WO2017054700A1 - 火灾监测方法和装置 - Google Patents

火灾监测方法和装置 Download PDF

Info

Publication number
WO2017054700A1
WO2017054700A1 PCT/CN2016/100303 CN2016100303W WO2017054700A1 WO 2017054700 A1 WO2017054700 A1 WO 2017054700A1 CN 2016100303 W CN2016100303 W CN 2016100303W WO 2017054700 A1 WO2017054700 A1 WO 2017054700A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitored
area
monitoring
detecting device
infrared detecting
Prior art date
Application number
PCT/CN2016/100303
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
周文龙
周飞
姚晓晖
吴星辉
Original Assignee
东莞前沿技术研究院
深圳光启空间技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞前沿技术研究院, 深圳光启空间技术有限公司 filed Critical 东莞前沿技术研究院
Priority to EP16850324.1A priority Critical patent/EP3309762A4/en
Publication of WO2017054700A1 publication Critical patent/WO2017054700A1/zh
Priority to US15/836,868 priority patent/US20180102034A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/005Fire alarms; Alarms responsive to explosion for forest fires, e.g. detecting fires spread over a large or outdoors area
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/02Fire prevention, containment or extinguishing specially adapted for particular objects or places for area conflagrations, e.g. forest fires, subterranean fires
    • A62C3/0271Detection of area conflagration fires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K11/00Methods or arrangements for graph-reading or for converting the pattern of mechanical parameters, e.g. force or presence, into electrical signal
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke

Definitions

  • the present invention relates to the field of monitoring, and in particular to a fire detecting method and apparatus.
  • the artificial observation platform is used to monitor the forest conditions in the predetermined area.
  • the manual monitoring method is ineffective and the accuracy is low.
  • the fire monitoring method currently used in the prior art is affected by various objective factors, and it is not only impossible to obtain the monitoring situation of the predetermined area, and the fire cannot be found in the fire; and the accuracy of the fire monitoring It is also low, and it is impossible to accurately locate the fire address, resulting in the inability to obtain and control the fire, which may cause irreparable damage.
  • Embodiments of the present invention provide a fire monitoring method and apparatus to solve at least the technical problem of low monitoring accuracy caused by using existing fire monitoring methods.
  • a fire monitoring method including: acquiring an infrared image captured by an infrared detecting device on an aerostat to be monitored, wherein the infrared image displays different The color corresponds to a different temperature; judged according to the color displayed in the above infrared image Whether the difference between the temperatures corresponding to the adjacent areas in the infrared image is greater than a predetermined threshold; if it is determined that the difference between the temperatures corresponding to the adjacent areas is greater than the predetermined threshold, the fire alarm information is sent to the receiving device The fire alarm information is used to indicate that a fire occurs in the area to be monitored.
  • the method before acquiring the infrared image captured by the infrared detecting device on the aerostat to be monitored, the method further includes: acquiring a monitoring parameter, where the monitoring parameter includes at least: The above-mentioned infrared detecting device is driven to a position and an angle corresponding to the area to be monitored, wherein the position and the angle are used to cause the infrared detecting device to include the area to be monitored in the framing picture of the shooting frame.
  • the monitoring parameter further includes: at least the monitoring inter-segment segment and the monitoring period on the area to be monitored; and acquiring the infrared image obtained by the infrared detecting device located on the aerostat to be monitored, including: Obtaining, in the monitoring interval, the infrared image obtained by the infrared detecting device on the area to be monitored every predetermined monitoring period.
  • sending the fire alarm information to the receiving device further comprising: transmitting location information for indicating the location of the to-be-monitored area to the receiving device.
  • the method Before transmitting the location information for indicating the location of the to-be-monitored area to the receiving device, the method further includes: acquiring a current location and a current angle of the infrared detecting device; acquiring the foregoing according to the current location and the current angle of the infrared detecting device. Location information indicating the location of the above-mentioned area to be monitored
  • the infrared detecting device is an infrared detecting camera.
  • a fire monitoring apparatus including: a first acquiring unit, configured to acquire an infrared image captured by an infrared detecting device located on a floating device to be monitored, The different colors displayed in the infrared image correspond to different temperatures; and the determining unit is configured to determine, according to the color displayed in the infrared image, whether a difference between temperatures corresponding to adjacent regions in the infrared image is greater than a predetermined threshold; a first sending unit, configured to send the fire alarm information to the receiving device, where the difference between the temperatures corresponding to the adjacent areas is greater than the predetermined threshold, wherein the fire alarm information is used to indicate the area to be monitored A fire has occurred.
  • a second acquiring unit is configured to acquire an infrared detecting device to be monitored on the floating device Obtaining a monitoring parameter, wherein the monitoring parameter includes at least: a parameter for indicating the area to be monitored; and a driving unit, configured to drive the infrared detecting device to a position corresponding to the area to be monitored And an angle, wherein the position and the angle are used to cause the infrared detecting device to include the area to be monitored in the viewfinder frame of the shooting frame.
  • the foregoing monitoring parameter further includes: the monitoring inter-segment segment and the monitoring period on the area to be monitored; the first acquiring unit includes: an acquiring module, configured to acquire the infrared in the monitoring inter-segment The detecting device images the infrared image obtained by shooting the area to be monitored every predetermined monitoring period.
  • the method further includes: sending, by the first sending unit, the fire alarm information to the receiving device, and transmitting the location information for indicating the location of the to-be-monitored area to the receiving device.
  • the method further includes: a third acquiring unit, configured to: after determining that a difference between temperatures corresponding to the adjacent areas is greater than the predetermined threshold, in a position to be used to indicate the area to be monitored Before the location information is sent to the receiving device, the current location and the current angle of the infrared detecting device are obtained.
  • the fourth acquiring unit is configured to acquire the location for indicating the to-be-monitored region according to the current location and the current angle of the infrared detecting device. Location information.
  • the infrared detecting device is an infrared detecting camera or other device capable of converting an incident infrared radiation signal into an electrical signal output.
  • a floating device is disposed on the area to be monitored, and an infrared image captured by the infrared detecting device on the aerostat to be monitored is obtained, wherein different colors displayed on the infrared image are different. Further, determining whether a difference between temperatures corresponding to adjacent regions in the infrared image is greater than a predetermined threshold according to a color displayed in the infrared image, and determining that a difference between temperatures corresponding to the adjacent regions is greater than a predetermined value The threshold ⁇ sends the fire alarm information to the receiving device, where the alarm information is used to indicate that a fire occurs on the area to be monitored.
  • FIG. 1 is a flow chart of an alternative fire monitoring method in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an area to be detected in an optional fire monitoring method according to an embodiment of the present invention
  • FIG. 3(a) is an optional acquisition of a fire according to an embodiment of the present invention
  • FIG. 3(b) is a schematic diagram showing another alternative location for obtaining a fire according to an embodiment of the present invention.
  • FIG. 4 is an alternative fire monitoring according to an embodiment of the present invention. Schematic diagram of the device.
  • an embodiment of a fire monitoring method is provided, it being noted that the steps illustrated in the flowchart of the figures may be performed in a computer system such as a set of computer executable instructions And, although the logical order is shown in the flowcharts, in some cases, the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 1 provides an embodiment of a fire monitoring method. As shown in FIG. 1, the method includes the following steps:
  • S102 acquiring an infrared image captured by an infrared detecting device located on the aerostat to be monitored, wherein different colors displayed in the infrared image correspond to different temperatures;
  • S104 Determine, according to the color displayed in the infrared image, whether a difference between temperatures corresponding to adjacent regions in the infrared image is greater than a predetermined threshold
  • the fire monitoring method may be, but is not limited to, applied to a forest fire monitoring process, and a floating device is disposed on the forest area to be monitored to obtain infrared detection on the aerostat.
  • the infrared image captured by the device to be monitored in the forest area wherein different colors displayed on the infrared image correspond to different temperatures; further, the difference between the temperatures corresponding to the adjacent regions in the infrared image is determined according to the color displayed in the infrared image If the value is greater than the predetermined threshold, and the difference between the temperatures corresponding to the adjacent areas is greater than the predetermined threshold, the fire alarm information is sent to the receiving device, where the alarm information is used to indicate the forest area to be monitored. Fire.
  • the aerostat may include, but is not limited to, the following: an airship, a balloon, and a drone.
  • one or more aerostats may be disposed above the area to be monitored. The above is only an example, and the embodiment does not limit this.
  • a fire monitoring method is provided, and an infrared image is taken by using an infrared detecting device located in the aerostat above the area to be monitored, according to The temperature corresponding to the color on the infrared image determines whether the fire is detected in the area to be monitored, and then sends a corresponding fire alarm.
  • the temperature of the area where the fire occurs is greatly increased compared to the temperature of the adjacent area,
  • it is determined whether a fire occurs in the monitoring area by determining whether the difference between the temperatures corresponding to the colors of the adjacent areas is greater than a predetermined threshold. For example, as shown in Figure 2, the color in area A is compared to the adjacent area.
  • the area B-area D shown in Fig. 2 has a darker color (shaded as shown in the figure), wherein the temperature a corresponding to the area A is compared with the temperature of the adjacent area, for example, the area B-area D corresponds The temperature is respectively the temperature 15, the temperature c and the temperature d. After comparison, the difference between the temperature a corresponding to the area A and the temperature corresponding to the adjacent area (the area B-area D as shown in FIG. 2) is greater than a predetermined threshold. Therefore, it can be judged that a fire has occurred in the above area A.
  • the above is only an example, and is not limited in this embodiment.
  • the method may further include, but is not limited to: according to the acquired to-be-monitored region.
  • the monitoring parameter drives the infrared detecting device to a position and an angle corresponding to the area to be monitored.
  • the infrared detecting device can adjust the position and angle of the infrared detecting device according to the monitoring parameter of the area to be monitored acquired, for example, the position information of the area to be monitored, so that the infrared detecting device adjusts the position and angle.
  • the area to be monitored to achieve accurate monitoring of the area to be monitored.
  • the infrared detecting device is an infrared detecting camera.
  • the camera of the above infrared detecting camera can be rotated, thereby facilitating the expansion of the monitoring range of the infrared detecting device of the aerostat at a predetermined position.
  • the camera of an infrared detector camera can achieve 360 in the horizontal plane.
  • the omnidirectional rotation is used to expand the coverage of the coverage, so that it is easy to monitor and obtain the viewfinder image in the area to be monitored at different positions in different directions.
  • the foregoing monitoring parameters may include, but are not limited to: parameters for indicating a region to be monitored, a monitoring interval on the area to be monitored, and a monitoring period. That is to say, in the embodiment, the above-mentioned monitoring area to be monitored by the infrared detecting device on the aerostat is used, and the infrared detecting device can be driven not only according to the parameters of the area to be monitored (for example, the position information of the area to be monitored).
  • different monitoring sections correspond to different monitoring periods, wherein the infrared detecting device monitors every scheduled period in the monitoring section Periodically take an infrared image of the monitoring area.
  • the method further includes: acquiring a current position and a current angle of the infrared detecting device on the aerostat, and further calculating an address of the fire area, It is easy and accurate to send fire alarm information.
  • the current position of the infrared detecting device can be It is not limited to the current position of the aerostat.
  • the latitude and longitude of the aerostat (such as the aerostat 302 shown in FIG. 3) can be obtained by GPS (the latitude is X and the longitude is Y as shown in FIG. 3(a)), and the float can be obtained by the altimeter.
  • the empty device the aerostat 302 shown in FIG.
  • the infrared detecting device on the aerostat can be obtained through the current position of the aerostat.
  • the current location can also be obtained, wherein the current angle of the infrared detecting device can include, but is not limited to: a rotation angle and a pitch angle, and the actual area currently detected by the infrared detecting device can be calculated by calculation (for example , the location of the fire).
  • the pitch angle may be, but is not limited to, an angle between an extension line of the infrared detecting device detecting the eye and a vertical line perpendicular to the ground;
  • the rotation angle may be, but not limited to, the infrared detecting device detecting the extension line of the eye relative to the latitude or longitude. Corner.
  • the pitch angle is ot
  • the angle of rotation shown in Fig. 3 (b) is the angle ⁇ with respect to the longitude.
  • a floating device is disposed on the area to be monitored, and an infrared image captured by the infrared detecting device on the aerostat to be monitored is obtained, wherein different colors displayed on the infrared image correspond to a different temperature; further, determining, according to the color displayed in the infrared image, whether a difference between temperatures corresponding to adjacent regions in the infrared image is greater than a predetermined threshold, and determining that a difference between temperatures corresponding to the adjacent regions is greater than The predetermined threshold ⁇ , the fire alarm information is sent to the receiving device, wherein the alarm information is used to indicate that a fire occurs on the area to be monitored.
  • the infrared detecting device on the aerostat Through the above-mentioned monitoring of the area to be tested by the infrared detecting device on the aerostat, it is possible not only to realize whether or not a fire occurs in the monitoring area, so that the monitoring process is no longer limited by the monitoring distance; and because of the color change on the infrared image and ⁇ Accurate, so the temperature corresponding to the above color is used to judge whether a fire occurs, and the accuracy of the fire monitoring is further ensured, thereby overcoming the problem of low monitoring accuracy caused by the long monitoring distance in the prior art.
  • the method before acquiring the infrared image captured by the infrared detecting device on the aerostat to be monitored, the method further includes:
  • S1 obtaining a monitoring parameter, where the monitoring parameter at least includes: a parameter for indicating an area to be monitored; [0045] S2, driving the infrared detecting device to a position and an angle corresponding to the area to be monitored, where the position And the angle is used to cause the infrared detecting device to include an area to be monitored in the view screen of the shooting frame.
  • the parameters for the area to be monitored in the foregoing monitoring parameters may include but not Limited to the location information of the area to be monitored. Further, according to the obtained monitoring parameters, the infrared monitoring device is driven to adjust the position and the angle, so that the infrared monitoring device can be aligned with the area to be monitored, and then the monitoring screen information of the area to be monitored is obtained.
  • the aerostat is located directly above the area A, and the infrared detecting device (for example, the infrared detecting camera) on the aerostat is facing the area A directly below
  • the current monitoring parameter obtained by the engraving indicates that the area to be monitored is area B, in this example, the position and angle of the infrared detecting camera can be driven to make the infrared detecting camera face the area B in the northwest direction, so that the infrared detecting camera
  • the framing screen for shooting ⁇ includes the area to be monitored ⁇
  • the change of the infrared detecting device is driven according to different areas to be monitored, which may be, but is not limited to, adjusted according to different application scenarios, which is not limited herein.
  • the framing picture includes the area to be monitored, thereby realizing and adjusting the monitoring range of the infrared detecting device according to different areas to be monitored, thereby achieving the purpose of accurately obtaining the monitoring result, and avoiding irreparable loss caused by the inability to accurately detect the fire.
