, and the rising cannot be detected correctly.
  • the threshold TH2 is proportional to the level of the input signal, so that not only the case where the level of the input signal is large as in the example of FIG. 7C, but also the example of FIG.
  • the threshold value TH2 is also reduced accordingly, so that the rising edge can be detected correctly. Thereby, it is possible to appropriately perform the rising emphasis process without being affected by the recording level of the input signal.
  • FIG. 8 is a flowchart of the rising emphasis process according to the second embodiment.
  • the rising emphasis process according to the second embodiment is the same as that of the first embodiment except that in step S13x, the threshold value TH2 proportional to the input signal level is used for comparison with the absolute value of the rising signal Edge (t). . Therefore, description other than this is abbreviate
  • the filter 11 functioning as a low-pass filter is configured as an FIR filter, but the filter 11 may be configured as an IIR filter instead.
  • the signal Blur (t) obtained by extracting the low-frequency component from the input signal X (t) by the filter 11 that is a low-pass filter and smoothing the waveform of the input signal X (t). Is generated.
  • the filter 11 is configured as a high-pass filter, and a high-frequency component is extracted from the input signal X (t) to generate a signal Blur (t) in which the waveform of the input signal X (t) is smoothed. It is good to do.

Landscapes

  • Circuit For Audible Band Transducer (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

再生音量が小さい場合でも再生音の音質を改善することが可能な音声信号生成装置を提供する。 音声信号生成装置(10)では、入力された音声信号(X(t))から、その立ち上がりを示す立ち上がり信号(Edge(t))が生成される。そして、入力された音声信号(X'(t))と立ち上がり信号(Edge(t))とが、再生音量(Vol)に応じて合成される(19,14)。好適には、再生音量(Vol)が小さいほど、立ち上がり信号(Edge(t))を音声信号(X'(t))に合成する合成量を大きくする。

