WO2017054665A1 - 一种低矫顽力冷轧电磁纯铁板带连续退火方法 - Google Patents
一种低矫顽力冷轧电磁纯铁板带连续退火方法 Download PDFInfo
- Publication number
- WO2017054665A1 WO2017054665A1 PCT/CN2016/099566 CN2016099566W WO2017054665A1 WO 2017054665 A1 WO2017054665 A1 WO 2017054665A1 CN 2016099566 W CN2016099566 W CN 2016099566W WO 2017054665 A1 WO2017054665 A1 WO 2017054665A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pure iron
- cold
- strip
- electromagnetic pure
- annealing
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 238000000137 annealing Methods 0.000 title claims abstract description 65
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000001816 cooling Methods 0.000 claims abstract description 32
- 230000008569 process Effects 0.000 claims abstract description 24
- 238000002791 soaking Methods 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 238000010583 slow cooling Methods 0.000 claims abstract description 16
- 230000001590 oxidative effect Effects 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 18
- 238000005097 cold rolling Methods 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 13
- 230000009467 reduction Effects 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 9
- 238000002788 crimping Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 230000005415 magnetization Effects 0.000 abstract description 12
- 230000005291 magnetic effect Effects 0.000 description 13
- 239000000047 product Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1261—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
Definitions
- the invention relates to the field of metal material processing, in particular to a cold annealing electromagnetic pure iron strip continuous annealing method with low coercivity, high formability and no magnetization annealing.
- Electromagnetic pure iron has the characteristics of low coercivity, high magnetic permeability and excellent processing performance, and is an important functional soft magnetic material.
- the traditional electromagnetic pure iron product is manufactured in a softened and annealed state, and the user processes and shapes the part to perform magnetization annealing treatment, thereby eliminating the cold working lattice distortion to fully exert the magnetic properties of the pure iron.
- the national standard GB/T 6983-2008 is divided into four grades according to the magnetic properties from high to low: DT4 (Hc ⁇ 96A / m), DT4A (Hc ⁇ 72A / m), DT4E (Hc ⁇ 48A) /m), DT4C (Hc ⁇ 32A / m), in addition to the electromagnetic annealing process of electromagnetic pure iron as follows: vacuum or inert gas protection annealing, with the furnace temperature rise to 900 ⁇ 10 ° C for 1 h, after the end of the insulation Cool below 500 °C / h at room temperature below 50 ° C / room temperature; if annealing with decarburization atmosphere, then the furnace is heated to 800 ° C,
- An important application of cold rolled electromagnetic pure iron strips is magnetic shielding materials, such as power relay screen magnetic housings. If the parts are punched and formed according to the traditional process, and then the magnetization annealing process is performed for several hours, the size of the large parts is required to be improved for the annealing equipment, and the output is limited by the amount of the furnace, so that the magnetization annealing step becomes extremely easy. The bottleneck process in the production process, the production and processing cycle of the product is extended, and the cost is also increased. Therefore, the manufacturer hopes to use an electromagnetic pure iron strip with low coercive force ( ⁇ 100 A/m), good formability and no need for magnetization annealing, but the prior art has not yet reached this index.
- the object of the present invention is to provide a low-coercive cold-rolled electromagnetic pure iron strip continuous annealing method, the continuous annealing method has a simple process, and the cold-rolled electromagnetic pure iron strip produced can be obtained without magnetization annealing. Low overall strength and good formability.
- a low-coercivity cold-rolled electromagnetic pure iron strip continuous annealing method the control parameters of each process section in the continuous annealing furnace are as follows: heating section 750 ⁇ 850 ° C; soaking section 750 ⁇ 850 ° C, soaking time 100 ⁇ 150s;
- the outlet temperature of the slow cooling section is 575 ⁇ 675°C, the cooling rate of the slow cooling section is 2.5 ⁇ 10°C/s, the outlet temperature of the fast cooling section is 380 ⁇ 420°C, the cooling speed of the fast cooling section is 15 ⁇ 25°C/s, and the overaging section is 270 ⁇ .
- the annealing medium is a non-oxidizing atmosphere composed of H 2 and N 2 ;
- the flattening elongation of the strip after flat pressing of the cold-rolled electromagnetic pure iron strip is controlled to be 0.2 ⁇ 0.1%.
- the cold rolled electromagnetic pure iron strip has a thickness of 0.5-3.0 mm.
- index parameters of the cold-rolled electromagnetic pure iron strip after annealing are: coercive force is 60-100 A/m, yield strength is ⁇ 120 MPa, and elongation is ⁇ 35%.
- the hot rolling process parameters of the cold-rolled electromagnetic pure iron strip are: heating temperature 1000-1200 ° C; finishing rolling temperature 750-900 ° C; crimping temperature 550-720 ° C; cold rolling reduction rate controlled at 30-55 %.
- the electromagnetic pure iron plate strip prepared by the low coercive cold rolling electromagnetic pure iron plate strip continuous annealing method has low coercivity, high formability and no magnetization annealing, and solves the need for magnetization of the conventional cold rolled electromagnetic pure iron material. Annealing, while magnetizing annealing furnaces for large-sized parts are limited, and the production cycle is long and the cost is high.