  • the monitoring parameter further includes: a monitoring inter-segment segment and a monitoring period on the area to be monitored; and acquiring an infrared image of the infrared detecting device located on the aerostat to be monitored in the area to be monitored includes:
  • different monitoring modes may be selected for different to-be-monitored areas, that is, infrared images are captured through different monitoring periods in different monitoring sections.
  • the monitoring range that the infrared detecting device (ie, the infrared detecting camera) in the aerostat can cover is the area A-area D.
  • the infrared is assumed.
  • the detection camera is driven in the opposite direction B from 8:0 to 10:00, and the monitoring period is 10 minutes. That is to say, at 8:0-1 0:00, the infrared detection camera will shoot the infrared every 10 minutes for the area B. Image to monitor if there is a fire in area B.
  • the infrared detection camera is driven to the opposite area A at 10:00-12: 00, since the area A is a fire-prone area, the monitoring period is 5 minutes, that is, the infrared detection phase at 10:00-12: 00
  • the machine will take an infrared image every 5 minutes for Area A to monitor for a fire in Area A.
  • the monitoring manners of other areas are similar, and are not described herein again in this embodiment.
  • the infrared image captured by the infrared detecting device in the monitoring area every predetermined monitoring period is selected in the corresponding monitoring section to realize flexible monitoring of the monitoring area by the infrared detecting device in the aerostat. Further, by flexibly adjusting the monitoring interval and the monitoring period, not only the monitoring accuracy is ensured, but also the fire is discovered and discovered; and the accuracy of the monitoring is further ensured by flexibly adjusting the monitoring interval and the monitoring period.
  • the method further includes:
  • Sl sending location information for indicating a location of the to-be-monitored area to the receiving device.
  • the foregoing receiving device may include, but is not limited to, a terminal, such as a mobile phone, a tablet, a notebook, and the like.
  • the alarm information is sent to the terminal that is easy to carry by the monitor, and the monitoring accuracy and accuracy are further ensured.
  • S2. Acquire location information indicating a location of the to-be-monitored area according to the current location and the current angle of the infrared detecting device.
  • FIG. 3 (a) - (b) is a schematic diagram of obtaining the location of the fire
  • the current position of the infrared detecting device is ( ⁇ , ⁇ , ⁇ ), wherein, ⁇ , ⁇ , ⁇ They are used to indicate the current longitude, latitude and altitude respectively.
  • the current pitch angle (as shown) is the current corner (as shown in the figure with respect to longitude) is ⁇ .
  • the actual detected fire location can be obtained by the following calculation ( ⁇ ', ⁇ ') :
  • an embodiment of a fire monitoring device is provided. As shown in FIG. 4, the device includes:
  • a first acquiring unit 402 configured to acquire an infrared image captured by an infrared detecting device located on the aerostat to be monitored, wherein different colors displayed in the infrared image correspond to different temperatures;
  • determining unit 404 configured to determine, according to the color displayed in the infrared image, whether a difference between temperatures corresponding to adjacent regions in the infrared image is greater than a predetermined threshold
  • the first sending unit 406 is configured to: after determining that the difference between the temperatures corresponding to the adjacent areas is greater than a predetermined threshold, send the fire alarm information to the receiving device, where the fire alarm information is used to indicate that A fire has occurred in the monitored area.
  • the fire monitoring device may be, but is not limited to, applied to a forest fire monitoring process, and a floating device is disposed on the forest area to be monitored to obtain infrared detection on the aerostat.
  • the infrared image captured by the device to be monitored in the forest area wherein different colors displayed on the infrared image correspond to different temperatures; further, the difference between the temperatures corresponding to the adjacent regions in the infrared image is determined according to the color displayed in the infrared image If the value is greater than the predetermined threshold, and the difference between the temperatures corresponding to the adjacent areas is greater than the predetermined threshold, the fire alarm information is sent to the receiving device, where the alarm information is used to indicate the forest area to be monitored. Fire.
  • the aerostat may include, but is not limited to, the following: an airship, a balloon, and a drone.
  • one or more aerostats may be disposed above the area to be monitored. The above is only an example, and the embodiment does not limit this.
  • a fire monitoring device which is located to be monitored
  • the infrared detecting device in the aerostat above the area captures an infrared image, and determines whether the fire is detected in the area to be monitored according to the temperature corresponding to the color on the infrared image, and then sends a corresponding fire alarm.
  • the temperature of the region where the fire occurs is greatly increased compared to the temperature of the adjacent region, it is determined by determining whether the difference between the temperatures corresponding to the colors of the adjacent regions is greater than a predetermined threshold.
  • Check for fires in the area For example, as shown in Figure 2, the color in area A is compared to the adjacent area.
  • the area B-area D shown in Fig. 2 has a darker color (shaded as shown in the figure), wherein the temperature a corresponding to the area A is compared with the temperature of the adjacent area, for example, the area B-area D corresponds The temperature is respectively the temperature 15, the temperature c and the temperature d. After comparison, the difference between the temperature a corresponding to the area A and the temperature corresponding to the adjacent area (the area B-area D as shown in FIG. 2) is greater than a predetermined threshold. Therefore, it can be judged that a fire has occurred in the above area A.
  • the above is only an example, and is not limited in this embodiment.
  • the device before acquiring the infrared image captured by the infrared detecting device on the aerostat to be monitored, the device may further include, but is not limited to: a driving unit, configured to acquire The monitoring parameters of the to-be-monitored area to be driven drive the above-mentioned infrared detecting device to a position and an angle corresponding to the area to be monitored.
  • the infrared detecting device can adjust the position and angle of the infrared detecting device according to the monitoring parameter of the area to be monitored acquired, for example, the position information of the area to be monitored, so that the infrared detecting device adjusts the position and angle.
  • the area to be monitored to achieve accurate monitoring of the area to be monitored.
  • the infrared detecting device is an infrared detecting camera.
  • the camera of the above infrared detecting camera can be rotated, thereby facilitating the expansion of the monitoring range of the infrared detecting device of the aerostat at a predetermined position.
  • the camera of an infrared detector camera can achieve 360 in the horizontal plane.
  • the omnidirectional rotation is used to expand the coverage of the coverage, so that it is easy to monitor and obtain the viewfinder image in the area to be monitored at different positions in different directions.
  • the foregoing monitoring parameters may include, but are not limited to: parameters for indicating an area to be monitored, a monitoring interval on the area to be monitored, and a monitoring period. That is to say, in the embodiment, the above-mentioned monitoring area to be monitored by the infrared detecting device on the aerostat is used, and the infrared detecting device can be driven not only according to the parameters of the area to be monitored (for example, the position information of the area to be monitored).
  • different monitoring intervals correspond to different monitoring periods, wherein the infrared detecting device takes an infrared image of the monitoring area every predetermined monitoring period in the monitoring interval.
  • the method further includes: acquiring a current position and a current angle of the infrared detecting device on the aerostat, and further calculating an address of the fire area, It is easy and accurate to send fire alarm information.
  • the current position of the infrared detecting device may be, but is not limited to, the current position of the aerostat.
  • the latitude and longitude of the aerostat (such as the aerostat 302 shown in FIG. 3) can be obtained by GPS (the latitude is X and the longitude is Y as shown in FIG. 3(a)), and the float can be obtained by the altimeter.
  • the empty device (the aerostat 302 shown in FIG.
  • the infrared detecting device on the aerostat can be obtained through the current position of the aerostat.
  • the current location can also be obtained, wherein the current angle of the infrared detecting device can include, but is not limited to: a rotation angle and a pitch angle, and the actual area currently detected by the infrared detecting device can be calculated by calculation (for example , the location of the fire).
  • the pitch angle may be, but is not limited to, an angle between an extension line of the infrared detecting device detecting the eye and a vertical line perpendicular to the ground;
  • the rotation angle may be, but not limited to, the infrared detecting device detecting the extension line of the eye relative to the latitude or longitude. Corner.
  • the pitch angle is ot
  • the angle of rotation shown in Figure 3 (b) is the angle ⁇ relative to the longitude.
  • a floating device is disposed on the area to be monitored, and an infrared image captured by the infrared detecting device on the aerostat to be monitored is obtained, wherein different colors displayed on the infrared image correspond to a different temperature; further, determining, according to the color displayed in the infrared image, whether a difference between temperatures corresponding to adjacent regions in the infrared image is greater than a predetermined threshold, and determining that a difference between temperatures corresponding to the adjacent regions is greater than The predetermined threshold ⁇ , the fire alarm information is sent to the receiving device, wherein the alarm information is used to indicate that a fire occurs on the area to be monitored.
  • the infrared detecting device on the aerostat Through the above-mentioned monitoring of the area to be tested by the infrared detecting device on the aerostat, it is possible not only to realize whether or not a fire occurs in the monitoring area, so that the monitoring process is no longer limited by the monitoring distance; and because of the color change on the infrared image and ⁇ Accurate, so the temperature corresponding to the above color is used to judge whether a fire occurs, and the accuracy of the fire monitoring is further ensured, thereby overcoming the problem of low monitoring accuracy caused by the long monitoring distance in the prior art.
  • the foregoing apparatus further includes: [0083] 1) a second obtaining unit, configured to acquire a monitoring parameter before acquiring an infrared image captured by the infrared detecting device on the aerostat to be monitored, wherein the monitoring parameter at least includes: Parameter
  • a driving unit configured to drive the infrared detecting device to a position and an angle corresponding to the area to be monitored, wherein the position and the angle are used to cause the infrared detecting device to include the to-be-monitored area in the viewfinder frame of the shooting target
  • the parameters for the to-be-monitored area in the foregoing monitoring parameters may include, but are not limited to, location information of the area to be monitored. Further, according to the obtained monitoring parameters, the infrared monitoring device is driven to adjust the position and the angle, so that the infrared monitoring device can be aligned with the area to be monitored, and then the monitoring screen information of the area to be monitored is obtained.
  • the aerostat is located directly above the area A, and the infrared detecting device (for example, the infrared detecting camera) on the aerostat is facing the area A directly below
  • the current monitoring parameter obtained by the engraving indicates that the area to be monitored is area B, in this example, the position and angle of the infrared detecting camera can be driven to make the infrared detecting camera face the area B in the northwest direction, so that the infrared detecting camera
  • the framing screen for shooting ⁇ includes the area to be monitored ⁇
  • the change of the infrared detecting device is driven according to different areas to be monitored, which may be, but is not limited to, adjusted according to different application scenarios, which is not limited herein.
  • the framing picture includes the area to be monitored, thereby realizing and adjusting the monitoring range of the infrared detecting device according to different areas to be monitored, thereby achieving the purpose of accurately obtaining the monitoring result, and avoiding irreparable loss caused by the inability to accurately detect the fire.
  • the monitoring parameter further includes: a monitoring interval and a monitoring period on the area to be monitored; and the first acquiring unit includes:
  • an obtaining module configured to acquire, in the monitoring inter-segment, an infrared image captured by the infrared detecting device for the monitoring area every predetermined monitoring period.
  • different monitoring modes may be selected for different to-be-monitored areas, that is, infrared images are captured through different monitoring periods in different monitoring intervals.
  • the monitoring range that the infrared detecting device (ie, the infrared detecting camera) in the aerostat can cover is the area A-area D.
  • the infrared is assumed.
  • the probe camera is driven to the opposite zone B at 8:0 - 10:00, and the monitoring period is 10 minutes. That is, the infrared detector will take an infrared image every 10 minutes for the zone B at 8:00 - 10:00.
  • the infrared detection camera is driven to the opposite area A at 10:00-12: 00, since the area A is a fire-prone area, the monitoring period is 5 minutes, that is, the infrared detection camera at 10:00-12: 00 An infrared image will be taken every 5 minutes for area A to monitor for fire in area A.
  • the monitoring manners of other areas are similar, and are not described herein again in this embodiment.
  • the image thus enables flexible monitoring of the area to be monitored by means of an infrared detector in the aerostat. Further, by flexibly adjusting the monitoring interval and the monitoring period, not only the monitoring accuracy is ensured, but also the fire is discovered and discovered; and the accuracy of the monitoring is further ensured by flexibly adjusting the monitoring interval and the monitoring period.
  • the foregoing apparatus further includes:
  • the first sending unit is configured to send the fire alarm information to the receiving device, and send the location information for indicating the location of the to-be-monitored area to the receiving device.
  • the foregoing receiving device may include, but is not limited to, a terminal, such as a mobile phone, a tablet, a notebook, and the like.
  • the alarm information is sent to the terminal that is easy to carry by the monitor, and the monitoring accuracy and accuracy are further ensured.
  • the foregoing apparatus further includes:
  • a third obtaining unit configured to: before determining that the difference between the temperatures corresponding to the adjacent areas is greater than a predetermined threshold, before sending the location information for indicating the location of the area to be monitored to the receiving device, Obtaining a current position and a current angle of the infrared detecting device;
  • the fourth acquiring unit is configured to acquire location information for indicating a location of the to-be-monitored area according to the current location and the current angle of the infrared detecting device.
  • FIG. 3 (a) - (b) a schematic diagram for obtaining the location of the fire.
  • the current position of the infrared detecting device is ( ⁇ , ⁇ , ⁇ ), where ⁇ , ⁇ , ⁇ are respectively used to indicate the current longitude, Latitude and altitude, the current pitch angle (as shown) is the current corner (as shown in the figure with respect to longitude)
  • the disclosed technical content may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • the actual implementation may have another division manner.
  • multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the unit described as a separate component may or may not be physically distributed, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place, or may be distributed to multiple On the unit. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiment of the present embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. Realized.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods of the various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a read only memory (ROM, Read-Only)
  • RAM Random Access Memory
  • removable hard disk disk or optical disk, and other media that can store program code.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Artificial Intelligence (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