Description

音声信号生成装置、音声信号生成方法、及び、プログラム
 本発明は、音声信号を高音質で再生する技術に関する。
 音声信号を再生する際、大音量で再生すると輪郭がはっきりとした良い音に聞こえるが、小音量で再生すると輪郭がぼやけ、粒立ち感(メリハリ)が低下してしまうことがある。これを改善するため、小音量時の音質補正機能として、いわゆるラウドネス(LOUDNESS)機能が知られている(例えば、特許文献1を参照)。しかし、ラウドネス機能は再生音量に応じて定常的に特定周波数帯域の振幅を補正する技術であるため、特に音声信号の立ち上がりに着目して補正を行うものではない。
 一方、特許文献2は、1又は数サンプル前のデータとの差分を算出し、差分が大きいほど大きく値を増大させることで、音のアタック(立ち上がり)を補正する手法を記載している。これにより、特許文献2は、立ち上がりに対する応答性の高くないスピーカでも立ち上がりの劣化を抑制している。
特開2006-174084号公報 特開2010-219836号公報
 しかし、特許文献2では、音声信号の再生音量によらずに一定の強調を行っている。このため、再生音量が小さいときに補正が不十分となったり、再生音量が大きいときに必要以上に補正がなされてしまうことがある。
 本発明が解決しようとする課題としては、上記のものが例として挙げられる。本発明は、再生音量が小さい場合でも再生音の音質を改善することが可能な音声信号生成手法を提供することを目的とする。
 請求項1に記載の発明は、音声信号生成装置であって、音声信号を入力する入力手段と、前記音声信号の立ち上がりを示す立ち上がり信号を生成する立ち上がり信号生成手段と、前記入力手段で入力された音声信号と前記立ち上がり信号とを、再生音量に応じて合成する合成手段と、を有することを特徴とする。
 請求項7に記載の発明は、音声信号生成装置により実行される音声信号生成方法であって、音声信号を入力する入力工程と、前記音声信号の立ち上がりを示す立ち上がり信号を生成する立ち上がり信号生成工程と、前記入力手段で入力された音声信号と前記立ち上がり信号とを、再生音量に応じて合成する合成工程と、を有することを特徴とする。
 請求項8に記載の発明は、コンピュータを備える音声信号生成装置により実行されるプログラムであって、音声信号を入力する入力手段、前記音声信号の立ち上がりを示す立ち上がり信号を生成する立ち上がり信号生成手段、前記入力手段で入力された音声信号と前記立ち上がり信号とを、再生音量に応じて合成する合成手段、として前記コンピュータを機能させることを特徴とする。
音声信号を再生した際の聴感上の印象を模式的に示す。 第1実施例に係る音声信号生成装置の構成を示す。 立ち上がり信号の合成比率、及び、歪低減処理の効果を示す。 立ち上がり強調処理の効果を説明するための図である。 第1実施例による立ち上がり強調処理のフローチャートである。 第2実施例に係る音声信号生成装置の構成を示す。 第2実施例による効果を説明する図である。 第2実施例による立ち上がり強調処理のフローチャートである。
 本発明の好適な実施形態では、音声信号生成装置は、音声信号を入力する入力手段と、前記音声信号の立ち上がりを示す立ち上がり信号を生成する立ち上がり信号生成手段と、前記入力手段で入力された音声信号と前記立ち上がり信号とを、再生音量に応じて合成する合成手段と、を有する。
 上記の音声信号生成装置では、入力された音声信号から、その立ち上がりを示す立ち上がり信号が生成される。そして、入力された音声信号と立ち上がり信号とが、再生音量に応じて合成される。これにより、再生音量に応じて適切な比率で立ち上がり信号が音声信号に合成されるため、再生音量に拘わらず再生音の音質を改善することができる。
 上記の音声信号生成装置の一態様では、前記立ち上がり信号は、前記入力手段で入力された音声信号と、当該音声信号を低域通過フィルタで処理した信号とに基づいて生成される。この態様では、音声信号と、その音声信号を低域通過フィルタにより処理した信号とにより立ち上がり信号を生成する。
 上記の音声信号生成装置の他の一態様では、前記立ち上がり信号は、前記入力手段で入力された音声信号と、当該音声信号を高域通過フィルタで処理した信号とに基づいて生成される。この態様では、音声信号と、その音声信号を高域通過フィルタにより処理した信号とにより立ち上がり信号を生成する。