- the principle of the continuous annealing method for the low coercivity cold rolled electromagnetic pure iron strip of the present invention is as follows:
- the low-coercivity cold-rolled electromagnetic pure iron plate of the invention is produced by continuous annealing. Due to the calendering process, a large amount of lattice distortion exists in the ferrite crystal, the magnetic domain movement resistance is large, and the high-temperature annealing is recrystallization to eliminate cold rolling. The lattice distortion provides sufficient thermodynamic driving force. If the annealing time is too short, the grain growth is insufficient and the coercive force of the material is not ideal.
- the soaking temperature of annealing is selected at 750-850 °C, and the annealing soaking time is 100-150 s. The production efficiency can be considered under the premise of ensuring the coercive force Hc ⁇ 100A/m of the material.
- the flattening elongation of the annealed strip of the low coercivity cold-rolled electromagnetic pure iron strip of the present invention is controlled to be 0.2 ⁇ 0.1%, because the flattening pressure will significantly affect the coercivity by introducing crystal defects and increasing the magnetic domain resistance. Force performance; However, due to the low yield strength of electromagnetic pure iron products, high temperature continuous retreat is prone to quality defects such as wrinkles, so moderate flat pressing is also a key means to ensure the surface quality of the product. Combining the above factors, controlling the flattening reduction rate, Avoid it more than 0.3%.
- the present invention has certain requirements for the specific chemical composition of the electromagnetic pure iron strip suitable for the above annealing method.
- C, N, O, and S are all elements that are extremely harmful to pure ferromagnetism.
- Finely distributed MnS, AlN precipitates, and oxide inclusions can hinder grain growth, strongly affect magnetization, and increase coercivity. Therefore, in the annealing process proposed by the present invention, on the one hand, the content of the impurity element should be minimized on the one hand, and on the other hand, the formation of fine inclusions should be avoided.
- Aluminum element significantly affects the existence of inclusions in electromagnetic pure iron, and two extreme measures are generally taken for the control of aluminum.
- acid-soluble aluminum Als is most likely to form fine AlN in the range of 0.005 to 0.014%, thereby preventing ferrite grain growth, and due to the fine grain size, the component which is harmful to magnetic properties increases, when Als ⁇ At 0.003%, the lower the aluminum content, the more favorable magnetic orientation components, and the coarser grains. Big.
- the aluminum content is 0.15% or more, coarse AIN can be formed, the texture is improved, the magnetic anisotropy is reduced, and the immobilization of N reduces the magnetic aging.
- the higher finishing temperature and coiling temperature are selected, mainly because high-temperature finishing rolling and high-temperature curling are beneficial to the recovery, recrystallization and grain growth of the hot-rolled deformed structure.
- the cold rolling reduction rate should be controlled at 30 to 55% to avoid excessive reduction.
- different deformation amounts will correspond to different deformation microstructures, which will affect the recrystallization nucleation and growth power.
- the lower cold rolling deformation will obtain better magnetic properties by inducing grain boundary migration on the hot rolled sheet and promoting annealing grain growth; and as the cold rolling deformation continues to increase, the complex sliding region Increasing, the cell structure is well developed.
- the recrystallization nucleation rate and grain growth rate increase during annealing, the nucleation rate is larger than the grain growth rate, causing the recrystallized grains to become finer, and the corresponding coercive force Hc rises. High, magnetic properties deteriorate.
- the electromagnetic pure iron plate strip prepared by the low coercivity cold rolling electromagnetic pure iron plate strip continuous annealing method of the invention does not need to be magnetized and annealed, and the index parameter of the cold rolled electromagnetic pure iron strip after annealing reaches: coercive force is 60- 100A/m, yield strength ⁇ 120MPa, elongation ⁇ 35%.
- the invention relates to a low-coercive cold-rolled electromagnetic pure iron strip continuous annealing method as a final step in the production of cold-rolled electromagnetic pure iron strip, and the process is simple, and the produced cold-rolled electromagnetic pure iron strip does not need to be magnetized and annealed A combination of low coercivity and good formability can be obtained.
- composition The mass percentage of the chemical composition of the strip is shown in Table 2, and the rest is Fe and unavoidable impurities.
- the strip has a thickness of 1.2 ⁇ 0.04 mm.
- Table 2 Table of mass percentage of chemical composition of the strip of Example 1 (unit: %)
- hot rolling process parameters heating temperature 1150 ° C; finishing temperature 850 ° C; crimping temperature 550 ° C; cold rolling reduction rate of 50%.
- the specific process parameters are: heating section 830 ⁇ 20°C; soaking section 830 ⁇ 20°C, soaking time 140s; slow cooling section outlet temperature 675°C, slow cooling section cooling rate 5°C/s
- the rapid cooling section outlet temperature is 400 ° C
- the rapid cooling section cooling rate is 25 ° C / s
- the overaging section is 300 ° C
- the annealing medium is a non-oxidizing atmosphere composed of H 2 and N 2 .
- the flattening elongation of the annealed strip was controlled at 0.2 ⁇ 0.1%.
- composition The mass percentage of the chemical composition of the strip is shown in Table 3, and the rest is Fe and unavoidable impurities.
- the strip has a thickness of 2.0 ⁇ 0.04 mm.