一种火灾监测方法和装置,方法包括:获取位于浮空器上的红外探测装置对待监测区域拍摄得到的红外图像,其中,红外图像中显示的不同颜色对应不同的温度(S102);根据红外图像中显示的颜色判断红外图像中的相邻区域对应的温度之间的差值是否大于预定阈值(S104);若判断出相邻区域对应的温度之间的差值大于预定阈值,则将火灾告警信息发送到接收设备,其中,火灾告警信息用于指示待监测区域出现火灾(S106)。该方法解决了采用现有的火灾监测方法所导致的监测准确性较低的技术问题。

Description

说明书 发明名称: W應 禾
技术领域
[0001] 本发明涉及涉及监控领域, 具体而言, 涉及一种火灾检测方法和装置。
背景技术
[0002] 由于森林的覆盖面积较大, 监控难度较大, 因而如何实现对森林进行实吋观测 , 以避免森林火灾成为监控领域目前关注的重点与难点。 目前现有技术常用的 方式包括如下几种:
[0003] 1、 通过人工瞭望台来对预定区域的森林情况进行监控, 然而, 采用这种人工 监控的方式吋效性较差, 而且准确率也较低。 如果发生森林火灾, 采用这种人 工瞭望的方式是很难掌握火场的精确地址和火情形势的。
[0004] 2、 利用卫星遥感来监控森林情况, 虽然这种方式不会受烟幕影响, 能见度较 高, 但由于卫星会按照预定轨道围绕地球转动, 因而, 导致无法对预定区域的 森林情况实现连续监测, 且分辨率较低。
技术问题
[0005] 也就是说, 目前现有技术所采用的火灾监测方法由于受到各种客观因素影响, 不仅无法实吋获取预定区域的监测情况, 导致无法及吋发现火灾; 而且对火灾 监测的准确性也较低, 无法准确定位火灾地址, 从而导致火势无法得到及吋控 制, 进而可能造成不可挽回的损失。
[0006] 针对上述的问题, 目前尚未提出有效的解决方案。
问题的解决方案
技术解决方案
[0007] 本发明实施例提供了一种火灾监测方法和装置, 以至少解决采用现有的火灾监 测方法所导致的监测准确性较低的技术问题。
[0008] 根据本发明实施例的一个方面, 提供了一种火灾监测方法, 包括: 获取位于浮 空器上的红外探测装置对待监测区域拍摄得到的红外图像, 其中, 上述红外图 像中显示的不同颜色对应不同的温度; 根据上述红外图像中显示的颜色判断上 述红外图像中的相邻区域对应的温度之间的差值是否大于预定阈值; 若判断出 上述相邻区域对应的温度之间的差值大于上述预定阈值, 则将火灾告警信息发 送到接收设备, 其中, 上述火灾告警信息用于指示上述待监测区域出现火灾。
[0009] 可选地, 在获取位于浮空器上的红外探测装置对待监测区域拍摄得到的红外图 像之前, 还包括: 获取监测参数, 其中, 上述监测参数至少包括: 用于指示上 述待监测区域的参数; 将上述红外探测装置驱动到与上述待监测区域对应的位 置和角度, 其中, 上述位置和角度用于使得红外探测装置在拍摄吋的取景画面 包括上述待监测区域。
[0010] 可选地, 上述监测参数至少还包括: 上述待监测区域上的监测吋间段和监测周 期; 上述获取位于浮空器上的红外探测装置对待监测区域拍摄得到的红外图像 包括: 在上述监测吋间段内获取上述红外探测装置每隔预定监测周期对上述待 监测区域拍摄得到的上述红外图像。
[0011] 可选地, 将火灾告警信息发送到接收设备吋, 还包括: 将用于指示上述待监测 区域的位置的位置信息发送到上述接收设备。
[0012] 可选地, 在判断出上述相邻区域对应的温度之间的差值大于上述预定阈值之后
, 在将用于指示上述待监测区域的位置的位置信息发送到上述接收设备之前, 还包括: 获取上述红外探测装置的当前位置和当前角度; 根据上述红外探测装 置的当前位置和当前角度获取上述用于指示上述待监测区域的位置的位置信息
[0013] 可选地, 上述红外探测装置为红外探测相机。
[0014] 根据本发明实施例的另一方面, 还提供了一种火灾监测装置, 包括: 第一获取 单元, 用于获取位于浮空器上的红外探测装置对待监测区域拍摄得到的红外图 像, 其中, 上述红外图像中显示的不同颜色对应不同的温度; 判断单元, 用于 根据上述红外图像中显示的颜色判断上述红外图像中的相邻区域对应的温度之 间的差值是否大于预定阈值; 第一发送单元, 用于在判断出上述相邻区域对应 的温度之间的差值大于上述预定阈值吋, 将火灾告警信息发送到接收设备, 其 中, 上述火灾告警信息用于指示上述待监测区域出现火灾。
[0015] 可选地: 第二获取单元, 用于在获取位于浮空器上的红外探测装置对待监测区 域拍摄得到的红外图像之前, 获取监测参数, 其中, 上述监测参数至少包括: 用于指示上述待监测区域的参数; 驱动单元, 用于将上述红外探测装置驱动到 与上述待监测区域对应的位置和角度, 其中, 上述位置和角度用于使得红外探 测装置在拍摄吋的取景画面包括上述待监测区域。
[0016] 可选地, 上述监测参数至少还包括: 上述待监测区域上的监测吋间段和监测周 期; 上述第一获取单元包括: 获取模块, 用于在上述监测吋间段内获取上述红 外探测装置每隔预定监测周期对上述待监测区域拍摄得到的上述红外图像。
[0017] 可选地, 还包括: 第一发送单元, 用于将火灾告警信息发送到接收设备吋, 将 用于指示上述待监测区域的位置的位置信息发送到上述接收设备。
[0018] 可选地, 还包括: 第三获取单元, 用于在判断出上述相邻区域对应的温度之间 的差值大于上述预定阈值之后, 在将用于指示上述待监测区域的位置的位置信 息发送到上述接收设备之前, 获取上述红外探测装置的当前位置和当前角度; 第四获取单元, 用于根据上述红外探测装置的当前位置和当前角度获取上述用 于指示上述待监测区域的位置的位置信息。
[0019] 可选地, 上述红外探测装置为红外探测相机或者是其它能够将入射的红外辐射 信号转变成电信号输出的器件。
发明的有益效果
有益效果
[0020] 在本发明实施例中, 在待监测区域上设置浮空器, 获取上述浮空器上的红外探 测装置对待监测区域拍摄得到的红外图像, 其中, 红外图像上显示的不同颜色 对应不同的温度; 进一步, 根据红外图像中显示的颜色判断红外图像中的相邻 区域对应的温度之间的差值是否大于预定阈值, 并在判断出相邻区域对应的温 度之间的差值大于预定阈值吋, 将火灾告警信息发送到接收设备, 其中, 上述 告警信息用于指示待监测区域上出现火灾。 通过上述浮空器上的红外探测装置 对待测区域的监测, 不仅可以实现实吋判断监测区域内是否出现火灾, 以使监 测过程不再受监测距离的限制; 而且由于红外图像上的颜色变化及吋准确, 因 而利用与上述颜色对应的温度来判断是否出现火灾, 进一步保证了火灾监测的 准确性, 从而克服现有技术中监测距离较远所导致的监测准确性较低的问题。 对附图的简要说明
附图说明
[0021] 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本 发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定 。 在附图中:
[0022] 图 1是根据本发明实施例的一种可选的火灾监测方法的流程图;
[0023] 图 2是根据本发明实施例的一种可选的火灾监测方法中待检测区域的示意图; [0024] 图 3 (a) 是根据本发明实施例的一种可选的获取火灾所在位置的示意图; [0025] 图 3 (b) 是根据本发明实施例的另一种可选的获取火灾所在位置的示意图 [0026] 图 4是根据本发明实施例的一种可选的火灾监测装置的示意图。
本发明的实施方式
[0027] 为了使本技术领域的人员更好地理解本发明方案, 下面将结合本发明实施例中 的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述 的实施例仅仅是本发明一部分的实施例, 而不是全部的实施例。 基于本发明中 的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例, 都应当属于本发明保护的范围。
[0028] 需要说明的是, 本发明的说明书和权利要求书及上述附图中的术语"第一"、 " 第二"等是用于区别类似的对象, 而不必用于描述特定的顺序或先后次序。 应该 理解这样使用的数据在适当情况下可以互换, 以便这里描述的本发明的实施例 能够以除了在这里图示或描述的那些以外的顺序实施。 此外, 术语"包括"和"具 有"以及他们的任何变形, 意图在于覆盖不排他的包含, 例如, 包含了一系列步 骤或单元的过程、 方法、 系统、 产品或设备不必限于清楚地列出的那些步骤或 单元, 而是可包括没有清楚地列出的或对于这些过程、 方法、 产品或设备固有 的其它步骤或单元。
[0029] 实施例 1
[0030] 根据本发明实施例, 提供了一种火灾监测方法的实施例, 需要说明的是, 在附 图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行 , 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可以以不同于 此处的顺序执行所示出或描述的步骤。
[0031] 在本发明实施例, 图 1提供了一种火灾监测方法的实施例, 如图 1所示, 该方法 包括如下步骤:
[0032] S 102, 获取位于浮空器上的红外探测装置对待监测区域拍摄得到的红外图像, 其中, 红外图像中显示的不同颜色对应不同的温度;
[0033] S104, 根据红外图像中显示的颜色判断红外图像中的相邻区域对应的温度之间 的差值是否大于预定阈值;
[0034] S106, 若判断出相邻区域对应的温度之间的差值大于预定阈值, 则将火灾告警 信息发送到接收设备, 其中, 火灾告警信息用于指示待监测区域出现火灾。
[0035] 可选地, 在本实施例中, 上述火灾监测方法可以但不限于应用于森林火灾监测 过程中, 在待监测的森林区域上设置浮空器, 获取上述浮空器上的红外探测装 置对待监测的森林区域拍摄得到的红外图像, 其中, 红外图像上显示的不同颜 色对应不同的温度; 进一步, 根据红外图像中显示的颜色判断红外图像中的相 邻区域对应的温度之间的差值是否大于预定阈值, 并在判断出相邻区域对应的 温度之间的差值大于预定阈值吋, 将火灾告警信息发送到接收设备, 其中, 上 述告警信息用于指示待监测的森林区域上出现火灾。 可选地, 在本实施例中, 上述浮空器可以包括但不限于以下一种: 充氦飞艇、 气球、 无人机。 其中, 在 待监测区域上方可以设置一个或多个浮空器。 上述仅是一种示例, 本实施例对 此不作任何限定。