 上記の音声信号生成装置の他の一態様では、前記立ち上がり信号の大きさが閾値未満である場合、前記合成手段は、前記立ち上がり信号の大きさに応じて、前記音声信号への前記立ち上がり信号の合成量を変化させる。この態様では、立ち上がり信号の大きさが閾値未満である場合でも、立ち上がり信号が音声信号に合成される。好適には、前記立ち上がり信号の大きさが閾値未満である場合、前記合成手段は、前記立ち上がり信号が小さくなるにつれて、前記音声信号への前記立ち上がり信号の合成量を小さくする。
 上記の音声信号生成装置の他の一態様は、前記入力手段により入力された音声信号の大きさを検出する検出手段を更に備え、前記合成手段は、前記検出された音声信号の大きさに応じて、前記閾値の値を変更する。この態様では、入力された音声信号の大きさに応じて閾値の値が変更されるので、入力された音声信号の元々のレベルに拘わらず、立ち上がり信号を正しく生成することができる。好適には、前記合成手段は、前記検出手段で検出された音声信号の大きさが小さくなるにつれて、前記閾値を小さくする。
 本発明の他の好適な実施形態では、音声信号生成装置により実行される音声信号生成方法は、音声信号を入力する入力工程と、前記音声信号の立ち上がりを示す立ち上がり信号を生成する立ち上がり信号生成工程と、前記入力手段で入力された音声信号と前記立ち上がり信号とを、再生音量に応じて合成する合成工程と、を有する。この方法によっても、再生音量に応じて適切な比率で立ち上がり信号が音声信号に合成されるため、再生音量に拘わらず再生音の音質を改善することができる。
 本発明の他の好適な実施形態では、コンピュータを備える音声信号生成装置により実行されるプログラムは、音声信号を入力する入力手段、前記音声信号の立ち上がりを示す立ち上がり信号を生成する立ち上がり信号生成手段、前記入力手段で入力された音声信号と前記立ち上がり信号とを、再生音量に応じて合成する合成手段、として前記コンピュータを機能させる。このプログラムをコンピュータで実行することにより、上述の音声信号生成装置を実現することができる。このプログラムは、記録媒体に記録して取り扱うことができる。
 以下、図面を参照して本発明の好適な実施例について説明する。
 [基本概念]
 音声信号を再生する際、再生音量が小さいと、再生音の輪郭やメリハリが失われる傾向がある。図1は、音声信号を再生した際の聴感上の印象を模式的に示す。図1(A)は、音声信号の再生音の電気特性(波形)を示す。波形C1は、矩形の波形を有する音声信号を大音量で再生した場合の再生音の電気特性を示し、波形C2は、矩形の波形を有する音声信号を小音量で再生した場合の再生音の電気特性を示す。
 図1(B)は、このように矩形の波形を有する音声信号、即ち、立ち上がりや立ち下がりを有する再生音を大音量と小音量とで再生した場合のユーザによる聴感印象イメージを示す。再生音が大音量の場合は、波形C3に示すように、ユーザによる聴覚上の印象も音の輪郭、即ち、立ち上がりや立ち下がりを明確に感じることができる。一方、再生音が小音量の場合には、波形C4に示すように、ユーザの聴感上の印象では再生音の立ち上がりや立ち下がりがなまったように感じられる。これにより、聴覚上、再生音の輪郭やメリハリが低下する。そこで、以下の実施例では、波形C5に示すように、再生音の立ち上がりを強調する処理(以下、「立ち上がり強調処理」とも呼ぶ。)を行うことで、再生音が小音量の場合でも、大音量の場合と同様にメリハリの利いた音質を得られるようにする。
 [第1実施例]
 図2は、第1実施例に係る音声信号生成装置の構成を示す。音声信号生成装置10は、フィルタ11と、ディレイ12と、加算器13~14と、スイッチ15と、絶対値演算器16と、増幅器17~19と、を備える。絶対値演算器16及び増幅器17~18は、後述する歪低減ブロックBKを構成している。なお、以下の説明では、本実施例の立ち上がり強調処理の理解を容易にするため、入力信号X(t)は波形W1のような矩形波であると仮定する。
 入力信号X(t)は、フィルタ11及びディレイ12に供給される。フィルタ11は、ハミング窓を用いたFIRフィルタにより構成される低域通過フィルタであり、入力信号X(t)の低域成分を抽出する。よって、フィルタ11の出力は、入力信号X(t)の立ち上がり及び立ち下がりがなまった波形W2を有する信号Blur(t)となる。信号Blur(t)は、加算器13に供給される。
 一方、ディレイ12は、フィルタ11の処理により入力信号X(t)に与えられる遅延量と同一の遅延量だけ入力信号X(t)を遅延させた入力信号X’(t)を生成し、加算器13及び14に供給する。即ち、ディレイ12は、フィルタ11により生成された信号Blur(t)と入力信号X(t)との時間軸を合わせるために設けられている。