- Table 3 Table of mass percentage of chemical composition of the strip of Example 2 (unit: %)
- hot rolling process parameters heating temperature 1150 ° C; finishing temperature 870 ° C; crimping temperature 650 ° C; cold rolling reduction rate of 45%.
- the specific process parameters are: heating section 830 ⁇ 20°C; soaking section 830 ⁇ 20°C, soaking time 130s; slow cooling section outlet temperature 675°C, slow cooling section cooling rate 5°C/s
- the rapid cooling section outlet temperature is 400 ° C
- the rapid cooling section cooling rate is 25 ° C / s
- the overaging section is 300 ° C
- the annealing medium is a non-oxidizing atmosphere composed of H 2 and N 2 .
- the flattening elongation of the annealed strip was controlled at 0.2 ⁇ 0.1%.
- composition The mass percentage of the chemical composition of the strip is shown in Table 4, and the rest is Fe and unavoidable impurities.
- the strip has a thickness of 1.0 ⁇ 0.04 mm.
- Table 4 Table of mass percent content of chemical constituents of Example 3 strip (unit: %)
- hot rolling process parameters heating temperature 1200 ° C; finishing temperature 900 ° C; crimping temperature 720 ° C; cold rolling reduction rate of 40%.
- the specific process parameters are: heating section 810 ⁇ 20°C; soaking section 810 ⁇ 20°C, soaking time 110s; slow cooling section outlet temperature 650°C, slow cooling section cooling rate 6°C/s
- the rapid cooling section outlet temperature is 400 ° C
- the rapid cooling section cooling rate is 25 ° C / s
- the overaging section is 300 ° C
- the annealing medium is a non-oxidizing atmosphere composed of H 2 and N 2 .
- the flattening elongation of the annealed strip was controlled at 0.2 ⁇ 0.1%.
- composition The mass percentage of the chemical composition of the strip is shown in Table 5, and the rest is Fe and unavoidable impurities.
- the strip has a thickness of 1.8 ⁇ 0.04 mm.
- Table 5 Table of mass percent of chemical composition of the strip of Example 4 (unit: %)
- hot rolling process parameters heating temperature 1120 ° C; finishing temperature 870 ° C; crimping temperature 700 ° C; cold rolling reduction rate of 40%.
- the specific process parameters are: heating section 810 ⁇ 20°C; soaking section 810 ⁇ 20°C, soaking time 130s; slow cooling section outlet temperature 675°C, slow cooling section cooling rate 5°C/s
- the rapid cooling section outlet temperature is 400 ° C
- the rapid cooling section cooling rate is 25 ° C / s
- the overaging section is 300 ° C
- the annealing medium is a non-oxidizing atmosphere composed of H 2 and N 2 .
- the flattening elongation of the annealed strip was controlled at 0.2 ⁇ 0.1%.
- composition The mass percentage of the chemical composition of the strip is shown in Table 6, and the rest is Fe and unavoidable impurities.
- the strip has a thickness of 1.8 ⁇ 0.04 mm.