[0036] 需要说明的是, 由于现有技术中的监测结果受到监测距离、 监测图像分辨率等 因素的影响, 从而导致无法从监测设备中准确获取火灾监测结果, 进一步, 更 加无法及吋准确地控制火灾区域上的火势。 为了提高火灾监测的准确性, 避免 火灾导致的损失, 在本实施例中, 提供了一种火灾监测方法, 利用位于待监测 区域上方的浮空器中的红外探测装置拍摄得到红外图像, 根据与红外图像上的 颜色对应的温度来判断上述待监测区域是否出现火情, 进而发送对应的火灾告 警 息。
[0037] 具体而言, 由于发生火灾的区域的温度相比于相邻区域的温度将大幅升高, 因 而, 通过判断相邻区域颜色对应的温度之间的差值是否大于预定阈值, 来判断 监测区域内是否出现火灾。 例如, 如图 2所示, 区域 A中的颜色相比于相邻区域
(如图 2所示区域 B-区域 D) 的颜色较深 (如图中所示阴影) , 其中, 区域 A对应 的温度 a与相邻区域的温度进行比较, 例如, 区域 B-区域 D对应的温度分别为温 度15、 温度 c和温度 d, 经比较得出区域 A对应的温度 a与相邻区域 (如图 2所示区 域 B-区域 D) 对应的温度的差值均大于预定阈值, 因而, 可以判断出上述区域 A 出现火灾。 上述仅是一种示例, 本实施例中对此不作任何限定。
[0038] 可选地, 在本实施例中, 在获取位于浮空器上的红外探测装置对待监测区域拍 摄得到的红外图像之前, 上述方法还可以包括但不限于: 根据获取到的待监测 区域的监测参数, 将上述红外探测装置驱动到与待监测区域对应的位置和角度 。 也就是说, 红外探测装置可以根据待实吋获取的待监测区域的监测参数, 例 如, 待监测区域的位置信息, 调整红外探测装置的位置和角度, 以使红外探测 装置调整位置和角度对向待监测区域, 从而实现对待监测区域的准确监测。
[0039] 可选地, 在本实施例中, 上述红外探测装置为红外探测相机。 其中, 上述红外 探测相机的摄像头可以转动, 从而便于扩大在预定位置上的浮空器中红外探测 装置的监测范围。 例如, 红外探测相机的摄像头可以在水平面实现 360。全向旋 转, 以扩大覆盖的监测范围, 从而便于监测获取不同方向不同位置上待监测区 域内的取景画面。
[0040] 可选地, 在本实施例中, 上述监测参数可以包括但不限于: 用于指示待监测区 域的参数、 待监测区域上的监测吋间段和监测周期。 也就是说, 在本实施例中 , 上述利用浮空器上的红外探测装置对待监测区域进行监测吋, 不仅可以根据 待监测区域的参数 (例如待监测区域的位置信息) 来将红外探测装置驱动到与 待监测区域对应的位置和角度, 而且还可以控制对待监测区域的监测模式, 例 如, 不同监测吋间段对应不同的监测周期, 其中, 红外探测装置在监测吋间段 内每隔预定监测周期对待监测区域拍摄一次红外图像。
[0041] 可选地, 在本实施例中, 在判断出出现火灾的区域后, 还可以包括: 获取浮空 器上的红外探测装置的当前位置及当前角度, 进而计算出火灾区域的地址, 便 于及吋准确地发送火灾告警信息。 其中, 上述红外探测装置的当前位置可以但 不限于为浮空器的当前位置。 进一步, 通过 GPS可以获得浮空器 (如图 3所示的 浮空器 302) 当前所在的经纬度 (如图 3 (a) 示出的纬度为 X, 经度为 Y) , 通过 高度仪可以获得浮空器 (如图 3所示的浮空器 302) 当前的高度如图 3 (a) 示出的 高度为 Z) , 通过上述浮空器的当前位置即可获取浮空器上的红外探测装置的当 前位置。 此外, 还可以获取红外探测装置上的当前角度, 其中, 上述红外探测 装置的当前角度可以包括但不限于: 转动角度和俯仰角度, 通过计算即可推算 出红外探测装置当前检测的实际区域 (例如, 火灾所在位置) 。 其中, 上述俯 仰角度可以但不限于为红外探测装置探测眼的延伸线与垂直于地面的垂直线的 夹角; 上述转动角度可以但不限于红外探测装置探测眼的延伸线相对于纬度或 经度的转角。 例如, 如图 3 (a) 所示俯仰角度为 ot, 如图 3 (b) 所示转动角度为 相对于经度的转角 β。
[0042] 通过本申请提供的实施例, 在待监测区域上设置浮空器, 获取上述浮空器上的 红外探测装置对待监测区域拍摄得到的红外图像, 其中, 红外图像上显示的不 同颜色对应不同的温度; 进一步, 根据红外图像中显示的颜色判断红外图像中 的相邻区域对应的温度之间的差值是否大于预定阈值, 并在判断出相邻区域对 应的温度之间的差值大于预定阈值吋, 将火灾告警信息发送到接收设备, 其中 , 上述告警信息用于指示待监测区域上出现火灾。 通过上述浮空器上的红外探 测装置对待测区域的监测, 不仅可以实现实吋判断监测区域内是否出现火灾, 以使监测过程不再受监测距离的限制; 而且由于红外图像上的颜色变化及吋准 确, 因而利用与上述颜色对应的温度来判断是否出现火灾, 进一步保证了火灾 监测的准确性, 从而克服现有技术中监测距离较远所导致的监测准确性较低的 问题。
[0043] 作为一种可选的方案, 在获取位于浮空器上的红外探测装置对待监测区域拍摄 得到的红外图像之前, 还包括:
[0044] S l, 获取监测参数, 其中, 监测参数至少包括: 用于指示待监测区域的参数; [0045] S2, 将红外探测装置驱动到与待监测区域对应的位置和角度, 其中, 位置和角 度用于使得红外探测装置在拍摄吋的取景画面包括待监测区域。
[0046] 可选地, 在本实施例中, 上述监测参数中用于待监测区域的参数可以包括但不 限于待监测区域的位置信息。 进一步, 根据获取到的监测参数, 驱动红外监测 装置调整位置和角度, 以使红外监测装置可以对准待监测区域, 进而获取待监 测区域的监测画面信息。
[0047] 具体结合以下示例进行说明, 结合图 2所示, 假设浮空器位于区域 A的正上方, 浮空器上的红外探测装置 (例如红外探测相机) 正对向正下方的区域 A, 当前吋 刻获取到的监测参数指示待监测区域为区域 B, 则在本示例中, 可以驱动红外探 测相机的位置和角度, 以使红外探测相机对向西北方向的区域 B, 以使红外探测 相机在拍摄吋的取景画面包括待监测的区域^
[0048] 需要说明的是, 在本实施例中, 根据不同的待监测区域驱动红外探测装置变化 , 可以但不限于根据不同的应用场景进行调整, 本实施例中在此不作限定。
[0049] 通过本申请提供的实施例, 在获取到用于指示待监测区域的监测参数之后, 将 红外探测装置驱动到与待监测区域对应的位置和角度, 以使红外探测装置在拍 摄吋的取景画面包括待监测区域, 从而实现及吋根据不同的待监测区域调整红 外探测装置的监测范围, 进而达到准确获取监测结果的目的, 避免由于无法及 吋准确监测到火灾所导致的不可挽回的损失。
[0050] 作为一种可选的方案, 监测参数至少还包括: 待监测区域上的监测吋间段和监 测周期; 获取位于浮空器上的红外探测装置对待监测区域拍摄得到的红外图像 包括:
[0051] S1, 在监测吋间段内获取红外探测装置每隔预定监测周期对待监测区域拍摄得 到的红外图像。
[0052] 可选地, 在本实施例中, 针对不同待监测区域还可以选择不同的监测模式, 即 在不同的监测吋间段通过不同的监测周期来拍摄红外图像。
[0053] 具体结合以下示例进行说明, 结合上述图 2所示, 浮空器中的红外探测装置 ( 即红外探测相机) 可以覆盖的监测范围为区域 A-区域 D, 在本示例中, 假设红外 探测相机在 8:0-10:00被驱动对向区域 B, 监测周期为 10分钟, 也就是说, 在 8:0-1 0:00红外探测相机将对区域 B每隔 10分钟拍摄一次红外图像, 以监测区域 B中是 否出现火灾。 此外, 在 10:00-12: 00红外探测相机被驱动对向区域 A, 由于区域 A为火灾高发区, 因而监测周期为 5分钟, 也就是说, 在 10:00-12: 00红外探测相 机将对区域 A每隔 5分钟拍摄一次红外图像, 以监测区域 A中是否出现火灾。 其他 区域的监测方式类似, 本实施例中在此不再赘述。
[0054] 通过本申请提供的实施例, 通过根据获取到的监测参数针对不同的待监测区域
, 选择在对应的监测吋间段内获取红外探测装置每隔预定监测周期对待监测区 域拍摄得到的红外图像, 从而实现利用浮空器中的红外探测装置对待监测区域 进行灵活地监测。 进一步, 通过灵活地调整监测吋间段及监测周期, 不仅保证 了监测的实吋性, 以实现及吋发现火灾; 而且通过灵活地调整监测吋间段及监 测周期进一步保证了监测的准确性。
[0055] 作为一种可选的方案, 将火灾告警信息发送到接收设备吋, 还包括:
[0056] Sl, 将用于指示待监测区域的位置的位置信息发送到接收设备。
[0057] 可选地, 在本实施例中, 上述接收设备可以包括但不限于终端, 例如, 手机、 平板电脑、 笔记本等。 通过及吋将告警信息发送给监测者便于携带的终端, 进 一步保证了监测的及吋性和准确性。
[0058] 作为一种可选的方案, 在判断出相邻区域对应的温度之间的差值大于预定阈值 之后, 在将用于指示待监测区域的位置的位置信息发送到接收设备之前, 还包 括:
[0059] Sl, 获取红外探测装置的当前位置和当前角度;
[0060] S2, 根据红外探测装置的当前位置和当前角度获取用于指示待监测区域的位置 的位置信息。
[0061] 具体结合以下示例进行说明, 如图 3 (a) - (b) 为获取火灾所在位置的示意图 , 红外探测装置的当前位置为 (Χ,Υ,Ζ), 其中, Χ,Υ,Ζ分别用于表示当前的经度、 纬度和高度, 当前俯仰角度 (如图所示) 为 当前转角 (如图所示相对于经度 ) 为 β, 进一步, 可通过如下计算获取实际探测的火灾所在位置 (Χ',Υ') :
[0062] S=Z*tana (1)
[0063] L=S*sinp (2)
[0064] P= S*cosp (3)
[0065] X'=X+L (4)
[0066] Y'=Y+P (5) [0067] 上述计算过程仅是一种示例, 还可以通过其他方式获取火灾所在位置, 本实施 例中对此不做任何限定。