 加算器13は、入力信号X’(t)から信号Blur(t)を減算して信号Edge(t)を生成し、スイッチ15、絶対値演算器16及び増幅器18に供給する。入力信号X’(t)から信号Blur(t)を減算して得られる信号Edge(t)は、波形W3に示すように、元の入力信号X(t)の立ち上がり及び立ち下がりの位置にピークを有する信号となる。このように、信号Edge(t)は、入力信号X(t)の立ち上がりを示す信号であり、本発明の立ち上がり信号に相当する。また、加算器13は本発明の立ち上がり信号生成手段に相当する。
 スイッチ15は、入力端子T1及びT2を有する。スイッチ15は、信号Edge(t)の絶対値が所定の閾値TH以上である場合に入力端子T1を選択し、立ち上がり信号Edge(t)の絶対値が閾値TH未満である場合に入力端子T2を選択する。なお、第1実施例では、閾値THは固定値に設定されている。
 さて、上記のように、信号Edge(t)は入力信号X(t)の立ち上がり及び立ち下がりを示す信号であるので、信号Edge(t)の絶対値が閾値TH以上である場合、その位置を入力信号X(t)の立ち上がりであると判定することができる。
 信号Edge(t)の絶対値が閾値TH以上である場合、信号Edge(t)はスイッチ15を介して増幅器19に供給される。増幅器19は、再生音量Volに連動する可変増幅器である。増幅器19は、再生音量Volに応じた増幅度eff1で信号Edge(t)を増幅し、信号Add(t)として加算器14へ供給する。具体的には、増幅部19は、再生音量Volが大きいときは増幅度eff1を小さくするとともに、再生音量が小さくなるほど増幅度eff1を大きくする。なお、再生音量Volは、入力信号X(t)を再生する際の再生音量を示しており、典型的には図示しない入力部などを用いてユーザにより設定される。但し、例えばALC(オートマティック・サウンド・レベライザー=自動音量調整機能)等の機械的な音量制御を採用している装置においては、その音量制御により自動的に設定される。
 増幅部19は、再生音量Volに応じた増幅度eff1で信号Edge(t)を増幅するため、信号Add(t)は、再生音量に応じて信号Edge(t)の立ち上がり位置にあるピーク(波形W3参照)のレベル(以下、「ピークレベル」とも呼ぶ。)が調整された信号となる。即ち、再生音量が大きい場合には信号Edge(t)のピークレベルはあまり大きくならず、再生音量が小さい場合には信号Edge(t)のピークレベルが大きくなる。これにより、再生音量Volが小さい場合には、大きなピークレベルを有する信号Add(t)が加算器14へ供給される。
 加算器14は、入力信号X’(t)に信号Add(t)を加算し、出力信号Y(t)として出力する。これにより、波形W4に示すように、出力信号Y(t)は入力信号X’(t)のピークレベル、即ち、立ち上がり及び立ち下がりのレベルが増大された信号となる。ここで、上述のように、増幅器19は再生音量Volが小さいほど大きな増幅度eff1で信号Edge(t)を増幅するため、出力信号Y(t)は再生音量Volが小さいほど立ち上がり及び立ち下がりが強調された信号となる。この立ち上がり強調処理により、再生音量Volが小さいときでも、輪郭やメリハリを強調した音を再生することが可能となる。なお、加算器14は本発明の合成手段に相当する。
 次に、歪低減ブロックBKについて説明する。上記のように、スイッチ15の端子T1側の動作では、信号Edge(t)の絶対値が閾値TH以上である場合は立ち上がり信号Edge(t)が入力信号X’(t)に合成されるが、信号Edge(t)が閾値TH未満の場合には信号Edge(t)は入力信号X’(t)に加算されない。しかし、信号Edge(t)が閾値TH未満の場合に信号Edge(t)が全く入力信号X’(t)に加算されないこととすると、信号Edge(t)が閾値THを超えた場合と超えない場合の差異が大きくなり、信号の不連続性が大きくなるため、聴感上歪感(ざらつき、ノイズなど)が生じてしまう。そこで、スイッチ15の端子T2側に歪低減ブロックBKを設けて歪低減処理を行うことにより、そのような歪感を低減する。