- Table 6 Table of mass percent of chemical composition of comparative strip steel (unit: %)
- hot rolling process parameters heating temperature 1120 ° C; finishing temperature 870 ° C; crimping temperature 700 ° C; cold rolling reduction rate of 40%.
- Annealing method heating section 560 ⁇ 20°C; soaking section 560 ⁇ 20°C, soaking time 100s; slow cooling section outlet temperature 500°C, slow cooling section cooling rate 5°C/s; fast cooling section outlet temperature 370°C, The cooling rate of the rapid cooling section is 25 ° C / s; the overaging section is 280 ° C; the annealing medium is a non-oxidizing atmosphere composed of H 2 and N 2 .
- the flattening elongation of the annealed strip was controlled at 1.0 ⁇ 0.2%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Soft Magnetic Materials (AREA)
Abstract
一种低矫顽力冷轧电磁纯铁板带连续退火方法,连续退火炉内各工艺段控制参数如下:加热段750~850℃;均热段750~850℃,均热时间100~150s;缓冷段出口温度575~675℃,缓冷段冷却速度为2.5~10℃/s;快冷段出口温度380~420℃,快冷段冷却速度15~25℃/s;过时效段270~310℃;退火介质为H2与N2组成的非氧化性气氛;所述冷轧电磁纯铁板带退火后经平整压下的板带平整延伸率控制在0.2±0.1%。该连续退火方法工艺过程简单,所生产的冷轧电磁纯铁板带无需再进行磁化退火即可获得矫顽力低、成形性好的综合性能。
Description
本发明涉及金属材料加工领域,特别涉及一种低矫顽力、高成形性、无需磁化退火的冷轧电磁纯铁板带连续退火方法。
电磁纯铁具有矫顽力低、磁导率高、加工性能优良等特点,是一种重要的功能性软磁材料。
传统的电磁纯铁产品以软化退火状态出厂,用户对其进行加工成型制成零件后再进行磁化退火处理,消除冷加工晶格畸变才能充分发挥出纯铁的磁性能。国标GB/T 6983-2008对冷轧电磁纯铁钢板按照磁性能由高到低分为四个牌号:DT4(Hc≤96A/m)、DT4A(Hc≤72A/m)、DT4E(Hc≤48A/m)、DT4C(Hc≤32A/m),另外对电磁纯铁的磁化退火工艺进行了如下规定:真空或惰性气体保护退火时,随炉升温到900±10℃保温1h,保温结束后以低于50℃/h的速度冷却到500℃以下或室温出炉;如果采用脱碳气氛进行退火,则随炉升温到800℃,然后经不小于2h的时间加热到900±10℃保温4h,保温结束后以低于50℃/h的速度冷却到500℃以下或室温出炉。
冷轧电磁纯铁板带的一个重要应用是磁屏蔽材料,如电力继电器屏磁外壳。若按照传统工艺将零件冲裁成型后,再进行周期长达数小时的磁化退火处理,大的零件尺寸对退火设备要求提高,另外产量受限于装炉量,极易使磁化退火环节成为整个生产流程中的瓶颈工序,产品的生产加工周期延长,成本也随之提高。因而生产厂家希望能够使用矫顽力低(<100A/m)、成形性好且无需磁化退火的电磁纯铁板带,但是现有技术尚未达到此项指标。
对现有电磁纯铁产品相关专利的分析如表1所示。首先对冷轧电磁纯铁磁性能的持续改善是一个关注点,通过合金成分的调整、热轧、冷轧工艺的改进以及对磁化退火环节的控制来提升材料的磁性能。另外中国专利CN103789609A则申请了一种提高电磁纯铁纯净度的方法,即通过对锻造钢锭电渣重熔而减少杂质元素。
中国专利CN104232856A则针对磁化退火过程中工件表面易氧化的问题,提出了电磁纯铁零件磁化退火的改进办法。
表1电磁纯铁产品相关专利分析
发明内容
本发明的目的在于提供一种低矫顽力冷轧电磁纯铁板带连续退火方法,该连续退火方法工艺过程简单,所生产的冷轧电磁纯铁板带无需再进行磁化退火即可获得矫顽力低、成形性好的综合性能。
为了实现上述技术目的,本发明采用如下技术方案:
一种低矫顽力冷轧电磁纯铁板带连续退火方法,连续退火炉内各工艺段控制参数如下:加热段750~850℃;均热段750~850℃,均热时间100~150s;缓冷段出口温度575~675℃,缓冷段冷却速度为2.5~10℃/s;快冷段出口温度380~420℃,快冷段冷却速度15~25℃/s;过时效段270~310℃;退火介质为H2与N2组成的非氧化性气氛;所述冷轧电磁纯铁板带退火后经平整压下的板带平整延伸率控制在0.2±0.1%。
所述冷轧电磁纯铁板带厚度为0.5-3.0mm。
进一步,所述冷轧电磁纯铁板带的化学成分质量百分比为:C≤0.005%,Si≤0.1%,Mn=0.1%~0.5%,P≤0.02%,S≤0.003%,Al≤0.005%或Al=0.1~1.5%,B≤0.007%,[N]≤0.005%,[0]≤0.02%,其余为Fe及不可避免的杂质。
进一步,所述冷轧电磁纯铁板带退火后的指标参数为:矫顽力在60-100A/m,屈服强度≥120MPa,延伸率≥35%。
进一步,所述冷轧电磁纯铁板带的的热轧工艺参数:加热温度1000~1200℃;终轧温度750~900℃;卷曲温度550~720℃;冷轧压下率控制在30~55%。
本发明低矫顽力冷轧电磁纯铁板带连续退火方法制备所得的电磁纯铁板带具有低矫顽力、高成形性且无需磁化退火,解决了传统冷轧电磁纯铁材料需进行磁化退火,而大尺寸零件磁化退火装炉受限,生产加工周期长,成本高的问题。
本发明低矫顽力冷轧电磁纯铁板带连续退火方法的原理如下:
本发明的低矫顽力冷轧电磁纯铁板采用连续退火方式生产,由于压延轧制过程使铁素体晶内存在大量点阵畸变,磁畴移动阻力大,高温退火为再结晶消除冷轧点阵畸变提供了足够的热力学驱动力,若退火时间太短,晶粒长大不充分,材料的矫顽力不理想。退火的均热温度选择在750-850℃,退火均热段时间为100~150s,可以在保证材料的矫顽力Hc<100A/m的前提下兼顾生产效率。