[0068] 通过本申请提供的实施例, 通过获取到的红外探测装置的当前位置和当前角度
, 从而实现准确获取用于指示待监测区域的位置的位置信息。
[0069] 实施例 2
[0070] 根据本发明实施例, 提供了一种火灾监测装置的实施例, 如图 4所示, 上述装 置包括:
[0071] 1) 第一获取单元 402, 用于获取位于浮空器上的红外探测装置对待监测区域拍 摄得到的红外图像, 其中, 红外图像中显示的不同颜色对应不同的温度;
[0072] 2) 判断单元 404, 用于根据红外图像中显示的颜色判断红外图像中的相邻区域 对应的温度之间的差值是否大于预定阈值;
[0073] 3) 第一发送单元 406, 用于在判断出相邻区域对应的温度之间的差值大于预定 阈值吋, 将火灾告警信息发送到接收设备, 其中, 火灾告警信息用于指示待监 测区域出现火灾。
[0074] 可选地, 在本实施例中, 上述火灾监测装置可以但不限于应用于森林火灾监测 过程中, 在待监测的森林区域上设置浮空器, 获取上述浮空器上的红外探测装 置对待监测的森林区域拍摄得到的红外图像, 其中, 红外图像上显示的不同颜 色对应不同的温度; 进一步, 根据红外图像中显示的颜色判断红外图像中的相 邻区域对应的温度之间的差值是否大于预定阈值, 并在判断出相邻区域对应的 温度之间的差值大于预定阈值吋, 将火灾告警信息发送到接收设备, 其中, 上 述告警信息用于指示待监测的森林区域上出现火灾。 可选地, 在本实施例中, 上述浮空器可以包括但不限于以下一种: 充氦飞艇、 气球、 无人机。 其中, 在 待监测区域上方可以设置一个或多个浮空器。 上述仅是一种示例, 本实施例对 此不作任何限定。
[0075] 需要说明的是, 由于现有技术中的监测结果受到监测距离、 监测图像分辨率等 因素的影响, 从而导致无法从监测设备中准确获取火灾监测结果, 进一步, 更 加无法及吋准确地控制火灾区域上的火势。 为了提高火灾监测的准确性, 避免 火灾导致的损失, 在本实施例中, 提供了一种火灾监测装置, 利用位于待监测 区域上方的浮空器中的红外探测装置拍摄得到红外图像, 根据与红外图像上的 颜色对应的温度来判断上述待监测区域是否出现火情, 进而发送对应的火灾告 警 息。
[0076] 具体而言, 由于发生火灾的区域的温度相比于相邻区域的温度将大幅升高, 因 而, 通过判断相邻区域颜色对应的温度之间的差值是否大于预定阈值, 来判断 监测区域内是否出现火灾。 例如, 如图 2所示, 区域 A中的颜色相比于相邻区域
(如图 2所示区域 B-区域 D) 的颜色较深 (如图中所示阴影) , 其中, 区域 A对应 的温度 a与相邻区域的温度进行比较, 例如, 区域 B-区域 D对应的温度分别为温 度15、 温度 c和温度 d, 经比较得出区域 A对应的温度 a与相邻区域 (如图 2所示区 域 B-区域 D) 对应的温度的差值均大于预定阈值, 因而, 可以判断出上述区域 A 出现火灾。 上述仅是一种示例, 本实施例中对此不作任何限定。
[0077] 可选地, 在本实施例中, 在获取位于浮空器上的红外探测装置对待监测区域拍 摄得到的红外图像之前, 上述装置还可以包括但不限于: 驱动单元, 用于根据 获取到的待监测区域的监测参数, 将上述红外探测装置驱动到与待监测区域对 应的位置和角度。 也就是说, 红外探测装置可以根据待实吋获取的待监测区域 的监测参数, 例如, 待监测区域的位置信息, 调整红外探测装置的位置和角度 , 以使红外探测装置调整位置和角度对向待监测区域, 从而实现对待监测区域 的准确监测。
[0078] 可选地, 在本实施例中, 上述红外探测装置为红外探测相机。 其中, 上述红外 探测相机的摄像头可以转动, 从而便于扩大在预定位置上的浮空器中红外探测 装置的监测范围。 例如, 红外探测相机的摄像头可以在水平面实现 360。全向旋 转, 以扩大覆盖的监测范围, 从而便于监测获取不同方向不同位置上待监测区 域内的取景画面。
[0079] 可选地, 在本实施例中, 上述监测参数可以包括但不限于: 用于指示待监测区 域的参数、 待监测区域上的监测吋间段和监测周期。 也就是说, 在本实施例中 , 上述利用浮空器上的红外探测装置对待监测区域进行监测吋, 不仅可以根据 待监测区域的参数 (例如待监测区域的位置信息) 来将红外探测装置驱动到与 待监测区域对应的位置和角度, 而且还可以控制对待监测区域的监测模式, 例 如, 不同监测吋间段对应不同的监测周期, 其中, 红外探测装置在监测吋间段 内每隔预定监测周期对待监测区域拍摄一次红外图像。
[0080] 可选地, 在本实施例中, 在判断出出现火灾的区域后, 还可以包括: 获取浮空 器上的红外探测装置的当前位置及当前角度, 进而计算出火灾区域的地址, 便 于及吋准确地发送火灾告警信息。 其中, 上述红外探测装置的当前位置可以但 不限于为浮空器的当前位置。 进一步, 通过 GPS可以获得浮空器 (如图 3所示的 浮空器 302) 当前所在的经纬度 (如图 3 (a) 示出的纬度为 X, 经度为 Y) , 通过 高度仪可以获得浮空器 (如图 3所示的浮空器 302) 当前的高度如图 3 (a) 示出的 高度为 Z) , 通过上述浮空器的当前位置即可获取浮空器上的红外探测装置的当 前位置。 此外, 还可以获取红外探测装置上的当前角度, 其中, 上述红外探测 装置的当前角度可以包括但不限于: 转动角度和俯仰角度, 通过计算即可推算 出红外探测装置当前检测的实际区域 (例如, 火灾所在位置) 。 其中, 上述俯 仰角度可以但不限于为红外探测装置探测眼的延伸线与垂直于地面的垂直线的 夹角; 上述转动角度可以但不限于红外探测装置探测眼的延伸线相对于纬度或 经度的转角。 例如, 如图 3 (a) 所示俯仰角度为 ot, 如图 3 (b) 所示转动角度为 相对于经度的转角 β。
[0081] 通过本申请提供的实施例, 在待监测区域上设置浮空器, 获取上述浮空器上的 红外探测装置对待监测区域拍摄得到的红外图像, 其中, 红外图像上显示的不 同颜色对应不同的温度; 进一步, 根据红外图像中显示的颜色判断红外图像中 的相邻区域对应的温度之间的差值是否大于预定阈值, 并在判断出相邻区域对 应的温度之间的差值大于预定阈值吋, 将火灾告警信息发送到接收设备, 其中 , 上述告警信息用于指示待监测区域上出现火灾。 通过上述浮空器上的红外探 测装置对待测区域的监测, 不仅可以实现实吋判断监测区域内是否出现火灾, 以使监测过程不再受监测距离的限制; 而且由于红外图像上的颜色变化及吋准 确, 因而利用与上述颜色对应的温度来判断是否出现火灾, 进一步保证了火灾 监测的准确性, 从而克服现有技术中监测距离较远所导致的监测准确性较低的 问题。
[0082] 作为一种可选的方案, 上述装置还包括: [0083] 1) 第二获取单元, 用于在获取位于浮空器上的红外探测装置对待监测区域拍 摄得到的红外图像之前, 获取监测参数, 其中, 监测参数至少包括: 用于指示 待监测区域的参数;
[0084] 2) 驱动单元, 用于将红外探测装置驱动到与待监测区域对应的位置和角度, 其中, 位置和角度用于使得红外探测装置在拍摄吋的取景画面包括待监测区域
[0085] 可选地, 在本实施例中, 上述监测参数中用于待监测区域的参数可以包括但不 限于待监测区域的位置信息。 进一步, 根据获取到的监测参数, 驱动红外监测 装置调整位置和角度, 以使红外监测装置可以对准待监测区域, 进而获取待监 测区域的监测画面信息。
[0086] 具体结合以下示例进行说明, 结合图 2所示, 假设浮空器位于区域 A的正上方, 浮空器上的红外探测装置 (例如红外探测相机) 正对向正下方的区域 A, 当前吋 刻获取到的监测参数指示待监测区域为区域 B, 则在本示例中, 可以驱动红外探 测相机的位置和角度, 以使红外探测相机对向西北方向的区域 B, 以使红外探测 相机在拍摄吋的取景画面包括待监测的区域^
[0087] 需要说明的是, 在本实施例中, 根据不同的待监测区域驱动红外探测装置变化 , 可以但不限于根据不同的应用场景进行调整, 本实施例中在此不作限定。
[0088] 通过本申请提供的实施例, 在获取到用于指示待监测区域的监测参数之后, 将 红外探测装置驱动到与待监测区域对应的位置和角度, 以使红外探测装置在拍 摄吋的取景画面包括待监测区域, 从而实现及吋根据不同的待监测区域调整红 外探测装置的监测范围, 进而达到准确获取监测结果的目的, 避免由于无法及 吋准确监测到火灾所导致的不可挽回的损失。
[0089] 作为一种可选的方案, 监测参数至少还包括: 待监测区域上的监测吋间段和监 测周期; 第一获取单元包括:
[0090] 1) 获取模块, 用于在监测吋间段内获取红外探测装置每隔预定监测周期对待 监测区域拍摄得到的红外图像。
[0091] 可选地, 在本实施例中, 针对不同待监测区域还可以选择不同的监测模式, 即 在不同的监测吋间段通过不同的监测周期来拍摄红外图像。 [0092] 具体结合以下示例进行说明, 结合上述图 2所示, 浮空器中的红外探测装置 ( 即红外探测相机) 可以覆盖的监测范围为区域 A-区域 D, 在本示例中, 假设红外 探测相机在 8:0- 10:00被驱动对向区域 B, 监测周期为 10分钟, 也就是说, 在 8:00- 10:00红外探测相机将对区域 B每隔 10分钟拍摄一次红外图像, 以监测区域 B中是 否出现火灾。 此外, 在 10:00-12: 00红外探测相机被驱动对向区域 A, 由于区域 A为火灾高发区, 因而监测周期为 5分钟, 也就是说, 在 10:00-12: 00红外探测相 机将对区域 A每隔 5分钟拍摄一次红外图像, 以监测区域 A中是否出现火灾。 其他 区域的监测方式类似, 本实施例中在此不再赘述。
[0093] 通过本申请提供的实施例, 通过根据获取到的监测参数针对不同的待监测区域 , 选择在对应的监测吋间段内获取红外探测装置每隔预定监测周期对待监测区 域拍摄得到的红外图像, 从而实现利用浮空器中的红外探测装置对待监测区域 进行灵活地监测。 进一步, 通过灵活地调整监测吋间段及监测周期, 不仅保证 了监测的实吋性, 以实现及吋发现火灾; 而且通过灵活地调整监测吋间段及监 测周期进一步保证了监测的准确性。
[0094] 作为一种可选的方案, 上述装置还包括:
[0095] 1) 第一发送单元, 用于将火灾告警信息发送到接收设备吋, 将用于指示待监 测区域的位置的位置信息发送到接收设备。
[0096] 可选地, 在本实施例中, 上述接收设备可以包括但不限于终端, 例如, 手机、 平板电脑、 笔记本等。 通过及吋将告警信息发送给监测者便于携带的终端, 进 一步保证了监测的及吋性和准确性。
[0097] 作为一种可选的方案, 上述装置还包括:
[0098] 1) 第三获取单元, 用于在判断出相邻区域对应的温度之间的差值大于预定阈 值之后, 在将用于指示待监测区域的位置的位置信息发送到接收设备之前, 获 取红外探测装置的当前位置和当前角度;
[0099] 2) 第四获取单元, 用于根据红外探测装置的当前位置和当前角度获取用于指 示待监测区域的位置的位置信息。
[0100] 具体结合以下示例进行说明, 如图 3 (a) - (b) 为获取火灾所在位置的示意图
, 红外探测装置的当前位置为 (Χ,Υ,Ζ), 其中, Χ,Υ,Ζ分别用于表示当前的经度、 纬度和高度, 当前俯仰角度 (如图所示) 为 当前转角 (如图所示相对于经度
) 为 β, 进一步, 可通过如下计算获取实际探测的火灾所在位置 (Χ',Υ') : [0101] S=Z*tana (1)
[0102] L=S*sinp (2)
[0103] P= S*cosp (3)
[0104] X'=X+L (4)
[0105] Y'=Y+P (5)
[0106] 上述计算过程仅是一种示例, 还可以通过其他方式获取火灾所在位置, 本实施 例中对此不做任何限定。
[0107] 通过本申请提供的实施例, 通过获取到的红外探测装置的当前位置和当前角度
, 从而实现准确获取用于指示待监测区域的位置的位置信息。
[0108] 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
[0109] 在本发明的上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没 有详述的部分, 可以参见其他实施例的相关描述。
[0110] 在本申请所提供的几个实施例中, 应该理解到, 所揭露的技术内容, 可通过其 它的方式实现。 其中, 以上所描述的装置实施例仅仅是示意性的, 例如所述单 元的划分, 可以为一种逻辑功能划分, 实际实现吋可以有另外的划分方式, 例 如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略 , 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或通信连接 可以是通过一些接口, 单元或模块的间接耦合或通信连接, 可以是电性或其它 的形式。
[0111] 所述作为分离部件说明的单元可以是或者也可以不是物理上分幵的, 作为单元 显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可 以分布到多个单元上。 可以根据实际的需要选择其中的部分或者全部单元来实 现本实施例方案的目的。
[0112] 另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可 以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单元的形式 实现。
[0113] 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用 吋, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技 术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分 可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备 (可为个人计算机、 服务器或者网络设 备等) 执行本发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质 包括: U盘、 只读存储器 (ROM, Read-Only
Memory) 、 随机存取存储器 (RAM, Random Access Memory) 、 移动硬盘、 磁 碟或者光盘等各种可以存储程序代码的介质。
[0114] 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术 人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些 改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
一种火灾监测方法, 其特征在于, 包括:
获取位于浮空器上的红外探测装置对待监测区域拍摄得到的红外图像 , 其中, 所述红外图像中显示的不同颜色对应不同的温度; 根据所述红外图像中显示的颜色判断所述红外图像中的相邻区域对应 的温度之间的差值是否大于预定阈值;
若判断出所述相邻区域对应的温度之间的差值大于所述预定阈值, 则 将火灾告警信息发送到接收设备, 其中, 所述火灾告警信息用于指示 所述待监测区域出现火灾。
根据权利要求 1所述的方法, 其特征在于, 在获取位于浮空器上的红 外探测装置对待监测区域拍摄得到的红外图像之前, 还包括: 获取监测参数, 其中, 所述监测参数至少包括: 用于指示所述待监测 区域的参数;
将所述红外探测装置驱动到与所述待监测区域对应的位置和角度, 其 中, 所述位置和角度用于使得红外探测装置在拍摄吋的取景画面包括 所述待监测区域。
根据权利要求 2所述的方法, 其特征在于,
所述监测参数至少还包括: 所述待监测区域上的监测吋间段和监测周 期;
所述获取位于浮空器上的红外探测装置对待监测区域拍摄得到的红外 图像包括: 在所述监测吋间段内获取所述红外探测装置每隔预定监测 周期对所述待监测区域拍摄得到的所述红外图像。
根据权利要求 1所述的方法, 其特征在于, 将火灾告警信息发送到接 收设备吋, 还包括:
将用于指示所述待监测区域的位置的位置信息发送到所述接收设备。 根据权利要求 4所述的方法, 其特征在于, 在判断出所述相邻区域对 应的温度之间的差值大于所述预定阈值之后, 在将用于指示所述待监 测区域的位置的位置信息发送到所述接收设备之前, 还包括: 获取所述红外探测装置的当前位置和当前角度;
根据所述红外探测装置的当前位置和当前角度获取所述用于指示所述 待监测区域的位置的位置信息。
[权利要求 6] 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述红外探测 装置为红外探测相机。
[权利要求 7] 一种火灾监测装置, 其特征在于, 包括:
第一获取单元, 用于获取位于浮空器上的红外探测装置对待监测区域 拍摄得到的红外图像, 其中, 所述红外图像中显示的不同颜色对应不 同的温度;
判断单元, 用于根据所述红外图像中显示的颜色判断所述红外图像中 的相邻区域对应的温度之间的差值是否大于预定阈值;
第一发送单元, 用于在判断出所述相邻区域对应的温度之间的差值大 于所述预定阈值吋, 将火灾告警信息发送到接收设备, 其中, 所述火 灾告警信息用于指示所述待监测区域出现火灾。
[权利要求 8] 根据权利要求 7所述的装置, 其特征在于, 还包括:
第二获取单元, 用于在获取位于浮空器上的红外探测装置对待监测区 域拍摄得到的红外图像之前, 获取监测参数, 其中, 所述监测参数至 少包括: 用于指示所述待监测区域的参数;
驱动单元, 用于将所述红外探测装置驱动到与所述待监测区域对应的 位置和角度, 其中, 所述位置和角度用于使得红外探测装置在拍摄吋 的取景画面包括所述待监测区域。
[权利要求 9] 根据权利要求 8所述的装置, 其特征在于,
所述监测参数至少还包括: 所述待监测区域上的监测吋间段和监测周 期;
所述第一获取单元包括: 获取模块, 用于在所述监测吋间段内获取所 述红外探测装置每隔预定监测周期对所述待监测区域拍摄得到的所述 红外图像。
[权利要求 10] 根据权利要求 7所述的装置, 其特征在于, 还包括: 第一发送单元, 用于将火灾告警信息发送到接收设备吋, 将用于指示 所述待监测区域的位置的位置信息发送到所述接收设备。
[权利要求 11] 根据权利要求 10所述的装置, 其特征在于, 还包括:
第三获取单元, 用于在判断出所述相邻区域对应的温度之间的差值大 于所述预定阈值之后, 在将用于指示所述待监测区域的位置的位置信 息发送到所述接收设备之前, 获取所述红外探测装置的当前位置和当 前角度;
第四获取单元, 用于根据所述红外探测装置的当前位置和当前角度获 取所述用于指示所述待监测区域的位置的位置信息。
[权利要求 12] 根据权利要求 7至 11中任一项所述的装置, 其特征在于, 所述红外探 测装置为红外探测相机。
PCT/CN2016/100303 2015-09-28 2016-09-27 火灾监测方法和装置 WO2017054700A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16850324.1A EP3309762A4 (en) 2015-09-28 2016-09-27 FIRE-CATASTROPHE MONITORING PROCESS AND DEVICE
US15/836,868 US20180102034A1 (en) 2015-09-28 2017-12-10 Fire disaster monitoring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510634305.2 2015-09-28
CN201510634305.2A CN106558181B (zh) 2015-09-28 2015-09-28 火灾监测方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/836,868 Continuation US20180102034A1 (en) 2015-09-28 2017-12-10 Fire disaster monitoring method and apparatus

Publications (1)

Publication Number Publication Date
WO2017054700A1 true WO2017054700A1 (zh) 2017-04-06

Family

ID=58417144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100303 WO2017054700A1 (zh) 2015-09-28 2016-09-27 火灾监测方法和装置

Country Status (4)

Country Link
US (1) US20180102034A1 (zh)
EP (1) EP3309762A4 (zh)
CN (1) CN106558181B (zh)
WO (1) WO2017054700A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739250A (zh) * 2020-07-01 2020-10-02 广东工业大学 结合图像处理技术与红外传感器的火灾探测方法及系统

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134114B (zh) * 2017-06-26 2020-02-11 深圳市广信安科技股份有限公司 基于热成像的婴儿防盗方法、婴儿防盗系统
CN112185052B (zh) * 2017-07-27 2022-11-29 上海电巴新能源科技有限公司 充电位、充电架、充电异常判断方法、换电站及储能站
US10814976B2 (en) * 2017-09-29 2020-10-27 Deere & Company Using unmanned aerial vehicles (UAVs or drones) in forestry machine-connectivity applications
CN107747973A (zh) * 2017-10-27 2018-03-02 安徽育安实验室装备有限公司 一种实验室安全智能防护方法
CN107818653A (zh) * 2017-10-27 2018-03-20 安徽育安实验室装备有限公司 一种实验室内安全智能化防护系统
CN107888878B (zh) * 2017-11-16 2018-11-16 曹欢欢 火灾自动定位式照相平台控制方法
CN108154077B (zh) * 2017-11-16 2018-11-13 张天勇 火灾自动定位式照相平台
EP3671681A4 (en) 2017-11-30 2020-08-26 SZ DJI Technology Co., Ltd. MAXIMUM TEMPERATURE POINT MONITORING PROCESS, DEVICE AND DRONE
CN110075465A (zh) * 2018-01-26 2019-08-02 上海金盾消防安全科技有限公司 火灾检测装置、消防设备及其操作方法
CN109145714A (zh) * 2018-07-02 2019-01-04 深圳云感物联网科技有限公司 一种人脸图像识别对重点管控人员进行跟踪预警方法
CN109085463B (zh) * 2018-08-24 2020-09-08 广西电网有限责任公司贵港供电局 一种智能电网故障定位方法及装置
CN109178316A (zh) * 2018-10-31 2019-01-11 姜文尧 高楼灭火救生无人机
CN109814068B (zh) * 2019-01-30 2023-07-28 广州轨道交通建设监理有限公司 一种工地人员定位系统及工地人员定位方法
CN110780634A (zh) * 2019-11-20 2020-02-11 云南电网有限责任公司电力科学研究院 一种实验室安全管理系统
CN110969796A (zh) * 2019-12-06 2020-04-07 无锡圣敏传感科技股份有限公司 一种火灾报警方法及火灾探测器
CN111724561A (zh) * 2020-05-19 2020-09-29 中国安全生产科学研究院 一种硫化矿石自燃监控方法及系统
CN111739252B (zh) * 2020-07-03 2022-03-01 徐州鑫科机器人有限公司 一种火灾监测及自动灭火系统及其工作方法
CN112556655B (zh) * 2020-12-09 2022-04-26 武汉云图互联科技股份有限公司 一种林业防火单目定位方法及系统
CN114333214A (zh) * 2021-12-30 2022-04-12 国能创新油品销售有限公司 用于储油罐的火灾预警方法、装置、电子设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102819926A (zh) * 2012-08-24 2012-12-12 华南农业大学 一种基于无人机的火灾监测预警方法
KR20120139179A (ko) * 2011-06-17 2012-12-27 (주)루나스타인베스트먼트 산불 감시 시스템 및 방법
CA2813831A1 (en) * 2012-07-24 2014-01-24 The Boeing Company Wildfire arrest and prevention system
EP2860110A1 (en) * 2013-10-11 2015-04-15 Invenio Consulting S.r.L. Fire control process and device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588893A (en) * 1968-10-25 1971-06-28 Edward W Mc Closkey Apparatus for detecting and locating a fire and for producing at least one corresponding intelligence-carrying output signal
FR2679779B1 (fr) * 1991-07-31 1993-12-03 Lang Jacques Procede de detection aeroportee systematique et de positionnement des feux de forets.
US5719949A (en) * 1994-10-31 1998-02-17 Earth Satellite Corporation Process and apparatus for cross-correlating digital imagery
EP0769688B1 (en) * 1995-05-08 2003-01-22 Japan Energy Corporation Environment monitor apparatus
IL117521A0 (en) * 1996-03-17 1996-10-31 Israel Aircraft Ind Ltd Malat A fire imaging system and method
FR2749469B1 (fr) * 1996-06-03 1998-07-17 Inst Francais Du Petrole Systeme aeroporte d'acquisition et de traitement d'images a caracteristiques modulables
US6329922B1 (en) * 1999-07-27 2001-12-11 Hochiki Kabushiki Kaisha Fire detector and noise de-influence method
BR0215800A (pt) * 2002-07-16 2005-03-01 Gs Gestione Sistemi S R L Sistema e método de monitoramento ambiental
EA009547B1 (ru) * 2003-06-11 2008-02-28 ФАРРИ БРАЗЕРС ЛЛСи Способ визуального обнаружения утечки химиката, выделяющегося из объекта
JP4690823B2 (ja) * 2005-08-12 2011-06-01 ホーチキ株式会社 火災検出装置
CN200944064Y (zh) * 2006-06-07 2007-09-05 广东中玉科技有限公司 红外数字遥视故障探测系统
US8497905B2 (en) * 2008-04-11 2013-07-30 nearmap australia pty ltd. Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features
CN101458865B (zh) * 2008-05-09 2012-06-27 丁国锋 一种火灾探测系统及方法
US7786877B2 (en) * 2008-06-20 2010-08-31 Billy Hou Multi-wavelength video image fire detecting system
KR100901784B1 (ko) * 2008-11-11 2009-06-11 주식회사 창성에이스산업 화재 발생 감지시스템 및 그 방법
US8731237B1 (en) * 2010-05-11 2014-05-20 The United States Of America, As Represented By The Secretary Of The Navy Automatic asset detection for disaster relief using satellite imagery
CN102387315B (zh) * 2010-09-06 2014-09-17 广州飒特红外股份有限公司 机芯组件可旋转式红外热像仪
TWI420423B (zh) * 2011-01-27 2013-12-21 Chang Jung Christian University Machine vision flame identification system and method
CN102280005B (zh) * 2011-06-09 2014-10-29 广州飒特红外股份有限公司 基于红外热成像技术的森林防火预警系统及方法
KR101073076B1 (ko) * 2011-06-10 2011-10-12 주식회사 창성에이스산업 복합카메라를 이용한 화재감시 시스템 및 방법
EP3309055A1 (en) * 2011-08-04 2018-04-18 Silicis Technologies Inc. Autonomous intelligence surveillance reconnaissance and payload delivery system with safe return
CN102568146B (zh) * 2012-01-12 2016-03-30 安徽大学 一种基于红外热图像的火灾预警与早期消除系统
WO2014179482A1 (en) * 2013-04-30 2014-11-06 The Regents Of The University Of California Fire urgency estimator in geosynchronous orbit (fuego)
CN103942911B (zh) * 2014-03-17 2017-01-25 石杰 一种基于云计算的监视森林火灾征兆的方法
CN104143248B (zh) * 2014-08-01 2016-09-14 江苏恒创软件有限公司 基于无人机的森林火灾探测及防控方法
EP3300524A1 (en) * 2015-08-06 2018-04-04 Accenture Global Services Limited Condition detection using image processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139179A (ko) * 2011-06-17 2012-12-27 (주)루나스타인베스트먼트 산불 감시 시스템 및 방법
CA2813831A1 (en) * 2012-07-24 2014-01-24 The Boeing Company Wildfire arrest and prevention system
CN102819926A (zh) * 2012-08-24 2012-12-12 华南农业大学 一种基于无人机的火灾监测预警方法
EP2860110A1 (en) * 2013-10-11 2015-04-15 Invenio Consulting S.r.L. Fire control process and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN, FANSHI: "Research on Fire Positioning Algorithm of Infrared Image Based on Geographic Information System", DISSERTATION FOR THE MASTER DEGREE IN ENGINEERING OF HARBIN INSTITUTE OF TECHNOLOGY, 12 November 2013 (2013-11-12), pages 8 - 24, XP009507960 *
See also references of EP3309762A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739250A (zh) * 2020-07-01 2020-10-02 广东工业大学 结合图像处理技术与红外传感器的火灾探测方法及系统

Also Published As

Publication number Publication date
US20180102034A1 (en) 2018-04-12
EP3309762A4 (en) 2019-02-06
CN106558181A (zh) 2017-04-05
CN106558181B (zh) 2019-07-30
EP3309762A1 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
WO2017054700A1 (zh) 火灾监测方法和装置
KR101073076B1 (ko) 복합카메라를 이용한 화재감시 시스템 및 방법
KR101544019B1 (ko) 합성 영상을 이용한 화재감지시스템 및 방법
TWI542216B (zh) 監視系統、監視攝影機及其保全監視方法
EP2194503A1 (en) Method and device for infrared and visible image fusion
KR100716306B1 (ko) 산불감시시스템
US9633534B2 (en) Dual-detector capacity intrusion detection systems and methods and systems and methods for configuration thereof
US20160165129A1 (en) Image Processing Method
CN109327676A (zh) 一种高空坠物监控系统、方法及装置
CN111046121B (zh) 环境监控方法、装置和系统
CN106358022A (zh) 一种基于视频的安防监控方法
KR20160068461A (ko) 평면도에 히트맵을 표시하는 장치 및 방법
JP6598962B1 (ja) 火災検知装置、火災検知方法及び火災監視システム
US10594933B2 (en) Monitoring system and image processing method
KR101250956B1 (ko) 자동 관제 시스템
JP7094854B2 (ja) 崩落斜面の監視方法及び崩落斜面の監視システム
KR101029190B1 (ko) 화재 감지 및 이미지보정 카메라 장치 및 그 방법
CN111200722A (zh) 一种低空管制系统及信号管理方法
CN113761980B (zh) 吸烟检测方法、装置、电子设备及机器可读存储介质
KR102333760B1 (ko) 지능형 영상 관제 방법 및 그 서버
KR101709919B1 (ko) 감도 조절이 가능한 화재 감지 시스템 및 그 제어 방법
KR102164802B1 (ko) 수동형 디텍터 및 능동형 디텍터를 구비한 감시 카메라
KR101425658B1 (ko) 감시카메라 시스템에 대한 해킹 및 오동작 감지 방법
KR101169631B1 (ko) 검출 인터페이스를 구비한 영상분석 카메라, 영상분석 시스템 및 그 검출 조정 방법
KR101698864B1 (ko) 메타 데이터를 이용한 영상 검출 방법을 실행시키는 프로그램이 기록된 기록 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016850324

Country of ref document: EP