 歪低減ブロックBKにおいて、絶対値演算器16は、信号Edge(t)の絶対値を演算して増幅器17へ供給する。増幅器17は、絶対値演算器16の出力を、閾値THに基づいて「1/TH」倍に増幅して増幅器18へ供給する。増幅器18は可変増幅器であり、増幅器17からの信号を増幅度eff2で増幅して、スイッチ15の端子T2へ出力する。ここで、絶対値演算器16及び増幅器17の構成により、増幅度eff2は以下の式で与えられることになる。
   eff2=|Edge(t)|/TH       (1)
 図3(A)は、加算器14により信号Edge(t)が入力信号X’(t)に加算される割合(以下、「合成比率」と呼ぶ。)を示す。なお、図3(A)において、横軸は信号Edge(t)の絶対値を示し、縦軸は合成比率を示す。増幅度eff1は増幅器19の増幅度であり、前述のように再生音量Volに応じて決定される。
 信号Edge(t)の絶対値が閾値TH以上である場合、上述のように信号Edge(t)は合成比率eff1で入力信号X’(t)に加算される。一方、信号Edge(t)の絶対値が閾値TH未満である場合、信号Edge(t)は増幅器18の増幅度eff2と増幅器19の増幅率eff1の積(即ち、「eff2・eff1」)を合成比率として入力信号X’(t)に加算される。ここで、信号Edge(t)の絶対値が閾値TH未満である場合、上記の式(1)においてeff2<1となるので、信号Edge(t)の合成比率「eff2・eff1」は、合成比率eff1より小さく、かつ、信号Edge(t)の絶対値に比例した値となる。これにより、信号Edge(t)の絶対値が閾値TH未満である場合でも、合成比率eff1より小さく、かつ、信号Edge(t)の絶対値に比例した合成比率で信号Edge(t)が入力信号X’(t)に加算されることになる。このように、歪低減ブロックBKでは、信号Edge(t)の絶対値が閾値TH未満の場合であっても、信号Edge(t)の絶対値に応じた合成比率で信号Edge(t)を入力信号X’(t)に合成することにより歪を低減している。
 次に、歪低減ブロックBKの処理による効果について説明する。まず、歪低減ブロックBKによる歪低減処理を行わなかった場合と行った場合とで、再生音を視聴したところ、歪低減処理を行わなかった場合は再生音に歪が感じられたが、歪低減処理を行った場合は、歪は感じられず、入力信号の立ち上がりが適切に補正されていることが確認された。
 また、歪低減処理の効果を定量的に確認するために、入力信号として正弦波を用いて、全高調波歪(THD:Total Harmonic Distortion)を算出した結果を図3(B)に示す。図示のように、いずれの周波数でも、歪低減処理を行った場合の方が、行わない場合よりも全高調波歪の値が小さくなっていることが確認された。このように、歪低減処理により、再生音量が小さい場合でも、歪感なく適切に音質改善が可能であることが確認された。
 図4は、第1実施例の音声信号生成装置による立ち上がり強調処理の効果を説明するための図である。具体的に、図4は、ある信号に、既知のラウドネス処理を適用した場合と、第1実施例による立ち上がり強調処理を適用した場合の波形の例を示す。図4において、横軸は時間を示し、縦軸は信号のレベルを示す。また、図中のグレーのエリアは元信号を示し、実線は第1実施例による立ち上がり強調処理により強調された成分を示し、破線はラウドネス処理により強調された成分を示す。図から理解されるように、ラウドネス処理により強調された成分は信号全体にわたって存在するのに対し、第1実施例の立ち上がり強調処理により強調された成分は、符号Xで示すように、元信号の立ち上がり部分のみに発生している。これにより、第1実施例の立ち上がり強調処理では、入力信号の立ち上がり部分のみを適切に強調できていることが理解される。
 図5は、第1実施例における立ち上がり強調処理のフローチャートである。入力信号X(t)が入力されると、フィルタ11は入力信号X(t)をフィルタリングし、信号Blur(t)を生成する(ステップS11)。次に、加算器13は入力信号X’(t)から信号Blur(t)を減算することにより、立ち上がり成分を抽出して信号Edge(t)を生成する(ステップS12)。
 次に、信号Edge(t)の絶対値が所定の閾値TH以上であるか否かが判定される(ステップS13)。信号Edge(t)の絶対値が閾値TH以上である場合(ステップS13:Yes)、処理はステップS15へ進む。一方、信号Edge(t)の絶対値が閾値TH未満である場合(ステップS13:No)、歪低減ブロックBKにおいて、信号Edge(t)に増幅器18の増幅度eff2が乗算されて信号Edge(t)が再計算され、処理はステップS15へ進む。