本发明的低矫顽力冷轧电磁纯铁板带的退火板带的平整延伸率控制在0.2±0.1%,这是因为平整压下会通过引入晶体缺陷,增大磁畴阻力显著影响矫顽力性能;但由于电磁纯铁产品屈服强度较低,高温连退易产生边皱等质量缺陷,因而适度的平整压下也是保证产品表面质量的关键手段,综合上述因素,控制平整压下率,避免其超过0.3%。
本发明对适用于上述退火方法的电磁纯铁板带的具体化学成分有一定要求。C、N、O、S都是对纯铁磁性极有害的元素,细小分布的MnS、AlN析出物及氧化物夹杂均可阻碍晶粒长大,强烈地影响磁化,使矫顽力增加。因此在采用本发明提出的退火工艺时,在成分的选择上一方面要尽量降低杂质元素的含量,另一方面要避免形成细小夹杂物。铝元素显著影响电磁纯铁中夹杂物的存在形式,对铝的控制一般采取两个极端的措施。这是因为酸溶铝Als在0.005~0.014%范围内最易形成细小的AlN,从而阻止铁素体晶粒长大,由于晶粒细小,对磁性能有害的位向组分增多,当Als≤0.003%时,铝含量愈低,磁性有利的位向组分增多,晶粒较粗
大。铝含量在0.15%以上时,也可形成粗大AIN,改善织构,使磁各异性降小,而且固定N使磁时效减轻。
另外,在热轧制度的选择上,选取较高的终轧温度和卷取温度,这主要因为高温终轧及高温卷曲一方面有利于热轧变形组织的回复、再结晶和晶粒长大,促进热轧板晶粒粗化;另一方面,有利于钢中细小夹杂物(如AlN、MnS)的聚集和长大,从而降低细小夹杂物对试样热处理时晶界移动的阻碍,从而降低对磁畴移动的钉扎作用。
冷轧压下率上则要控制在30~55%,避免压下率过高。冷轧过程中,不同的变形量将对应得到不同的形变微观组织,从而影响再结晶形核与长大动力。较低的冷轧变形量将通过对热轧板引人应变诱发晶界迁移,促进退火晶粒长大而获得了较好的磁性能;而随着冷轧变形量继续增加,复杂滑移区域增加,胞状组织发展完善,尽管退火时再结晶形核率、晶粒长大速率都增加,但形核率大于晶粒长大速率,造成再结晶晶粒变细,相应的矫顽力Hc升高,磁性能变坏。
本发明低矫顽力冷轧电磁纯铁板带连续退火方法制备所得的电磁纯铁板带无需再进行磁化退火,冷轧电磁纯铁板带退火后的指标参数达到:矫顽力在60-100A/m,屈服强度≥120MPa,延伸率≥35%。
本发明低矫顽力冷轧电磁纯铁板带连续退火方法作为冷轧电磁纯铁板带生产的最后环节,其工艺过程简单,所生产的冷轧电磁纯铁板带无需再进行磁化退火即可获得矫顽力低、成形性好的综合性能。
实施例一
成分:带钢的化学成分的质量百分含量如表2所示,其余为Fe及不可避免的杂质。带钢厚度1.2±0.04mm。
表2:实施例一带钢的化学成分的质量百分含量表(单位:%)
工艺:热轧工艺参数:加热温度1150℃;终轧温度850℃;卷曲温度550℃;冷轧压下率50%。
按照本发明的退火方法,具体工艺参数为:加热段830±20℃;均热段830±20℃,均热时间140s;缓冷段出口温度675℃,缓冷段冷却速度为5℃/s;快冷段出口温度400℃,快冷段冷却速度25℃/s;过时效段300℃;退火介质为H2与N2组成的非氧化性气氛。退火板带的平整延伸率控制在0.2±0.1%。
实施效果:连续退火的冷轧电磁纯铁板带矫顽力Hc:71A/m,屈服强度:159Mpa,延伸率:53.5%。具有良好的综合性能。
实施例二
成分:带钢的化学成分的质量百分含量如表3所示,其余为Fe及不可避免的杂质。带钢厚度2.0±0.04mm。
表3:实施例二带钢的化学成分的质量百分含量表(单位:%)
工艺:热轧工艺参数:加热温度1150℃;终轧温度870℃;卷曲温度650℃;冷轧压下率45%。
按照本发明的退火方法,具体工艺参数为:加热段830±20℃;均热段830±20℃,均热时间130s;缓冷段出口温度675℃,缓冷段冷却速度为5℃/s;快冷段出口温度400℃,快冷段冷却速度25℃/s;过时效段300℃;退火介质为H2与N2组成的非氧化性气氛。退火板带的平整延伸率控制在0.2±0.1%。
实施效果:连续退火的冷轧电磁纯铁板带矫顽力Hc:65A/m,屈服强度:155Mpa,延伸率:55%。具有良好的综合性能。
实施例三
成分:带钢的化学成分的质量百分含量如表4所示,其余为Fe及不可避免的杂质。带钢厚度1.0±0.04mm。
表4:实施例三带钢的化学成分的质量百分含量表(单位:%)
工艺:热轧工艺参数:加热温度1200℃;终轧温度900℃;卷曲温度720℃;冷轧压下率40%。
按照本发明的退火方法,具体工艺参数为:加热段810±20℃;均热段810±20℃,均热时间110s;缓冷段出口温度650℃,缓冷段冷却速度为6℃/s;快冷段出口温度400℃,快冷段冷却速度25℃/s;过时效段300℃;退火介质为H2与N2组成的非氧化性气氛。退火板带的平整延伸率控制在0.2±0.1%。
实施效果:连续退火的冷轧电磁纯铁板带矫顽力Hc:80A/m,屈服强度:157Mpa,延伸率:50.3%。具有良好的综合性能。
实施例四
成分:带钢的化学成分的质量百分含量如表5所示,其余为Fe及不可避免的杂质。带钢厚度1.8±0.04mm。
表5:实施例四带钢的化学成分的质量百分含量表(单位:%)
工艺:热轧工艺参数:加热温度1120℃;终轧温度870℃;卷曲温度700℃;冷轧压下率40%。
按照本发明的退火方法,具体工艺参数为:加热段810±20℃;均热段810±20℃,均热时间130s;缓冷段出口温度675℃,缓冷段冷却速度为5℃/s;快冷段出口温度400℃,快冷段冷却速度25℃/s;过时效段300℃;退火介质为H2与N2组成的非氧化性气氛。退火板带的平整延伸率控制在0.2±0.1%。
实施效果:连续退火的冷轧电磁纯铁板带矫顽力Hc:84A/m,屈服强度:165Mpa,延伸率:52%。具有良好的综合性能。
对比例
成分:带钢的化学成分的质量百分含量如表6所示,其余为Fe及不可避免的杂质。带钢厚度1.8±0.04mm。
表6:对比例带钢的化学成分的质量百分含量表(单位:%)
工艺:热轧工艺参数:加热温度1120℃;终轧温度870℃;卷曲温度700℃;冷轧压下率40%。
退火方法:加热段560±20℃;均热段560±20℃,均热时间100s;缓冷段出口温度500℃,缓冷段冷却速度为5℃/s;快冷段出口温度370℃,快冷段冷却速度25℃/s;过时效段280℃;退火介质为H2与N2组成的非氧化性气氛。退火板带的平整延伸率控制在1.0±0.2%。
实施效果:连续退火的冷轧电磁纯铁板带矫顽力Hc:127A/m,屈服强度:213Mpa,延伸率:42%。成品矫顽力过高,无法满足磁屏蔽材料的使用要求。
Claims (5)