 ステップS15では、増幅器19の増幅度eff1が乗算された信号Edge(t)が加算器14により入力信号X’(t)に合成され、出力信号Y(t)として出力される(ステップS16)。こうして、入力信号X(t)の再生音量に応じた合成比率で立ち上がり成分が入力信号X’(t)に加算され、出力信号Y(t)として出力される。
 [第2実施例]
 第1実施例においては、スイッチ15の切替えに使用する閾値THを固定値としていた。しかし、閾値THを固定値とすると、入力信号X(t)の立ち上がりのレベル(振幅)が閾値TH未満の場合、正しく立ち上がりとして検出されなくなってしまう。即ち、入力信号X(t)の元々のレベルが小さいと、立ち上がりの部分でもレベルが閾値TH未満となってしまい、入力信号X(t)の立ち上がりを正しく検出することができなくなってしまう。そこで、第2実施例では、閾値THを入力信号X(t)のレベルに応じて変化させることとした。なお、この点以外は、第2実施例は第1実施例と同様である。
 図6は、第2実施例に係る音声信号生成装置の構成を示す。第2実施例に係る音声信号生成装置10xは、絶対値演算器21と増幅器22が追加されている点以外は、第1実施例に係る音声信号生成装置10と同様の構成を有する。
 絶対値演算器21には入力信号X(t)が入力され、入力信号X(t)の絶対値|X(t)|が増幅器22に出力される。なお、絶対値演算器21は本発明の検出手段に相当する。
 増幅器22には、固定値である閾値THが入力されている。増幅器22は、絶対値演算器21から供給される絶対値|X(t)|に応じて閾値THを変化させる。具体的に、増幅器22から出力される閾値TH2は、以下の式で与えられる。
   TH2=TH×|X(t)|           (2)
 即ち、入力信号X(t)のレベルが大きいほど閾値TH2は大きくなり、入力信号X(t)のレベルが小さいほど閾値TH2は小さくなる。この閾値TH2は、スイッチ15の切替えの判定に使用される。
 このように、閾値THを入力信号X(t)のレベルに比例して変化させることにより、入力信号X(t)の録音レベルが小さいような場合でも、入力信号X(t)の立ち上がりを適切に検出し、強調することが可能となる。
 図7は、第2実施例による効果を説明する図であり、入力信号波形の例を示している。図7(A)、7(B)は、第1実施例のように閾値THを固定値とした場合を示し、図7(C)、7(D)は、第2実施例により閾値TH2を入力信号のレベルに比例させた場合を示す。なお、図7(A)~7(D)において、閾値TH及びTH2を破線で示す。
 閾値THを固定値とした場合、図7(A)の例のように入力信号のレベルが大きければ閾値THにより正しく立ち上がりが検出されるが、図7(B)の例のように入力信号のレベルが小さいと、立ち上がりのレベルが閾値THを超えず、立ち上がりを正しく検出することができなくなる。
 これに対し、第2実施例では、閾値TH2を入力信号のレベルに比例させるため、図7(C)の例のように入力信号のレベルが大きい場合のみならず、図7(D)の例のように入力信号レベルが小さい場合でも、それに応じて閾値TH2も小さくなるため、正しく立ち上がりを検出することができる。これにより、入力信号の録音レベルの影響を受けることなく、適切に立ち上がり強調処理を行うことが可能となる。
 図8は、第2実施例による立ち上がり強調処理のフローチャートである。第2実施例による立ち上がり強調処理は、ステップS13xにおいて、立ち上がり信号Edge(t)の絶対値との比較に、入力信号レベルに比例する閾値TH2を用いる点以外は、第1実施例と同様である。よって、これ以外の説明は省略する。
 [変形例]
 上記の実施例では、低域通過フィルタとして機能するフィルタ11をFIRフィルタとして構成しているが、その代わりに、フィルタ11をIIRフィルタで構成してもよい。
 また、上記の実施例では、低域通過フィルタであるフィルタ11により入力信号X(t)から低域成分を抽出して、入力信号X(t)の波形をなまらせた信号Blur(t)を生成している。その代わりに、フィルタ11を高域通過フィルタとして構成し、入力信号X(t)から高域成分を抽出することにより、入力信号X(t)の波形をなまらせた信号Blur(t)を生成することとしてもよい。
 10、10x 音声信号生成装置
 11 フィルタ
 12 ディレイ
 13、14 加算器
 15 スイッチ
 16、21 絶対値演算器
 17~19、22 増幅器