- 一种低矫顽力冷轧电磁纯铁板带连续退火方法,其特征是:连续退火炉内各工艺段控制参数如下:加热段750~850℃;均热段750~850℃,均热时间100~150s;缓冷段出口温度575~675℃,缓冷段冷却速度为2.5~10℃/s;快冷段出口温度380~420℃,快冷段冷却速度15~25℃/s;过时效段270~310℃;退火介质为H2与N2组成的非氧化性气氛;所述冷轧电磁纯铁板带退火后经平整压下的板带平整延伸率控制在0.2±0.1%。
- 根据权利要求1所述的低矫顽力冷轧电磁纯铁板带连续退火方法,其特征是:所述冷轧电磁纯铁板带厚度为0.5-3.0mm。
- 根据权利要求1所述的低矫顽力冷轧电磁纯铁板带连续退火方法,其特征是:所述冷轧电磁纯铁板带的化学成分质量百分比为:C≤0.005%,Si≤0.1%,Mn=0.1%~0.5%,P≤0.02%,S≤0.003%,Al≤0.005%或Al=0.1~1.5%,B≤0.007%,[N]≤0.005%,[O]≤0.02%,其余为Fe及不可避免的杂质。
- 根据权利要求3所述的低矫顽力冷轧电磁纯铁板带连续退火方法,其特征是:所述冷轧电磁纯铁板带退火后的指标参数为:矫顽力在60-100A/m,屈服强度≥120MPa,延伸率≥35%。
- 根据权利要求3所述的低矫顽力冷轧电磁纯铁板带连续退火方法,其特征是:所述冷轧电磁纯铁板带的的热轧工艺参数:加热温度1000~1200℃;终轧温度750~900℃;卷曲温度550~720℃;冷轧压下率控制在30~55%。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/762,623 US10697040B2 (en) | 2015-09-28 | 2016-09-01 | Continuous annealing method for low coercive force cold-rolled electromagnetic pure iron plate and strip |
EP16850289.6A EP3358022B1 (en) | 2015-09-28 | 2016-09-21 | Continuous annealing method for low coercive force cold-rolled electromagnetic pure iron plate and strip |
JP2018515443A JP6613370B2 (ja) | 2015-09-28 | 2016-09-21 | 低保磁力冷間圧延電磁純鉄板・帯材の連続焼鈍方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510624002.2A CN106555034B (zh) | 2015-09-28 | 2015-09-28 | 一种低矫顽力冷轧电磁纯铁板带连续退火方法 |
CN201510624002.2 | 2015-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017054665A1 true WO2017054665A1 (zh) | 2017-04-06 |
Family
ID=58416362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/099566 WO2017054665A1 (zh) | 2015-09-28 | 2016-09-21 | 一种低矫顽力冷轧电磁纯铁板带连续退火方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10697040B2 (zh) |
EP (1) | EP3358022B1 (zh) |
JP (1) | JP6613370B2 (zh) |
CN (1) | CN106555034B (zh) |
WO (1) | WO2017054665A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107541591B (zh) * | 2017-08-29 | 2019-11-15 | 西安汇丰精密合金制造有限公司 | 一种超级电磁纯铁dt4c棒材的制造方法 |
CN110819772B (zh) * | 2019-10-28 | 2021-04-02 | 鞍钢股份有限公司 | 一种连续退火炉氮氢保护气控制方法 |
CN112853228B (zh) * | 2019-11-27 | 2022-10-21 | 宝山钢铁股份有限公司 | 兼具高强度和高磁性能的冷轧电磁纯铁及其制造方法 |
CN112149272A (zh) * | 2020-08-12 | 2020-12-29 | 唐山钢铁集团高强汽车板有限公司 | 基于多元线性回归分析的冷轧钢带力学性能预测模型 |
DE102020124189A1 (de) * | 2020-09-16 | 2022-03-17 | Mogema BV | Verfahren zum Herstellen und Design komplexer dreidimensionaler magnetischer Abschirmelemente, Abschirmelemente und deren Verwendung |
CN112359186A (zh) * | 2020-11-13 | 2021-02-12 | 沈阳航天新光集团有限公司 | 一种磁性材料真空退火方法 |
CN114517275A (zh) * | 2020-11-20 | 2022-05-20 | 宝山钢铁股份有限公司 | 一种超级电磁纯铁冷轧板带及其制备方法 |
CN114807529A (zh) * | 2022-05-06 | 2022-07-29 | 天津市新天钢冷轧薄板有限公司 | 一种降低连续退火炉生产spcc材质风险的工艺 |
CN114959472A (zh) * | 2022-05-25 | 2022-08-30 | 鞍钢冷轧钢板(莆田)有限公司 | 一种低强度高延伸精密焊管用冷轧板及其生产方法 |
CN118835173A (zh) * | 2023-04-23 | 2024-10-25 | 宝山钢铁股份有限公司 | 一种低矫顽力线材及其制造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4265683A (en) * | 1979-02-07 | 1981-05-05 | Westinghouse Electric Corp. | Development of grain-oriented iron sheet for electrical apparatus |
JPH04301053A (ja) * | 1991-03-29 | 1992-10-23 | Nippon Steel Corp | 透磁率、保磁力共に優れた一方向性電磁鋼板およびその製造方法 |
CN1410580A (zh) * | 2001-09-29 | 2003-04-16 | 宝山钢铁股份有限公司 | 具有极低矫顽力的冷轧电磁纯铁板带及其生产方法 |
CN103205548A (zh) * | 2013-04-16 | 2013-07-17 | 山西太钢不锈钢股份有限公司 | 一种低矫顽力电磁纯铁冷轧薄板的制造方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3239390A (en) * | 1961-04-12 | 1966-03-08 | Yawata Iron & Steel Co | Method of producing non-ageing special low carbon iron sheets |
US3256119A (en) * | 1965-04-20 | 1966-06-14 | George W Jernstedt | Method of annealing steel strip |
US3351501A (en) * | 1964-06-04 | 1967-11-07 | Westinghouse Electric Corp | Process for producing magnetic sheets with cube-on-face grain texture |
US4251294A (en) * | 1978-08-22 | 1981-02-17 | National Steel Corporation | Method for producing fully-processed low-carbon electrical steel |
JPS6044376B2 (ja) * | 1978-10-21 | 1985-10-03 | 新日本製鐵株式会社 | 非時効性で、かつ深絞り加工性の優れた連続熱処理による冷延鋼板の製造方法 |
US4398700A (en) * | 1982-09-29 | 1983-08-16 | Midland-Ross Corporation | Annealing furnace with an improved cooling section |
US5137586A (en) * | 1991-01-02 | 1992-08-11 | Klink James H | Method for continuous annealing of metal strips |
JPH086134B2 (ja) * | 1991-03-08 | 1996-01-24 | 新日本製鐵株式会社 | 磁気特性の優れたtvブラウン管マスクフレーム用冷延鋼板の製造方法 |
US5497817A (en) * | 1992-05-25 | 1996-03-12 | Nippon Steel Corporation | Method for continuously annealing steel strip |
JP3737558B2 (ja) * | 1996-03-21 | 2006-01-18 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
WO1999023268A1 (fr) * | 1997-11-05 | 1999-05-14 | Nippon Steel Corporation | Tole d'acier haute resistance laminee a froid, tole d'acier metallisee presentant d'excellentes caracteristiques de protection geomagnetique, et leur procede de fabrication |
JP2001040420A (ja) * | 1999-07-28 | 2001-02-13 | Nisshin Steel Co Ltd | 透磁率の良いブラウン管バンド用時効硬化鋼板の製造方法 |
JP2001073078A (ja) * | 1999-09-07 | 2001-03-21 | Nkk Corp | ヒートシュリンクバンド用亜鉛系めっき鋼板およびその製造方法 |
JP4258918B2 (ja) * | 1999-11-01 | 2009-04-30 | Jfeスチール株式会社 | 無方向性電磁鋼板の製造方法 |
JP4174320B2 (ja) * | 2000-12-19 | 2008-10-29 | ポスコ | 優れた電気及び磁気シールド特性を有する高強度の鋼板及びその製造方法 |
JP2010222631A (ja) * | 2009-03-23 | 2010-10-07 | Kobe Steel Ltd | 鋼板連続焼鈍設備および鋼板連続焼鈍設備の運転方法 |
CN101597674B (zh) * | 2009-07-03 | 2010-09-22 | 首钢总公司 | 一种低屈服高抗拉强度dc01汽车用钢板的连续退火方法 |
EP2832883A4 (en) * | 2012-03-30 | 2016-03-09 | Nisshin Steel Co Ltd | STEEL PLATE FOR ROTOR HEADS FOR IPM ENGINES AND METHOD FOR THE MANUFACTURE THEREOF |
CN102644021B (zh) * | 2012-04-23 | 2014-07-23 | 武汉钢铁(集团)公司 | 一种600MPa级低工艺敏感性冷轧双相钢及生产方法 |
ES2614465T3 (es) * | 2012-07-10 | 2017-05-31 | Thyssenkrupp Steel Europe Ag | Producto plano de acero laminado en frío y procedimiento para su fabricación |
CN103757534B (zh) * | 2013-12-27 | 2016-01-20 | 首钢总公司 | 一种具有良好凸缘焊接性能的冷轧钢板及其生产方法 |
CN104372151B (zh) * | 2014-11-03 | 2016-08-17 | 攀钢集团西昌钢钒有限公司 | 具有良好表面质量和成型性能的冷轧钢板及其生产方法 |
CN104694817B (zh) * | 2015-03-26 | 2016-11-09 | 攀钢集团西昌钢钒有限公司 | 超低碳冷轧钢板生产方法 |