Claims (10)

  1.  音声信号を入力する入力手段と、
     前記音声信号の立ち上がりを示す立ち上がり信号を生成する立ち上がり信号生成手段と、
     前記入力手段で入力された音声信号と前記立ち上がり信号とを、再生音量に応じて合成する合成手段と、
     を有することを特徴とする音声信号生成装置。
  2.  前記立ち上がり信号は、前記入力手段で入力された音声信号と、当該音声信号を低域通過フィルタで処理した信号とに基づいて生成されることを特徴とする請求項1に記載の音声信号生成装置。
  3.  前記立ち上がり信号は、前記入力手段で入力された音声信号と、当該音声信号を高域通過フィルタで処理した信号とに基づいて生成されることを特徴とする請求項1に記載の音声信号生成装置。
  4.  前記立ち上がり信号の大きさが閾値未満である場合、前記合成手段は、前記立ち上がり信号の大きさに応じて、前記音声信号への前記立ち上がり信号の合成量を変化させることを特徴とする請求項1乃至3のいずれか一項に記載の音声信号生成装置。
  5.  前記立ち上がり信号の大きさが閾値未満である場合、前記合成手段は、前記立ち上がり信号が小さくなるにつれて、前記音声信号への前記立ち上がり信号の合成量を小さくすることを特徴とする請求項4に記載の音声信号生成装置。
  6.  前記入力手段により入力された音声信号の大きさを検出する検出手段を更に備え、
     前記合成手段は、前記検出された音声信号の大きさに応じて、前記閾値の値を変更することを特徴とする請求項4又は5に記載の音声信号生成装置。
  7.  前記合成手段は、前記検出手段で検出された音声信号の大きさが小さくなるにつれて、前記閾値を小さくすることを特徴とする請求項6に記載の音声信号生成装置。
  8.  音声信号生成装置により実行される音声信号生成方法であって、
     音声信号を入力する入力工程と、
     前記音声信号の立ち上がりを示す立ち上がり信号を生成する立ち上がり信号生成工程と、
     前記入力手段で入力された音声信号と前記立ち上がり信号とを、再生音量に応じて合成する合成工程と、
     を有することを特徴とする音声信号生成方法。
  9.  コンピュータを備える音声信号生成装置により実行されるプログラムであって、
     音声信号を入力する入力手段、
     前記音声信号の立ち上がりを示す立ち上がり信号を生成する立ち上がり信号生成手段、
     前記入力手段で入力された音声信号と前記立ち上がり信号とを、再生音量に応じて合成する合成手段、
     として前記コンピュータを機能させることを特徴とするプログラム。
  10.  請求項9に記載のプログラムを記録したことを特徴とする記録媒体。
PCT/JP2015/077683 2015-09-30 2015-09-30 音声信号生成装置、音声信号生成方法、及び、プログラム WO2017056216A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017542577A JP6603725B2 (ja) 2015-09-30 2015-09-30 音声信号生成装置、音声信号生成方法、及び、プログラム
PCT/JP2015/077683 WO2017056216A1 (ja) 2015-09-30 2015-09-30 音声信号生成装置、音声信号生成方法、及び、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077683 WO2017056216A1 (ja) 2015-09-30 2015-09-30 音声信号生成装置、音声信号生成方法、及び、プログラム

Publications (1)

Publication Number Publication Date
WO2017056216A1 true WO2017056216A1 (ja) 2017-04-06

Family

ID=58422862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077683 WO2017056216A1 (ja) 2015-09-30 2015-09-30 音声信号生成装置、音声信号生成方法、及び、プログラム

Country Status (2)

Country Link
JP (1) JP6603725B2 (ja)
WO (1) WO2017056216A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286014A (ja) * 1987-05-19 1988-11-22 Matsushita Electric Ind Co Ltd オ−ディオアンプの聴感補正回路
US6885752B1 (en) * 1994-07-08 2005-04-26 Brigham Young University Hearing aid device incorporating signal processing techniques
JP2006340328A (ja) * 2005-06-06 2006-12-14 Yamaha Corp 音質調整装置
JP2009111538A (ja) * 2007-10-29 2009-05-21 Clarion Co Ltd 聴覚感度補正装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286014A (ja) * 1987-05-19 1988-11-22 Matsushita Electric Ind Co Ltd オ−ディオアンプの聴感補正回路
US6885752B1 (en) * 1994-07-08 2005-04-26 Brigham Young University Hearing aid device incorporating signal processing techniques
JP2006340328A (ja) * 2005-06-06 2006-12-14 Yamaha Corp 音質調整装置
JP2009111538A (ja) * 2007-10-29 2009-05-21 Clarion Co Ltd 聴覚感度補正装置

Also Published As

Publication number Publication date
JPWO2017056216A1 (ja) 2018-06-21
JP6603725B2 (ja) 2019-11-06

Similar Documents

Publication Publication Date Title
KR101310231B1 (ko) 저음 증강 장치 및 방법
JP6177798B2 (ja) バスエンハンスメントシステム
JP5898534B2 (ja) 音響信号処理装置および音響信号処理方法
EP1915026B1 (en) Audio reproducing apparatus and corresponding method
US9014397B2 (en) Signal processing device and signal processing method
US20110002467A1 (en) Dynamic enhancement of audio signals
JP2012151767A (ja) オーディオ信号処理装置およびオーディオアンプ
JP4983694B2 (ja) 音声再生装置
JPWO2009004718A1 (ja) 楽音強調装置、楽音強調方法、楽音強調プログラムおよび記録媒体
KR20080063647A (ko) 오디오 신호의 저주파 및 중주파 성분 보강 방법 및 그장치
US20070127731A1 (en) Selective audio signal enhancement
JP5052460B2 (ja) 音量制御装置
JP6603725B2 (ja) 音声信号生成装置、音声信号生成方法、及び、プログラム
JP2006324786A (ja) 音響信号処理装置およびその方法
JP5268581B2 (ja) 低域補完装置
JP5958378B2 (ja) 音声信号処理装置、音声信号処理装置の制御方法およびプログラム
JP5202021B2 (ja) 音声信号変換装置、音声信号変換方法、制御プログラム、および、コンピュータ読み取り可能な記録媒体
JP6155132B2 (ja) 低域補完装置および低域補完方法
JP2012147179A (ja) 低音増強装置、低音増強方法及びコンピュータプログラム
JP4803193B2 (ja) オーディオ信号の利得制御装置および利得制御方法
JP6213701B1 (ja) 音響信号処理装置
JP6205758B2 (ja) 音響装置、音響装置の制御方法およびプログラム
JP5145733B2 (ja) 音声信号処理装置および音声信号処理方法ならびにプログラム
US20140098651A1 (en) Recording apparatus with mastering function
JP6226166B2 (ja) 音響再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905370

Country of ref document: EP

Kind code of ref document: A1