-
2015
- 2015-09-28 CN CN201510624002.2A patent/CN106555034B/zh active Active
-
2016
- 2016-09-01 US US15/762,623 patent/US10697040B2/en active Active
- 2016-09-21 EP EP16850289.6A patent/EP3358022B1/en active Active
- 2016-09-21 JP JP2018515443A patent/JP6613370B2/ja active Active
- 2016-09-21 WO PCT/CN2016/099566 patent/WO2017054665A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4265683A (en) * | 1979-02-07 | 1981-05-05 | Westinghouse Electric Corp. | Development of grain-oriented iron sheet for electrical apparatus |
JPH04301053A (ja) * | 1991-03-29 | 1992-10-23 | Nippon Steel Corp | 透磁率、保磁力共に優れた一方向性電磁鋼板およびその製造方法 |
CN1410580A (zh) * | 2001-09-29 | 2003-04-16 | 宝山钢铁股份有限公司 | 具有极低矫顽力的冷轧电磁纯铁板带及其生产方法 |
CN103205548A (zh) * | 2013-04-16 | 2013-07-17 | 山西太钢不锈钢股份有限公司 | 一种低矫顽力电磁纯铁冷轧薄板的制造方法 |
Non-Patent Citations (1)
Title |
---|
XIE, ZHENYA.: "Effect of Cold-Rolling Deformation and Heat Treatment Process on Coercive Force of Magnetic Pure Iron", SPECIAL STEEL, vol. 31, no. 5, October 2010 (2010-10-01), pages 64 - 66, XP055371774 * |
Also Published As
Publication number | Publication date |
---|---|
US10697040B2 (en) | 2020-06-30 |
EP3358022A4 (en) | 2019-03-06 |
EP3358022B1 (en) | 2020-04-01 |
EP3358022A1 (en) | 2018-08-08 |
JP2018535311A (ja) | 2018-11-29 |
CN106555034B (zh) | 2019-02-05 |
JP6613370B2 (ja) | 2019-11-27 |
US20180265945A1 (en) | 2018-09-20 |
CN106555034A (zh) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017054665A1 (zh) | 一种低矫顽力冷轧电磁纯铁板带连续退火方法 | |
CN102151695B (zh) | 一种冷轧无取向高硅钢薄带的制造方法 | |
US20120285584A1 (en) | Manufacture Process Of Non-Oriented Silicon Steel With High Magnetic Induction | |
CN102126110B (zh) | 一种高硅钢薄带的制造方法 | |
CN101306434A (zh) | 一种低碳低硅无铝半工艺无取向电工钢的制备方法 | |
CN106636914B (zh) | 一种if钢及其制备方法 | |
CN103993148B (zh) | 一种超低碳冷轧钢板及其制备方法 | |
CN109022703A (zh) | 一种磁各向异性低的无取向硅钢及其制造方法 | |
CN105256226B (zh) | 一种低铁损冷轧无取向硅钢及生产方法 | |
CN107164690A (zh) | 一种基于薄带连铸制备{100}面发达织构无取向硅钢薄带的方法 | |
CN108118250B (zh) | 一种抗折弯开裂的免磁化退火电磁纯铁及其制造方法 | |
CN104451378A (zh) | 一种磁性能优良的取向硅钢及生产方法 | |
CN115772629A (zh) | 一种工业化用超塑性中锰钢及其制备方法 | |
CN107794458B (zh) | 具有高抗折弯特性的免磁化的电磁纯铁及其制造方法 | |
CN100457385C (zh) | 低矫顽力高磁导率电磁纯铁冷轧薄板材料制造方法 | |
CN101280396A (zh) | 一种具有高磁感低频率温度系数的恒弹性合金 | |
CN104195427A (zh) | 一种低铁损高磁感无取向硅钢及生产方法 | |
CN112176222B (zh) | 一种含Ce的Fe-Ni坡莫合金材料及其制备方法 | |
CN114836690A (zh) | 一种均匀延伸率优良的无间隙原子冷轧钢板及其制备方法 | |
CN113073186B (zh) | 改善含Cu高强度无取向硅钢冷轧质量的方法 | |
CN108504947A (zh) | 一种二次冷轧镀锡板及其生产方法 | |
TWI683906B (zh) | 中碳鋼的製造方法 | |
CN114517275A (zh) | 一种超级电磁纯铁冷轧板带及其制备方法 | |
CN115058648B (zh) | 一种1000MPa级冷轧热处理钢带及其制备方法 | |
CN109082596B (zh) | 一种低铁损高磁极化强度的无取向硅钢及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16850289 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15762623 Country of ref document: US Ref document number: 2018515443 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |